
Zhu et al. Journal of Cloud Computing (2023) 12:147
https://doi.org/10.1186/s13677-023-00502-x

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Reliability-aware failure recovery for cloud
computing based automatic train supervision
systems in urban rail transit using deep
reinforcement learning
Li Zhu1, Qingheng Zhuang1, Hailin Jiang1*, Hao Liang1, Xinjun Gao2 and Wei Wang3

Abstract

As urban rail transit construction advances with information technology, modernization, information, and intelligence
have become the direction of development. A growing number of cloud platforms are being developed for transit
in urban areas. However, the increasing scale of urban rail cloud platforms, coupled with the deployment of urban rail
safety applications on the cloud platform, present a huge challenge to cloud reliability.One of the key components
of urban rail transit cloud platforms is Automatic Train Supervision (ATS). The failure of the ATS cloud service would
result in less punctual trains and decreased traffic efficiency, making it essential to research fault tolerance methods
based on cloud computing to improve the reliability of ATS cloud services. This paper proposes a proactive, reliability-
aware failure recovery method for ATS cloud services based on reinforcement learning. We formulate the problem
of penalty error decision and resource-efficient optimization using the advanced actor-critic (A2C) algorithm. To
maintain the freshness of the information, we use Age of Information (AoI) to train the agent, and construct the agent
using Long Short-Term Memory (LSTM) to improve its sensitivity to fault events. Simulation results demonstrate
that our proposed approach, LSTM-A2C, can effectively identify and correct faults in ATS cloud services, improving
service reliability.

Keywords ATS, Cloud computing, Urban rail transit, Reliability, Failure recovery

Introduction
China’s economy has experienced rapid development
driven by a new round of technological revolution and
industrial transformation, leading to a glorious period of
information construction in urban rail transit [1–4] . To
achieve the unified deployment of urban rail applications,

it is essential to construct an autonomous, controllable,
and sustainable urban rail transit cloud platform [5].
This platform can break down the information barriers
between subsystems and build an intelligent operation
and maintenance system [6]. Urban rail transit clouds
have been built and used in Hohhot, Wuhan, and other
places. However, the continuous development in cloud
applications [7] has resulted in increasingly complex
cloud platform structures. Moreover, rail transit safety
applications applied to cloud platforms are the future
trend, as demonstrated by the implementation of cloud-
based security computing platforms by companies such
as Thales and Siemens. Therefore, a higher level of reli-
ability is expected for the urban rail cloud.

*Correspondence:
Hailin Jiang
lhjiang@bjtu.edu.cn
1 State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong
University, Beijing, China
2 Signal and Communication Research Institute of China Academy
of Railway Sciences Group Co., Ltd., Beijing 100081, China
3 Traffic Control Technology Co., Ltd., Beijing, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00502-x&domain=pdf

Page 2 of 14Zhu et al. Journal of Cloud Computing (2023) 12:147

The signaling system is at the core of the urban rail
transit system, responsible for ensuring safe vehicle
operation and improving driving efficiency. Automatic
Train Supervision (ATS) is the primary component of
the signaling system, and it will be deployed on the cloud
platform. ATS is responsible for monitoring the on-time
operation of trains [8]. The ATS failure will result in the
inability of the mainline trains to receive timetable data
from the central ATS system server, causing the loss of
central ATS timetable functionality. The ATS failure will
result in the inability of mainline trains to receive time-
table data from the central ATS system server, leading
to the loss of central ATS timetable functionality. Con-
sequently, trains are unable to organize their operations
according to the schedule, and the centralized control of
the train operation organization mode cannot be imple-
mented. Additionally, the central display screen fails to
show train dynamics, and the interlocking of safety doors
with train doors is disrupted. Events such as train delays
occur, significantly impacting train operational efficiency.

Various methods are used to improve the reliability of
cloud platforms, including fault removal [9], fault fore-
cast [10, 11], and fault tolerance [12, 13]. Fault removal
typically involves software-based detection and removal
of potential faults in cloud systems. However, for com-
plex systems, it is challenging to fully discover all poten-
tial faults. Fault forecast relies on accurately forecasting
fault occurrences and employing preventive mecha-
nisms based on prediction outcomes. In cloud comput-
ing, virtual machine migration is predominantly utilized
to ensure service reliability. Among these methods,
fault tolerance is the most widely used. It refers to the
system’s ability to perform its function correctly in the
event of a failure [14, 15]. Fault tolerance is an essential
requirement in cloud computing, achieved by employ-
ing redundancy configurations to enhance system reli-
ability. Several studies have focused on fault tolerance
in cloud computing, including the VM coordinated
approach to detect deteriorating physical machines in
data centers using Proactive Coordinated Fault Toler-
ant (PCFT) by the author of [16], the SVM-Grid based
online fault detection approach proposed by Zhang et al.
[17] to improve cloud stability, and the OPVMP model
presented by Wang et al. [18] which uses a replication-
driven method to improve the reliability of server-based
cloud services. In [19], authors adopts traditional active-
passive redundancy, providing backup instances for each
node to facilitate recovery in case of failure. In [20], an
active node deployment approach is proposed, employ-
ing a two-phase process: predicting traffic demands for
each service chain and deploying instances using virtual
machines. However, these methods fail to consider fault
recovery mechanisms in the distributed environment

of cloud computing. Nevertheless, in other distributed
computing scenarios, researchers have proposed vari-
ous methods to enhance link reliability. In [21], authors
present AI-based trust management method to secure
clustering to reliable and real-time communications. In
[22], author propose a multi-attribute-based link path
calculation method with the objective of reducing link
latency and improving packet delivery rate. The majority
of the aforementioned fault-tolerant methods do not uti-
lize predictive information and thus cannot proactively
handle faults in advance. In other domains of distributed
computing, leveraging predictive information for pre-
processing has demonstrated significant efficacy. In [23],
author propose a distributed algorithm based on feder-
ated learning for file popularity prediction, incorporating
proactive tolerance towards feedback latency. For cloud
computing-based ATS, seamless recovery is essential to
maintain robust service, and it requires synchronization
with the active service. Leveraging predictive informa-
tion enables effective pre-processing of faults, thereby
achieving seamless fault recovery.

To tackle this challenge, we propose a reinforcement-
based proactive reliability-aware failure recovery (PRFR)
approach for the cloud-based ATS system. This method
establishes a service state model based on the severity of
events, and proactively implements fault recovery pro-
cedures based on the state information to achieve active
fault recovery of the service. Simultaneously, the fresh-
ness of the state information is evaluated using the AoI
metric to ensure the reliability and effectiveness of ser-
vice management.

The main contributions of this paper are summarized
as follows:

• In order to effectively tackle the ever-evolving char-
acteristics exhibited by cloud-based ATS networks,
we put forth a pioneering PRFR framework for ATS
services, encompassing a triad of sequential steps for
failure recovery. By formulating PRFR as an optimi-
zation problem and penalizing misbehavior, we aim
to improve service reliability.

• We employ a hybrid neural network agent to profi-
ciently address the PRFR framework and tailor it
to suit our model. Additionally, we propose Age of
Information (AoI) [24] to ensure information fresh-
ness and strike a balance between event occurrence
and schedule time.

• The performance of the PRFR model for dynamic
ATS service failure recovery is evaluated by compar-
ing it with baseline methods for failure recovery.

The remainder of the paper is structured as follows. The
second section present the architecture of the urban

Page 3 of 14Zhu et al. Journal of Cloud Computing (2023) 12:147

rail transit cloud platform. The third section proposed
a proactive reliability-aware failure recovery procedure
for cloud computing based ATS. The fourth section, we
describe the system model and introduce the objective
function. Section five, we present the DRL model and
optimization policy. Section six, we describe the details
of simulation setup and discuss the results. Finally, Sec-
tion seven concludes this paper.

The cloud computing based ATS system
Urban rail transit cloud platform
The architecture of urban rail transit cloud
The integration of scattered resources through cloud
computing allows the cloud platform to pool resources
and enable upper-level businesses to obtain comput-
ing, storage, and other resources on demand, resulting
in improved resource utilization. In the case of urban
rail transit cloud, distributed cloud data centers can be
deployed through a cloud management platform. The
urban rail transit cloud platform typically adopts a seg-
mented structure of data center platform-station nodes
[25], which facilitates the operation, supervision, and
management of the entire line.

The data center platform includes production and dis-
aster recovery centers, located respectively in the control

center and depot. Station nodes are set up at stations
along the railway, and data is transmitted from the center
cloud platform through the backbone ring network to the
station nodes. To ensure safety, the station switches to
backup mode in case of data center cloud failure. Figure 1
illustrates the architecture of the urban rail transit cloud
platform.1

Deployment of cloud business
The architecture of the urban rail transit cloud platform
is complex, as it involves the deployment of software
for multiple subway lines on a uniform cloud platform.
To accommodate businesses with different features, it
is common practice to divide the cloud platform into
separate virtual data centers (VDCs), with each VDC
consisting of a private cloud for each railroad. In case of
insufficient business capacity, any part of the VDC can be
expanded or migrated to ensure the safe running of busi-
nesses, such as by adding CPU and storage resources.

Fig. 1 The architecture of urban rail cloud

1 ISCS:Integrated Supervision Control System, AFC: Auto Fare Collection,
CCTV:Close Circuit Television, ACC: AFC Clearing Center, TCC:Traffic
Control Center

Page 4 of 14Zhu et al. Journal of Cloud Computing (2023) 12:147

ATS in urban rail transit cloud
ATS
ATS (Automatic Train Supervision) is a critical compo-
nent of the urban rail transit system, which consists of
two main parts: center ATS and station ATS. The center
ATS includes the control center and the disaster recovery
center. The control center responsibility for the trains’ rou-
tine operations, in the event of any malfunction occurring
at the control center. On the other hand, the station ATS
plays a fundamental role in automatic supervision, moni-
toring the status of nearby signal equipment and trains,
and enabling the ATS center to dispatch the entire rail-
road system efficiently.

The main function of ATS includes:

• Centralized supervision. Centralized supervision
ensures the real-time depiction of railway signals and
wayside equipment, while also facilitating the central-
ized monitoring of the interlock system and control
mode at each station.

• Timetable management. Offline editing of the basic
operation diagram is available, along with automatic
validity checking for created diagrams. Furthermore,
the system generates an up-to-date running map
based on the train’s current position. By comparing
this data with the planned running map, it generates
the latest information and alerts as needed.

• Vehicle identification and tracking. Identifying vehi-
cles according to schedule, ATO/ATP, etc., and mon-
itoring section status to determine train position.

• Train and route control. Train operations are con-
trolled by commands given to dispatchers. Provide
automatic approach locking, and monitor status of
signal, turnout, etc.

ATS in urban rail transit cloud
In the urban rail transit cloud, ATS still adopts the
center-station architecture, mapping the business of tra-
ditional ATS to the cloud platform. Figure 2 depicts the
schematic of ATS cloud deployment2

The cloud-based ATS system disentangles conventional
ATS services and subdivides them into seven distinct
microservices: universal services, application services,
control services, planning services, command services,
interface services, and storage services. These microser-
vices are small, independent, and well-distributed [26].
Information forwarding services (information centers)
play a vital role in facilitating the seamless exchange of
information between the microservices. In instances where

there is a surge in demand for information transmission,
load balancing techniques and other methodologies are
employed to maintain consistent and reliable transmis-
sion. Within cloud-based ATS systems, the utilization of
computing resources is optimized with greater efficiency
owing to the loosely coupled nature of the system. Con-
sequently, developers allocate computing resources solely
for supplementary components when required, ensuring
an optimal allocation of resources. Additionally, technol-
ogy types are no longer restricted, and different types of
microservices can be organized and developed based on
functional requirements. Fine-grained extensions are also
possible based on actual business requirements, allowing
for individual microservices to be built and maintained
relatively easily. This provides full control over the ATS
application business itself.

Recovery procedure of ATS cloud platform
The current failure recovery method can be categorized
into reactive and proactive approaches, each involving
three main steps: launching a backup microservice, flow
reconfiguration, and state synchronization. To launch
a backup microservice, microservice containers are
deployed for instances of failure. Flow reconfiguration
requires calculating the routing path in the controller and
implementing new forwarding rules. To activate backup
microservices as active microservices, the ATS service
gateway must be reconfigured. State synchronization
involves migrating the state of failed microservices to the
backup containers to support normal service. Reactive
failure recovery is executed after the microservice fails,
resulting in a long service recovery time due to the delay
involved in the recovery procedure.

Compared to the reactive method, the proactive
method reduces recovery time by predicting failures in
advance. When an active microservice fails, the backup
microservice, which has been pre-launched, is switched
to active, and the flow is reconfigured to provide unin-
terrupted service. This approach allows for the complete
or partial avoidance of delays in flow reconfiguration
and launching microservices. The proactive method per-
forms recovery processes earlier [13, 15], reducing the
failure recovery time to the state synchronization time.
The recovery procedure is shown in Fig. 3. The service
link typically consists of Micser1, Micser2, and Micser3.
In the event of imminent failure of Micser1 and Micser3,
their backup services are launched, and the flow is recon-
figured. After a service failure, state synchronization is
performed.

The proposed scheme allows for the deployment and
deletion of redundant backup microservices on each
hardware node. Each backup microservices requires
a resource allocation of h, denoted by ϕh

(o,s) for o-th 2 CI means Computer Based Interlocking, DTI means departure time indicator.

Page 5 of 14Zhu et al. Journal of Cloud Computing (2023) 12:147

microservice in ATS service s. To ensure seamless failure
recovery, the state of an active microservice is transferred
to its backup. It is assumed that the rate of state updat-
ing of a microservice is linearly proportional to its packet
rate ϑs . Each active microservice establishes a logical
synchronization link with its backup microservices. To
maintain these logical synchronization links bso(t) during
the backup procedure, each link should occupy a small
amount of predefined bandwidth ϕBW

(o,s) for non-critical
microservices. The value of ϕBW

(o,s) may differ depending on
the microservice’s type and state freshness rate.

Assuming that the state packet size of a microservice
can be observed by the orchestrator, denoted as Xs

o(t) ,
the packet needs to be transferred in time slot t to main-
tain synchronization between the active and backup
microservices. This transfer leads to a synchronization
delay, denoted as Ds

o(t) , between the two services.

This delay is typically negligible when microservices are
working correctly. However, in the event of a failure, it is
crucial that the delay be shorter than the maximum toler-
able interruption time µd , in order to avoid violating Ser-
vice Level Agreement (SLA) requirements [27].

System models and problem formulation
System models
ATS network model
We model the entire ATS network as a uni-directed
graph G = (GM ,GL) , where GM and GL represent the sets
of all the network node and links. Furthermore, two sepa-
rate physical nodes and their connections are indicated
by m, n ∈ GM , lmn ∈ GL . In the physical network, GM

(1)Ds
o(t) =

Xs
o(t)

bso(t)

Fig. 2 The service architecture of ATS on the cloud platform

Page 6 of 14Zhu et al. Journal of Cloud Computing (2023) 12:147

Fig. 3 An example of the proposed recovery procedure

Table 1 The main parameters table

Parameter Definition

M/GM/m Number/Node set/Physical node

L/ GL / lmn Number of physical link/Physical link set/Physical link

H/ H /h Number of Resources/Resource type set/Resource type

Ahm / ABWmn
Maximum customizable resources h for node m / Maximum customizable bandwidth for link mn

Qh
m(t) / QBW

mn (t) Utilization ratio of resource h in node m / bandwidth in physical link mn at time slot t

t/σ Index/duration of time slot

S/S/s Traditional ATS service on cloud computing

Os/Os The set/number of sequenced microservice for ATS service s

Vs
o The o-th microservice in service s

µs/ϑs Maximum tolerable interruption time / traffic rate of traditional ATS service s

ϕh
(o,s) / Ms

o
The number of resource type h needed / cost of a backup microservice Vs

o

χ s
o(t) The influence ratio of the backup placement to Vs

o

Xso(t)/b
s
o(t)/D

s
o(t) The packet size/bandwidth/delay of synchronization link of Vs

o

km(o,s)(t)/ǩ
m
(o,s)(t)

The backup placement of Vs
o / The placement of Vs

o

pso(t) If Vs
o is supported by backup

αs
o(t) The recovery procedure on Vs

o

Page 7 of 14Zhu et al. Journal of Cloud Computing (2023) 12:147

consists of the application servers, database servers, and
transmission equipment. These network nodes provide
processing resources for different services. In Table 1, the
main parameters are listed.

In this paper, we consider a time-slotted system with
positive numbers indexed by t ∈ N , N is set of natural
number. Let H represent the type of resource set that a
physical node can provide. Each type of resource is indi-
cated by h, h ∈ H . Example of resource included: CPU,
network, and storage. The maximum capacity of resource
h provided by node m denoted as Ah

m , and ABW
mn indi-

cates the maximum bandwidth capacity of physical link
lmn . Considering that the available resources of a physi-
cal node can change as a result of resource releases and
occupants, the current ratios of resource type h in node
m indicated by Qh

m(t) ∈ [0, 1] at each time slot t. Mean-
while, available bandwidth capacity in link lmn denote as
QBW
mn (t) ∈ [0, 1] at each time slot t.

ATS service model
As depicted in Fig. 2, the ATS services in the urban rail
cloud are divided into a series of microservices that need
to be combined in a specific order to provide traditional
ATS services, such as timetable management. We use the
set S = 1, ..., S to denote the set of traditional ATS ser-
vices on cloud computing, indexed by s. Each sequenced
ATS microservice and its corresponding SLA require-
ment are represented by a tuple as follows:

where Os = {1, ..., os, ...,Os} indicate the set of sequenced
microservices and µs ∈ N denote the maximum ser-
vice interruption time, ϑs indicate the traffic traversing
of ATS service s. And we define the set V consisting of
all the microservices in ATS. Besides, we use V s

o ∈ V to
denote the o-th microservice in traditional ATS service s
on cloud computing.

The reliability of traditional ATS services on cloud
computing can be quantified as the likelihood of the
microservices being executed. Failures will lead to the
ATS service being degraded and the microservices being
down. Our goal is to achieve proactive reliability-aware
failure recovery in ATS to improve reliability. Next, we
present our proactive reliability-aware failure recovery
scheme for cloud computing based ATS.

ATS microservice state and state transition model
In this paper, we plan to make DRL agents capable of
handling failures by utilizing state information (Table 2).

• State Model: Based on ITU standard X.733 [28], we
have defined three states based on the severity of
the service, namely ordinary, alert, and critical. The

(2)Services = (Os,µs,ϑs),∀s ∈ S

severity level identifies the condition of the micros-
ervice, such as CPU cycles exceeded and bandwidth
reduced. When there is a change in state, the micros-
ervice send state message to orchestrator for failure
management. In addition, it is worth mentioning that
services of different states exhibit varying scheduling
intervals to update the orchestrator’s global informa-
tion. The definitions of the three states are as follows:
In the ordinary state, events can be ignored with no
impact, and the microservice works normally. In the
alert state, the microservice is degraded by software
and physical events, and maintenance efforts must
be made to prevent a more serious situation from
arising. The critical state occurs when the severity of
events reaches a serious level, implying that the fail-
ure of the microservice is unavoidable, and immedi-
ate action is required.

• Microservice State Transition Model: As shown
in Fig. 4, at time slot t, if the microservice’s state is
ordinary, it will continue in the same state with prob-
ability Poo , or change to alert state with probability
Poa = 1− Poo . For possible fault and error correc-
tion, we assume the microservice will remain in an
alert state for at least Fv time slots3. Furthermore,
whenever the microservice remains in alert state for
more than Fv , it continues to stay alert with Paa ,
turns ordinary with Pao , or enters critical with Pac .
We consider that the longer the microservice remains
in alert state, the more likely it is to change to critical
state as a result of continuous service degradation.
Assume Pao will increase by Pao× (step number in
alet - Fv) ≤ 1. Finally, if microservice stay in critical
it will keep on until the recovery procedure is com-
pleted, and microservice turns to ordinary to provide
service.

Orchestrator and AoI model
To support decision-making, it’s crucial that the orchestra-
tor has all the necessary information. When the microser-
vice moves to the next state or reaches its scheduled time,
the orchestrator receives its state packet. To ensure the

Table 2 The state transition model

State Ordinary Alert Critical

Ordinary Poo Poa 0

Alert Pao Paa Pac grows overtime

Critical recovery 0 No recovery

3 The intention is to allow nodes a plausible duration for automatic recovery.

Page 8 of 14Zhu et al. Journal of Cloud Computing (2023) 12:147

robustness of the orchestrator, we consider information
freshness to manage microservices. Different freshness
criteria are applied to different microservices, allowing the
orchestrator to allocate more resources to handle microser-
vices that occur critical events. This will enhance resource
management capabilities. As the relevant information sent
to the orchestrator must be updated, we use the Age of
Information (AoI) metric to quantify its freshness.

Age of information (AoI) refers to the period of time
between the time when information is received and the
time when it was most recently generated. AoI information
for microservice v is indicated by φv(t) at time t. During
the generation of information and its transmission to the
orchestrator, we assume that the network is devoid of delay
[29]. AoI increases with time slots when state information
is received. σ is a measure of the length of each time slot.
Define AoI metric as follow:

During each time slot of microservices, we impose an
Age of Information (AoI) constraint in which the AoI
must not exceed a predetermined threshold as:

The value of δsv(t) is specific to microservice v and state
s at time slot t. For instance, to ensure data freshness
when the microservice is in alert state, the constraint
δsv(t) ≤ Fv × σ must be fulfilled. Similarly, when the
microservice is in critical state, the constraint δsv(t) ≤ σ

(3)

φv(t) =
σ beginning with time slot t
φv(t − 1)+ σ otherwise

,

(4)φv(t) ≤ δsv(t)

must be satisfied. The orchestrator changes the sched-
uling time to ensure network information freshness. By
doing so, the resources used for ordinary services could
be used for other more urgent services, which could
result in better utilization of resources.

Problem formulation
ATS network constraints
For optimal resource utilization, all available and allo-
cated resources in a physical node should not exceed
what is currently available. Define binary variable set
K = km(o,s)(t) and KBW = kmn

(o,s)(t) for time slot t, with
km(o,s)(t) = 1 if the backup is placed in the node m, with
the kmn

(o,s)(t) = 1 if logical synchronization has been
established in the physical link lmn , and km(o,s)(t) = 0 ,
kmn
(o,s)(t) = 0 otherwise. Here is the constrain:

In the first part of (5)-(6), it describes the resource of
backup microservice place or release, the other part
means the available resource in time slot t.

Define the pso(t) , equals 1 if backup of V s
o has been

placed and performed recovery step 1,2.

(5)

∑

o∈O

∑

s∈S

(km(o,s)(t)−km(o,s)(t − 1)) · ϕh
(o,s)

≤Ah
m · Qh

m(t),∀h ∈ H,∀m ∈ GM

(6)

∑

o∈O

∑

s∈S

(kmn
(o,s)(t)−kmn

(o,s)(t − 1)) · ϕBW
(o,s)

≤ABW
m · QBW

m (t),∀m ∈ GM

Fig. 4 State Transition Model

Page 9 of 14Zhu et al. Journal of Cloud Computing (2023) 12:147

In our view, active and backup microservices should
never be deployed on the same physical node. This will
result in meaningless backups in the event of a physical
failure. To ensure the safety of this situation, we take the
following constraints:

where ǩm(o,s)(t) equals 0 if V s
o is not placed in node m in

time slot t. And in order to realize resource-efficiency,
each microservice can only have one backup, expressed
by:

We constrain the bandwidth of the synchronization link
to ensure it does not exceed the delay threshold for criti-
cal microservices as follows:

The variable ws
o(t) indicates whether V s

o is in a critical
state at time slot t. To ensure that the constraint operates
properly, a small value τ is introduced.

Objective function
Considering the entire failure recovery process of the
ATS network, the objective function is divided into
three parts. Firstly, to prevent the placement of backup
microservices after a failure occurs, we make this part as
follows:

and Ŵ represents the cost associated with service inter-
ruptions and unbacked up microservices in critical states.

Backup microservices require a certain amount of
resources, which are allocated by the ATS network.
Assume that each backup microservice requires a distinct
resource cost, denoted by Ms

o . This leads us to formulate
the cost for placing a backup microservice as follows:

The value of χ s
o(t) represents the cost of backup for

overutilization. The value depends on the state of the
microservice. Ordinary microservices perform backup

(7)pso(t) =

1,
�

m∈GM

km(o,s)(t − 1) ≥ 0

0,
�

m∈GM

km(o,s)(t − 1) < 0

(8)
∑

o∈O

∑

s∈S

km(o,s)(t) · ǩ
m
(o,s)(t) = 0, ∀m ∈ GM ,

(9)
∑

m∈GM

km(o,s)(t) ≤ 1, ∀o ∈ O, ∀s ∈ S ,

(10)0 < Ds
o(t) ≤ ws

o(t) · µs +
1

τ
− ws

o(t) ·
1

τ
,

(11)ξSLA = Ŵ ·
∑

o∈O

∑

s∈S

ws
o(t)− ws

o(t) · p
s
o(t),

(12)ξBC =
∑

o∈O

∑

s∈S

χ s
o(t)p

s
o(t)M

s
o,

actions that do not contribute to reliability but waste
more resources instead. So the value of χ s

o(t) is consid-
ered to be high for an ordinary state. Furthermore, back-
ing up for alert microservice is much more critical than
ordinary microservice, so the value of χ s

o(t) in alert will
be lower than ordinary.

To ensure failure recovery can be completed, we define
αs
o(t) equals 1 if the recovery has been completed, and 0

otherwise. Whenever the orchestrator misjudges a criti-
cal microservice, a penalty � is imposed on the network.
The third part is defined as:

Above all, the objective function formulate as:

where P = [pso(t)] , A = [αs
o(t)] , K = [km(o,s)(t)] ,

KBW = [kmn
(o,s)(t)].

Deep reinforcement learning based proactive
failure recovery optimization
Deep reinforcement learning framework and PRFR model
Proactive reliability-aware failure recovery (PRFR) is a
complex decision-making problem that involves non-
linear constraints and integer variables in the decision
variables, making it challenging to solve. However, recent
advancements in reinforcement learning have enabled
autonomous problem-solving without relying on human
knowledge [30, 31]. In particular, deep reinforcement
learning can handle high-dimensional state-action spaces
by leveraging the feature extraction abilities of deep
learning [32]. Therefore, we propose using DRL solutions
to improve ATS failure recovery on cloud platforms.

In this paper, we choose model-free DRL. Agents
explore space randomly, without prior knowledge of
the environment. Policy-based reinforcement learning
determines which action to take to maximize the reward
function, it fine-tunes a vector of parameters noted as θ
for policy π to select the appropriate action. The policy
function denoted as π(α|s, θ) , represents the likelihood
of selecting action α under state s and model parameters
θ . After the reward feedback to agent, optimizing policy
π(α|s, θ) through gradient to fine-tune θ . Network-based
ATS environments are designed to allow agents to learn
a better policy, minimize the objective function, and
ensure service reliability. Figure 5 illustrates the frame-
work for deep reinforcement learning. Based on the state
s, the agent performs the action α . The environment
rewards the agent with r and changes the state s′ accord-
ingly. These experiences are stored as tuple (s,α, r, s′) to

(13)ξFR = � ·
∑

o∈O

∑

s∈S

ws
o(t)⊕ αs

o(t),

(14)
min

P ,A,K,KBW

�1ξSLA +�2ξBC +�3ξFR

Subject to (5− 10)

Page 10 of 14Zhu et al. Journal of Cloud Computing (2023) 12:147

use for training the policy. Here are the definitions of
state, action, and reward:

State
Define three state according to state model of ATS on
the cloud platform. The set of state types is defined by
Sv(t) = [1, 2, 3] . During an ordinary state, Sv(t) = 1 , dur-
ing an alert state, Sv(t) = 2 . and during a critical state,
Sv(t) = 3.

Action
The agent can perform three actions: backup placement,
backup state synchronization, and backup removal.
Backup placement includes the first and second steps
of failure recovery, while backup state synchroniza-
tion indicates the final step. As soon as the recovery
step is complete, the backup removal action is executed
to release redundant resources. To achieve proactive
reliability-aware failure recovery, the backup placement
action should be executed when the microservice state is
about to turn critical, and the backup state synchroniza-
tion action should be executed when the microservice is
in the critical state. In contrast, reactive reliability-aware
failure recovery (RRFR) executes all steps after the criti-
cal state is observed.

Reward
To minimize the objective function, the agent must opti-
mize the policies to take valuable action at each state. At
time t, the agent selects an action α from a probability
distribution π(α|s, θ) , where s is the current state and θ
are the parameters of the agent’s policy. The environment
then generates a reward R[all] , which is returned to the
agent. The agent should maximize reward during each
episode. The first part of the reward R1(t) defines as:

Positive rewards are defined for the agent to encour-
age it to take the right action. These include: executing
backup removal in the ordinary microservice, rewarded
as ξBR ; executing backup placement before the critical
state manifests, rewarded as ξBP ; synchronizing state for
critical microservices, rewarded as ξBSS ; and success-
fully completing PRFR on a microservice that previously
failed, rewarded as ξPRFR . Accordingly, R2(t) is defined as:

The reward Rall(t) defined as:

Reinforcement learning based policy optimization for DRL
model
In model-free reinforcement learning, two primary opti-
mization methods exist: value-based and policy-based.
However, value-based methods are challenging to apply to
high-dimensional or continuous environments, and con-
vergence is challenging during training. In contrast, policy-
based methods allow agents to handle high-dimensional
continuous environments and learn stochastic policies,
thereby enhancing their exploratory abilities. Policy Gradi-
ent [33], as a fundamental algorithm of policy-based opti-
mization, employs gradient ascent to optimize the policy
function value and maximize the cumulative reward. The
objective function is shown below:

Policy Gradient uses iterative updates, which can be inef-
ficient, and the sampling of a large number of trajectories

(15)
R1(t) = −�1ξSLA −�2ξBC −�3ξFR,

�1,�2,�3 ≥ 0,

(16)R2(t) = ξBR + ξBP + ξBSS + ξPRFR,

(17)Rall(t) = R1(t)+ R2(t).

(18)∇Jθ = Eπ [q(St ,At)∇logπθ (At |St)]

Fig. 5 The framework of DRL for ATS in cloud

Page 11 of 14Zhu et al. Journal of Cloud Computing (2023) 12:147

can lead to high variance. To address these issues, the
Actor-Critic (AC) [34] algorithm has been developed.
The AC algorithm combines value-based and policy
gradient methods, and it uses two networks: the Actor
network for selecting actions and the Critic network for
evaluating actions. The update of Actor network is given
below, αθ is learning rate:

The objective function of Critic network is shown below,
αw is learning rate:

However, AC still suffers from the problem of high vari-
ance. To address this issue, the Advanced Actor-Critic
(A2C) [35] method was introduced, which use the advan-
tage function to replace the Critic network’s estimate
of Q values Qw(s, a) . The advantage function represents
the superiority A(s, a) of each action value Q(st , at) with
respect to the mean value V (st) . This approach has shown
improved efficiency and reduced variance compared to
the AC algorithm. The Actor network in A2C is updated
in the following way:

and the update method of critic in A2C network remains
the same as in AC.

Algorithm 1 A2C-based failure recovery algorithm for cloud-based ATS
systems

Simulation results and discussion
Environment set up
In this paper, We use Networkx, a three-party library
provided by python, to build the ATS cloud physi-
cal network nodes. We simulate four traditional ATS
services on the cloud, denoted as S = 4 , where each

(19)θ ← θ + αθQw(s, a)∇θ lnπθ (a|s)

(20)
MSVE(w) = (rt + γQw(s

′, a′;w)− Qw(s, a;w))
2

(21)
Aw(st , at) = (Qw(st , at)− Vw(St))

θ ← θ + αθAw(s, a)∇θ lnπθ (a|s)

service consists of four microservices, O = 4 . We con-
sider deploy the ATS microservices in separate virtual
machines (VMs), with each VM providing three types
of resources: compute, storage, and network. Further-
more, we utilize four physical nodes to allocate physi-
cal resources, denoted as GM = 4 . It is assumed that the
resources required for backup placement and state syn-
chronization are randomly assigned to each VM.

Each VM is represented by a state model with ran-
dom transition probabilities. We define any alert VM
that remains in an alert state for more than two time
steps as Fv = 2 . For the alert state, we set δsv(t) = 2 , for
the critical state, we set δsv(t) = 1 to observe if the agent
executes failure recovery successfully, and for the ordi-
nary state, we set δsv(t) ≥ 3 . The state of the VM only
changes if the scheduled time arrives or events occur,
δsv(t) indicating the scheduled time.

We conducted training for 75000 epochs, setting
the learning rate at 2.8 x 10-2, while randomly initial-
izing node transition probabilities within the range of
0 to 1. As for the first part of reward function R1(t) ,
we assume Ms

o = 1 , value of χ s
o(t) set to 0, 0.2, 1 for

critical, alert, and ordinary state, respectively. Fur-
thermore, we set the value of Ŵ , � , and �1,�2,�3 to
1. In the second part of the reward function R2(t) ,
+1 reward is defined for the removal of backups in
an ordinary state, +1 reward is defined for the place-
ment of backups before critical state manifest, and
+1 reward is defined for state synchronization dur-
ing critical state manifests. The total of all rewards is
Rall(t) . As for the agent, we use hybrid neural network
structure and LSTM layers, described in Table 3. And
the structure of NLSTM described in Table 4.

Table 3 The structure of LSTM-agent

Hidden layer type Layer parameters

Fully connected input layer (256, 256)

LSTM layer (80, 80)

Fully connected output layers (128,128)

Table 4 The structure of NLSTM-agent

Hidden layer type Layer parameters

Fully connected input layer (256, 256, 256, 256,
256, 256, 256, 256,
256, 128, 128, 64)

Dropout layers (0.6, 0.6, 0.6, 0.6,
0.6, 0.6, 0.6, 0.6, 0.6,
0.6, 0.6, 0.3)

Page 12 of 14Zhu et al. Journal of Cloud Computing (2023) 12:147

Result discussion
Accuracy of different state
We have defined three state accuracy metrics to evalu-
ate the agent’s ability to monitor the VM state and take
appropriate actions: Ac , Aa , and Ao , which represent crit-
ical, alert, and ordinary states, respectively:

Nc , Na , and No represent the number of critical, alert,
and ordinary states, while Nac , Naa , and Nao denote the
number of correctly taken actions in critical, alert, and
ordinary states. The results are displayed in Fig. 6. The
accuracy of critical states is defined as the ratio of cor-
rect actions taken in a critical state to the total number of
detected critical states. We observe that LSTM-A2C and
NLSTM-A2C perform similarly in critical states, with
accuracy rates of 92% and 88% respectively, indicating
that both models can accurately detect the state of criti-
cal virtual machines.

In terms of taking the backup placement action in the
alert state, which is a measure of the accuracy of the alert
state, LSTM-A2C outperforms NLSTM-A2C. When a
VM enters alert state, LSTM-A2C takes backup place-
ment action approximately 68% of the time. Addition-
ally, LSTM-A2C performs better than NLSTM-A2C in
removing backup VMs during ordinary state, leading to
significant reductions in resource costs.

(22)

Ac =
Nac
Nc

Aa = Naa
Na

Ao =
Nao
No

Failure repair rate and MTTR
In order to visualize the difference between PRFR and
RRFR, we defined the failure recovery rate of PRFR and
RRFR separately, as follows:

The number of all detected critical VMs is denoted by
Ndc , while PRFRr and RRFRr represent the number of
detected critical states recovered using APRFR and ARRFR ,
respectively. The results are presented in Fig. 7, where we
can observe that the LSTM-A2C method experienced

(23)

{

APRFR = PRFRr
Ndc

ARRFR = RRFRr
Ndc

Fig. 6 Three types of accuracy comparison

Fig. 7 Failure repair rate of PRFR and RRFR

Page 13 of 14Zhu et al. Journal of Cloud Computing (2023) 12:147

fluctuations around the approximate iteration count of
35,000, followed by a gradual convergence. And proactive
LSTM-A2C approach achieves a higher failure recovery
rate than the reactive NLSTM-A2C methods. The proac-
tive approach enables earlier recovery actions, leading to
shorter recovery times.

Meanwhile, We evaluate the performance of the model
using the mean time to repair (MTTR), which measures
the average time interval from the occurrence of a fault
to its recovery. As shown in Fig. 8, the recovery time
increases linearly with the number of failed microser-
vices, but LSTM-PRFR exhibits a shorter recovery time
than LSTM-RRFR.

Conclusion
In this paper, we investigate the architecture of the ATS
on urban rail transit cloud platforms and existing reliabil-
ity-based failure tolerance methods. We propose a proac-
tive reliability-aware failure recovery method for the ATS
service on the cloud platform, which takes into account
both SLA infractions and resource efficiency. Secondly,
we construct a state model and state transition model,
considering the Age of Information to ensure the fresh-
ness of network information. We then develop a rein-
forcement learning model based on failure recovery steps
to classify microservice states into three categories and
take appropriate actions depending on their states, such
as backup placement or removal. Finally, we conducted
additional simulation experiments to compare our pro-
posed model with the baseline model, and the results
demonstrated that it outperformed the baseline.

Abbreviations
AoI Age of Information
ATS Automatic Train Supervision
VDC Virtual Data Center

Acknowledgements
We sincerely thank the Reviewers and the Editor for their valuable suggestions.

Authors’ contributions
Li Zhu: was mainly responsible for collecting data and composing articles.
Qingheng Zhuang, Hailin Jiang, Hao Liang, Xinjun Gao, Wei Wang: Mainly
responsible for revising and checking articles.

Funding
No funding were used to support this study.

Availability of data and materials
No data were used to support this study.

Declarations

Ethics approval and consent to participate
This article does not contain any studies with human participants or animals
performed by any of the authors.

Consent for publication
The authors read and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Received: 27 March 2023 Accepted: 11 August 2023

References
 1. Lu K, Han B, Lu F, Wang Z (2016) Urban rail transit in china: Progress report

and analysis (2008–2015). Urban Rail Transit 2:93–105
 2. Liang H, Zhu L, Yu FR, Ma Z (2023) Blockchain empowered edge intel-

ligence for TACS obstacle detection: System design and performance
optimization. IEEE Trans Ind Inform 1–10. https:// doi. org/ 10. 1109/ TII. 2023.
32573 08

 3. Liang H, Zhu L, Yu FR, Wang X (2023) A cross-layer defense method for
blockchain empowered CBTC systems against data tampering attacks.
IEEE Trans Intell Transp Syst 24(1):501–515. https:// doi. org/ 10. 1109/ TITS.
2022. 32110 20

 4. Zhu L, Liang H, Wang H, Ning B, Tang T (2022) Joint security and train
control design in blockchain-empowered CBTC system. IEEE Internet
Things J 9(11):8119–8129. https:// doi. org/ 10. 1109/ JIOT. 2021. 30971 56

 5. Zhang B, Gao S, Xia L, He J, Miao K (2010) Resource management policy
for cloud testbed of china railway. In: 2010 International Conference on
Computer Application and System Modeling (ICCASM 2010), vol 4. pp
V4–375–V4–379. https:// doi. org/ 10. 1109/ ICCASM. 2010. 56191 02

 6. Tu H (2020) Research on the application of cloud computing technology
in urban rail transit. In: 2020 IEEE International Conference on Advances
in Electrical Engineering and Computer Applications (AEECA), IEEE, pp
828–831

 7. Tan X, Ai B (2011) The issues of cloud computing security in high-speed
railway. In: Proceedings of 2011 International Conference on Electronic
and Mechanical Engineering and Information Technology, vol 8, pp
4358–4363. https:// doi. org/ 10. 1109/ EMEIT. 2011. 60239 23

 8. (2004) Ieee standard for communications-based train control (CBTC)
performance and functional requirements. IEEE Std 14741-2004 (Revision
of IEEE Std 14741-1999), pp 0–145. https:// doi. org/ 10. 1109/ IEEES TD. 2004.
95746

 9. Tsai WT, Zhou X, Chen Y, Bai X (2008) On testing and evaluating service-
oriented software. Computer 41(8):40–46. https:// doi. org/ 10. 1109/ MC.
2008. 304

 10. Barton J, Czeck E, Segall Z, Siewiorek D (1990) Fault injection experiments
using fiat. IEEE Trans Comput 39(4):575–582. https:// doi. org/ 10. 1109/ 12.
54853

 11. Zheng Z, Lyu MR (2008) A distributed replication strategy evaluation
and selection framework for fault tolerant web services. In: 2008 IEEE

Fig. 8 MTTR of PRFR and RRFR

https://doi.org/10.1109/TII.2023.3257308
https://doi.org/10.1109/TII.2023.3257308
https://doi.org/10.1109/TITS.2022.3211020
https://doi.org/10.1109/TITS.2022.3211020
https://doi.org/10.1109/JIOT.2021.3097156
https://doi.org/10.1109/ICCASM.2010.5619102
https://doi.org/10.1109/EMEIT.2011.6023923
https://doi.org/10.1109/IEEESTD.2004.95746
https://doi.org/10.1109/IEEESTD.2004.95746
https://doi.org/10.1109/MC.2008.304
https://doi.org/10.1109/MC.2008.304
https://doi.org/10.1109/12.54853
https://doi.org/10.1109/12.54853

Page 14 of 14Zhu et al. Journal of Cloud Computing (2023) 12:147

International Conference on Web Services, pp 145–152. https:// doi. org/
10. 1109/ ICWS. 2008. 42

 12. Gokhale S, Trivedi K (2002) Reliability prediction and sensitivity analysis
based on software architecture. In: 13th International Symposium on
Software Reliability Engineering, 2002. Proceedings, pp 64–75. https://
doi. org/ 10. 1109/ ISSRE. 2002. 11732 14

 13. Natalino C, Coelho F, Lacerda G, Braga A, Wosinska L, Monti P (2018) A
proactive restoration strategy for optical cloud networks based on failure
predictions. In: 2018 20th International Conference on Transparent Optical
Networks (ICTON), pp 1–5. https:// doi. org/ 10. 1109/ ICTON. 2018. 84739 38

 14. Yacoub S, Cukic B, Ammar H (1999) Scenario-based reliability analysis of
component-based software. In: Proceedings 10th International Sympo-
sium on Software Reliability Engineering (Cat. No.PR00443), pp 22–31.
https:// doi. org/ 10. 1109/ ISSRE. 1999. 809307

 15. Huang H, Guo S (2019) Proactive failure recovery for NFV in distributed
edge computing. IEEE Commun Mag 57(5):131–137. https:// doi. org/ 10.
1109/ MCOM. 2019. 17013 66

 16. Liu J, Wang S, Zhou A, Kumar SAP, Yang F, Buyya R (2018) Using proactive
fault-tolerance approach to enhance cloud service reliability. IEEE Trans
Cloud Comput 6(4):1191–1202. https:// doi. org/ 10. 1109/ TCC. 2016. 25673 92

 17. Zhang P, Shu S, Zhou M (2018) An online fault detection model and strat-
egies based on SVM-grid in clouds. IEEE/CAA J Autom Sin 5(2):445–456.
https:// doi. org/ 10. 1109/ JAS. 2017. 75108 17

 18. Zhou A, Wang S, Cheng B, Zheng Z, Yang F, Chang RN, Lyu MR, Buyya R
(2017) Cloud service reliability enhancement via virtual machine place-
ment optimization. IEEE Trans Serv Comput 10(6):902–913. https:// doi.
org/ 10. 1109/ TSC. 2016. 25198 98

 19. Fan J, Guan C, Zhao Y, Qiao C (2017) Availability-aware mapping of service
function chains. In: IEEE INFOCOM 2017 - IEEE Conference on Computer
Communications, pp 1–9. https:// doi. org/ 10. 1109/ INFOC OM. 2017. 80571 53

 20. Zhang X, Wu C, Li Z, Lau FC (2017) Proactive vnf provisioning with multi-
timescale cloud resources: Fusing online learning and online optimiza-
tion. In: IEEE INFOCOM 2017 - IEEE Conference on Computer Communi-
cations, pp 1–9. https:// doi. org/ 10. 1109/ INFOC OM. 2017. 80571 18

 21. Yang L, Li Y, Yang SX, Lu Y, Guo T, Yu K (2022) Generative adversarial learn-
ing for intelligent trust management in 6g wireless networks. IEEE Netw
36(4):134–140. https:// doi. org/ 10. 1109/ MNET. 003. 21006 72

 22. Zhao L, Yin Z, Yu K, Tang X, Xu L, Guo Z, Nehra P (2022) A fuzzy logic-
based intelligent multiattribute routing scheme for two-layered sdvns.
IEEE Trans Netw Serv Manag 19(4):4189–4200. https:// doi. org/ 10. 1109/
TNSM. 2022. 32027 41

 23. Lin N, Wang Y, Zhang E, Yu K, Zhao L, Guizani M (2023) Feedback delay-
tolerant proactive caching scheme based on federated learning at the
wireless edge. IEEE Netw Lett 5(1):26–30. https:// doi. org/ 10. 1109/ LNET.
2023. 32372 61

 24. Kosta A, Pappas N, Angelakis V (2017) Age of Information: A New Con-
cept, Metric, and Tool

 25. Biao W,(2019) The disaster preparedness scheme under the urban rail
cloud architectur. Urban Rapid Rail Transit 3:25

 26. Villamizar M, Garcés O, Castro H, Verano M, Salamanca L, Casallas R, Gil S
(2015) Evaluating the monolithic and the microservice architecture pat-
tern to deploy web applications in the cloud. In: 2015 10th Computing
Colombian Conference (10CCC), pp 583–590. https:// doi. org/ 10. 1109/
Colum bianCC. 2015. 73334 76

 27. Qu K, Zhuang W, Ye Q, Shen X, Li X, Rao J (2020) Dynamic flow migration
for embedded services in SDN/NFV-enabled 5g core networks. IEEE Trans
Commun 68(4):2394–2408. https:// doi. org/ 10. 1109/ TCOMM. 2020. 29689 07

 28. Union IT (1992) Information technology—open systems interconnec-
tion—system management: Alarm reporting function

 29. Kadota I, Sinha A, Modiano E (2018) Optimizing Age of Information
in Wireless Networks with Throughput Constraints. IEEE INFOCOM
2018 - IEEE Conference on Computer Communications. Honolulu, pp
1844–1852. https:// doi. org/ 10. 1109/ INFOC OM. 2018. 84863 07

 30. Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, Guez A,
Hubert T, Baker L, Lai M, Bolton A et al (2017) Mastering the game of go
without human knowledge. Nature 550(7676):354–359

 31. Berner C, Brockman G, Chan B, Cheung V, Dębiak P, Dennison C, Farhi D,
Fischer Q, Hashme S, Hesse C, et al (2019) Dota 2 with large scale deep
reinforcement learning. arXiv preprint arXiv: 1912. 06680

 32. Shrestha A, Mahmood A (2019) Review of deep learning algorithms and
architectures. IEEE Access 7:53040–53065

 33. Silver D, Lever G, Heess N, Degris T, Wierstra D, Riedmiller M (2014)
Deterministic policy gradient algorithms. In: International conference on
machine learning, PMLR, pp 387–395

 34. Konda V, Tsitsiklis J (1999) Actor-critic algorithms. Adv Neural Inf Process
Systems 12. https:// proce edings. neuri ps. cc/ paper_ files/ paper/ 1999/ file/
6449f 44a10 2fde8 48669 bdd9e b6b76 fa- Paper. pdf.

 35. Sutton R, Barto A (2018) Reinforcement learning: An introduction. MIT
Press, Google Scholar, pp 329–331

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/ICWS.2008.42
https://doi.org/10.1109/ICWS.2008.42
https://doi.org/10.1109/ISSRE.2002.1173214
https://doi.org/10.1109/ISSRE.2002.1173214
https://doi.org/10.1109/ICTON.2018.8473938
https://doi.org/10.1109/ISSRE.1999.809307
https://doi.org/10.1109/MCOM.2019.1701366
https://doi.org/10.1109/MCOM.2019.1701366
https://doi.org/10.1109/TCC.2016.2567392
https://doi.org/10.1109/JAS.2017.7510817
https://doi.org/10.1109/TSC.2016.2519898
https://doi.org/10.1109/TSC.2016.2519898
https://doi.org/10.1109/INFOCOM.2017.8057153
https://doi.org/10.1109/INFOCOM.2017.8057118
https://doi.org/10.1109/MNET.003.2100672
https://doi.org/10.1109/TNSM.2022.3202741
https://doi.org/10.1109/TNSM.2022.3202741
https://doi.org/10.1109/LNET.2023.3237261
https://doi.org/10.1109/LNET.2023.3237261
https://doi.org/10.1109/ColumbianCC.2015.7333476
https://doi.org/10.1109/ColumbianCC.2015.7333476
https://doi.org/10.1109/TCOMM.2020.2968907
https://doi.org/10.1109/INFOCOM.2018.8486307
http://arxiv.org/abs/1912.06680
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf

	Reliability-aware failure recovery for cloud computing based automatic train supervision systems in urban rail transit using deep reinforcement learning
	Abstract
	Introduction
	The cloud computing based ATS system
	Urban rail transit cloud platform
	The architecture of urban rail transit cloud
	Deployment of cloud business

	ATS in urban rail transit cloud
	ATS
	ATS in urban rail transit cloud

	Recovery procedure of ATS cloud platform
	System models and problem formulation
	System models
	ATS network model
	ATS service model
	ATS microservice state and state transition model
	Orchestrator and AoI model

	Problem formulation
	ATS network constraints
	Objective function

	Deep reinforcement learning based proactive failure recovery optimization
	Deep reinforcement learning framework and PRFR model
	State
	Action
	Reward

	Reinforcement learning based policy optimization for DRL model

	Simulation results and discussion
	Environment set up
	Result discussion
	Accuracy of different state
	Failure repair rate and MTTR

	Conclusion
	Acknowledgements
	References

