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Abstract 

Blockchain technology is getting more and more attention due to its decentralization, independence and security 
features. However, in wireless networks it faces a computational challenge: the proof-of-work problem. Mobile edge 
computing (MEC) leads to a vaild scheme by providing cloud computing capabilities to mobile devices. Non-
orthogonal multiple access (NOMA) exploits the diversity properties in the power domain to further increase system 
throughput and spectral efficiency. In this paper, we suggest a new NOMA-based MEC wireless blockchain network 
to minimize system energy consumption through task offloading decision optimization, user clustering, computing 
resource and transmit power allocation. In order to effectively figure out this non-convex problem, we first propose 
a offloading decision and user clustering algorithm, and then propose a computing resource allocation algorithm 
based on user Quality of Service (QoS) requirements. Finally, the transmission power can be easily determined. The 
numerical simulation results verify that the proposed joint optimization algorithm can effectively decrease the system 
energy consumption.

Keywords Mobile edge computing, Non-orthogonal multiple access, Resource allocation, Power control

Introduction
As the wide popularity of various smart devices and com-
plex operations in the network, smart devices have more 
and more demands for communication and computing 
resources. The majority of these applications are com-
putationally intensive and sluggishly sensitive [1, 2], they 
will incur significant latency and energy consumption 
during runtime. Mobile edge computing (MEC) trans-
fers the operating and storage capacity close to the users, 
allowing the users to load work tasks to the MEC server 
for processing. By taking advantage of the vast computing 

resources owned by edge servers, MEC can bring many 
benefits to people’s lives, such as saving energy con-
sumption for smart devices and reducing computational 
latency for tasks [3, 4]. It also avoids network conges-
tion of traditional cloud computing [5]. Therefore, many 
researchers are dedicated to studying the application 
of MEC in different applications. However, when data 
transmission is invoked over the wireless link, the per-
formance of MEC is related to the way wireless resources 
are allocated during data transmission and the amount of 
computation offloaded by smart devices. Furthermore, to 
enhance the productivity of users in unloading tasks in 
the MEC system further, a new hybrid MEC technology 
is introduced in which intelligent devices can simultane-
ously offload computing workloads to multiple edge serv-
ers using different radio access networks [6, 7].

In MEC systems, it is not enough to achieve low delay 
and low energy consumption for system performance 
improvement, the spectral efficiency of the system is also 
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an essential consideration [8]. Non-orthogonal multi-
ple access (NOMA) [9, 10] as a prospective technology 
nowadays. NOMA allows two or more users to jointly 
use a channel resource or time slot to transmit informa-
tion, and uses continuous interference cancellation at the 
receiver end to mitigate common channel interference 
from user devices [11], which can enhance the efficiency 
of system spectrum usage [12]. The potential benefits of 
NOMA have been demonstrated by a number of efforts, 
such as as enhanced system capacity, energy utilization 
and frequency spectrum utilization. Therefore, consider 
combining NOMA with MEC to expand the number of 
users in the network and improve spectrum utilization 
[13, 14]. Despite NOMA has many advantages, it still 
requires careful management of wireless resource alloca-
tion. For example, power allocation to reduce co-channel 
interference for users within the NOMA cluster, which 
has attracted a great deal of research work.

In addition, it is very important to guarantee the accu-
racy and reliability of billing services during the transmis-
sion of user data. However, fee information is vulnerable 
to disclosure or artificial manipulation. Attackers gain 
access to users by tracking their paid information, loca-
tion privacy and other information [15]. Blockchain tech-
nology is a very promising distributed technology that 
can be a good solution to solve the privacy and security 
in the network. It has the features of anonymity, secu-
rity and is convenient for information interconnection 
[16]. And it can be used in a large range of usable areas 
in power markets and other energy trading scenarios. 
For example, in [17], the authors design an energy auc-
tion system based on smart contract for users to choose 
safe and free power transactions. In [18], federated block-
chains are used to set up multi-agent nodes through 
which users’ choice of charging modes and transactions 
can be managed. Although the emergence of blockchain 
has greatly helped many existing efforts, the consump-
tion of computing resources in the process of blockchain 
consensus is still an issues that need to be addressed 
urgently. Therefore, applying blockchain to MEC can 
improve the security of user information in MEC system 
during transmission. Meanwhile, MEC can be a good 
solution to the problem of shortage of node computing 
resources in blockchain.

In this paper, we discuss a system integrating NOMA 
and MEC for data delivery by two users over the same 
channel, which leads to interference between users. And 
use blockchain as a tool for task unload solutions under 
the MEC architecture. For the purpose of lessening the 
impact of such disturbances on system energy consump-
tion, we propose a problem to minimize the total energy 

consumption of the system by jointly optimizing user off-
loading decisions, user pairing, computing resource divi-
sion and user’s sending power. This problem is extremely 
difficult to solve. In order to solve this question, we pro-
pose a heuristic algorithm with low complexity to solve 
it. We first solve for the two integer variables of user off-
loading decisions and user clustering, and then we allo-
cate power and computational resources in the direction 
of making the system energy consumption reduced while 
ensuring that the maximum system latency is satisfied. 
The validation of the simulation part illustrates the pro-
posed method has obvious advantages over other base-
line methods.

The main content of each remaining section of the 
article is summarized below. In Releated works section, 
we introduce the research status of the system com-
bined with NOMA and MEC and the research work on 
the combination of MEC and blockchain respectively. 
In System model section, we describe the model of the 
system and optimization problem. In Offloading deci-
sion and user clustering optimization section, we express 
the solution of offloading decision and user clustering. In 
Computing resource block allocation section, we present 
the method of computing resource division. In Transmit 
power control section, we propose the method of user 
power distribution. The simulation results of the article 
are presented in Simulation results section. Finally, the 
main points of the paper are summarized in Conclusions 
section.

Releated works
In recent years, blockchain has a number of merits, such 
as decentralization, invariance and transparency, which 
can handle the security issues faced by edge computing 
[19]. In addition, blockchain is also critical to improv-
ing performance in other domains, such as intelligent 
healthcare, surveillance networks, smart cities, and the 
Internet of Things [20]. While blockchain is easy to use 
in other areas, it also has a major disadvantage, and can 
be scaled to a small extent. Therefore, its application in 
the above aspects still has some limitations. For enhanc-
ing the functionality of blockchain, edge computing data 
can be leveraged to scale it. In [21], for the purpose of 
enhancing the security and stability of cache manage-
ment, the authors design a new edge cache scheme based 
on block chain. [22] proposes an incentive scheme for 
blockchain-based video flow that makes video conver-
sion and user collaboration more secure and reliable. In 
[23], the authors propose a service-oriented blockchain 
system architecture to make task offloading between 
boundary servers more secure in the MEC environment. 
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The authors of [24] presents a non-trustworthy MEC 
work verification scheme based on mobile blockchain 
and design a one-time sorting algorithm for this scheme 
to more equitably supply computing resources to all IoT 
mobile users. In [25], the authors develop a framework 
for collaborative computing offloading and resource par-
titioning in blockchain and MEC combined systems [26] 
proposed a task offloading model combining MEC and 
blockchain, which can guarantee user privacy security 
while reducing offloading time and energy consump-
tion cost. In [27] , the authors propose a secure unload-
ing framework based on block chain to save the energy 
consumption of network equipment with low delay cost. 
However, the majority of these efforts use inefficient 
consensus mechanisms, ignoring the consideration of 
throughput issues. In this case, important information 
is easily leaked, which will threaten the security perfor-
mance of the system.

As the core key technology of 5G, NOMA can meet 
the requirements of low cost, low latency and less 
power consumption of massive connections in the 
system. Therefore, the integration of NOMA technol-
ogy and MEC may dramatically improve the big data 
storage and data transmission rate of the internet of 
things. Nowadays, many researchers have investigated 
NOMA-based MEC systems from different perspec-
tives. In [28], the authors jointly optimize transmit 
energy beamforming, transmit power, and time alloca-
tion to maximize the computational efficiency of strong 
users. In [29], the authors propose a general hybrid off-
loading of NOMA-MEC systems that minimizes the 
total energy consumption of the model. The authors of 
[30] utilize NOMA to achieve large-scale connectiv-
ity, which improves the energy efficiency of offloading 
by optimizing the problem of associating wireless and 
computing resources [31] combines MEC with NOMA 

technology to divide the resources of NOMA-MEC sys-
tem in ultra-dense networks and optimize them effec-
tively. In [32], the problem of joint work unloading 
and resource partitioning in NOMA-HetNets is inves-
tigated to make the energy usage of the system model 
even lower. In [33], the authors consider the offload-
ing requirements of users near and far, and proposes 
a delay-aware offloading algorithm based on NOMA 
cooperative MEC network.

Encouraged by the above research, it can reflect that 
the user’s offloading decision [34] and resource divi-
sion [35, 36] are very important for the feature optimi-
zation of the NOMA-based MEC system. This paper 
proposes a NOMA-based MEC wireless blockchain 
network to minimize system energy consumption 
through optimizing offload forms, user pairing, com-
puting resource partitioning and power partitioning. 
And the performance of the system is advanced by 
these strategies.

System model
Consider a scenario where NOMA-assisted MEC wire-
less blockchain network, there are U users in the system 
and base stations (BSs) provides task offloading service 
by wirelessly connecting to MEC server. The blockchain 
is taken as a non-centralized database to record trade 
performed in the network and to manage data security 
between mobile terminal and MEC server. Figure 1 shows 
the vehicle network structure of blockchain and MEC. 
The model diagram mainly consists of two parts, device 
layer and edge layer respectively. The users are defined 
as U = {1, 2, ...,U} , each user can be a miner to record 
transactions executed in the network through a block-
chain application, and that each miner has an indivis-
ible task, each task represented by �u = {Lu,Cu,T

max
u } , 

where Lu is the input-data size (in bits), Cu is the size of 

Fig. 1 System model
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the workload (in CPU cycles per bit), Tmax
u  is the maxi-

mum delay. In addition, each NOMA group will be dis-
tributed a quadrature channel with bandwidth B. Tasks 
can be binary offloaded, i.e., computing tasks cannot be 
divided into multiple parts and must be processed locally 
or completely offloaded to the MEC server. We denote 
it by xu , xu = 0 means the task is executed locally and 
xu = 1 represents the work is transferred to the MEC for 
execution. The mainly used notations are presented in 
Table 1.

Local model
When tasks can can execute itself locally, define the pro-
cessing capability of user u in local is f max

u  , the execution 
time Tloc

u  is

The energy consumption Eloc
u  is given by

where α is a coefficient depending on chip architecture.

MEC model
When the users is unloaded to the MEC server, the 
users are divided into M groups, the groups are orthog-
onal and the users in the group share a channel using 
NOMA. Denote M = {1, 2, ...,M} as the set of groups, 
and the number of acceptable users in each group is K. 
βm,k
u , ∀m ∈ M, ∀k ∈ K as the binary variable to indi-

cate the allocation of user u to kth order of NOMA 

(1)Tloc
u =

Cu

f max
u

,

(2)Eloc
u = αCuf

max
u

2
,

group m. Here, if βm,k
u = 1 is allocated to NOMA group 

m, and βm,k
u = 0 otherwise. Define hu as the channel 

gain for user u transmission task. In NOMA uplink, 
users with high channel gain are allocated the maxi-
mum power possible. Therefore, to effectively apply 
SIC to decode signals, we assume that the user channel 
gain is ranked as

Users in each group share the same frequency 
resources, resulting in interference. Consider interfer-
ence signals from other users in the group, the signal to 
interference plus noise ratio (SINR) of the user u in group 
m can be expressed as

where pmec
u  is the sending power of user u in the group m, 

hu is the channel gain of the user u in the group m, pmec
j  is 

the transmit power of user j in the group m, hj is the chan-
nel gain of the user j in the group m. σ 2 is the noise power. 
So the task transmit rate of user u in the group m is given by

 Based on Ru , the transmit delay and the energy con-
sumption of user u in the group m are

When the task is sent to the MEC for processing, there 
will be latency. Compute resources in each MEC server 
are provided in the form of compute resource blocks 
(CRBs), and the ability to deal with tasks of each CRB is 
funit CPU cycles per second. Therefore, the task process-
ing delay of user u during this process is

where pidleu  is the power of user u when waiting, and αm
u  

represents the number of computing resource blocks 
allocated to user u by group m. So the total processing 
delay and total energy consumption of the user task u is

(3)h1 > h2 > ... > hu, ∀u ∈ U ,

(4)γu =
pmec
u hu

hj<hu

pjmechj + σ 2
,

(5)Ru =
�

∀m∈M

�

∀k∈K

βm,k
u Blog2






1+

pmec
u hu

�

hj<hu

pjmechj + σ 2






,

(6)Ttra
u =

Lu

Ru
,

(7)Etra
u =

Lu

Ru
pmec
u .

(8)Tpro
u =

Cu

funitαm
u

,

(9)Ewait
u =

Cu

funitαm
u

pidleu ,

Table 1 Notation definitions

Symbol Definition

Lu The input data size of the task u

Cu Size of the workload of user u

f max
u The processing capability of user u in local

Tmax
u Maximum delay of task u

B The bandwidth of each subchannel

βm,k
u

The user u is grouped into the kth cluster of NOMA group m

γu The SINR of user u in NOMA group m

pmec
u The power of user u

hu The channel gain of the user u

σ 2 The noise power

funit The processing capacity of each CRB

pidleu
The power consumption of user u when waiting

αm
u The number of computing resource blocks in MEC process-

ing allocated to user u by NOMA group m

xu The offloading decisions of task u
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System delay and energy consumption
Based on the latency and energy consumption between local 
processing and MEC processing, the latency of user u is

The energy consumption of user u is defined as

Problem formulation
We developed a strategy to minimize the total system 
energy consumption by optimizing task offloading deci-
sion � = {xu} , user clustering B = {βm,k

u } , computing 
resources A = {αm

u } and power allocation P = {pmec
u } . 

Specifically, a user set is a group of users who need to 
complete a communication task, and these users are 
regarded as a set of users. On the other hand, the clus-
tering representation is based on the NOMA as the 
encoding technology in our study, so the SIC technol-
ogy is adopted for decoding. In the decoding, all users in 
the user set need to be assigned to different clusters, and 
the subcarrier is shared in each cluster. The optimization 
problem is formulated as

Where (C1) is the maximum completion delay, Tu 
represents the maximum assignable power of user u, 
and Tmax

u  indicates the maximum tolerable delay; (C2) 
is that the transmitting power should be less than its 
maximum value, Where pmax

u  represents the maximum 
assignable power of user u; (C3) indicates that each user 
can only have one uninstall option; (C4) is the integer 
constraints on computational resource blocks devide 
in MEC servers;(C5) requires each user can only be 
assigned in one way. Problem (P1) is a mixed integer 
nonlinear programming problem, so we decouple it to 
solve multiple subproblems and developed a heuristic 
algorithm for solving.

(10)Tmec
u = βm,k

u (Ttra
u + Tpro

u ),

(11)Emec
u = βm,k

u (Etra
u + Ewait

u ).

(12)Tu = xu(T
loc
u + Tmec

u ),

(13)Eu = xu(E
loc
u + Emec

u ).

(14)

(P1) : min
�,B,A,P

∑

u∈U

Eu

s.t. (C1) : Tu ≤ T
max
u , ∀u ∈ U ,

(C2) : 0 ≤ pmec
u ≤ pmax

u , ∀u ∈ U ,

(C3) : xu ∈ {0, 1}, ∀u ∈ U ,

(C4) : αm
u ∈ Z, ∀m ∈ M, ∀u ∈ U ,

(C5) : βm,k
u ∈ {0, 1}, ∀u ∈ U , ∀m ∈ M, ∀k ∈ K.

Offloading decision and user clustering 
optimization
Offloading decision
Since the optimization goal modeled in this paper 
minimizes system energy consumption. Therefore, 
we can minimize system energy consumption by off-
loading decision optimization. We propose a heuris-
tic algorithm to get the user to uninstall the choice of 
the way � = {xu},u ∈ U  . Our main idea is summarized 
as: according to the maximum tolerable delay Tmax

u  to 
determine where the user task is suitable for process-
ing. The main steps are as follows 

 (i) If Cu
f max
u

< Tmax
u  , task is processed locally, we divide 

the user into the local set Nloc.
 (ii) If Cu

f max
u

> Tmax
u  , task is offloaded to MEC process-

ing server, and we divide the user into the MEC set 
Nmec.

Through the above two steps, the solution of binary 
variable unloading decision is obtained. The specific 
steps are summarized in lines 1-9 in Algorithm 1.

Algorithm 1 Heuristic Offloading Decision and User Clustering 

Optimization Algorithm

User clustering
According to the NOMA uplink principle and SIC 
demodulation principle, the greater the channel gain 
gap, the smaller the interference between users. There-
fore, we propose a heuristic algorithm to divide two 
users into a cluster. The allocation principle is as fol-
lows: select users with large channel gain differences 
as possible as a group. For example, if the system has 
ten users and the channel gain is sorted in descending 
order as h1 > h2 > h3 > ... > h6 > h7 > h8 > h9 > h10 , 
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it will be divided into five clusters: user 1 and user 6 in 
the first cluster, user 2 and user 7 in the second cluster, 
user 3 and user 8 in the third cluster, user 4 and user 
9 in the fourth cluster, user 5 and user 10 in the fifth 
cluster. The specific user clustering diagram is shown in 
Fig. 2. See lines 10-15 of algorithm 1 for detailed user 
assignment steps.

Computing resource block allocation
After the offloading decision and user clustering, com-
puting resources need to be allocated to users, and the 
original optimization problem (P1) will be transformed 
into

Assuming there are adequate computing sources in 
the MEC to serve the users. When allocating comput-
ing resource blocks, each user wants more computing 
resource blocks to complete their tasks, but for the sys-
tem, different computing resource blocks allocated to dif-
ferent users will bring different energy gains. Therefore, 
we perform two rounds of computing resource block 
allocation: 

 (i) Allocate a number of computing resource blocks 
to each user to ensure that the user’s minimum 
latency requirement is met.

 (ii) We define the delay gain for a single user: 
gaincu = Tmec,αu

u − Tmec,αu+1
u  , where αu denotes 

the current amount of computing resource blocks 
allocated to user u, Tmec,αu

u  and Tmec,αu+1
u  are the 

delays when user u is allocated with αu and αu + 1 
computing resource block, respectively. For the 
remaining blocks of computing resources, the user 
with the largest user delay gain is chosen as the 
computing resource during each iteration. As a 
result, the whole procedure of distribution is car-
ried out in the direction of decreasing energy con-
sumption gain. Based on the above idea, our com-
puting resource allocation algorithm is detailed in 
Algorithm 2.

(15)

(P2) : min
A

∑

u∈U

Eu

s.t. (C1) : Tu ≤ Tmax
u , ∀u ∈ U ,

(C4) : αm
u ∈ Z, ∀m ∈ M, ∀u ∈ U ,

Algorithm 2 Heuristic Computing Resource Block Allocation 
Optimization Algorithm

Transmit power control
After the offloading decision and the solution of MEC 
user clustering are obtained, the optimization problem 
(P1) will degenerate into the problem of optimizing MEC 
power allocation, which is

Since each cluster in the MEC utilizes orthogonal 
sub-carriers, there is no interference generated between 
clusters during power allocation. The power allocation 
method remains the same across clusters, so we will only 
focus on power allocation within a cluster. The objective 
of this paper is to reduce the energy consumption asso-
ciated with task processing while ensuring user latency. 
Since multiple users share the same resources within a 
cluster, we propose a low-complexity power control strat-
egy to enhance performance during demodulation. 

 (i) First, arrange users in descending order of chan-
nel gain, and for the last user, i.e., user K, let 
Tmec
K = Tmax

K  , and get pmec
K .

 (ii) After pmec
K  is given, according to formula (5), the trans-

mit power of user K − 1 can be obtained, i.e. pmec
K−1.

 (iii) When pmec
K  and pmec

K−1 are given, pmec
K−2...p

mec
1  can be 

obtained in turn by the same method.

(16)

(P3) : min
P

∑

u∈U

Eu

s.t. (C1) : Tu ≤ Tmax
u , ∀u ∈ U ,

(C2) : 0 ≤ pmec
u ≤ pmax

u , ∀u ∈ U ,

Fig. 2 Users pairing
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For ease of understanding, we propose joint offloading 
decision, user clustering. The working flow chart of com-
puting resource allocation and power allocation algo-
rithm is shown in Fig. 3.

Simulation results
In this piece, we evaluate the advantages of the joint opti-
mization algorithmic steps proposed in the paper. The 
parameter settings for the evaluation are displayed in 
Table 2.

This chapter will validate the advantages of our pro-
posed algorithm. The proposed method is compared with 
each of the following two solutions. (i) Random offload-
ing scheme: users randomly offload their work to MEC 
for processing. In addition, the user pairing, power and 
computing resources are divided in the way proposed 
in this paper. (ii) Random computing resource segmen-
tation scheme: the computational resources are divided 
randomly, while the rest is in the same way as proposed 
in Table 2.

Figure 4 shows the trend of the total energy consump-
tion of the system with the overall number of users. The 
total power consumption in this paper is the weighted 
sum of the transmission power consumption of user tasks 
and computing power consumption of server processing 

tasks. When the overall number of users increases, the 
total energy of the system is rising. It is observed from the 
figure that the aggregate system energy of each scheme 
rises with the increase of the aggregate number of users, 
which is consistent with the analysis result, but the aggre-
gate system power consumption of the algorithm pro-
posed in this chapter is the lowest. Due to the optimized 
allocation of transmission power and computational 
resources to the users, so the aggregate energy demand of 
the proposed scheme is smaller than the random power 
mechanism. Similarly, the scheme proposed in this text 
also optimizes user clustering, so the performance of the 
algorithm is the best as the number of users changes.

Figure 5 shows the impact of task offloading workloads 
Cu on the aggregate energy demand of the system. When 
Cu rises, the system energy requirements of the three 
algorithms increases for the following reasons. The first 
reason is that the higher Cu means fewer feasible tasks in 
local processing, and more users submit tasks to MEC 
server for processing, so more energy needs to be con-
sumed. The second reason is that in MEC processing, 
the higher Cu means that task processing requires more 
resource blocks under a given tolerable delay constraint, 
thus consuming more energy, resulting in an increase 
in the total energy consumption of the system. It can be 
seen intuitively from the figure that the performance of 
the scheme proposed in this paper is the best.

In Fig.  6, the influence of maximum allowable delay 
on total energy requirements is plotted. When Tmax

u  
increases, users do not need to allocate more resource 
blocks to meet the delay, that is, the number of resource 
pieces assigned to each user has become smaller. Accord-
ing to the objective function, the energy consumed by 
MEC server computing tasks will increase, thus resulting 
the energy demand of the system becomes larger. Since 
the benchmark algorithm does not optimize user clus-
tering and resource allocation, the energy consumption Fig. 3 The workflow of the joint optimization algorithm

Table 2 Simulation parameters

Parameter Value

Number of users, N 50

Number of groups, M 4

Bandwidth of each group, B 400 Hz

Channel gain 5 ∼ 14 randomly

Max send power of user u, pmax
u 0.2 W

Input data size, Du 1 ∼ 20 Kbit

Processing density, Cu 100 ∼ 500

Local processing capability of user u, f max
u 500 CPU cycles/s

Power of noise, σ 2 10−7.4

Maximum tolerable latency, Tmax
u 0.3 s
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generated is greater than that of the proposed in the text. 
We can observe the idea in the paper from the picture is 
optimal in terms of energy consumption reduction.

Figure 7 shows how the application parameters of the 
input data size Du affect the system energy consump-
tion Eu . This graph is consistent with our understand-
ing, that is to say, the energy demand will increase with 
the increase of input data Du , and therefore the greater 

the total system energy consumption value. In addition, 
this method optimizes unloading decision and resource 
allocation at the same time, and its performance is always 
in the optimal state, followed by the random computing 
resource scheme, and the random offloading scheme has 
the worst performance.

Figure 8 shows the effect of local processing capability 
f max
u  on Eu , where the total system energy consumption 

Fig. 4 Total energy vs. the number of users

Fig. 5 Total energy vs. the computing intensity Cu
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increases rapidly as f max
u  increases for all algorithms. As 

f max
u  increases, when the user’s local processing power 

is sufficient to support the responsibility of handling 
the task, it can handle most applications with good per-
formance, so it does not need to transfer tasks to the 
MEC server. However, the resource joint optimization 
scheme figured out in this paper produces the lowest 

energy requirements. This is because the algorithm 
incorporates offloading decisions, MEC user clustering, 
and other related optimizations. The random offloading 
scheme does not optimize the assignment of tasks, so 
most of the assignments will be completed in the MEC 
server, and the resulting energy requirements is rela-
tively large.

Fig. 6 Total energy vs. maximum tolerable latency Tmax
u

Fig. 7 Total energy vs. maximum tolerable latency Du
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Conclusions
In this paper, a low-energy optimization objective is pro-
posed for a wireless blockchain system that combines 
NOMA and MEC. Consider a problem of minimizing 
system energy consumption, and through joint optimize 
offloading decisions, user clustering, computing resource 
and power assignment. Firstly, a low-complexity heu-
ristic offloading decision and user clustering algorithm 
are proposed. Then, a computing resource block alloca-
tion algorithm is proposed based on the delay relation-
ship, and finally the closed-form solution of the transmit 
power is obtained. Simulation experiments demonstrate 
the effectiveness of our proposed algorithm.
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