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Abstract 

Cloud computing is the most widely adapted computing model to process scientific workloads in remote serv-
ers accessed through the internet. In the IaaS cloud, the virtual machine (VM) is the execution unit that processes 
the user workloads. Virtualization enables the execution of multiple virtual machines (VMs) on a single physical 
machine (PM). Virtual machine placement (VMP) strategically assigns VMs to suitable physical devices within a data 
center. From the cloud provider’s perspective, the virtual machine must be placed optimally to reduce resource 
wastage to aid economic revenue and develop green data centres. Cloud providers need an efficient methodology 
to minimize resource wastage, power consumption, and network transmission delay. This paper uses NSGA-III, a multi-
objective evolutionary algorithm, to simultaneously reduce the mentioned objectives to obtain a non-dominated 
solution. The performance metrics (Overall Nondominated Vector Generation and Spacing) of the proposed NSGA-III 
algorithm is compared with other multi-objective algorithms, namely VEGA, MOGA, SPEA, and NSGA-II. It is observed 
that the proposed algorithm performs 7% better that the existing algorithm in terms of ONVG and 12% better results 
in terms of spacing. ANOVA and DMRT statistical tests are used to cross-validate the results.
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Introduction
Cloud computing is a model for outsourcing an organiza-
tion’s computing power to a rented infrastructure. Cloud 
computing is possible because of emerging service-ori-
ented architecture, sophisticated servers, and software-
defined networking technologies. The physical machine 
can host multiple operating systems with the help of a 
hypervisor software module installed in physical devices 
[1, 2]. Virtualization significantly reduces resource wast-
age instead of using an entire machine hosted with a 
single operating system. Resource wastage is the unused 
CPU and RAM after placing the virtual machine in the 
respective physical machine (Residual). In simple terms, 
we can express Rw = Ra − Ru , where Rw denotes the 
resource waste, Ra denotes the available resource in the 
physical machine, Ru denotes the resource consumed or 
utilized by the number of virtual machines hosted in the 
physical machine [3].

The networking infrastructure is isolated using SDN 
and assigned to individual virtual machines for com-
munication. SOA is used to expose the virtualized data 
center to the end-users over the internet. Cloud supports 
elasticity, service on demand, and the pay-as-you-go 
model. Cloud provides three fundamental service models 
to the end-user: IaaS, PaaS, and SaaS. Many other pre-
fabricated services like databases and Hadoop are also in 
existence. For creating a virtual machine, the user needs 
to specify the operating system, Memory, CPU cores, 
and Storage [4]. The preconfigured operating system is 
a machine image stored in the SAN network that can be 
executed directly on the virtualized hardware without 
installation. The machine image is an operating system 
deployment file compatible with the hypervisor software. 
The CPU and RAM are partitioned from the physical 
server and assigned to run the virtual machines. Vir-
tual machine favors the data center with consolidation, 
migration, and load balancing. When two or more physi-
cal devices are underutilized, the virtual machine can be 
migrated to a single physical machine to save resources. 
The unused servers can be put to hibernate mode, to con-
sume minimal energy.

The challenge for efficiently utilising a data center lies 
in using the underlying data center resources. As per the 
Gartner report [5], the physical machine consumes 60% 
of data center power, and the remaining 40% is consumed 
by networking, cooling, and storage infrastructure. It is 
crucial to efficiently utilize the data center resources by 
hosting an appropriate virtual machine to the server. 
Reducing resource utilization will significantly reduce the 
expense of a data center. Another vital aspect is placing 
a virtual machine in a data center with less latency [6]. 
The data centers are distributed in various geographical 
locations. When a VM is placed in an area having more 

latency, it suffers from a performance bottleneck. Con-
sider a virtual machine configured to host a database 
server in a location with more significant latency. Even 
though the workload is hosted in sophisticated serv-
ers with more excellent configurations, it will only help 
retrieve the data. The delivery of the information solely 
depends on network bandwidth and latency. As the 
latency increases, the user will experience a delay in con-
tent delivery in both get and put requests.

The main objectives of this paper are summarized as 
follows:

• To optimize the placement of virtual machines 
(VMs) in a data center to minimize resource wastage, 
power consumption, and network transmission delay.

• To develop an efficient methodology for cloud pro-
viders to achieve economic revenue and contribute 
to developing green data centers.

• To propose using NSGA-III, a multi-objective evolu-
tionary algorithm, to simultaneously reduce resource 
wastage, power consumption, and network transmis-
sion delay.

• To compare the performance metrics (Overall Non-
dominated Vector Generation and Spacing) of the 
proposed NSGA-III algorithm with other existing 
multi-objective algorithms, namely VEGA, MOGA, 
SPEA, and NSGA-II.

• To validate the results of the proposed algorithm 
using ANOVA and DMRT statistical tests to ensure 
the reliability and accuracy of the findings.

The motivation behind designing an efficient algo-
rithm to place virtual machines in appropriate servers is 
to address resource wastage and power consumption in 
data centers. Currently, data centers consume approxi-
mately 2% of the total electricity generated by nations. 
This significant energy consumption needs substantial 
efforts to generate electricity, leading to environmental 
impacts and resource depletion. With the rapid growth 
of businesses adopting cloud platforms for their opera-
tions, data center electricity consumption is projected 
to increase to 95% in the coming years. This surge in 
demand makes it primary to find solutions to reduce 
electricity consumption in data centers, given its crucial 
role in meeting the escalating digital needs. By develop-
ing practical VM placement algorithms, we can optimize 
resource utilization, distribute workloads efficiently, and 
minimize energy consumption in data centers. This pro-
active approach towards energy efficiency aligns with the 
urgent need to mitigate environmental impact and pro-
mote sustainable computing practices. As cloud com-
puting becomes an integral part of modern business 
operations, the quest to reduce electricity consumption 
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becomes paramount, and an efficient VM placement 
algorithm emerges as the need of the hour.

The paper is structured as follows: “Literature survey” 
section provides a comprehensive literature review of 
existing algorithms; “Virtual machine placement objec-
tive formulation” section presents the formulation of the 
VMP objective; “Proposed methodology” section intro-
duces the NSGA-III algorithm; “Experimental setup” 
section describes the experimental setup; “Performance 
evaluation and discussions” section offers the perfor-
mance evaluations using ANOVA and DMRT; and finally, 
the paper concludes with a summary of findings.

Literature survey
Building an energy-efficient data center is a crucial 
concern for any cloud provider. Server virtualization 
technologies give the flexibility to host multiple oper-
ating systems with a partitioned resource called a vir-
tual machine in the same physical machine [3]. It has 
improved the utilization of cloud servers to a great 
extent. The challenges are replaced, and the issues are 
now related to the placement of virtual machines in the 
cloud server to increase its utilization even further. Thus, 
objectives emerged to place VM to PM considering cri-
teria like maximizing resource utilization of servers and 
networking devices, minimizing power consumption, 
maximizing economic revenue, etc. Consumption or 
Power Consumption means the amount of electricity the 
physical machine consumes [7]. A heuristic algorithm 
like bin packing [8] and linear programming-based for-
mulation [9] is used to achieve better results in problems 
on a smaller scale. Many novel stochastic algorithms 
are proposed to achieve maximum benefits from the 
large-scale data centre. A bio-inspired and evolutionary 
algorithm is extensively applied out of many stochastic 
algorithms, and the literature is presented in this section.

Swarm intelligence
Swarm intelligence (SI) is a technique that mimics the 
natural behaviour of a species to find a food source or a 
mate. Many researchers used swarm intelligence algo-
rithms to solve virtual placement problems [10, 11]. Ant 
exhibits their intelligence in finding the food source, 
whereas the firefly exhibits intelligence in finding a mate. 
In swarm intelligence, randomly, each agent works until 
it finds a solution then the information is communicated 
with the remaining individuals. The remaining individu-
als will tune themselves to achieve a better solution. The 
global solution is the individual that dominates all the 
remaining individuals. Every swarm intelligence algo-
rithm works based on two factors called exploration and 

exploitation [12]. Exploration is searching for a solution 
in the overall solution space, and exploitation is search-
ing within the best-known solution space. The solution 
space is defined using the objective function. For many 
of the problems, there might be more than a single 
objective function that either needs to be minimized or 
maximized. Minimizing an objective function may have 
a negative impact on other objective functions. When 
an algorithm is constructively optimized, two or more 
objective functions are called a multi-objective optimiza-
tion algorithm [13].

In [14] proposed a multi-objective ant colony algorithm 
to minimize power consumption (η1) and maximize the 
revenue of communication (η2). The movement of an 
ant to a food source is mapped to the VM to be placed 
in PM. The favorability of placing  VMi to  PMj is based 
on the pheromone trails η(i, j). The multi-objective prob-
lem solution is converted to scalar quantity using the 
weighted sum approach η i, j = η1 i, j + η2(i, j) . In [15], 
proposed a modified ACA called Order Exchange and 
Migration ACS to minimize the number of active servers 
favours energy-efficient data centres. The proposed algo-
rithm is compared with ACS and shows significant per-
formance improvement with a single objective function. 
The algorithm also focuses on ordering and migrating 
overloaded and underloaded server loads. The congested 
server’s VM configurations are sorted, and the VM uti-
lizing higher resources is swapped with an underutilized 
server called load balancing. A load-balancing operation 
is a network-intensive task once the virtual machine is 
placed into a physical machine. In [16] proposed work, 
ant colony-based power-aware and performance-guar-
anteed methodology (PPVMP) is used to optimize the 
data centre power consumption and improve VM per-
formance in a physical machine. In [4] proposed Energy 
Efficient Knee point driven Evolutionary Algorithm 
(EEKnEA) uses the evolutionary algorithm framework 
with a modified selection strategy called KnEA where the 
highest fit Pareto optimal solutions are considered along 
with knee points for the next generation. The algorithm 
uses a single-point crossover technique. The chromo-
somes are checked for feasibility during each population 
generation, and infeasible chromosomes are subjected 
to solution repair. In this work, the author addressed the 
objectives: the energy consumption of servers, the energy 
consumption of inter-VM communication, Resource Uti-
lization, and Robustness.

Kuppusamy et al. [17] proposed a reinforced social spi-
der optimization to handle job scheduling in a fog-cloud 
environment. The author performed extensive experi-
mentation using the FogSim simulator to generate the 
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dataset. In addition, they achieved the minimized cost 
function by considering the CPU processing time and 
allocated memory resources. Huanlai Xing et al. [18] pro-
posed an ACO algorithm to address the virtual machine 
placement problem by considering energy consumption 
and network bandwidth. The proposed algorithm enables 
the information exchange that inherits the indirect infor-
mation exchange among the ants in ACO.

Genetic algorithm
Genetic algorithm is inspired by the evolutions of living 
beings based on the concepts of Darwin’s theory of evo-
lution [19]. The genetic algorithm works based on three 
techniques – selection, crossover, and mutation. Selec-
tion is the process of finding the best individual from 
the entire population. The selected individual’s chromo-
somes are exchanged in varying proportions to form off-
spring. The mutation is used to achieve something newer 
from the population. Mutation is a process of voluntar-
ily changing chromosomes to generate unique offspring. 
Then the offspring are subjected to the fitness function or 
objective function. If the offspring is a valid chromosome, 
it survives to the next generation of the population; else, 
they discard the chromosome. If the progeny survives 
with the most significant fitness value, then the offspring 
is likely to be selected in the next mating pool. A better 
solution can be achieved by iterating the process [20].

The author in [21] proposed a novel hybrid genetic 
and PSO algorithm (HGAPSO) to optimize power con-
sumption, resource wastage, and SLA violation. Genetic 
algorithm concepts of crossover and mutation are used 
to find globally optimal solutions, whereas PSO is used 
to achieve faster convergence. Roulette wheel selection, 
single-point crossover with shuffling mutation operator 
is used in the GA phase. This work converts an ordered 
encoding chromosome into a binary encoding method 
to apply PSO. In [22], they considered the NSGA-II algo-
rithm to optimize computing resources and network 
bandwidth. In [23], a modified genetic algorithm with the 
fuzzy model optimises the computing resource and ther-
mal efficiency.

In [24], the authors propose a secure and self-adap-
tive resource allocation framework integrated with an 
enhanced spider monkey optimization algorithm. The 
proposed framework addresses workload imbalance 
and performance degradation issues while meeting 
deadline constraints. Experimental results demonstrate 
its superiority over state-of-the-art approaches like 
PSO, GSA, ABC, and IMMLB in terms of time, cost, 
load balancing, energy consumption, and task rejec-
tion ratio. In [25], the author addresses the challenges 
of cloud-fog computing. IoT systems generate vast 
amounts of data that need to be processed. Instant 

response tasks are sent to fog nodes for low delay but 
high end-user energy consumption, while complex 
tasks go to cloud data centres for extensive computa-
tion. To address these challenges, the author proposes 
the MGWO algorithm, which reduces fog brokers’ QoS 
delay and energy consumption. The proposed algo-
rithm is verified in simulations against state-of-the-art 
algorithms. In [26], the authors introduce the ARPS 
framework for efficient multi-objective scheduling of 
cloud services to meet end-user’s QoS requirements. 
The framework optimizes execution time and costs 
simultaneously using the spider monkey optimization 
algorithm. Extensive simulation analysis with Cloudsim 
demonstrates its superiority over four existing mecha-
nisms regarding processing time, cost, and energy 
consumption.

In [27], the authors focus on microservices and the 
challenges of meeting end-user demands in cloud com-
puting while adhering to SLA constraints. Using the 
Fine-tuned Sunflower Whale Optimization Algorithm 
(FSWOA), the proposed QoS-aware resource allocation 
model optimizes microservice deployment for improved 
efficiency and resource utilization. Experimental results 
show that the proposed approach outperforms baseline 
methods (SFWOA, GA, PSO, and ACO) with reductions 
in time, memory consumption, CPU consumption, and 
service cost by up to 4.26%, 11.29%, 17.07%, and 24.22% 
respectively. In [28], the authors develop a task-process-
ing framework for cloud computing that selects optimal 
resources at runtime using a modified PSO algorithm. 
The proposed algorithm addresses conflicting objec-
tives, optimizing multiple parameters simultaneously, 
such as time, cost, throughput, and task acceptance 
ratio. Experimental results using Cloudsim demonstrate 
its significant superiority over baseline heuristic and 
meta-heuristic methods. In [29], the authors address 
the resource provisioning and scheduling challenges in 
cloud computing due to resource heterogeneity and dis-
persion. To mitigate environmental concerns caused by 
increased data centres for high computational demand, 
the authors propose an efficient meta-heuristic tech-
nique using a modified transfer function for binary par-
ticle swarm optimization (BPSO).

Comparison on state of art multi‑objective optimization 
algorithms
This section aims to compare some of the leading multi-
objective optimization algorithms comprehensively. The 
difference between the algorithm working and its perfor-
mance in attaining optimal solutions varies between the 
algorithm and the problem. By analyzing each algorithm’s 
strengths, weaknesses, and performance metrics, we aim 
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to identify their suitability for specific problem types 
and offer insights into their practical applications. The 
algorithms under review include NSGA-II, MOEA/D, 
NSGA-III, Genetic Algorithm, Particle Swarm Algorithm 
and Ant Colony Algorithm. The metrics considered for 
comparison are explained below, and Table  1 compares 
the mentioned algorithms.

Exploration
The degree to which the algorithm explores the unvisited 
search space. The mechanisms implemented in the algo-
rithm, such as mutation, pheromone updates and refer-
ence points, favour exploration in the algorithms.

Exploitation
The degree to which an algorithm focuses on improving 
the existing solution is called exploration. As the iteration 
increases, the monotonic decay or reduction in crossover 
probability favours exploitation. Exploitation is search-
ing for better solutions that are closer to the existing 
solution.

Convergence
Convergence measures how quickly an algorithm finds 
the optimal or Pareto optimal solution for a given prob-
lem, given a fixed number of iterations. To generalize 
the ranks of the algorithms listed in the Table 1, we used 
the Rosenbrock function and ranked them according to 
their convergence speed.

Computation complexity
Computational complexity defines the runtime of an 
algorithm. Optimization problems are generally NP-
hard, meaning they are computationally intractable and 
require exponential time. Polynomial time complexity 
is the most desirable for optimization problems, as the 
algorithm will run in a reasonable amount of time. The 
higher the complexity, the longer the runtime will be.

Extract from the literature
The above literature shows that many leading researchers 
are applying bio-inspired swarm optimization or genetic 
algorithms to improve the various efficiency aspects of 
cloud resources. In specific, ACO is widely used in bio-
inspired algorithms. The cloud servers are both time and 
space components, allowing the cloud provider to over-
commit their cloud resources. Our research considers 
that the servers are only space-shared components, and 
over-committing server resources are not considered.

Virtual machine placement objective formulation
Minimize resource wastage
A cloud data centre may have any number of physical 
machines. A physical machine has resources in terms 
of CPU and RAM. In the cloud environment, the stor-
age is given to a physical machine in terms of a Stor-
age Area Network and can be dynamically increased 
to any volume. Our research considers only the CPU 
and memory in the optimization objective calcula-
tion. About the illustration above, assume we have 
two physical machines, namely PM = {PM1,PM2} in a 

Fig. 1 Illustration on resource wastage objective calculation
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data centre with an available resource capacity of 90% 
each. The remaining 10% of the CPU and Memory is 
reserved for running the operating system and the 
hypervisor software. Three VM requests are, namely 
VM = {VM1,VM2,VM3} and each VM need a different 
resource for execution. VM1 requires 20% of CPU and 
20% of RAM for execution, VM2 requires 60% CPU 
and 40% of RAM, VM3 requires 30% CPU and 30% of 
RAM.

Figure 1 depicts the possible way to schedule the virtual 
machine. The PM1 holds {VM1,VM2} and VM3 is placed 
in PM2 because the PM1 don’t have enough resources. 
The wastage is highlighted in red color. The total resource 
wastage is the sum of wastage in {PM1,PM2} . The above 
process can be mathematically represented using the 
below Eq. 1.

(1)
Min

�M

i=1
Wi =

�M

i=1



yi ×

�

�

�
(θP i −

�N
j=1(xi, j. Rp, j))− (θM i −

�N
j=1(xi, j. RM, j))

�

�

�
+ ε

�N
j=1(xi, j. Rp, j))+

�N
j=1(xi, j. RM, j))





where RM,j , Rp,j is CPU and memory demand of each Vir-
tual Machine,  θMi , θPi Each PM’s upper limit value is usu-
ally set to 90%, where the remaining 10% is used to run 
hypervisors and server monitoring modules.

Minimize power consumption
Considering the {VM1,VM2} placed in PM1 and VM3 is 
placed in PM2 the calculation is carried out in this sec-
tion. In the literature [16], correlation indicates a lin-
ear relationship between CPU utilization and power 

(2)xi,j =

{

1 if VMj is allocated to PMi

0 otherwise

(3)yi =

{

1 if PMi is used
0 otherwise

Fig. 2 Illustration on power consumption objective calculation
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consumption, where an increase in CPU utilization cor-
responds to a proportional increase in power consump-
tion. The reference value is also incorporated from the 
literature [16]. When the CPU is idle, not placed with 
any VM, the power consumption is observed to be 162W. 
When the PM is thoroughly utilized, the power consump-
tion is 215W. Hence the power consumption of a physical 
machine ranges from a lower limit of 162W to a higher 
limit of 215W. In Fig. 2, PM1 is hosted with {VM1,VM2} 
has a total CPU utilization of 80%. 80% of 53W is con-
sumed in addition to 162W. The power consumption of 
PM1 is said to 162W + (80% ∗ 53W ) equals 204.4W.

Likewise, the power consumption of all physical 
machines is calculated to find the total power consump-
tion of the cloud data center. It is mathematically repre-
sented as in Eq. 4.

Pidle
i  denotes the power consumption of a physical 

server without any virtual machine hosted in it, Pactive
i  is 

the power consumption of a physical machine at its max-
imum hosted load.

Minimize propagation time

(4)
Min

∑M

i=1
Pi =

∑M

i=1

[

yi ×

(

(

Pactive
i − Pidle

i

)

×
∑N

j=1

(

xi, j. Rp, j

)

+ Pidle
i )

)]

(5)Min
∑N

n=1 PDelay
n
i,j ∀i ǫ M, ∀j ε N

where PDelay denotes the latency of a virtual machine 
VMi to be placed in a physical machine PMj.

Proposed methodology
NSGA-III [30] is much like the working model of the 
NSGA-II algorithm [22]. The NSGA II algorithm pro-
posed by Deb follows the pattern of the Pareto-based 
approach extensively [31]. During the initialization 
phase, a problem-specific initial population is gener-
ated. Then the population is evaluated using the objec-
tive function. Now, the population will have their 
fitness values. This existing population is called a par-
ent population. This parent population is chosen in 
random or probabilistic-based approaches to gener-
ate the children’s population. These parent population 

pairs are subjected to crossover and mutation operators 
to produce several individuals in the children popula-
tion. Until this step, this algorithm follows the identical 
framework of NSGA II. The NSGA III steps are majorly 
divided into two. They are non-dominated sorting and 
calculation of crowding distance.

The parent and children populations are merged 
to find the Pareto front in non-dominated sort-
ing. For example, consider there are five parent 

Fig. 3 Crowding distance calculation in comparison with the Pareto front-based solution calculation
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individuals P = {p1, p2, p3, p4, p5} and five children 
C = {c1, c2, c3, c4, c5} both are combined to form 
P ∪ C = {p1, p2, p3, p4, p5, c1, c2, c3, c4, c5} . Now for the 
combined population, domination is applied to find the 
Pareto front. The combined population size is usually 
2P. Consider three solutions, F1 = {p1, c2, c3} are iden-
tified as the first non-dominated solution front. To find 
the next non-dominated solution front, the F1 solution 
is removed (P ∪ C)− F1 = {p2, p3, p4, p5, c1, c4, c5} from 
the combined population. Once again, the non-domi-
nation process is repeated until all the individuals are 
fitted into the front Fm, where m denotes the number 
of fronts. The non-dominated sorting method is to find 
the multiple Pareto fronts in the given objective, which 
is depicted in Fig. 1.

The second part of the algorithm focuses on the 
density estimation of the solutions called crowd-
ing distance. The combined population values are 
initially sorted according to the individual objective 
function values to find the distance to the surround-
ing solutions. The figure depicts the crowding distance 
calculation for point c2. To its proximity, three solu-
tions exist {c3, c4, p1} and the distance is calculated for 

the point c2. For the solutions in the front’s extreme 
boundary, the distance is assigned to infinity. The 
overall crowding distance is calculated by summing 
the distance of each solution. The solution with a 
smaller crowding distance implicitly represents several 
solutions in its proximity. The solutions for the next 
iteration are selected based on two conditions; the 
solutions in the lower front are preferred over those in 
the higher Pareto front [32]. If both solutions are from 
the same front, then the minimal crowding distance 
solution is chosen to generate the next parent popula-
tion of size P. (Fig. 3)

A selection operator based on the reference points is 
proposed to maintain the diversity in a population [33]. 
It is adapted with the help of detailed or well-spread 
reference points in the solution space [34]. The working 
model of NSGA-III and its computation of reference 
points are discussed. A series of distributed reference 
points of G dimensions are also generated. p is a num-
ber that is used for division, and it is generated by the 
end-user. To deploy the reference points over the nor-
malized hyperplane with the interception of one for 
each axis is given by Das and Dennis [35]. The total 

Fig. 4 The rays from origin to reference points in a two-objective solution space
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number of reference points (H) generation can be done 
by

These reference points are distributed uniformly to 
maintain diversity among the population. The direction 
of the reference points is denoted as a ray that starts from 
the origin and passes through the reference points, as 
given in Fig. 4.

NSGA III algorithm balance between exploration and 
exploitation using the process called Niching. Niching 
ensures that the algorithm does not converge to the 
local optimum. Niching works based on the principle 
of fitness sharing. If a solution I  in the Pareto optimal 
front is close to another solution j (d_ij ≤ R), then the 
fitness value of all the solutions is shared among them 
using the equation below. The critical parameter that 
decides the fitness sharing is the radius R. Sh(d_ij) 
Eq. 7 represents the sharing value between the solution 
pair, such that we have n solution. The sharing values 
are added as shown in Eq.  8. The final fitness values 
for all solutions closer to each are calculated as given 
in Eq. 9.

(6)H =

(

G + p− 1
p

)

(7)Sh
(

dij
)

=

{

1−
dij
R

0

dij ≤ R
otherwise

(8)nci = Sh(di1)+ Sh(di2)+ · · · + Sh(din)

Algorithm 1. NSGA III algorithm for virtual machine placement

After the initialization of the population, recombi-
nation, mutation, and crossover procedures [34], the 
size of the merged population depends on mutation 
and crossover percentage; for elite individual preser-
vation, a non-dominated sorting model is used. Each 
level of individuals is sorted by crowding distance in 
NSGA-II. It has been replaced in NSGA-III with ref-
erence direction-based niching. Before this operation, 

(9)f ′ =
f

nci

Fig. 5 Distribution of statistically generated datasets with different RCPU  , RRAM  and P values
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the objectives are normalized with the below formulae. 
The equation updates the ideal point Z* during each 
iteration. The NSGA II-based tchebychef scalarization 
method is replaced with the achievement scalariza-
tion function (ASF), as mentioned in Eq. 8, to convert 
objective values from vector to scalar values [36].

where ASF is defined as the extreme points in each objec-
tive axis, zmin

g  is the ideal value f ng (x) is the normalized 
objective function value. The pseudocode of the pro-
posed model is given in Algorithm 1.

(10)f ′g (x) = fg (x)− zmin
g

(11)ASF(x,w) =
zmaxGg=1

f ′g (x)

wg

(12)f ng (x) =
f ′g (x)

ag − zmin
g

Experimental setup
Generating virtual machine’s CPU and RAM dataset is 
generated statistically based on the algorithm proposed 
in [8, 14]. The experiment is carried out with three sets 
of reference values RCPU  and RRAM  (25%, 35% and 45%) 
respectively. When the reference value is 25% the RCPU  
and RRAM  generated values are approximately ranging 
from 0 to 50%. The correlation values are calculated after 
generating the datasets to show variations in datasets. 
The negative correlation denotes a memory-intensive 
virtual machine workload, and the positive correlation 
denotes CPU-intensive virtual machine. The expected 
correlation values are achieved by varying the prob-
ability values P to (0, 25, 50, 25, 100), giving the cor-
relation values of (-0.7, -0.3, 0.04, 0.2, 0.74). Figure  5 
represents the distribution of the resources of the virtual 
machine for RCPU = 25% , RRAM = 25% , P = 0 (Left) and 
RCPU = 45% , RRAM = 45% , P = 0.5 (right). Based on the 
combination of values of P(0, 25, 50, 25, 100), RCPURRAM

(25%, 35%,45%) and NVM(100,200) thirty datasets are 

Table 2 Experimental results of RCPU  = RRAM  = 25% for 100 and 
200 VM instances

25% 100 Instances 200 Instances

Corr ALG ONVG SP ONVG SP

-0.753 VEGA 15.26 0.70 14.78 0.67

MOGA 17.34 0.69 15.37 0.67

SPEA 16.73 0.65 16.49 0.56

NSGA-II 20.74 0.55 18.96 0.46

NSGA-III 28.51 0.28 26.56 0.22

-0.362 VEGA 17.07 0.79 15.49 0.77

MOGA 16.17 0.66 16.80 0.63

SPEA 17.84 0.60 17.60 0.52

NSGA-II 18.99 0.57 19.64 0.46

NSGA-III 30.38 0.25 30.43 0.24

-0.054 VEGA 17.66 0.70 15.71 0.69

MOGA 15.94 0.60 16.43 0.56

SPEA 16.81 0.59 17.37 0.50

NSGA-II 22.66 0.48 20.78 0.44

NSGA-III 30.67 0.22 30.95 0.24

0.37 VEGA 14.71 0.68 14.77 0.60

MOGA 16.45 0.53 16.17 0.49

SPEA 16.07 0.55 15.90 0.46

NSGA-II 18.15 0.49 18.63 0.40

NSGA-III 26.45 0.27 26.46 0.22

0.752 VEGA 19.20 0.62 18.17 0.58

MOGA 19.86 0.50 18.87 0.41

SPEA 19.35 0.47 19.05 0.38

NSGA-II 22.50 0.46 21.19 0.38

NSGA-III 33.44 0.26 32.53 0.20

Table 3 Experimental results of RCPU  = RRAM  = 35% for 100 and 
200 VM instances

35% 100 Instances 200 Instances

Corr ALG ONVG SP ONVG SP

-0.755 VEGA 19.05 0.78 18.23 0.68

MOGA 19.01 0.69 18.33 0.62

SPEA 18.19 0.69 16.90 0.56

NSGA-II 23.61 0.54 21.73 0.52

NSGA-III 31.25 0.30 29.40 0.20

-0.372 VEGA 18.07 0.75 18.24 0.69

MOGA 21.01 0.67 19.68 0.58

SPEA 20.07 0.59 20.27 0.51

NSGA-II 20.34 0.48 21.27 0.44

NSGA-III 30.45 0.28 29.11 0.26

-0.062 VEGA 19.11 0.68 18.83 0.60

MOGA 18.80 0.60 18.37 0.56

SPEA 21.05 0.54 19.99 0.49

NSGA-II 23.88 0.40 22.83 0.35

NSGA-III 37.12 0.22 35.03 0.20

0.384 VEGA 14.53 0.72 14.91 0.64

MOGA 18.08 0.50 15.76 0.47

SPEA 18.85 0.54 18.46 0.47

NSGA-II 19.75 0.45 19.85 0.43

NSGA-III 27.95 0.28 28.61 0.19

0.753 VEGA 19.97 0.62 18.79 0.50

MOGA 22.19 0.47 20.59 0.41

SPEA 22.09 0.46 19.78 0.36

NSGA-II 22.52 0.36 21.03 0.31

NSGA-III 31.67 0.23 32.35 0.18
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generated, and the corresponding correlation values are 
given in the column corr in Tables 1, 2 and 3.

To calculate the power consumption of the individual 
physical machine, the processor utilization is calculated 
based on

∑N
j=1(xi,j.Rp,j) . An experiment performed in [16, 

37] concluded that the CPU and power utilization form 
a linear relationship among them. When CPU utiliza-
tion increases, power consumption also increases. The 
power consumption of a physical server is calculated 
based on two parameters. Pidle andPactive . Pidle indicates 
the amount of power consumed when the server is not 
hosted with any virtual machine. Pactive denotes the 
amount of power consumption for complete physical 
machine utilization. Based on the experiment in [14] two 
values are taken where Pidle = 162W  andPactive = 215W  . 
If the CPU utilization of the physical server is 50%, then 
the power utilization of the server is 188.5W.

To validate the superiority of the proposed algorithm, 
it is essential to utilize a statistically generated dataset 
that exhibits variations, thereby showcasing its perfor-
mance under diverse conditions. By altering the RCPU  , 
RRAM  and P values, different datasets can be gener-
ated. In the above figure, RCPU = 25% , RRAM = 25% 
and P = 0 so that the generated request values will fall 
in the range > 0% and < 50%. The correlation of the data-
set is calculated by generating dataset returns -0.7453 
(strong negative correlation). The next figure where we 
use RCPU = 45% , RRAM = 45% and P = 0.5 the CPU 
and RAM values ranges from > 0% and < 90%. The values 
RCPU  , RRAM  and P are used to generate diversified data-
sets for experimentation.

Hosting a virtual machine in a remote server across 
regions will incur network transmission delay. Plac-
ing a VM at a nearer data center will have less network 
latency compared farther data centre. For latency, 18 
regions of AWS data centers are considered. The latency 
is estimated using the TCPPing utility configured in 
the running instances in 18 regions. An average latency 
measured every 5  min for 15  days is considered in our 
research work.

Performance evaluation and discussions
To evaluate the proposed algorithm with experimented 
vales, two metrics specific to multi-objective algo-
rithms are spacing [38] and Overall Non-Dominated 
Vector Generation (ONGV). ONGV [39] denotes the 
average number non dominated solutions stored in the 
external achieve during each iteration of the algorithm. 
ONGV indicates the number of better-performing solu-
tions found during each iteration. Spacing represents 
the coarseness of the resolution towards the minimal 
objective values. If all the non-dominated solutions are 

closer, then the spacing value is minimal, indicating that 
the algorithm controls solution generation. If the spac-
ing value is more, we can conclude that the solution is 
random, and the algorithm has no control over solution 
generation.

The results in Tables  2, 3 and 4 are interpreted using 
the DMRT (Duncan Multiple Range Test) and ANOVA 
(Analysis of Variance), the statistical tools to show the 
significance between the listed algorithms. The tests 
are being performed for the performance indicators 
ONVG and SP for all three instances of RAM and CPU, 
respectively.

(13)ONGV =

Total number of non dominated vector generated

Total number of iterations

(14)Sp =

√

1

|PF | − 1

∑|PF |

i=1
(d − di)

2

Table 4 Experimental results of RCPU  = RRAM  = 45% for 100 and 
200 VM instances

45% 100 Instances 200 Instances

corr ALG ONVG SP ONVG SP

-0.756 VEGA 19.93 0.71 18.89 0.66

MOGA 21.90 0.69 19.69 0.64

SPEA 20.41 0.61 20.26 0.60

NSGA-II 24.41 0.53 23.73 0.45

NSGA-III 31.04 0.30 31.64 0.27

-0.382 VEGA 20.02 0.74 20.05 0.68

MOGA 20.08 0.69 20.69 0.60

SPEA 23.15 0.61 22.44 0.52

NSGA-II 23.46 0.47 22.88 0.43

NSGA-III 33.71 0.21 31.95 0.16

-0.059 VEGA 20.85 0.68 21.38 0.60

MOGA 20.82 0.63 19.54 0.58

SPEA 22.56 0.49 21.17 0.42

NSGA-II 25.25 0.41 25.01 0.32

NSGA-III 35.95 0.25 36.53 0.18

0.396 VEGA 17.30 0.70 16.49 0.66

MOGA 19.14 0.54 17.96 0.47

SPEA 21.78 0.50 19.97 0.44

NSGA-II 20.86 0.51 20.82 0.41

NSGA-III 29.22 0.26 29.35 0.23

0.75 VEGA 20.93 0.67 19.60 0.58

MOGA 21.51 0.47 21.34 0.36

SPEA 20.02 0.46 20.38 0.39

NSGA-II 22.25 0.36 22.38 0.38

NSGA-III 34.76 0.22 33.70 0.18
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ANOVA
The dataset is generated statistically, and the algorithm 
uses the guided random approach. ANOVA and Duncan 
Multiplier Range test are used as statistical tests to meas-
ure the algorithm’s significance. ANOVA test cannot iso-
late the best performing algorithm; instead, ANOVA tests 
if there exists a significant difference in the algorithm’s 
performance. Using the ANOVA test, we can ensure 
that there is a substantial difference between the algo-
rithm but cannot isolate better-performing algorithms. 
We conducted the post hoc analysis using the Duncan 
range test to separate the best-performing algorithm. For 
example, in Table 6, the Duncan multiplier range test cat-
egorises the algorithm into three homogeneous groups 
(three columns). The first homogeneous group denotes 
none of the other algorithms are performed as equiva-
lent to the NSGA III algorithm. In the same table, SPEA, 
MOGA and VEGA are performing equally.

ANOVA test shows the significance between the 
groups or algorithms in the given sample values. In this 

paper, the ANOVA test is used to identify whether the 
results of the algorithms show significance among them. 
The ANOVA test was conducted at a significance level of 
95%. Suppose the Sig.value is lower than the critical value 
(α = 0.05). In that case, the null hypothesis  (Ho) should 
be rejected, and the alternate hypothesis  (H1) should be 
accepted, indicating a significant difference among the 
given group of values. It allows for applying post-hoc 
tests, with Duncan’s Multiple Range Test used in this 
case. Conversely, if the sig.value exceeds 0.05, the null 
hypothesis  (Ho) should be accepted, and post-hoc tests 
cannot be conducted.

Duncan’s multiple range test
The Duncan Multiple Range Test (DMRT) is a statistical 
method used to compare multiple sets’ mean values. It 
utilizes studentized range statistics to establish numerical 
boundaries for classifying significant and non-significant 
differences between any two or more groups. The DMRT 

Table 5 Result analysis of 100 VM instances using ANOVA for ONVG ( RCPU  = RRAM = 25%)

ANOVA

Source Factor Sum of Squares df Mean Square F Sig

ONVG Between Groups 614.950 4 153.738 41.655 .000

Within Groups 73.815 20 3.691

Total 688.766 24

Table 6 Result analysis of 100 VM instances using DMRT for 
ONVG ( RCPU  = RRAM = 25%)

Duncan Multiplier Range Test

Algorithm N Subset for alpha = 0.05

1 2 3

NSGA-III 5 29.8900

NSGA II 5 20.6080

SPEA 5 17.3600

MOGA 5 17.1520

VEGA 5 16.7800

Sig 1.000 1.000 0.657

Table 7 Result analysis of 200 VM instances using ANOVA for ONVG ( RCPU  = RRAM = 25%)

ANOVA

Source Factor Sum of Squares df Mean Square F Sig

ONVG Between Groups 618.993 4 154.748 55.882 .000

Within Groups 55.384 20 2.769

Total 674.377 24

Table 8 Result analysis of 200 VM instances using DMRT for 
ONVG ( RCPU  = RRAM = 25%)

Duncan Multiplier Range Test

Algorithm N Subset for alpha = 0.05

1 2 3

NSGA-III 5 29.3860

NSGA II 5 19.8400

SPEA 5 17.2820

MOGA 5 16.7280

VEGA 5 15.7840

Sig 1.000 1.000 0.193
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ranks the sets in ascending or descending order accord-
ing to the user’s preference.

Tables 5 and 6 shows the ANOVA and DMRT tests of 
ONVG results tabulated in Table  2 for 100 instances of 
VM with RCPU  = RRAM   = 25%.

Table  5 presents the statistical analysis of ANOVA, 
while Table  6 showcases the results of DMRT. The tab-
ulated results are interpreted from Table 2 of ONVG of 
100 VM instances for RCPU  = RRAM   = 25%. The results 
from Table  5 indicate that the Sig.value is below the 
critical importance of 0.05, leading to the rejection of 
the Null Hypothesis ( H0) and acceptance of the Alter-
nate Hypothesis (H1) . On the post-hoc analysis, DMRT 
NSGA-III ranks top among the existing algorithms. 
Three homogenous groups are formed among the algo-
rithms, and NSGA-III shows its significance by creating a 
standalone group among the others.

Tables 7 and 8 shows the ANOVA and DMRT tests of 
ONVG results tabulated in Table  2 for 200 instances of 
VM with RCPU  = RRAM   = 25%.

Table  7 presents the statistical analysis of ANOVA, 
while Table  8 showcases the results of DMRT. The tab-
ulated results are interpreted from Table 2 of ONVG of 
200 VM instances for RCPU  = RRAM   = 25%. The results 
from Table  7 indicate that the Sig.value is below the 
critical importance of 0.05, leading to the rejection of 
the Null Hypothesis ( H0) and acceptance of the Alter-
nate Hypothesis (H1) . On the post-hoc analysis, DMRT 
NSGA-III ranks top among the existing algorithms. 
Three homogenous groups are formed among the algo-
rithms, and NSGA-III shows its significance by creating a 
standalone group among the others.

Tables 9 and 10 shows the ANOVA and DMRT tests of 
SP results tabulated in Table 2 for 100 instances of VM 
with RCPU  = RRAM   = 25%.

Table  9 presents the statistical analysis of ANOVA, 
while Table 10 showcases the results of DMRT. The tab-
ulated results are interpreted from Table 2 of SP of 100 
VM instances for RCPU  = RRAM   = 25%. The results from 
Table  9 indicate that the Sig.value is below the critical 

Table 9 Result analysis of 100 VM instances using ANOVA for SP ( RCPU  = RRAM = 25%)

ANOVA

Source Factor Sum of Squares df Mean Square F Sig

Spacing (SP) Between Groups .549 4 .137 38.865 .000

Within Groups .071 20 .004

Total .619 24

Table 10 Result analysis of 100 VM instances using DMRT for SP 
( RCPU  = RRAM = 25%)

Duncan Multiplier Range Test

Algorithm N Subset for alpha = 0.05

1 2 3 4

NSGA-III 5 .2560

NSGA II 5 .5100

SPEA 5 .5720 .5720

MOGA 5 .5960

VEGA 5 .6980

Sig 1.000 .115 .530 1.000

Table 11 Result analysis of 200 VM instances using ANOVA for SP ( RCPU  = RRAM = 25%)

ANOVA

Source Factor Sum of Squares df Mean Square F Sig

Spacing (SP) Between Groups .530 4 .133 28.734 .000

Within Groups .092 20 .005

Total .623 24

Table 12 Result analysis of 200 VM instances using DMRT for SP 
( RCPU  = RRAM = 25%)

Duncan Multiplier Range Test

Algorithm N Subset for alpha = 0.05

1 2 3 4

NSGA-III 5 .2240

NSGA II 5 .4280

SPEA 5 .4840 .4840

MOGA 5 .5520

VEGA 5 .6620

Sig 1.000 .207 .129 1.000
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value of 0.05, leading to the rejection of the Null Hypoth-
esis ( H0) and acceptance of the Alternate Hypothesis 
(H1) . On the post-hoc analysis, DMRT NSGA-III ranks 
top among the existing algorithms. Four homogenous 
groups are formed among the algorithms, and NSGA-
III shows its significance by creating a standalone group 
among the others.

Tables 11 and 12 shows the ANOVA and DMRT tests 
of SP results tabulated in Table 2 for 200 instances of VM 
with RCPU  = RRAM   = 25%.

Table  11 presents the statistical analysis of ANOVA, 
while Table 12 showcases the results of DMRT. The tab-
ulated results are interpreted from Table 2 of SP of 100 
VM instances for RCPU  = RRAM   = 25%. The results from 

Table  11 indicate that the Sig.value is below the critical 
value of 0.05, leading to the rejection of the Null Hypoth-
esis ( H0) and acceptance of the Alternate Hypoth-
esis (H1) . On the post-hoc analysis DMRT in Table  12, 
NSGA-III ranks top among the existing algorithms, four 
homogenous groups are formed among the algorithms, 
and NSGA-III shows its significance by creating a stan-
dalone group among the others.

Tables 13 and 14 shows the ANOVA and DMRT tests 
of ONVG results tabulated in Table 3 for 100 instances of 
VM with RCPU  = RRAM   = 35%.

Table  13 presents the statistical analysis of ANOVA, 
while Table 14 showcases the results of DMRT. The tab-
ulated results are interpreted from Table 3 of ONVG of 
100 VM instances for RCPU  = RRAM   = 35%. The results 
from Table  13 indicate that the Sig.value is below the 

Table 13 Result analysis of 100 VM instances using ANOVA for ONVG ( RCPU  = RRAM = 35%)

ANOVA

Source Sum of Squares df Mean Square F Sig

ONVG Between Groups 583.408 4 145.852 29.349 .000

Within Groups 99.390 20 4.970

Total 682.799 24

Table 14 Result analysis of 100 VM instances using DMRT for 
ONVG ( RCPU  = RRAM = 35%)

Duncan Multiplier Range Test

Algorithm N Subset for alpha = 0.05

1 2 3

NSGA-III 5 31.6880

NSGA II 5 22.0200

SPEA 5 20.0500 20.0500

MOGA 5 19.8180 19.8180

VEGA 5 18.1460

Sig 1.000 .154 .216

Table 15 Result analysis of 200 VM instances using ANOVA for ONVG ( RCPU  = RRAM = 35%)

ANOVA

Source Sum of Squares df Mean Square F Sig

ONVG Between Groups 583.408 4 145.852 29.349 .000

Within Groups 99.390 20 4.970

Total 682.799 24

Table 16 Result analysis of 200 VM instances using DMRT for 
ONVG ( RCPU  = RRAM = 35%)

Duncan Multiplier Range Test

Algorithm N Subset for alpha = 0.05

1 2 3

NSGA-III 5 31.6880

NSGA II 5 22.0200

SPEA 5 20.0500 20.0500

MOGA 5 19.8180 19.8180

VEGA 5 18.1460

Sig 1.000 .154 .216
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critical value of 0.05, leading to the rejection of the Null 
Hypothesis ( H0) and acceptance of the Alternate Hypoth-
esis (H1) . On the post-hoc analysis DMRT in Table  14, 

NSGA-III ranks top among the existing algorithms, and 
there are three homogenous groups are formed among 
the algorithms, and NSGA-III shows its significance by 
creating a standalone group among the others.

Tables 15 and 16 shows the ANOVA and DMRT tests 
of ONVG results tabulated in Table 3 for 200 instances of 
VM with RCPU  = RRAM   = 35%.

Table  15 presents the statistical analysis of ANOVA, 
while Table 16 showcases the results of DMRT. The tabu-
lated results are interpreted from Table 3 of ONVG of 200 
VM instances for RCPU  = RRAM   = 35%. The results from 
Table  15 indicate that the Sig.Value is below the critical 
value of 0.05, leading to the rejection of the Null Hypothesis 

( H0) and acceptance of the Alternate Hypothesis (H1) . On 
the post-hoc analysis, DMRT in Table 16 NSGA-III ranks 
top among the existing algorithms, three homogenous 
groups are formed among the algorithms, and NSGA-III 
shows its significance by creating a standalone group.

Tables 17 and 18 shows the ANOVA and DMRT tests 
of SP results tabulated in Table  3 for 100 instances of 
VM with RCPU  = RRAM   = 35%.

Table  17 presents the statistical analysis of ANOVA, 
while Table 18 showcases the results of DMRT. The tab-
ulated results are interpreted from Table  3 of SP of 100 
VM instances for RCPU  = RRAM   = 35%. The results from 
Table  17 indicate that the Sig.Value is below the critical 
value of 0.05, leading to the rejection of the Null Hypoth-
esis ( H0) and acceptance of the Alternate Hypothesis (H1) . 
On the post-hoc analysis DMRT in Table  18, NSGA-III 
ranks top among the existing algorithms. Four homog-
enous groups are formed among the algorithms, and 

Table 17 Result analysis of 100 VM instances using ANOVA for SP ( RCPU  = RRAM = 35%)

ANOVA

Source Factor Sum of Squares df Mean Square F Sig

Spacing (SP) Between Groups .571 4 .143 26.579 .000

Within Groups .107 20 .005

Total .679 24

Table 18 Result analysis of 100 VM instances using DMRT for SP 
( RCPU  = RRAM = 35%)

Duncan Multiplier Range Test

Algorithm N Subset for alpha = 0.05

1 2 3 4

NSGA-III 5 .2620

NSGA II 5 .4460

SPEA 5 .5640

MOGA 5 .5860

VEGA 5 .7100

Sig 1.000 1.000 .640 1.000

Table 19 Result analysis of 200 VM instances using ANOVA for SP ( RCPU  = RRAM = 35%)

ANOVA

Source Factor Sum of Squares df Mean Square F Sig

Spacing (SP) Between Groups .488 4 .122 23.023 .000

Within Groups .106 20 .005

Total .594 24

Table 20 Result analysis of 200 VM instances using DMRT for SP 
( RCPU  = RRAM = 35%)

Duncan Multiplier Range Test

Algorithm N Subset for alpha = 0.05

1 2 3 4

NSGA-III 5 .2060

NSGA II 5 .4100

SPEA 5 .4780 .4780

MOGA 5 .5280 .5280

VEGA 5 .6220

Sig 1.000 .155 .290 .055
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NSGA-III shows its significance by creating a standalone 
group among the others.

Tables 19 and 20 shows the ANOVA and DMRT tests 
of SP results tabulated in Table  3 for 200 instances of 
VM with RCPU  = RRAM   = 35%.

Table  19 presents the statistical analysis of ANOVA, 
while Table 20 showcases the results of DMRT. The tabu-
lated results are interpreted from Table  3 of SP of 200 
VM instances for RCPU  = RRAM  = 35%. The results from 
Table 19 indicate that the Sig.Value is below the critical value 
of 0.05, leading to the rejection of the Null Hypothesis ( H0) 
and acceptance of the Alternate Hypothesis (H1) . On the 
post-hoc analysis DMRT in Table 20, NSGA-III ranks top 
among the existing algorithms. Four homogenous groups 
are formed among the algorithms NSGA-III shows its sig-
nificance by creating a standalone group among the others.

Tables 21 and 22 shows the ANOVA and DMRT tests 
of ONVG results tabulated in Table 4 for 100 instances of 

VM with RCPU  = RRAM   = 45%.
Table  21 presents the statistical analysis of ANOVA, 

while Table 22 showcases the results of DMRT. The tabu-
lated results are interpreted from Table 4 of ONVG of 100 
VM instances for RCPU  = RRAM   = 45%. The results from 
Table  21 indicate that the Sig. value is below the critical 
value of 0.05, leading to the rejection of the Null Hypoth-
esis ( H0) and acceptance of the Alternate Hypothesis (H1) . 
On the post-hoc analysis DMRT in Table  22, NSGA-III 
ranks top among the existing algorithms, three homoge-
nous groups are formed among the algorithms, and NSGA-
III shows its significance by creating a standalone group.

Tables 23 and 24 shows the ANOVA and DMRT tests 
of ONVG results tabulated in Table 4 for 200 instances of 
VM with RCPU  = RRAM   = 45%.

Table  23 presents the statistical analysis of ANOVA, 
while Table 24 showcases the results of DMRT. The tab-
ulated results are interpreted from Table 4 of ONVG of 
200 VM instances for RCPU  = RRAM   = 45%. The results 

Table 21 Result analysis of 100 VM instances using ANOVA for ONVG ( RCPU  = RRAM = 45%)

ANOVA

Source Sum of Squares df Mean Square F Sig

ONVG Between Groups 570.996 4 142.749 45.027 .000

Within Groups 63.406 20 3.170

Total 634.402 24

Table 22 Result analysis of 100 VM instances using DMRT for 
ONVG ( RCPU  = RRAM = 45%)

Duncan Multiplier Range Test

Algorithm N Subset for alpha = 0.05

1 2 3

NSGA-III 5 32.9360

NSGA II 5 23.2460

SPEA 5 21.5840 21.5840

MOGA 5 20.6900

VEGA 5 19.8060

Sig 1.000 .156 .150

Table 23 Result analysis of 200 VM instances using ANOVA for ONVG ( RCPU  = RRAM = 45%)

ANOVA

Source Sum of Squares df Mean Square F Sig

ONVG Between Groups 605.915 4 151.479 48.937 .000

Within Groups 61.908 20 3.095

Total 667.823 24

Table 24 Result analysis of 200 VM instances using DMRT for 
ONVG ( RCPU  = RRAM = 45%)

Duncan Multiplier Range Test

Algorithm N Subset for alpha = 0.05

1 2 3

NSGA-III 5 32.6340

NSGA II 5 22.9640

SPEA 5 20.8440 20.8440

MOGA 5 19.8440

VEGA 5 19.2820

Sig 1.000 .071 .199
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from Table  23 indicate that the Sig. Value is below the 
critical value of 0.05, leading to the rejection of the Null 
Hypothesis ( H0) and acceptance of the Alternate Hypoth-
esis (H1) . On the post-hoc analysis DMRT in Table  24, 
NSGA-III ranks top among the existing algorithms. 

Three homogenous groups are formed among the algo-
rithms, and NSGA-III shows its significance by creating a 
standalone group among the others.

Tables 25 and 26 shows the ANOVA and DMRT tests 
of SP results tabulated in Table 4 for 100 instances of VM 
with RCPU  = RRAM   = 45%.

Table 25 presents the statistical analysis of ANOVA, 
while Table  26 showcases the results of DMRT. The 
tabulated results are interpreted from Table 4 of SP of 
100 VM instances for RCPU  = RRAM   = 45%. The results 
from Table 25 indicate that the Sig. Value is below the 
critical value of 0.05, leading to the rejection of the 
Null Hypothesis ( H0) and acceptance of the Alternate 

Hypothesis (H1) . On the post-hoc analysis DMRT in 
Table 26, NSGA-III ranks top among the existing algo-
rithms. Four homogenous groups are formed among 
the algorithms, and NSGA-III shows its significance by 
creating a standalone group among the others.

Tables 27 and 28 shows the ANOVA and DMRT tests 
of SP results tabulated in Table 4 for 200 instances of VM 
with RCPU  = RRAM   = 45%.

Table  27 presents the statistical analysis of ANOVA, 
while Table 28 showcases the results of DMRT. The tab-
ulated results are interpreted from Table 4 of SP of 200 
VM instances for RCPU  = RRAM   = 45%. The results from 
Table 27 indicate that the Sig. Value is below the critical 
value of 0.05, leading to the rejection of the Null Hypoth-
esis ( H0) and acceptance of the Alternate Hypoth-
esis (H1) . On the post-hoc analysis DMRT on Table  28, 
NSGA-III ranks top among the existing algorithms. Four 
homogenous groups are formed among the algorithms 
NSGA-III shows its significance by creating a standalone 
group among the others.

Table 25 Result analysis of 100 VM instances using ANOVA for SP ( RCPU  = RRAM = 45%)

ANOVA

Source Factor Sum of Squares df Mean Square F Sig

Spacing (SP) Between Groups .585 4 .146 34.172 .000

Within Groups .086 20 .004

Total .671 24

Table 26 Result analysis of 100 VM instances using DMRT for SP 
( RCPU  = RRAM = 45%)

Duncan Multiplier Range Test

Algorithm N Subset for alpha = 0.05

1 2 3 4

NSGA-III 5 .2480

NSGA II 5 .4560

SPEA 5 .5340 .5340

MOGA 5 .6040

VEGA 5 .7000

Sig 1.000 .074 .106 1.000

Table 27 Result analysis of 200 VM instances using ANOVA for SP ( RCPU  = RRAM = 45%)

ANOVA

Source Factor Sum of Squares df Mean Square F Sig

Spacing (SP) Between Groups .524 4 .131 24.472 .000

Within Groups .107 20 .005

Total .631 24

Table 28 Result analysis of 200 VM instances using DMRT for SP 
( RCPU  = RRAM = 45%)

Duncan Multiplier Range Test

Algorithm N Subset for alpha = 0.05

1 2 3 4

NSGA-III 5 .2040

NSGA II 5 .3980

SPEA 5 .4740 .4740

MOGA 5 .5300

VEGA 5 .6360

Sig 1.000 .116 .240 1.000
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The proposed algorithm has been tested with different 
VM instances, from biased towards CPU (-ve correlation 
coefficient) to biased RAM (+ ve Correlation coefficient). 
The state-of-the-art algorithms are also compared on 
the same generated instances. For comparing the perfor-
mances of the proposed system with existing algorithms 
in identifying VMP solutions with multiple objectives, two 
performance metrics were considered: Spacing (SP) and 
Overall Non-Dominated Vector Generation (ONGV). Due 
to the "tchebychef scalarization method" in NSGA-III, the 
Pareto optimal front solutions are identified. It is observed 
that the proposed algorithm performs 7% better that the 
existing algorithm in terms of ONVG and 12% better 
results in terms of spacing. ANOVA and DMRT statisti-
cal tests are used to cross-validate the results. Thus, the 
NSGA-III algorithm outperforms all existing algorithms in 
the SP and ONVG performance indicators.

Conclusion
In this paper, the NSGA-III algorithm is implemented to 
optimize three contradicting objectives: resource wast-
age, power consumption and network propagation time. 
The problem is formulated as a multi-objective optimi-
zation problem, and a discretized NSGA-III algorithm 
is implemented to find the best-performing solution in 
all three objectives. The results are compared with other 
multi-objective optimization algorithms, namely VEGA, 
MOGA, SPEA, and NSGA-II, regarding ONVG and Spac-
ing performance metrics. Since the algorithm is guided 
randomly, we executed 30 independent runs, and the 
resultant values were statistically tested using ANOVA 
and DMRT. The statistical test shows that the significance 
lies among the MOEA’s on VM placement, stating that 
the NSGA-III outperforms all the existing algorithms in 
all aspects. Comparing NSGA-II and SPEA, both algo-
rithms are in the same homogenous group in many DMRT 
tests. Hence these two algorithms perform equally to each 
other. Comparing SPEA to MOGA, like NSGA-II, MOGA 
shares a similarly homogenous group. VEGA in-performs 
in all the aspects of the VM placement problem. Consider-
ing the average values of 30 independent runs, NSGA-III 
achieved 7% better than the existing algorithm regarding 
ONVG and 12% better results in terms of spacing.
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