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Abstract 

As urban rail transit construction advances with information technology, modernization, information, and intelligence 
have become the direction of development. A growing number of cloud platforms are being developed for transit 
in urban areas. However, the increasing scale of urban rail cloud platforms, coupled with the deployment of urban rail 
safety applications on the cloud platform, present a huge challenge to cloud reliability.One of the key components 
of urban rail transit cloud platforms is Automatic Train Supervision (ATS). The failure of the ATS cloud service would 
result in less punctual trains and decreased traffic efficiency, making it essential to research fault tolerance methods 
based on cloud computing to improve the reliability of ATS cloud services. This paper proposes a proactive, reliability-
aware failure recovery method for ATS cloud services based on reinforcement learning. We formulate the problem 
of penalty error decision and resource-efficient optimization using the advanced actor-critic (A2C) algorithm. To 
maintain the freshness of the information, we use Age of Information (AoI) to train the agent, and construct the agent 
using Long Short-Term Memory (LSTM) to improve its sensitivity to fault events. Simulation results demonstrate 
that our proposed approach, LSTM-A2C, can effectively identify and correct faults in ATS cloud services, improving 
service reliability.
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Introduction
China’s economy has experienced rapid development 
driven by a new round of technological revolution and 
industrial transformation, leading to a glorious period of 
information construction in urban rail transit [1–4] . To 
achieve the unified deployment of urban rail applications, 

it is essential to construct an autonomous, controllable, 
and sustainable urban rail transit cloud platform [5]. 
This platform can break down the information barriers 
between subsystems and build an intelligent operation 
and maintenance system [6]. Urban rail transit clouds 
have been built and used in Hohhot, Wuhan, and other 
places. However, the continuous development in cloud 
applications [7] has resulted in increasingly complex 
cloud platform structures. Moreover, rail transit safety 
applications applied to cloud platforms are the future 
trend, as demonstrated by the implementation of cloud-
based security computing platforms by companies such 
as Thales and Siemens. Therefore, a higher level of reli-
ability is expected for the urban rail cloud.
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The signaling system is at the core of the urban rail 
transit system, responsible for ensuring safe vehicle 
operation and improving driving efficiency. Automatic 
Train Supervision (ATS) is the primary component of 
the signaling system, and it will be deployed on the cloud 
platform. ATS is responsible for monitoring the on-time 
operation of trains [8]. The ATS failure will result in the 
inability of the mainline trains to receive timetable data 
from the central ATS system server, causing the loss of 
central ATS timetable functionality. The ATS failure will 
result in the inability of mainline trains to receive time-
table data from the central ATS system server, leading 
to the loss of central ATS timetable functionality. Con-
sequently, trains are unable to organize their operations 
according to the schedule, and the centralized control of 
the train operation organization mode cannot be imple-
mented. Additionally, the central display screen fails to 
show train dynamics, and the interlocking of safety doors 
with train doors is disrupted. Events such as train delays 
occur, significantly impacting train operational efficiency.

Various methods are used to improve the reliability of 
cloud platforms, including fault removal [9], fault fore-
cast [10, 11], and fault tolerance [12, 13]. Fault removal 
typically involves software-based detection and removal 
of potential faults in cloud systems. However, for com-
plex systems, it is challenging to fully discover all poten-
tial faults. Fault forecast relies on accurately forecasting 
fault occurrences and employing preventive mecha-
nisms based on prediction outcomes. In cloud comput-
ing, virtual machine migration is predominantly utilized 
to ensure service reliability. Among these methods, 
fault tolerance is the most widely used. It refers to the 
system’s ability to perform its function correctly in the 
event of a failure [14, 15]. Fault tolerance is an essential 
requirement in cloud computing, achieved by employ-
ing redundancy configurations to enhance system reli-
ability. Several studies have focused on fault tolerance 
in cloud computing, including the VM coordinated 
approach to detect deteriorating physical machines in 
data centers using Proactive Coordinated Fault Toler-
ant (PCFT) by the author of [16], the SVM-Grid based 
online fault detection approach proposed by Zhang et al. 
[17] to improve cloud stability, and the OPVMP model 
presented by Wang et  al. [18] which uses a replication-
driven method to improve the reliability of server-based 
cloud services. In [19], authors adopts traditional active-
passive redundancy, providing backup instances for each 
node to facilitate recovery in case of failure. In [20], an 
active node deployment approach is proposed, employ-
ing a two-phase process: predicting traffic demands for 
each service chain and deploying instances using virtual 
machines. However, these methods fail to consider fault 
recovery mechanisms in the distributed environment 

of cloud computing. Nevertheless, in other distributed 
computing scenarios, researchers have proposed vari-
ous methods to enhance link reliability. In [21], authors 
present AI-based trust management method to secure 
clustering to reliable and real-time communications. In 
[22], author propose a multi-attribute-based link path 
calculation method with the objective of reducing link 
latency and improving packet delivery rate. The majority 
of the aforementioned fault-tolerant methods do not uti-
lize predictive information and thus cannot proactively 
handle faults in advance. In other domains of distributed 
computing, leveraging predictive information for pre-
processing has demonstrated significant efficacy. In [23], 
author propose a distributed algorithm based on feder-
ated learning for file popularity prediction, incorporating 
proactive tolerance towards feedback latency. For cloud 
computing-based ATS, seamless recovery is essential to 
maintain robust service, and it requires synchronization 
with the active service. Leveraging predictive informa-
tion enables effective pre-processing of faults, thereby 
achieving seamless fault recovery.

To tackle this challenge, we propose a reinforcement-
based proactive reliability-aware failure recovery (PRFR) 
approach for the cloud-based ATS system. This method 
establishes a service state model based on the severity of 
events, and proactively implements fault recovery pro-
cedures based on the state information to achieve active 
fault recovery of the service. Simultaneously, the fresh-
ness of the state information is evaluated using the AoI 
metric to ensure the reliability and effectiveness of ser-
vice management.

The main contributions of this paper are summarized 
as follows:

• In order to effectively tackle the ever-evolving char-
acteristics exhibited by cloud-based ATS networks, 
we put forth a pioneering PRFR framework for ATS 
services, encompassing a triad of sequential steps for 
failure recovery. By formulating PRFR as an optimi-
zation problem and penalizing misbehavior, we aim 
to improve service reliability.

• We employ a hybrid neural network agent to profi-
ciently address the PRFR framework and tailor it 
to suit our model. Additionally, we propose Age of 
Information (AoI) [24] to ensure information fresh-
ness and strike a balance between event occurrence 
and schedule time.

• The performance of the PRFR model for dynamic 
ATS service failure recovery is evaluated by compar-
ing it with baseline methods for failure recovery.

The remainder of the paper is structured as follows. The 
second section present the architecture of the urban 
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rail transit cloud platform. The third section proposed 
a proactive reliability-aware failure recovery procedure 
for cloud computing based ATS. The fourth section, we 
describe the system model and introduce the objective 
function. Section five, we present the DRL model and 
optimization policy. Section six, we describe the details 
of simulation setup and discuss the results. Finally, Sec-
tion seven concludes this paper.

The cloud computing based ATS system
Urban rail transit cloud platform
The architecture of urban rail transit cloud
The integration of scattered resources through cloud 
computing allows the cloud platform to pool resources 
and enable upper-level businesses to obtain comput-
ing, storage, and other resources on demand, resulting 
in improved resource utilization. In the case of urban 
rail transit cloud, distributed cloud data centers can be 
deployed through a cloud management platform. The 
urban rail transit cloud platform typically adopts a seg-
mented structure of data center platform-station nodes 
[25], which facilitates the operation, supervision, and 
management of the entire line.

The data center platform includes production and dis-
aster recovery centers, located respectively in the control 

center and depot. Station nodes are set up at stations 
along the railway, and data is transmitted from the center 
cloud platform through the backbone ring network to the 
station nodes. To ensure safety, the station switches to 
backup mode in case of data center cloud failure. Figure 1 
illustrates the architecture of the urban rail transit cloud 
platform.1

Deployment of cloud business
The architecture of the urban rail transit cloud platform 
is complex, as it involves the deployment of software 
for multiple subway lines on a uniform cloud platform. 
To accommodate businesses with different features, it 
is common practice to divide the cloud platform into 
separate virtual data centers (VDCs), with each VDC 
consisting of a private cloud for each railroad. In case of 
insufficient business capacity, any part of the VDC can be 
expanded or migrated to ensure the safe running of busi-
nesses, such as by adding CPU and storage resources.

Fig. 1 The architecture of urban rail cloud

1 ISCS:Integrated Supervision Control System, AFC: Auto Fare Collection, 
CCTV:Close Circuit Television, ACC: AFC Clearing Center, TCC:Traffic 
Control Center
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ATS in urban rail transit cloud
ATS
ATS (Automatic Train Supervision) is a critical compo-
nent of the urban rail transit system, which consists of 
two main parts: center ATS and station ATS. The center 
ATS includes the control center and the disaster recovery 
center. The control center responsibility for the trains’ rou-
tine operations, in the event of any malfunction occurring 
at the control center. On the other hand, the station ATS 
plays a fundamental role in automatic supervision, moni-
toring the status of nearby signal equipment and trains, 
and enabling the ATS center to dispatch the entire rail-
road system efficiently.

The main function of ATS includes:

• Centralized supervision. Centralized supervision 
ensures the real-time depiction of railway signals and 
wayside equipment, while also facilitating the central-
ized monitoring of the interlock system and control 
mode at each station.

• Timetable management. Offline editing of the basic 
operation diagram is available, along with automatic 
validity checking for created diagrams. Furthermore, 
the system generates an up-to-date running map 
based on the train’s current position. By comparing 
this data with the planned running map, it generates 
the latest information and alerts as needed.

• Vehicle identification and tracking. Identifying vehi-
cles according to schedule, ATO/ATP, etc., and mon-
itoring section status to determine train position.

• Train and route control. Train operations are con-
trolled by commands given to dispatchers. Provide 
automatic approach locking, and monitor status of 
signal, turnout, etc.

ATS in urban rail transit cloud
In the urban rail transit cloud, ATS still adopts the 
center-station architecture, mapping the business of tra-
ditional ATS to the cloud platform. Figure 2 depicts the 
schematic of ATS cloud deployment2

The cloud-based ATS system disentangles conventional 
ATS services and subdivides them into seven distinct 
microservices: universal services, application services, 
control services, planning services, command services, 
interface services, and storage services. These microser-
vices are small, independent, and well-distributed [26]. 
Information forwarding services (information centers) 
play a vital role in facilitating the seamless exchange of 
information between the microservices. In instances where 

there is a surge in demand for information transmission, 
load balancing techniques and other methodologies are 
employed to maintain consistent and reliable transmis-
sion. Within cloud-based ATS systems, the utilization of 
computing resources is optimized with greater efficiency 
owing to the loosely coupled nature of the system. Con-
sequently, developers allocate computing resources solely 
for supplementary components when required, ensuring 
an optimal allocation of resources. Additionally, technol-
ogy types are no longer restricted, and different types of 
microservices can be organized and developed based on 
functional requirements. Fine-grained extensions are also 
possible based on actual business requirements, allowing 
for individual microservices to be built and maintained 
relatively easily. This provides full control over the ATS 
application business itself.

Recovery procedure of ATS cloud platform
The current failure recovery method can be categorized 
into reactive and proactive approaches, each involving 
three main steps: launching a backup microservice, flow 
reconfiguration, and state synchronization. To launch 
a backup microservice, microservice containers are 
deployed for instances of failure. Flow reconfiguration 
requires calculating the routing path in the controller and 
implementing new forwarding rules. To activate backup 
microservices as active microservices, the ATS service 
gateway must be reconfigured. State synchronization 
involves migrating the state of failed microservices to the 
backup containers to support normal service. Reactive 
failure recovery is executed after the microservice fails, 
resulting in a long service recovery time due to the delay 
involved in the recovery procedure.

Compared to the reactive method, the proactive 
method reduces recovery time by predicting failures in 
advance. When an active microservice fails, the backup 
microservice, which has been pre-launched, is switched 
to active, and the flow is reconfigured to provide unin-
terrupted service. This approach allows for the complete 
or partial avoidance of delays in flow reconfiguration 
and launching microservices. The proactive method per-
forms recovery processes earlier [13, 15], reducing the 
failure recovery time to the state synchronization time. 
The recovery procedure is shown in Fig.  3. The service 
link typically consists of Micser1, Micser2, and Micser3. 
In the event of imminent failure of Micser1 and Micser3, 
their backup services are launched, and the flow is recon-
figured. After a service failure, state synchronization is 
performed.

The proposed scheme allows for the deployment and 
deletion of redundant backup microservices on each 
hardware node. Each backup microservices requires 
a resource allocation of h, denoted by ϕh

(o,s) for o-th 2 CI means Computer Based Interlocking, DTI means departure time indicator.
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microservice in ATS service s. To ensure seamless failure 
recovery, the state of an active microservice is transferred 
to its backup. It is assumed that the rate of state updat-
ing of a microservice is linearly proportional to its packet 
rate ϑs . Each active microservice establishes a logical 
synchronization link with its backup microservices. To 
maintain these logical synchronization links bso(t) during 
the backup procedure, each link should occupy a small 
amount of predefined bandwidth ϕBW

(o,s) for non-critical 
microservices. The value of ϕBW

(o,s) may differ depending on 
the microservice’s type and state freshness rate.

Assuming that the state packet size of a microservice 
can be observed by the orchestrator, denoted as Xs

o(t) , 
the packet needs to be transferred in time slot t to main-
tain synchronization between the active and backup 
microservices. This transfer leads to a synchronization 
delay, denoted as Ds

o(t) , between the two services.

This delay is typically negligible when microservices are 
working correctly. However, in the event of a failure, it is 
crucial that the delay be shorter than the maximum toler-
able interruption time µd , in order to avoid violating Ser-
vice Level Agreement (SLA) requirements [27].

System models and problem formulation
System models
ATS network model
We model the entire ATS network as a uni-directed 
graph G = (GM ,GL) , where GM and GL represent the sets 
of all the network node and links. Furthermore, two sepa-
rate physical nodes and their connections are indicated 
by m, n ∈ GM , lmn ∈ GL . In the physical network, GM 

(1)Ds
o(t) =

Xs
o(t)

bso(t)

Fig. 2 The service architecture of ATS on the cloud platform
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Fig. 3 An example of the proposed recovery procedure

Table 1 The main parameters table

Parameter Definition

M/GM/m Number/Node set/Physical node

L/ GL / lmn Number of physical link/Physical link set/Physical link

H/ H /h Number of Resources/Resource type set/Resource type

Ahm / ABWmn
Maximum customizable resources h for node m / Maximum customizable bandwidth for link mn

Qh
m(t) / QBW

mn (t) Utilization ratio of resource h in node m / bandwidth in physical link mn at time slot t

t/σ Index/duration of time slot

S/S/s Traditional ATS service on cloud computing

Os/Os The set/number of sequenced microservice for ATS service s

Vs
o The o-th microservice in service s

µs/ϑs Maximum tolerable interruption time / traffic rate of traditional ATS service s

ϕh
(o,s) / Ms

o
The number of resource type h needed / cost of a backup microservice Vs

o

χ s
o(t) The influence ratio of the backup placement to Vs

o

Xso(t)/b
s
o(t)/D

s
o(t) The packet size/bandwidth/delay of synchronization link of Vs

o

km(o,s)(t)/ǩ
m
(o,s)(t)

The backup placement of Vs
o / The placement of Vs

o

pso(t) If Vs
o is supported by backup

αs
o(t) The recovery procedure on Vs

o
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consists of the application servers, database servers, and 
transmission equipment. These network nodes provide 
processing resources for different services. In Table 1, the 
main parameters are listed.

In this paper, we consider a time-slotted system with 
positive numbers indexed by t ∈ N  , N  is set of natural 
number. Let H represent the type of resource set that a 
physical node can provide. Each type of resource is indi-
cated by h, h ∈ H . Example of resource included: CPU, 
network, and storage. The maximum capacity of resource 
h provided by node m denoted as Ah

m , and ABW
mn  indi-

cates the maximum bandwidth capacity of physical link 
lmn . Considering that the available resources of a physi-
cal node can change as a result of resource releases and 
occupants, the current ratios of resource type h in node 
m indicated by Qh

m(t) ∈ [0, 1] at each time slot t. Mean-
while, available bandwidth capacity in link lmn denote as 
QBW
mn (t) ∈ [0, 1] at each time slot t.

ATS service model
As depicted in Fig. 2, the ATS services in the urban rail 
cloud are divided into a series of microservices that need 
to be combined in a specific order to provide traditional 
ATS services, such as timetable management. We use the 
set S = 1, ..., S to denote the set of traditional ATS ser-
vices on cloud computing, indexed by s. Each sequenced 
ATS microservice and its corresponding SLA require-
ment are represented by a tuple as follows:

where Os = {1, ..., os, ...,Os} indicate the set of sequenced 
microservices and µs ∈ N  denote the maximum ser-
vice interruption time, ϑs indicate the traffic traversing 
of ATS service s. And we define the set V consisting of 
all the microservices in ATS. Besides, we use V s

o ∈ V to 
denote the o-th microservice in traditional ATS service s 
on cloud computing.

The reliability of traditional ATS services on cloud 
computing can be quantified as the likelihood of the 
microservices being executed. Failures will lead to the 
ATS service being degraded and the microservices being 
down. Our goal is to achieve proactive reliability-aware 
failure recovery in ATS to improve reliability. Next, we 
present our proactive reliability-aware failure recovery 
scheme for cloud computing based ATS.

ATS microservice state and state transition model
In this paper, we plan to make DRL agents capable of 
handling failures by utilizing state information (Table 2).

• State Model: Based on ITU standard X.733 [28], we 
have defined three states based on the severity of 
the service, namely ordinary, alert, and critical. The 

(2)Services = (Os,µs,ϑs),∀s ∈ S

severity level identifies the condition of the micros-
ervice, such as CPU cycles exceeded and bandwidth 
reduced. When there is a change in state, the micros-
ervice send state message to orchestrator for failure 
management. In addition, it is worth mentioning that 
services of different states exhibit varying scheduling 
intervals to update the orchestrator’s global informa-
tion. The definitions of the three states are as follows: 
In the ordinary state, events can be ignored with no 
impact, and the microservice works normally. In the 
alert state, the microservice is degraded by software 
and physical events, and maintenance efforts must 
be made to prevent a more serious situation from 
arising. The critical state occurs when the severity of 
events reaches a serious level, implying that the fail-
ure of the microservice is unavoidable, and immedi-
ate action is required.

• Microservice State Transition Model: As shown 
in Fig.  4, at time slot t, if the microservice’s state is 
ordinary, it will continue in the same state with prob-
ability Poo , or change to alert state with probability 
Poa = 1− Poo . For possible fault and error correc-
tion, we assume the microservice will remain in an 
alert state for at least Fv time slots3. Furthermore, 
whenever the microservice remains in alert state for 
more than Fv , it continues to stay alert with Paa , 
turns ordinary with Pao , or enters critical with Pac . 
We consider that the longer the microservice remains 
in alert state, the more likely it is to change to critical 
state as a result of continuous service degradation. 
Assume Pao will increase by Pao× (step number in 
alet - Fv ) ≤ 1. Finally, if microservice stay in critical 
it will keep on until the recovery procedure is com-
pleted, and microservice turns to ordinary to provide 
service.

Orchestrator and AoI model
To support decision-making, it’s crucial that the orchestra-
tor has all the necessary information. When the microser-
vice moves to the next state or reaches its scheduled time, 
the orchestrator receives its state packet. To ensure the 

Table 2 The state transition model

State Ordinary Alert Critical

Ordinary Poo Poa 0

Alert Pao Paa Pac grows overtime

Critical recovery 0 No recovery

3 The intention is to allow nodes a plausible duration for automatic recovery.
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robustness of the orchestrator, we consider information 
freshness to manage microservices. Different freshness 
criteria are applied to different microservices, allowing the 
orchestrator to allocate more resources to handle microser-
vices that occur critical events. This will enhance resource 
management capabilities. As the relevant information sent 
to the orchestrator must be updated, we use the Age of 
Information (AoI) metric to quantify its freshness.

Age of information (AoI) refers to the period of time 
between the time when information is received and the 
time when it was most recently generated. AoI information 
for microservice v is indicated by φv(t) at time t. During 
the generation of information and its transmission to the 
orchestrator, we assume that the network is devoid of delay 
[29]. AoI increases with time slots when state information 
is received. σ is a measure of the length of each time slot. 
Define AoI metric as follow:

During each time slot of microservices, we impose an 
Age of Information (AoI) constraint in which the AoI 
must not exceed a predetermined threshold as:

The value of δsv(t) is specific to microservice v and state 
s at time slot t. For instance, to ensure data freshness 
when the microservice is in alert state, the constraint 
δsv(t) ≤ Fv × σ must be fulfilled. Similarly, when the 
microservice is in critical state, the constraint δsv(t) ≤ σ 

(3)

φv(t) =
σ beginning with time slot t
φv(t − 1)+ σ otherwise

,

(4)φv(t) ≤ δsv(t)

must be satisfied. The orchestrator changes the sched-
uling time to ensure network information freshness. By 
doing so, the resources used for ordinary services could 
be used for other more urgent services, which could 
result in better utilization of resources.

Problem formulation
ATS network constraints
For optimal resource utilization, all available and allo-
cated resources in a physical node should not exceed 
what is currently available. Define binary variable set 
K = km(o,s)(t) and KBW = kmn

(o,s)(t) for time slot t, with 
km(o,s)(t) = 1 if the backup is placed in the node m, with 
the kmn

(o,s)(t) = 1 if logical synchronization has been 
established in the physical link lmn , and km(o,s)(t) = 0 , 
kmn
(o,s)(t) = 0 otherwise. Here is the constrain:

In the first part of (5)-(6), it describes the resource of 
backup microservice place or release, the other part 
means the available resource in time slot t.

Define the pso(t) , equals 1 if backup of V s
o has been 

placed and performed recovery step 1,2.

(5)

∑

o∈O

∑

s∈S

(km(o,s)(t)−km(o,s)(t − 1)) · ϕh
(o,s)

≤Ah
m · Qh

m(t),∀h ∈ H,∀m ∈ GM

(6)

∑

o∈O

∑

s∈S

(kmn
(o,s)(t)−kmn

(o,s)(t − 1)) · ϕBW
(o,s)

≤ABW
m · QBW

m (t),∀m ∈ GM

Fig. 4 State Transition Model
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In our view, active and backup microservices should 
never be deployed on the same physical node. This will 
result in meaningless backups in the event of a physical 
failure. To ensure the safety of this situation, we take the 
following constraints:

where ǩm(o,s)(t) equals 0 if V s
o is not placed in node m in 

time slot t. And in order to realize resource-efficiency, 
each microservice can only have one backup, expressed 
by:

We constrain the bandwidth of the synchronization link 
to ensure it does not exceed the delay threshold for criti-
cal microservices as follows:

The variable ws
o(t) indicates whether V s

o is in a critical 
state at time slot t. To ensure that the constraint operates 
properly, a small value τ is introduced.

Objective function
Considering the entire failure recovery process of the 
ATS network, the objective function is divided into 
three parts. Firstly, to prevent the placement of backup 
microservices after a failure occurs, we make this part as 
follows:

and Ŵ represents the cost associated with service inter-
ruptions and unbacked up microservices in critical states.

Backup microservices require a certain amount of 
resources, which are allocated by the ATS network. 
Assume that each backup microservice requires a distinct 
resource cost, denoted by Ms

o . This leads us to formulate 
the cost for placing a backup microservice as follows:

The value of χ s
o(t) represents the cost of backup for 

overutilization. The value depends on the state of the 
microservice. Ordinary microservices perform backup 

(7)pso(t) =







1,
�

m∈GM

km(o,s)(t − 1) ≥ 0

0,
�

m∈GM

km(o,s)(t − 1) < 0

(8)
∑

o∈O

∑

s∈S

km(o,s)(t) · ǩ
m
(o,s)(t) = 0, ∀m ∈ GM ,

(9)
∑

m∈GM

km(o,s)(t) ≤ 1, ∀o ∈ O, ∀s ∈ S ,

(10)0 < Ds
o(t) ≤ ws

o(t) · µs +
1

τ
− ws

o(t) ·
1

τ
,

(11)ξSLA = Ŵ ·
∑

o∈O

∑

s∈S

ws
o(t)− ws

o(t) · p
s
o(t),

(12)ξBC =
∑

o∈O

∑

s∈S

χ s
o(t)p

s
o(t)M

s
o,

actions that do not contribute to reliability but waste 
more resources instead. So the value of χ s

o(t) is consid-
ered to be high for an ordinary state. Furthermore, back-
ing up for alert microservice is much more critical than 
ordinary microservice, so the value of χ s

o(t) in alert will 
be lower than ordinary.

To ensure failure recovery can be completed, we define 
αs
o(t) equals 1 if the recovery has been completed, and 0 

otherwise. Whenever the orchestrator misjudges a criti-
cal microservice, a penalty � is imposed on the network. 
The third part is defined as:

Above all, the objective function formulate as:

where P = [pso(t)] , A = [αs
o(t)] , K = [km(o,s)(t)] , 

KBW = [kmn
(o,s)(t)].

Deep reinforcement learning based proactive 
failure recovery optimization
Deep reinforcement learning framework and PRFR model
Proactive reliability-aware failure recovery (PRFR) is a 
complex decision-making problem that involves non-
linear constraints and integer variables in the decision 
variables, making it challenging to solve. However, recent 
advancements in reinforcement learning have enabled 
autonomous problem-solving without relying on human 
knowledge [30, 31]. In particular, deep reinforcement 
learning can handle high-dimensional state-action spaces 
by leveraging the feature extraction abilities of deep 
learning [32]. Therefore, we propose using DRL solutions 
to improve ATS failure recovery on cloud platforms.

In this paper, we choose model-free DRL. Agents 
explore space randomly, without prior knowledge of 
the environment. Policy-based reinforcement learning 
determines which action to take to maximize the reward 
function, it fine-tunes a vector of parameters noted as θ 
for policy π to select the appropriate action. The policy 
function denoted as π(α|s, θ) , represents the likelihood 
of selecting action α under state s and model parameters 
θ . After the reward feedback to agent, optimizing policy 
π(α|s, θ) through gradient to fine-tune θ . Network-based 
ATS environments are designed to allow agents to learn 
a better policy, minimize the objective function, and 
ensure service reliability. Figure  5 illustrates the frame-
work for deep reinforcement learning. Based on the state 
s, the agent performs the action α . The environment 
rewards the agent with r and changes the state s′ accord-
ingly. These experiences are stored as tuple (s,α, r, s′) to 

(13)ξFR = � ·
∑

o∈O

∑

s∈S

ws
o(t)⊕ αs

o(t),

(14)
min

P ,A,K,KBW

�1ξSLA +�2ξBC +�3ξFR

Subject to (5− 10)



Page 10 of 14Zhu et al. Journal of Cloud Computing          (2023) 12:147 

use for training the policy. Here are the definitions of 
state, action, and reward:

State
Define three state according to state model of ATS on 
the cloud platform. The set of state types is defined by 
Sv(t) = [1, 2, 3] . During an ordinary state, Sv(t) = 1 , dur-
ing an alert state, Sv(t) = 2 . and during a critical state, 
Sv(t) = 3.

Action
The agent can perform three actions: backup placement, 
backup state synchronization, and backup removal. 
Backup placement includes the first and second steps 
of failure recovery, while backup state synchroniza-
tion indicates the final step. As soon as the recovery 
step is complete, the backup removal action is executed 
to release redundant resources. To achieve proactive 
reliability-aware failure recovery, the backup placement 
action should be executed when the microservice state is 
about to turn critical, and the backup state synchroniza-
tion action should be executed when the microservice is 
in the critical state. In contrast, reactive reliability-aware 
failure recovery (RRFR) executes all steps after the criti-
cal state is observed.

Reward
To minimize the objective function, the agent must opti-
mize the policies to take valuable action at each state. At 
time t, the agent selects an action α from a probability 
distribution π(α|s, θ) , where s is the current state and θ 
are the parameters of the agent’s policy. The environment 
then generates a reward R[all] , which is returned to the 
agent. The agent should maximize reward during each 
episode. The first part of the reward R1(t) defines as:

Positive rewards are defined for the agent to encour-
age it to take the right action. These include: executing 
backup removal in the ordinary microservice, rewarded 
as ξBR ; executing backup placement before the critical 
state manifests, rewarded as ξBP ; synchronizing state for 
critical microservices, rewarded as ξBSS ; and success-
fully completing PRFR on a microservice that previously 
failed, rewarded as ξPRFR . Accordingly, R2(t) is defined as:

The reward Rall(t) defined as:

Reinforcement learning based policy optimization for DRL 
model
In model-free reinforcement learning, two primary opti-
mization methods exist: value-based and policy-based. 
However, value-based methods are challenging to apply to 
high-dimensional or continuous environments, and con-
vergence is challenging during training. In contrast, policy-
based methods allow agents to handle high-dimensional 
continuous environments and learn stochastic policies, 
thereby enhancing their exploratory abilities. Policy Gradi-
ent [33], as a fundamental algorithm of policy-based opti-
mization, employs gradient ascent to optimize the policy 
function value and maximize the cumulative reward. The 
objective function is shown below:

Policy Gradient uses iterative updates, which can be inef-
ficient, and the sampling of a large number of trajectories 

(15)
R1(t) = −�1ξSLA −�2ξBC −�3ξFR,

�1,�2,�3 ≥ 0,

(16)R2(t) = ξBR + ξBP + ξBSS + ξPRFR,

(17)Rall(t) = R1(t)+ R2(t).

(18)∇Jθ = Eπ [q(St ,At)∇logπθ (At |St)]

Fig. 5 The framework of DRL for ATS in cloud
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can lead to high variance. To address these issues, the 
Actor-Critic (AC) [34] algorithm has been developed. 
The AC algorithm combines value-based and policy 
gradient methods, and it uses two networks: the Actor 
network for selecting actions and the Critic network for 
evaluating actions. The update of Actor network is given 
below, αθ is learning rate:

The objective function of Critic network is shown below, 
αw is learning rate:

However, AC still suffers from the problem of high vari-
ance. To address this issue, the Advanced Actor-Critic 
(A2C) [35] method was introduced, which use the advan-
tage function to replace the Critic network’s estimate 
of Q values Qw(s, a) . The advantage function represents 
the superiority A(s, a) of each action value Q(st , at) with 
respect to the mean value V (st) . This approach has shown 
improved efficiency and reduced variance compared to 
the AC algorithm. The Actor network in A2C is updated 
in the following way:

and the update method of critic in A2C network remains 
the same as in AC.

Algorithm 1 A2C-based failure recovery algorithm for cloud-based ATS 
systems

Simulation results and discussion
Environment set up
In this paper, We use Networkx, a three-party library 
provided by python, to build the ATS cloud physi-
cal network nodes. We simulate four traditional ATS 
services on the cloud, denoted as S = 4 , where each 

(19)θ ← θ + αθQw(s, a)∇θ lnπθ (a|s)

(20)
MSVE(w) = (rt + γQw(s

′, a′;w)− Qw(s, a;w))
2

(21)
Aw(st , at) = (Qw(st , at)− Vw(St))

θ ← θ + αθAw(s, a)∇θ lnπθ (a|s)

service consists of four microservices, O = 4 . We con-
sider deploy the ATS microservices in separate virtual 
machines (VMs), with each VM providing three types 
of resources: compute, storage, and network. Further-
more, we utilize four physical nodes to allocate physi-
cal resources, denoted as GM = 4 . It is assumed that the 
resources required for backup placement and state syn-
chronization are randomly assigned to each VM.

Each VM is represented by a state model with ran-
dom transition probabilities. We define any alert VM 
that remains in an alert state for more than two time 
steps as Fv = 2 . For the alert state, we set δsv(t) = 2 , for 
the critical state, we set δsv(t) = 1 to observe if the agent 
executes failure recovery successfully, and for the ordi-
nary state, we set δsv(t) ≥ 3 . The state of the VM only 
changes if the scheduled time arrives or events occur, 
δsv(t) indicating the scheduled time.

We conducted training for 75000 epochs, setting 
the learning rate at 2.8 x 10-2, while randomly initial-
izing node transition probabilities within the range of 
0 to 1. As for the first part of reward function R1(t) , 
we assume Ms

o = 1 , value of χ s
o(t) set to 0, 0.2, 1 for 

critical, alert, and ordinary state, respectively. Fur-
thermore, we set the value of Ŵ , � , and �1,�2,�3 to 
1. In the second part of the reward function R2(t) , 
+1 reward is defined for the removal of backups in 
an ordinary state, +1 reward is defined for the place-
ment of backups before critical state manifest, and 
+1 reward is defined for state synchronization dur-
ing critical state manifests. The total of all rewards is 
Rall(t) . As for the agent, we use hybrid neural network 
structure and LSTM layers, described in Table 3. And 
the structure of NLSTM described in Table 4.

Table 3 The structure of LSTM-agent

Hidden layer type Layer parameters

Fully connected input layer (256, 256)

LSTM layer (80, 80)

Fully connected output layers (128,128)

Table 4 The structure of NLSTM-agent

Hidden layer type Layer parameters

Fully connected input layer (256, 256, 256, 256, 
256, 256, 256, 256, 
256, 128, 128, 64)

Dropout layers (0.6, 0.6, 0.6, 0.6, 
0.6, 0.6, 0.6, 0.6, 0.6, 
0.6, 0.6, 0.3)
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Result discussion
Accuracy of different state
We have defined three state accuracy metrics to evalu-
ate the agent’s ability to monitor the VM state and take 
appropriate actions: Ac , Aa , and Ao , which represent crit-
ical, alert, and ordinary states, respectively:

Nc , Na , and No represent the number of critical, alert, 
and ordinary states, while Nac , Naa , and Nao denote the 
number of correctly taken actions in critical, alert, and 
ordinary states. The results are displayed in Fig.  6. The 
accuracy of critical states is defined as the ratio of cor-
rect actions taken in a critical state to the total number of 
detected critical states. We observe that LSTM-A2C and 
NLSTM-A2C perform similarly in critical states, with 
accuracy rates of 92% and 88% respectively, indicating 
that both models can accurately detect the state of criti-
cal virtual machines.

In terms of taking the backup placement action in the 
alert state, which is a measure of the accuracy of the alert 
state, LSTM-A2C outperforms NLSTM-A2C. When a 
VM enters alert state, LSTM-A2C takes backup place-
ment action approximately 68% of the time. Addition-
ally, LSTM-A2C performs better than NLSTM-A2C in 
removing backup VMs during ordinary state, leading to 
significant reductions in resource costs.

(22)











Ac =
Nac
Nc

Aa = Naa
Na

Ao =
Nao
No

Failure repair rate and MTTR 
In order to visualize the difference between PRFR and 
RRFR, we defined the failure recovery rate of PRFR and 
RRFR separately, as follows:

The number of all detected critical VMs is denoted by 
Ndc , while PRFRr and RRFRr represent the number of 
detected critical states recovered using APRFR and ARRFR , 
respectively. The results are presented in Fig. 7, where we 
can observe that the LSTM-A2C method experienced 

(23)

{

APRFR = PRFRr
Ndc

ARRFR = RRFRr
Ndc

Fig. 6 Three types of accuracy comparison

Fig. 7 Failure repair rate of PRFR and RRFR
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fluctuations around the approximate iteration count of 
35,000, followed by a gradual convergence. And proactive 
LSTM-A2C approach achieves a higher failure recovery 
rate than the reactive NLSTM-A2C methods. The proac-
tive approach enables earlier recovery actions, leading to 
shorter recovery times.

Meanwhile, We evaluate the performance of the model 
using the mean time to repair (MTTR), which measures 
the average time interval from the occurrence of a fault 
to its recovery. As shown in Fig.  8, the recovery time 
increases linearly with the number of failed microser-
vices, but LSTM-PRFR exhibits a shorter recovery time 
than LSTM-RRFR.

Conclusion
In this paper, we investigate the architecture of the ATS 
on urban rail transit cloud platforms and existing reliabil-
ity-based failure tolerance methods. We propose a proac-
tive reliability-aware failure recovery method for the ATS 
service on the cloud platform, which takes into account 
both SLA infractions and resource efficiency. Secondly, 
we construct a state model and state transition model, 
considering the Age of Information to ensure the fresh-
ness of network information. We then develop a rein-
forcement learning model based on failure recovery steps 
to classify microservice states into three categories and 
take appropriate actions depending on their states, such 
as backup placement or removal. Finally, we conducted 
additional simulation experiments to compare our pro-
posed model with the baseline model, and the results 
demonstrated that it outperformed the baseline.
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