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Abstract 

As the cloud services market grows, cloud management tools that detect network anomalies in a non-intrusive man-
ner are critical to improve users’ experience of cloud services. However, some network anomalies, such as Microburst, 
in cloud systems are very discreet. Network monitoring methods, e.g., SNMP, Ping, are of coarse temporal granularity 
or low-dimension metrics, have difficulty to identify such anomalies quickly and accurately. Network telemetry is able 
to collect rich network metrics with fine temporal granularity, which can provide deep insight into network anoma-
lies. However, the rich features in the telemetry data are insufficient exploited in existing research. This paper proposes 
a Multi-feature Fusion Graph Deep learning approach driven by the In-band Network Telemetry, shorted as MFGAD-
INT, to efficiently extract and process the spatial-temporal correlation information in telemetry data and effectively 
identify the anomalies. The experimental results show that the accuracy performance of the proposed method 
improves about 10.56% compared to the anomaly detection method without network telemetry and about 9.73% 
compared to the network telemetry-based method.

Keywords Anomaly detection, Time series analysis, In-band network telemetry, Deep learning, Data stream mining, 
Cloud computing

Introduction
With the Digital transformation of various industries, 
an increasing number of AI-driven services [1] that rely 
heavily on data and computing power are being run on 
edge and center cloud facilities [2]. The pooling and vir-
tualization of computing and storage resources in clouds 

[3–5], as well as smart scheduling and maintenance 
techniques [6, 7], have shielded the management details 
of the infrastructure, providing convenience for enter-
prises’ digital transformation, but also making network 
anomalies more concealed. At the same time, emerging 
intelligent businesses [8, 9], such as splitting learning 
for large neural network models and federated learning 
models [10], put more stringent requirements on cloud 
data center networks. Network anomalies that are insen-
sitive to traditional businesses, such as Microburst, can 
cause delays or packet loss during the parameter transfer 
process of split learning, severely affecting the efficiency 
and convergence of model training. Common network 
anomaly monitoring methods mainly utilize simple net-
work manage protocol (SNMP), active network probes, 
etc., to obtain network status data [11]. The frequency of 
obtaining network status data using such methods is very 
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low (minute level), and the dimensions of the detected 
indicators are also very limited. It is also difficult to con-
tinuously monitor the overall network performance. 
Therefore, it is difficult to effectively monitor more con-
cealed network anomalies, which is one of the emerg-
ing research directions of network anomaly detection 
[12–14].

Data plane network telemetry techniques, such as in-
band network telemetry (INT), offer high-precision 
stream monitoring data that can uncover potential net-
work anomalies. However, the increased richness of 
information provided by network telemetry significantly 
increases the volume of data that needs to be processed, 
posing new challenges to anomaly detection. To ensure 
real-time detection of network anomalies, detection 
methods need to process telemetry data streams with 
utmost efficiency. Furthermore, since the data is continu-
ously streamed, it is not possible to assume its distribu-
tion or length. Lastly, network telemetry data contains a 
wealth of network information, and detection algorithms 
must capture as many features from the information as 
possible to maximize the capabilities of INT telemetry. 
Although deep learning has been widely used in a variety 
of network problems, such as resource scheduling [15], 
health prediction [16, 17], and shows great potential in 
dealing with problems with large solution space, but the 
use of deep learning in telemetry-aided anomaly detec-
tion is rare. Therefore, it is crucial to develop efficient 
and effective detection methods that can extract essen-
tial information from incoming measurements using the 
simplest possible operation.

Considering the above challenges, this paper proposes 
the in-band network telemetry data-driven anomaly 
detection method using multi-feature fusion graph deep 
learning (MFGAD-INT). This method extracts multi-
modal features from different perspectives using graph 
neural networks to process high-density telemetry data 
streams obtained from telemetry systems, and performs 
multimodal feature fusion and learning via deep neural 
networks. To achieve fast network anomaly identifica-
tion based on the latest network state, MFGAD-INT 
constructs an anomaly scoring model and determination 
model based on network state prediction. To effectively 
extract features from different perspectives, the proposed 
method uses the GAT [18] mechanism to extract tem-
poral and spatial feature information of the input data 
respectively [19]. Additionally, the proposed method per-
forms level-by-level data fusion of multimodal data and 
long-time information learning via the gating recurrent 
unit (GRU) [20] to model network state changes and pre-
dict future network states. To validate the effectiveness 

of the proposed method, we conducted experiments on 
a cloud data center network in Zhejiang, China, using 
its INT capability and controlled injection of anomalous 
states. The contributions of this paper can be summa-
rized as follows. 

(1) This paper proposes an anomaly feature learning 
framework for effectively processing INT telemetry 
data for anomaly detection. It can extract features 
from both spatial and temporal aspects of network 
telemetry data. At the same time, the framework 
realizes the gradual fusion of multimodal data and 
further complements the learning of long-term 
memory.

(2) Based on the above feature learning framework, this 
paper implements a graph learning based network 
anomaly detection method MFGAD-INT. By com-
bining GAT [18] and GRU to extract multimodal 
feature information from INT data, MFGAD-INT 
can maximize the utilization of rich information 
in telemetry data when processing INT network 
telemetry data.

(3) We evaluated MFGAD-INT in a real network environ-
ment and compared it with other anomaly detection 
algorithms. The results show that MFGAD-INT out-
performs other algorithms in terms of detection accu-
racy, demonstrating stronger generalization in detect-
ing multiple types of anomalies, such as Microburst 
[21] or QoS anomaly [22–24], while providing a degree 
of anomaly localization.

The rest of this paper is structured as follows. Related 
work section reviews the various techniques related to 
network anomaly detection. In Framework of teleme-
try-based anomaly detection system section, the system 
model construction of this paper is presented, along with 
a general introduction of the proposed MFGAD-INT. In 
Method section, the anomaly detection framework of 
MFGAD-INT based on GAT and GCN is presented. Sim-
ulation and results analysis section shows the results of 
our tests implemented in a real environment by INT with 
programmable switches. Finally, in Conclusion section, 
the paper is summarized and future work is discussed.

Related work
This section provides an overview of related work focus-
ing on the anomaly detection of streaming data in cloud 
data center networks, while meticulously dividing the 
related work according to its characteristics and algorith-
mic principles, as shown in Table 1. In particular, we first 
introduce network anomaly detection methods based on 
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common network detection means, which mostly acquire 
network data via SNMP, active network probes, and then 
perform anomaly detection on the acquired available 
data through machine learning or some deep learning 
algorithms. Then, we introduce the methods for network 
state detection based on network telemetry.

Anomaly detection methods
The purpose of anomaly detection is to find patterns in 
the data that deviate from other observations [36]. The 
purpose of using anomaly detection algorithms is to ana-
lyze the data obtained from telemetry to monitor the 
network status instead of network operations and mainte-
nance personnel, to discover network anomalies [37], and 
even to locate the source of network anomalies [38]. Net-
work information tends to be streaming data that con-
tains a large amount of normal data, and this streaming 
data changes dynamically over time; most early anomaly 
detection algorithms were based on supervised learn-
ing algorithms, among which the streaming half-space 
tree [25] (HS-Tree) achieves the classification of normal 
and anomalous by a decision tree that does not require 
changing the tree structure. HS-Trees use the quality [39] 
as a judgment marker for ranking anomalies to achieve 
fast and accurate anomaly determination. Another way to 
detect abnormal network states is through outlier detec-
tion. The abnormal data latent in the network state data 
can be represented as outliers. The random subspace 
hashing algorithm [26] (RSHash) uses random hashing to 
achieve a fast and stable subspace outlier anomaly state 
determination effect, and the algorithm also gives a more 
reasonable anomaly score for outliers. These supervised 

learning-based methods use labeled data to train algo-
rithm models for the detection of normal and abnormal 
events. However, the biggest problem with such methods 
is that the model needs to be trained with a balanced data 
set constructed. In network anomaly detection, the peri-
ods when anomalies occur are few and a balanced data 
set cannot be constructed. In addition, making labels for 
the data set for this particular problem of network anom-
aly detection is also a tricky problem.

With the rapid development of neural networks in 
recent years, they have been able to do predictions for 
some complex problems, at this time, some researchers 
have found graph neural networks to be well suited for 
the graph-based prediction of network state information 
and thus discriminating anomalies. Mahmoud et  al. in 
[27] proposed a LSTM AutoEncoder and one-class sup-
port vector machine (OC-SVM [40]) based approach to 
train the model by using only normal class examples. 
Liu et al. in [28] proposed a graph neural network-based 
anomaly detection algorithm for industrial control net-
works that fuses the network nodes’ own attributes and 
the information of neighboring nodes in the network 
topology to achieve the detection of network anoma-
lies. Deng et  al. in [29] proposed a method GDN for 
anomaly detection in industrial sensor networks based 
on graph attention mechanism and graph neural net-
work. It improves the accuracy of anomaly detection in 
multidimensional data by introducing GAT in the time 
dimension. Most of these neural network-based network 
anomaly detection methods are based on unsupervised 
learning (e.g., Hidden Markov Models, K-means clus-
tering [41]) or semi-supervised learning (i.e., training 

Table 1 Related work classification table

Method Data Algorithm Technical characteristics

HS-Trees [25] No reliance ML The detection of anomaly is quickly achieved by decision tree that does not require 
changes in tree structure.

RShash [26] ML Using random hashing to detect subspace anomaly

LSTM [27] CNN Using LSTM AutoEncoder pairs to extract Feature, and use SVM to complete the binary 
classification of input.

ICNAD [28] GNN Network anomaly detection is achieved using GNN that fuse the nodes’ attributes 
and neighboring nodes’.

GDN [29] GNN Improving the accuracy of anomaly detection by using GAT with graph neural network.

Snappy [21] Network Telemetry Statistical Analysis A Microburst detection method implemented inside programmable switches.

BurstRadar [30] Statistical Analysis A Microburst monitoring algorithm inside programmable switches for real-time detection.

INT-DETECT [31] ML Grey fault detection and localization method based on INT.

PacketScope [32] Statistical Analysis Determine whether abnormal packet loss events occur within network based on INT data.

INT-detector [33] GAAL Fast network anomaly detection based on INT and GAAL.

LossSight [34] GAN Packet loss complementary based on INT and GAN.

ODS [35] Clustering Detection of BGP anomalies based on clustering algorithm.
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using only normal data. The trained models are then 
applied to methods containing both normal and abnor-
mal event test data) neural network algorithms. These 
algorithms are dedicated to mining the high-dimensional 
feature relationships in the input data, and discriminat-
ing outliers (i.e., abnormal times) by learning the high-
dimensional feature change patterns of the input data. 
Therefore, the performance of neural network-based 
algorithms depends on both the algorithm’s ability to 
extract high-dimensional features and the amount of 
information in the input data.

Telemetry‑based network anomaly detection
Network measurement means cannot accurately reflect 
the state changes of the network, that is, they cannot 
provide rich enough input data for the subsequent dis-
criminant algorithm. The emergence of network telem-
etry has solved this problem. In-band network telemetry 
is a typical representative of the new network telemetry 
technology in recent years, which can accurately query 
the internal state of the switch and perform fine-grained, 
real-time monitoring of the network by inserting meta-
data into each packet through intermediate switching 
nodes in the path, and embedding the network informa-
tion into the packet.

Some anomaly detection algorithms based on differ-
ent telemetry methods have also been proposed in recent 
years, which focus on faster data processing speed and 
more accurate anomaly determination for network state 
information obtained by different telemetry methods. 
Andrian et al. in [35] proposed a stream pattern anomaly 
detection algorithm ODS, which is suitable for manipu-
lating telemetry data. Andrian performed an exhaus-
tive evaluation of the available data sets, comparing ODS 
with classical offline (e.g., DBScan [42], local outlier [43]) 
and online methods (windowed variants of Robust Ran-
dom Cut Forest [44], ExactStorm [45], and continuous 
outlier detection [46]) to validate the reliability and time-
liness of ODS. Tan et  al. in [34] proposed a packet loss 
monitoring system for in-band network telemetry. From 
the incomplete in-band network telemetry data, the lost 
telemetry information is automatically inferred and filled, 
and the complete telemetry information is output. Experi-
mental results show that this method has high detection 
and recovery accuracy and very low overhead, which can 
further improve network monitoring, control, and man-
agement performance. Ross et al. in [32] proposed a net-
work telemetry system PacketScope. This system is also 
designed around system packet loss, and obtains packet 
loss information and information such as delay and for-
warding queue inside the switch to determine whether 
abnormal packet loss events have occurred in the cur-
rent network. Jia et  al. in [31] proposed a fast gray fault 

detection and localization mechanism based on the 
recently proposed in-band network telemetry. Using 
INT probe packets for network-wide telemetry, all feasi-
ble paths between the source and the target are obtained. 
However, this method can only identify impassable breaks 
in the network environment, and cannot effectively iden-
tify other network anomalies such as congestion and 
Microburst. To address the problem, Chen et  al. in [21] 
proposed Snappy, an algorithm that can identify Micro-
burst in real time. Snappy maintains multiple snapshots 
of queue occupants over time. When each new packet 
arrives, Snappy updates a snapshot and estimates the 
score of queue occupancy. However, Snappy’s detection of 
Microburst flows is inherently probabilistic, and the prob-
ability (recall) of identifying all Microburst flows increases 
with the number of switching pipeline phases Snappy uses. 
Snappy also requires division and rounding operations, 
which are currently not supported by high-speed pro-
grammable switch ASIC. Joshi et al. in [30] proposed Bur-
stRadar to achieve continuous and efficient monitoring of 
Microburst by capturing telemetry information of only the 
packets involved in a Microburst using a programmable 
switch ASIC. However, since it is a switch programming 
algorithm implemented through P4, it focuses only on 
Microburst monitoring and cannot perform normal moni-
toring for other kinds of anomalies. Based on this state of 
affairs, Zhang et al. in [33] proposed an INT-detector, an 
automatic and fast network anomaly detection system that 
combines in-band network telemetry and deep learning 
to detect anomalies using Generative Adversarial Active 
Learning. However, this approach is more focused on pro-
viding low latency detection speed compared to giving 
more accurate anomaly detection results.

In summary, according to our latest survey, the cur-
rent detection methods for handling network telemetry 
data are still under development. Existing methods are 
often limited to specific kinds of problems, and there 
is currently no effective detection algorithm for more 
widespread network anomalies. Therefore, how to better 
apply the well-developed neural network-based anom-
aly detection algorithms to the detection of network 
anomalies based on telemetry data, to achieve efficient, 
accurate, and widespread network anomaly detection, 
remains a key focus that requires further exploration and 
research.

Framework of telemetry‑based anomaly detection 
system
In this section, a systematic overview of the network 
anomaly detection problem addressed by MFGAD-INT 
is presented, and mathematical modeling is performed 
to formulate the optimization problem. Specifically, in 
Overall structure of MFGAD-INT section, the input 
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data of network anomalies processed by MFGAD-INT 
is defined and corresponding mathematical calculation 
methods and data acquisition methods are given. In Data 
preprocessing section, the definition of network anom-
aly detection is provided, and the mathematical expres-
sions for input and output are given. In Network anomaly 
detection problem description and construction section, 
optimization problem analysis is carried out based on 
the mathematical definitions given in Data preprocessing 
section.

Overall structure of MFGAD‑INT
As shown in Fig.  1, MFGAD-INT is consisted of two 
main parts: offline training and online testing. The 
network telemetry module, which is common to both 
parts, is normalized in the data preprocessing mod-
ule and further divided into sequences by a sliding 
window of size N. The telemetry data is divided into 

segments of multivariate time series for offline train-
ing. During offline training, the model learns the met-
ric change patterns during healthy network operation 
and gives anomaly scores to the network state based 
on the learned patterns. These scores are used to 
select appropriate score thresholds. This offline model 
training session can be included as a regular train-
ing schedule to accommodate the network load at dif-
ferent time periods, such as weekly or every other 
week. For online detection, MFGAD-INT invokes the 
model to score anomalies on the new telemetry data 
Xt = {x1, x2, . . . , xm} after pre-processing, and then 
makes anomaly judgments and alerts by thresholds. 
When the anomaly score exceeds the threshold, the cur-
rent moment is evaluated as abnormal and the output 
Yt = y0, y1, y2, y3, y4, . . . , yM , yi ∈ {0, 1} , where y0 = 1 
indicates the presence of anomalies in the current 
network, followed by {y1, y2, y3, y4, . . . , yM}, yi ∈ {0, 1} 

Fig. 1 Overall framework of MFGAD-INT
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indicating which specific metric triggered the anomaly. 
This allows the algorithm to detect not only if there are 
anomalies in the network at this time, but also which 
specific metrics are anomalous as a way to explain why 
the anomaly occurred.

Data preprocessing
MFGAD-INT initially obtains network state meta-
data through telemetry, and network indicators can be 
obtained by calculating these metadata. During the com-
putation, some additional categorical metadata (e.g., port 
number, switch number, etc.) will be cleaned up after 
being used for categorical data dimensions; some data 
that do not meet the range of values specified in this 
section will also be cleaned up and invalidated. Finally, 
standard normalization is applied to the whole data set 
to complete the data preprocessing. All the metrics in 
the network, such as delay, packet loss, queue length, 
link bandwidth utilization and other key indicators, are 
telemetry with a fixed frequency.

Switch processing delay
There is a period of time between when a packet enters 
the switch and when the switch sends it out of the switch, 
called the switch processing delay Xnodal . Theoretically, 
the switch processing delay Xnodal = tprocess + tqueue , 
where tprocess is the processing delay, which includes the 
time taken for routing and the time required for check-
ing, and tqueue is the queuing delay, whose size depends on 
the current traffic in the network. There is actually also 
the time between the start of the packet and its complete 
delivery called transmission delay, denoted as ttransmission , 
but it is negligible as it is often very short. The method of 
obtaining this value in MFGAD-INT can be simplified by 
telemetry, and the exact value can be quickly calculated 
by the timestamps Xin and Xout of the packets entering 
and leaving the switch port, which is calculated as

Link delay
The time from when a packet is sent by the previous 
switch to when it is received by the next switch is called 
the link delay, denoted as Xchain . The actual value of the 
link delay is calculated by the difference between the 
Egress timestamp of the previous switch and the Ingress 
timestamp of the current switch. The minimum value of 
link delay should be its theoretical value and is calculated 
as

(1)Xnodal = Xout − Xin.

(2)Xchain_min =
Channel length

Channel program rate
.

Packet loss rate
Generally, packet loss occurs at the switch node and pre-
vious means are not very easy to obtain the packet loss 
rate in the network. Using telemetry, the packet loss 
number is obtained by calculating the difference between 
the total number of packets received by the switch and 
the total number of packets sent to obtain the current 
packet loss rate Xdrop at the switch node.

Link bandwidth utilization
Link bandwidth utilization is usually defined as the actual 
data transfer on a physical link as a percentage of the 
channel capacity. Using telemetry, the incoming and out-
going port utilization Xin_used and Xout_used of the switch 
can be directly obtained, and the port utilization of the 
same physical port can be summed to obtain the actual 
bandwidth utilization of the port and thus can refer to 
the link bandwidth utilization. Therefore, the link band-
width utilization Xchain_used is calculated as

Network anomaly detection problem description 
and construction
In the network anomaly detection problem, the net-
work indicator information can be regarded as a time 
series, and the telemetry information of all indicators 
in the network constitutes a multivariate time series, 
where each sequence affects each other. By defini-
tion, the multivariate time series can be expressed as 
X = {X1,X2,X3,X4, , ,XM} , where M denotes the num-
ber of network performance indicators. Each univariate 
time series Xn ∈ RN is a vector representing the data of 
one network performance metric after N telemetry at a 
fixed frequency. Therefore, the multivariate time series is 
finally represented as X ∈ RM×N . For a given multivariate 
time series input X ∈ RM×N , a sliding window of size T is 
used to generate a fixed length input. Network anomaly 
detection is used to evaluate the anomalous state of the 
input at each moment, and this evaluation can be quan-
tified as Anomt = {anom0, anom1, anom2, anom3, anom4, , , anomM} , 
where anom0 is the network state anomaly evalua-
tion and the other parts are the network indicators of 
each anomaly evaluation. The task of anomaly detec-
tion is to generate the output vector Y ∈ R(M+1)×T 
by computing the quantified anomaly evaluation, 
which can be expressed as Y = {Y1,Y2,Y3,Y4, . . . ,YT } . 
where Yt =

{

y0, y1, y2, y3, y4, , , yM
}

, yi ∈ {0, 1} , indi-
cates whether the network as a whole is anomalous and 
whether the network indicator is anomalous at the t-th 
timestamp.

(3)Xchain_used = Xin_used + Xout_used .
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Based on the above definition, the objective optimiza-
tion equation can be obtained. The network anomaly 
detection problem can be carried out in two steps. First, 
for the prediction of the network state, the input data is 
predicted by a deep learning model, and the first step is 
optimization by its loss function. The optimization equa-
tion is as

where xi and x̄i are the original state information and pre-
dicted state information for the i-th timestamp in the cur-
rent input data, respectively. Some indicators in the input 
data have constraints in the values, and data cleaning is 
performed when the input values are not in the given range.

When the algorithm starts anomaly detection, the pre-
dicted state data needs to be scored based on the true 
values and the classification algorithm is optimized by 
the following optimization problem.

where x denotes the true state value of the network at the 
current timestamp and xanom is the anomaly score given 
by the prediction algorithm when the anomaly occurs, 
respectively. u is the threshold value given by the SPOT 
algorithm, which is mathematically described as

For the predictions xl given by deep learning, the 
anomaly score is calculated by the telemetry value xi 
according to a fixed formula SPOT and a suitable thresh-
old is chosen to maximize the difference between the 
score and the threshold when an anomaly occurs. We will 
explain the processing process of the SPOT algorithm in 
detail later.

Method
The anomaly detection methods before are mainly used 
to generate clusters rather than detecting the anomalies, 
which is the goal of this paper. In this section, we will 
show how to move from clustering to outlier detection. 
Next, the details of the components of the algorithm are 
described. Finally, the usage steps of the algorithm for 
online detection are presented.

Detection program design
In our work, we use INT to obtain network status infor-
mation, and the telemetry data itself can be regarded as 

(4)
min

1

n

∑

(xi − xi)
2,

s.t. C1 : xi > Xchain_min , xi ∈ Xchain = {x1, x2, x3, x4, . . . , , xT },

C2 : xi < 1 , xi ∈ Xdrop = {x1, x2, x3, x4, . . . , xT },

(5)
max

1

n

∑

(xanom − x)2 − u,

s.t. xanom ≥ 0, x ≥ 0,

(6)u = SPOT (xl , xi),

a data source containing multimodal information. Each 
feature in the data set contains the information from 
different telemetry metadata with its own periodical 
changes; meanwhile, the correlation between different 
telemetry metadata constitutes the spatial information 
of network state; The change pattern presented by the 
features composed of all telemetry metadata under the 
same time reflects the temporal information of net-
work state. The CNN and different GAT layers are used 
to separately extract multimodal information from the 
same data set. The advantage of separate refinement is 
that different neural networks can focus on only part of 
the state information in the data set during the training 
process to achieve better feature extraction. Combined 
with the idea of multimodal learning, the fusion of mul-
timodal data is completed in the model. Since the mul-
timodal information of MFGAD-INT is obtained by the 
algorithm’s feature extraction of the same data set, fea-
ture fusion can be done simply. The temporal density of 
INT telemetry data is high, up to millisecond time den-
sity, so the long-time memory in the algorithm’s input 
data also retains rich real time patterns, which is cru-
cial for predicting network state information. For the 
fused multi-state data, the GRU is used to achieve the 
complementary extraction of long-time information. 
Finally, the GRU Auto-Encoder is used to compress the 
multimodal data for prediction. The data dimension is 
compressed to achieve the prediction of the network 
state while preserving the high-dimensional feature 
information as much as possible. After the above algo-
rithm, we chose SPOT threshold selection algorithm to 
judge the anomaly scores. Summarizing the algorithm 
composition of MFGAD-INT. 

(1) Data feature learning for different states in INT 
telemetry data is implemented using a 1-D convolu-
tion layer and two GAT layers. Realizing the separa-
tion of multimodal information based on telemetry 
data and the generation of multimodal data.

(2) Fusion learning of underlying features of the mul-
timodal data at the shallow level of the model. The 
multimodal data are stitched together one by one, 
and feature learning of long-time information is 
achieved by GRU.

(3) Finally, to predict the network state, an AutoEn-
coder is used to implement multimodal transitions. 
In this paper, we use GRU Auto-Encoder to com-
plete this step, which can achieve lower information 
loss data compression by convolution neural net-
work based on attention mechanism.

The overall flow of the anomaly detection algorithm is 
shown in Fig. 2. In the remainder of this subsection, the 
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principles and roles of each component in the predic-
tion algorithm are further elaborated.

The use of graph attention
In a real network environment, the values of each net-
work metric are not independent, and the variation pat-
terns among them affect each other. The changes of the 
same metrics at different times in the same network envi-
ronment should also have regularity. So how to make the 
algorithm discover and quantify these existing multi-
modal patterns is the focus of our concern.

GAT can be the key to solve this problem. GAT is pro-
posed to discover the influence relationship between 
connected nodes in a graph. For our problem, two 
graphs can be constructed for the input data accord-
ing to the time dimension and the spatial dimension. 
In the spatial dimension, each univariate time series 
Xi ∈ RT  is considered as a node to construct a feature 
graph of T-dimensional feature vectors; in the tempo-
ral dimension, the indicator data under the same time 
is considered as a node to construct a feature graph of 
M-dimensional feature vectors. Since the network indi-
cators affect and depend on each other, and also show 
strong correlation between the time stamps of network 
activities in a short period of time, both of these graphs 
are complete graphs. GAT calculates the attention coef-
ficients and updates the node feature vectors based on 
the neighbor nodes Xj of each node Xi . The output is 
updated as

where hi denotes the node feature vector updated by 
GAT, N denotes the number of neighboring nodes of 
vi , vj is the feature vector of neighboring nodes, and αij 
is the attention score of vj to vi , which is used to repre-
sent the correlation between two nodes and further used 
to update the node feature vector. The attention score αij 
can be calculated by

where ωT is a learnable row vector parameter and ⊕ 
denotes the Hadamard product of two feature vectors. 
LeakyReLU is a nonlinear mapping activation function 
used to add a nonlinear mapping to the model.

As described above, GAT is applied to learn the two 
relations and achieve the generation of multimodal data. 
After the multimodal data is generated, the outputs 
of the two GAT layers hspace =

{

h1, h2, h3, h4, , , hM
}

 , 
htime =

{

h1, h2, h3, h4, , , hT
}

 are spliced with the original 
input X = {X1,X2,X3,X4, , ,XM} to achieve the multi-
modal data The splicing formula is as

(7)hi = sigmiod(

N
∑

1

αijXj),

(8)eij = LeakerReLU(ωT · (Xi ⊕ Xj)),

(9)αij =
exp(eij)

∑N
n=1 exp(ein)

,

(10)h = hspace + hTtime + X .

Fig. 2 General structure of multivariate timing prediction model
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The use of GRU 
By using GAT, we have achieved the extraction and 
fusion of multimodal information, and the next step is to 
learn the long-term memory information hidden in it. In 
general, this can be achieved by RNNs. However, stand-
ard RNN networks are not good at handling long time 
sequence data due to the gradient vanishing problem. 
Therefore, in this paper, GRU is chosen to capture the 
long-time memory information in multimodal data.

GRU selectively retains and uses long-time memory 
by introducing RNN-based update and reset gates to 
solve the gradient disappearance problem of long-time 
sequences. The update gate is calculated by

where ht is the input for the current timestamp t, st−1 
is the retained information for the previous timestamp 
t − 1 , and UZ , WZ are two weight matrices, which are 
used to make a linear change to the input information. 
The update gate determine how much of the histori-
cal information needs to be retained for further trans-
mission. The reset gate is calculated by the following 
equation

As with the update gate, the input to the reset gate is lin-
early varied and then the activation result is compressed 
using the Sigmoid function. The role of the reset gate is to 
determine how much historical information should be for-
gotten, so new memory content will use the reset gate to 
store past relevant information. The formula for this step is

where the meanings of ht , st−1 , Uh and Wh remain 
unchanged and r is the activation result of the reset gate. 
The Hadamard product of st−1 and r can be calculated to 
determine the previous information to be retained versus 
forgotten. Finally, the input xt is activated using hyperbolic 
tangent activation function after linear transformation with 
the determined historical information vector respectively.

The network also needs to retain the information about 
the current timestamp to be passed, and this is where 
the result of the update gate is used. This step can be 
expressed as

The Hadamard product of z and st−1 represent the 
information retained in the previous step, and this 

(11)z = sigmoid(htU
Z + st−1W

Z),

(12)r = sigmoid(htU
r + st−1W

r).

(13)h = tanh(htU
h + (st−1 ⊕ r)Wr),

(14)st = (1− z)⊕ h+ z ⊕ st−1.

information plus the information retained in the current 
memory is the output of GRU.

The above algorithmic flow completes the learn-
ing of the multimodal data. The output is put into the 
AutoEncoder and compressed to obtain the prediction 
result, denoted as X̄ = {x̄1, x̄2, x̄3, x̄4, , , ¯xM} . Here we 
choose GRU Auto-Encoder. This prediction result will 
be used as an important component in the calculation 
of the anomaly score, which is described in detail in the 
next subsection.

Anomaly score and SPOT threshold selection
After the prediction results are obtained, further 
abnormal scores are needed. For the anomaly scores 
of individual indicators, the normal state score and the 
anomaly score need to be maximized, and each score 
is guaranteed to be greater than zero. Equation (15) is 
used to evaluate the anomalies of the network metrics 
at the specified timestamps.

where x̄i is the predicted value and xi is the real network 
indicator state value observed through network teleme-
try. The network anomaly score can be obtained by aver-
aging the anomaly scores of all indicators, calculated by

where n is the number of all indicators 
obtained by telemetry, and the final total output 
Anomt = {anom0, anom1, anom2, anom3, anom4, , , anomM} 
is obtained. By averaging, it ensures that the abnormal 
state of each indicator is reflected when determining the 
abnormal state of the network; it also makes it possible 
that when the number of network indicators is large, 
there is no problem of scoring too large values for net-
work abnormalities.

Finally, anomaly judgments are made based on anom-
aly score pairs. Here the threshold value can be used 
to judge the network state. Since the state of the net-
work fluctuates more frequently, some networks have 
small values of change from normal to abnormal states. 
Therefore, the common SVM dichotomous threshold 
selection method is not suitable for this algorithm. 
MFGAD-INT uses SPOT algorithm to dynamically gen-
erate thresholds that determine anomalies in network 
state and indicators, obtaining the final system judge-
ment output Yt =

{

y0, y1, y2, y3, y4, , , yT
}

, yi ∈ {0, 1}.

(15)anomi = (xi − xi)
2,

(16)anom0 =

∑n
i=1 si

n
,
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Algorithm  1 Calculate SPOTFor the fraction anomi 
of all anomaly samples, the initial threshold zq is calcu-
lated by POT, after which the outlier data is traversed 
to determine whether the current outlier value exceeds 
this threshold, and if it does, it is judged to be abnormal 
and added to A. If it does not exceed, the current data is 
judged to be a peak, and if it is a peak, the data values 
exceeding the current peak are added to the set XT used 
to store the anomaly peak, calculate the optimization 
parameters γ̂ , σ̂ , and finally update the threshold value.

The pseudocode of the SPOT algorithm is shown 
above. Here, anomi is the network anomaly value 

predicted by the prediction model and scored, while A is 
the data set used to store the data judged as anomalies in 
the algorithm. The initial threshold zq is obtained through 
executing POT operator. Then, the algorithm traverses 
the anomaly value data and determines whether the cur-
rent anomaly value exceeds the threshold. If it exceeds, it 
is judged as an anomaly. At this point, it is also necessary 
to determine whether the current data is a peak. If it is a 
peak, the values exceeding the current peak are added to 
the set XT which is used to store the excess peaks, and 
the optimization parameters γ̂ and σ̂ are calculated, and 
finally the threshold is updated.

Simulation and results analysis
In this section, we evaluate the proposed MFGAD-INT 
using data sets collected in a real data center network 
environment. We first present the experimental setup, 
including the simulation environment, data collection 
approach, and the metrics and compared methods cho-
sen for performance evaluation. The results of differ-
ent are then analyzed to validate the advancement of 
MFGAD-INT.

Experimental setup
The data set was collected from a testbed replicating the 
legacy topology of the CSP data center, as shown in Fig. 3.

Fig. 3 Real testbed network topology
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Although the testbed does not involve real users, it 
does use real devices, protocols, and applications typi-
cal of production networks. We use a server to generate 
real application data streams and are controlled to add 
random anomalous events to the streams. In the context 
of the study, we chose to inject both Microburst, which 
occur more commonly in modern data centers, and ele-
phant flow anomalies.

Modern data center networks operate at high speeds 
( bigger than 10 Gbps) and have ultra-low end-to-end 
latency (10 microseconds) [30]. As a result, even a small 
amount of queuing (called Microburst) occurring over 
a short period of time can have a significant impact on 
application performance. This manifests itself in the 
form of a very large number of bursts of data received by 
switch ports in a very short period of time (millisecond 
level). We generate Microburst randomly in the network 
environment by sending short bursts of high traffic data 
streams at random.

Anomalous occurrences of large elephant flows can 
also significantly impact network performance and thus 
trigger network anomalies. However, if a service that gen-
erates a stream is misconfigured and enters the normal 
network environment, it may cause severe congestion 
in the network environment. In this paper, anomalous 
events are injected by randomly sending elephant stream 
data among different servers.

Different anomalous events are selected for injection 
under different network load conditions, resulting in 
multiple experiments as shown in Table 2 below.

As to the data set, we first collect data under nor-
mal conditions as the training set and thereafter collect 

the test set based on the injection of anomaly events as 
labels. We measure high and low traffic loads in terms of 
the number of running services. Specifically, the services 
in the network are simulated by pushing video streams. 
At the same time, specific anomalous service streams are 
randomly injected into the network environment using 
idle servers to keep the occurrence of network anoma-
lies in a human-controllable state. All experiments lasted 
for about half an hour. To verify the effectiveness of INT, 
data sets were collected for each group of experiments 
using the SNMP network protocol and different telem-
etry frequencies of INT.

Based on the latest INT 2.1 protocol, we select nine 
of these standard metadata as shown in Table  3. These 
telemetry metadata can be uniquely identified by the 
name of their YANG model. According to the specifica-
tion of the protocol, the selected metadata can be clas-
sified into 4 categories, i.e., node information, ingress 
information, egress information, buffer information, 
which are all data plane information.

Evaluation Metrics: Since the data set for anomaly 
detection is an unbalanced data set [47], i.e., most is nor-
mal data while only a little is anomaly data. In this case, 
if we only focus at the correct rate, we can easily imag-
ine a scenario where 90% of the test data set is normal, 
when the predicted results are all normal, and we can 
expect the correct rate is about 90%. But in fact, this kind 
of metrics is not meaningful for the anomaly detection 
problem which is more concerned with the low-probabil-
ity anomalies. Therefore, we use Accuracy, Recall and F1 
to evaluate the performance of the algorithm model.

We compare MFGAD-INT with other network anom-
aly detection methods, including ODS, GDN, HSTree, 
and RShash. all of these algorithms are described in the 
subsection on related work, and they are representative 
of typical algorithms at various stages of the anomaly 
detection field.

We implemented our approach using Python ver-
sion 3.8. All experiments were run on a server with Intel 
Core i9-12900K Processor (5.20 GHz) CPU and NVIDIA 
GeForce RTX 3090. We use the same sliding window size 
of 100 for all models. In MFGAD-INT, we set the hidden 
size of GRU and GRU AutoEncoder to 150 and use the 
Adam optimizer to train the MFGAD-INT model. The 

Table 2 Description of the experimental data set

No. Traffic Anomaly Events Duration

E1 High load Microburst 0.30h

E2 Low load Microburst 0.35h

E3 High load Elephant Flow 0.30h

E4 Low load Elephant Flow 0.35h

E5 High load Both 0.30h

E6 Low load Both 0.35h

Table 3 Available INT telemetry features

Node Ingress Egress Buffer Information

Node-id Ingress-identifier Egress-identifier Queue-id

Ingress-timestamp Egress-timestamp

Ingress-RX-byte-count Egress-TX-byte-count Instantaneous-queue-length

Ingres-RX-utilization Egress-TX-utilization
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initial learning rate is 0.001 and the number of training 
epochs is 50. For each data set, we independently con-
ducted 5 repeated experiments.

In addition, telemetry-based means of data collection 
is an important component of MFGAD-INT. To analyze 
the effectiveness of this component, for MFGAD-INT, 
additional comparative experiments were performed 
using SNMP-based data sets obtained.

Results and analysis
In this subsection, the experimental results are analyzed 
to verify the validity and reliability of MFGAD-INT. First, 
the impact of the anomaly detection effect on telemetry 
parameters will be discussed mainly. Then, the perfor-
mance of the proposed algorithm is compared with other 
anomaly detection algorithms. Also the generalization 
and reliability of the proposed algorithm is verified by the 
performance differences under multiple data sets. Finally, 
an anomaly case is analyzed to show that MFGAD-INT 
has the ability to locate the location of anomalies at the 
same time to a certain extent.

Influence of telemetry parameters on the effect of anomaly 
detection
To demonstrate the important role played by telem-
etry components in MFGAD-INT, a component validity 
analysis was performed. The data set was reconstructed 
in the same network environment using SNMP. Also, to 
test the performance difference of MFGAD-INT under 
different frequency telemetry, we also collected network 
information in this environment using 25 Hz, 15 Hz, and 

5 Hz telemetry frequencies respectively. Since SNMP and 
low-frequency telemetry methods inevitably suffer from 
missing information, the mean substitution method is 
used to supplement the missing state information. The 
performance comparison is shown in Table 4.

The following conclusions can be drawn from analyz-
ing the data in the above table.

First, observing the data in Table  4 with and without 
INT telemetry shows that all metrics of the algorithm 
model are much higher than SNMP when telemetry is 
used. Focus on Recall, it can be seen that the full power 
INT component can detect basically everything that 
should be detected and 99.74% of the abnormal time 
periods can be detected by the algorithm. Also observing 
the five sets of performance comparisons it can be seen 
that faster frequency telemetry corresponds to higher 
performance. This is because telemetry brings more 
available information and MFGAD-INT is designed to 
handle high density data.

With the addition of telemetry, the accuracy of the net-
work state index assessment given by the algorithm is 
significantly improved. Many network anomalies of short 
duration can be reasoned and identified by the algorithm, 
as shown in the comparison Fig.  4. Figure  4(a) and (b) 
show the impact of anomaly detection on the processing 
delay of the same switch under different network detec-
tion means, and the part above the dotted line shows the 
index anomalies detected by the algorithm. In this exam-
ple, there is one elephant flow anomaly and 20 Micro-
burst in the network. The algorithm without telemetry 
detects only one elephant flow anomaly and five short-
time Microburst, and the anomaly detection results lag 
in elephant flow anomaly detection; while the algorithm 
based on the INT telemetry component completes the 
identification of all anomalies without lag in the time 
period of anomaly detection, which can quickly provide 
more time-sensitive detection results.

In summary, compared with SNMP, telemetry can 
enrich the temporal information in the acquired network 
state information, thus maximizing the performance 
of MFGAD-INT and enabling high-performance and 
highly interpretable network anomaly determination. 

Table 4 Performance comparison of algorithmic models

Method Precision Recall F1

SNMP 0.5964 0.6274 0.6115

5Hz INT 0.8895 0.7399 0.8079

15Hz INT 0.9469 0.7624 0.8447

25Hz INT 0.9779 0.8987 0.9366

50Hz INT 0.9886 0.9974 0.9942

Fig. 4 Anomaly scores with and without telemetry components, a without telemetry b with telemetry
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Meanwhile, the frequency of telemetry also significantly 
affects the performance of the algorithm, and a higher 
telemetry frequency will bring more accurate detection 
results, which is consistent with intuition.

Validity of MFGAD‑INT
As shown in Table  5, MFGAD-INT performs signifi-
cantly better than other network anomaly detection algo-
rithms. MFGAD-INT improves about 10.56% compared 
to GDN and about 9.73% compared to ODS. HSTree 
and RShash are more early period anomaly detection 
methods, which are not as effective when dealing with 
fine-grained, highly oscillatory network indicators with 
high time-density data. GDN also uses GAT to learn the 
correlation of temporal features, but it is also less effec-
tive than MFGAD-INT in terms of detection because it 
mainly learns the temporal patterns hidden in the time 
series and is not as explanatory for the interrelationships 
between network indicators.

Figure 5 shows the anomaly score comparison results of 
the four algorithms. The experimental results in Fig. 5(a) 
show that RShash is an algorithm that is sensitive to the 
increase of data anomalies. However, for dynamic net-
work states, the fluctuation of network indicators within 
a certain range does not imply the presence of anomalies 
in the network. In addition, when the network operation 

state reaches an extremely high load, the network state 
has changed to an abnormal state, but the values of some 
network indicators do not change drastically, and there 
are also cases of missed detection. Meanwhile, when the 
network enters a longer period of abnormal state, RShash 
will consider that the current state tends to be normal, 
which is obviously unreasonable. The effect of HSTree 
has been greatly improved compared with RShash. When 
facing a long period of abnormal state, the algorithm can 
accurately determine the current abnormal situation. 
However, the algorithm cannot give an accurate judg-
ment for the current state when the anomaly has just 
ended, which leads to many false alarms and affects the 
performance of the algorithm.

GDN and MFGAD-INT are based on GAT learning 
data, so they both achieve better results than earlier 
network anomaly detection algorithms when scoring 
anomalies on network states. The advantages of the 
new method incorporating GAT can be seen through 
Fig. 5(c) and (d). The anomaly score can be stabilized 
at a high level when facing the same type of persis-
tent anomaly states, while there are more significant 
differences in the anomaly score values when facing 
different anomaly states. This indicates that this algo-
rithm enhances the interpretability of GAT for anom-
aly judgment. At the same time, when the network is 
in a normal state, the anomaly score can also be kept 
at a lower state with less fluctuation, which is benefi-
cial for the algorithm to distinguish between anoma-
lies and normal states.

Since the ODS algorithm achieves the detection 
of anomalies through clustering, it is different from 
other algorithms in terms of judgment methods. How-
ever, it can also be seen from Table  5 that the algo-
rithm does not perform as well as the MFGAD-INT 
algorithm using GNN. This is a performance-for-time 
detection algorithm when dealing with larger amounts 

Table 5 Performance comparison of model and baseline

Method Precision Recall F1

RShash 0.7614(0.4444) 0.9999(0.4880) 0.8645(0.4652)

HSTree 0.5475(0.4030) 0.9993(0.4759) 0.7074(0.4367)

ODS 0.8263(0.4967) 0.9999(0.4987) 0.8969(0.4976)

GDN 0.8375(0.5023) 0.9418(0.4965) 0.8866(0.4993)

MFGAD-INT 0.9886(0.5964) 0.9974(0.6274) 0.9942(0.6115)

Fig. 5 Algorithm anomaly scores of different algorithms, a RShash, b HSTree, c GDN, d MFGAD-INT
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of data, as the clustering algorithm dynamically 
adjusts the central clusters.

Figure 5(c) and (d) also show that MFGAD-INT based 
on multimodal information extraction learning performs 
much better than GDN with only spatial dimensional 
feature learning in terms of interpretability of anomaly 
scoring. For the same type of anomaly, MFGAD-INT 
can give similar anomaly score, and for different types 
of anomalies, MFGAD-INT’s anomaly scores also have 
enough variability. This is not achievable in the other 
algorithms.

Generalizability of MFGAD‑INT
In this subsection the generalizability of the proposed 
algorithm is analyzed. Through a side-by-side compari-
son with other algorithms using the same experimental 
scenarios, the volatility of the MFGAD-INT algorithm 
is lowest for different anomaly injection methods under 
different loads, and MFGAD-INT maintains excellent 
detection performance under different network states. 
The experimental comparison results are shown in 
Table 6 below.

The performance of the anomaly detection algo-
rithms fluctuates with the difficulty of injecting anoma-
lies through the above experimental analysis. In the E3/
E4 task, the performance of all algorithms is optimal. In 
the E1/E2 task, MFGAD-INT is the only algorithm with 
all performance metrics above 0.9. Meanwhile, MFGAD-
INT achieves the highest value in all five metrics of all 
experiments. Although it has a lower recall than RShash 
and HSTree in the face of E5/E6, these two algorithms are 
far below MFGAD-INT in the evaluation of other met-
rics, so MFGAD-INT proves to be highly reliable. Since 

the ODS algorithm is a clustering algorithm, its detection 
performance is better in the face of single anomaly injec-
tion, but the performance fluctuates greatly when facing 
multiple anomalies injected at the same time. In con-
trast, MFGAD-INT performs well in the face of differ-
ent situations, which proves that MFGAD-INT has good 
generality.

Case study of anomaly location
Since the MFGAD-INT pair achieves more information 
extraction and thus gives a more explanatory anomaly judg-
ment, it can locate the location and start time of the anom-
aly to a certain extent. The example is detailed in Fig. 6.

Table 6 Experimental validation table for generalizability

No. Method Precision Recall F1

E3/E4 MFGAD-INT 0.9943 0.9995 0.9971

GDN 0.9053 0.9949 0.9504

ODS 0.9547 0.9991 0.9767

RShash 0.7339 0.9508 0.8322

HSTree 0.6666 0.9994 0.7999

E5/E6 MFGAD-INT 0.9886 0.9974 0.9942

GDN 0.8375 0.9418 0.8866

ODS 0.8263 0.9999 0.8969

RShash 0.7614 0.9999 0.8645

HSTree 0.5475 0.9993 0.7074

E1/E2 MFGAD-INT 0.9496 0.9999 0.9741

GDN 0.7893 0.9939 0.8822

ODS 0.8992 0.9999 0.9469

RShash 0.6606 0.8727 0.7520

HSTree 0.3788 0.9593 0.5432

Fig. 6 Anomaly score of internal processing delay of switches a Switch 130, b Switch 131, c Switch 132, and d Switch 133
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In the example in Fig. 6, there is an elephant flow in the 
network environment that flows through the switches 
130, 132, and 133 during the time periods from 1000 
to 1100. The four graphs correspond to the processing 
delays of each of the four switches in the experimen-
tal network, and it can be seen that no anomalies were 
detected at the time period 1000 in switch 131, while 
the other four switches all detected persistent anoma-
lies, thus also locating a network link and achieving some 
degree of anomaly location.

Conclusion
In this paper, we present a graph attention-based deep 
learning method for INT data-driven anomaly detection 
in cloud data center networks. Our proposed method, 
MFGAD-INT, can accurately identify anomalies and 
locates them within the network. Through experiments 
on a real cloud platform, we investigate the efficacy and 
accuracy of the proposed method, and compare it with 
existing network anomaly detection algorithms to verify 
its superiority. In the future, we plan to improve cloud 
service quality by combining knowledge to explain the 
root causes of network anomalies and automating the 
intelligent classification of cloud data center network 
anomalies.
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