
Nie et al. Journal of Cloud Computing (2023) 12:131
https://doi.org/10.1186/s13677-023-00503-w

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Journal of Cloud Computing:
Advances, Systems and Applications

A deep reinforcement learning assisted task
offloading and resource allocation approach
towards self-driving object detection
Lili Nie1, Huiqiang Wang1*, Guangsheng Feng1, Jiayu Sun1, Hongwu Lv1 and Hang Cui2

Abstract

With the development of communication technology and mobile edge computing (MEC), self-driving has received
more and more research interests. However, most object detection tasks for self-driving vehicles are still performed
at vehicle terminals, which often requires a trade-off between detection accuracy and speed. To achieve efficient
object detection without sacrificing accuracy, we propose an end–edge collaboration object detection approach
based on Deep Reinforcement Learning (DRL) with a task prioritization mechanism. We use a time utility function
to measure the efficiency of object detection task and aim to provide an online approach to maximize the average
sum of the time utilities in all slots. Since this is an NP-hard mixed-integer nonlinear programming (MINLP) problem,
we propose an online approach for task offloading and resource allocation based on Deep Reinforcement learning
and Piecewise Linearization (DRPL). A deep neural network (DNN) is implemented as a flexible solution for learning
offloading strategies based on road traffic conditions and wireless network environment, which can significantly
reduce computational complexity. In addition, to accelerate DRPL network convergence, DNN outputs are grouped
by in-vehicle cameras to form offloading strategies via permutation. Numerical results show that the DRPL scheme
is at least 10% more effective and superior in terms of time utility compared to several representative offloading
schemes for various vehicle local computing resource scenarios.

Keywords Mobile edge computing, Object detection, Deep reinforcement learning, Task offloading

Introduction
Thanks to the explosive growth of MEC, self-driving
technology has undergone significant development. As
an important component in self-driving vehicles, object
detection has been widely used to help self-driving vehi-
cles detect surrounding objects, such as other vehicles,
pedestrians, traffic signs, and lanes.

To improve the detection accuracy, there is a major
trend to building convolutional neural networks (CNNs)

with deeper layers and more complex structures. For
example, networks such as AlexNet [1], visual geometry
group (VGG) [2], deep residual network (ResNet) [3],
densely connected convolutional network (DenseNet)
[4] and ResNeXt [5] have been widely used in tasks
such as image classification [6], object detection [7, 8]
and semantic segmentation [9]. Although the accuracy
of these networks has been improved, their depths also
increased significantly. Well-trained network models
typically have tens of millions of weight hyperparam-
eters, which can result in heavy demands on computing
resources. In general, object detection tasks of self-driv-
ing vehicles have strict latency constraints and infer-
ence accuracy requirements. Hence it is challenging for
resource-constrained vehicle terminals to perform such
computationally-intensive tasks.

*Correspondence:
Huiqiang Wang
wanghuiqiang@hrbeu.edu.cn
1 College of Computer Science and Technology, Harbin Engineering
University, Harbin 150001, Heilongjiang, China
2 TungThih Electronic company, Xiamen 361006, Fujian, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00503-w&domain=pdf

Page 2 of 20Nie et al. Journal of Cloud Computing (2023) 12:131

Benefiting from MEC technology, vehicle-to-every-
thing (V2X) cellular telematics are growing exponen-
tially. V2X aims to enable vehicle-to-vehicle (V2V) [10,
11], vehicle-to-infrastructure (V2I) [12], and vehicle-
to-network (V2N) [13] communications to support the
efficient processing of terminal tasks by offloading all or
part of them to the surrounding infrastructures. Edge
devices can provide assistance for self-driving vehicles in
executing object detection tasks, for example, by using a
novel context-aware method [14] to accelerate the object
detection speed or by extracting and compressing some
regions of interest [15] to be sent to the edge cloud.
These methods transfer the object detection tasks to
edge clouds or cloud centers, which can effectively allevi-
ate local computational pressures; however, these meth-
ods excessively rely on edge servers, which are prone to
network congestion under the influx of a large number
of tasks. Once the wireless network state deteriorates,
it is difficult to guarantee task execution efficiency. In
addition, compressing image to ensure that the detec-
tion results are transmitted back within a specified time,
which will inevitably lead to a loss in detection accuracy.

To improve the efficiency of object detection while
ensuring accuracy, we need to work out a more intelli-
gent end–edge collaboration approach to cope with the
time-varying wireless environment and complex traffic
conditions. In this paper, we propose an end–edge col-
laboration object detection approach based on DRL to
generate task offloading and local computing resource
allocation strategies. According to time–varying wire-
less network environment and road traffic conditions, the
approach can maximize the average sum of the time utili-
ties for each object detection task in all slots. The main
contributions of this work are summarized as follows:

• To achieve efficient object detection tasks for self-
driving vehicles without sacrificing accuracy, we
formulate a mixed integer non-linear programming
(MINLP) problem to jointly optimize the task off-
loading and local computing resource allocation
strategies. Specifically, detection tasks are offloaded
to edge servers and completed with the maximize
the average sum of the time utilities without losing
accuracy. As far as we are concerned, previous stud-
ies only focus on one of these aspects.

• We propose an online approach based Deep Rein-
forcement learning and Piecewise Linearization
(DRPL) to solve the MINLP problem mentioned
above. In this approach, the MINLP problem is
decomposed into an offloading strategy subproblem
and a resource allocation subproblem.

• We develop a prioritization mechanism in accord-
ance with vehicle navigation commands and histori-

cal object detection results to adapt to complex road
traffic environment. In addition, to speed up the
DRPL algorithm, we group the deep neural network
(DNN) outputs by cameras and expand them to form
candidate offloading strategies via permutation.

The remaining parts of this paper are organized as fol-
lows. In Related work section, we review the related
work. In System model and problem formalization sec-
tion, we describe the system model and formalize the
problem. In The DRPL algorithm section, we present
the detailed design of the DRPL algorithm. In Numeri-
cal results analysis section, we report numerical results.
Finally, we conclude the paper.

Related work
Edge computing technology can provide services as close
as possible to the device or data source by means of an
open platform that integrates core networking, comput-
ing, storage, and application capabilities. Such technol-
ogy can reduce the energy and resource consumption of
terminal devices while responding quickly to terminal
requests and meeting real-time needs.

Edge computing technology
Edge computing technology is of great importance and
has attracted extensive research attention. Some recent
research works have focused on different application
scenarios. For example, in terms of unmanned aerial
vehicles (UAVs), Nan et al. [16] studied the problem of
joint task offloading and resource allocation for vehicu-
lar edge computing with result feedback delay. Gao et al.
[17] investigated the problem of joint task offloading, task
scheduling, and resource allocation in vehicle edge com-
puting, and the fast changing channel between a vehicle
and an edge server to minimize the delay and energy
consumption of vehicular edge computing. Deng et al.
[18] took DNN as the typical AI application and formu-
lated an optimization problem that optimizes the DNN
model decision, computation, communication resource
allocation, and UAV trajectory control. Zhou et al. [19]
proposed a gradient-based dynamic iterative search
algorithm to obtain the approximate optimal solution.
In terms of wireless powered mobile edge computing,
Mao et al. [20] investigated the fundamental tradeoff
between energy efficiency and delay in a multi-user wire-
less powered MEC system. They filled the gap by jointly
scheduling energy, radio, and computational resources
to coordinate heterogeneous performance require-
ments in wireless powered MEC systems. Chen et al.
[21] presented an augmented two-staged deep Q-net-
work for online optimization of wireless power transfer
MEC systems to minimize the long-term average energy

Page 3 of 20Nie et al. Journal of Cloud Computing (2023) 12:131

requirement of the systems. Deng et al. [22] proposed
a dynamic throughput maximum algorithm based on
perturbed Lyapunov optimization to maximize the sys-
tem throughput under task and energy queue stability
constraints.

While some research work has focused on the design
of network resource scheduling or computation offload-
ing algorithms with various optimization objectives. Mao
et al. [23] proposed utilizing the intelligent reflecting
surfaces technique to improve the efficiency of wireless
energy transfer and task offloading in order to achieve
a higher total computation rate. Shnaiwer et al. [24]
designed new methods for jointly optimizing the reflec-
tion coefficients of intelligent reflecting surfaces and
path selection. They presented a general mathemati-
cal formulation for the problem of minimizing the total
energy consumption of the system. Song et al. [25] pro-
posed a computation offloading scheme and a dynamic
road network state update model for proximity detection
in dynamic road networks, aiming to efficiently reduce
the computational time of the optimal latency each time.
Zhou et al. [26] proposed a novel deep reinforcement
learning-based computation offloading and service cach-
ing mechanism to jointly optimize the offloading deci-
sion, service caching, and resource allocation strategies.
The aim is to minimize the cost while ensuring the delay
requirements of mobile users.

However, the aforementioned studies are lacking in the
context of self-driving object detection, despite the wide
range of application scenarios and the variety of target
problems being addressed.

Edge computing technology‑based visual object detection
methods for self‑driving vehicles
The boom in edge computing has simultaneously led
to significant growth in self-driving technology [27].
Recently, researchers have started to investigate edge
computing methods to assist in self-driving object detec-
tion. Guo et al. [14] collected contextual information
(weather, time, traffic, etc.) from the current road envi-
ronment and combined these contextual features with
the visual features of images on the MEC server. Kim
et al. [15] deployed object detection networks on an edge
server. When the channel quality was not sufficient to
support real-time object detection, the self-driving vehi-
cles compressed the image data based on the regions of
interest and transmitted the compressed data to the edge
cloud. However, the above mentioned studies of edge-
computing-assisted object detection for self-driving vehi-
cles have certain limitations: the self-driving vehicles rely
too much on the edge servers, ignoring the time-varying
wireless transmission environment; moreover, compress-
ing images to speed up object detection may lead to loss

of key traffic information and affect the object detec-
tion accuracy. Hence, developing an efficient, accurate
and intelligent object detection approach is still an open
problem.

DRL‑based task offloading methods
The DRL algorithm observes the surroundings in real
time and relies on deep neural networks (DNNs) to learn
from the training data samples. It eventually produces
the optimal mapping from the time-varying state space
[28] to the action space [29]. A number of works have
recently begun to investigate how to use DRL to make
task offloading strategies for mobile terminals. To cope
with the joint optimization problem of computation off-
loading and resource allocation in MEC, Chen et al. [30]
proposed a temporal attentional deterministic policy gra-
dient based on deep Q-network (DQN). Aiming at trust
issues for service migration in vehicular edge computing,
Ren et al. [31] designed a dynamic service offloading and
migration algorithm based on A3C. To ensure the quality
of internet of vehicles services, Hazarika et al. [32] pro-
posed a priority-sensitive task offloading and resource
allocation scheme based on deep deterministic policy
gradient (DDPG) and twin delayed DDPG algorithms.
However, in our scenario, if we choose DQN-based net-
works, we may suffer from slow convergence when we
take the time–varying wireless channel gains and traf-
fic conditions as the input state vector. Besides, because
of its exhaustive search nature in selecting the action in
each iteration, DQN is not suitable for handling prob-
lems with high-dimensional action spaces [33].

In this paper, based on deep reinforcement learning
and piecewise linearization, we propose an end–edge
collaboration object detection approach for self-driving
vehicles, which can maximize the average sum of the
time utilities for each object detection task in all slots.
Moreover, to speed up our netwok, inspired by [34], we
group the deep neural network (DNN) outputs by cam-
eras and expand them to form candidate offloading strat-
egies via permutation.

System model and problem formalization
As shown in Fig. 1, we consider a visual object detec-
tion problem for one self-driving vehicle with I cameras,
denoted by I = {1, 2, 3, . . . , I} . I + 1 well-trained CNNs
with the same structure are embedded, one in each cam-
era in I and one in an edge server. At the same time, the
vehicle terminal is equipped with a driving control sys-
tem (DCS), which is responsible for collecting wireless
environment information and vehicle navigation com-
mand in each time slot j = {1, 2, 3, . . . ,N } , and generat-
ing corresponding task execution priorities in accordance
with the object detection results of each camera in time

Page 4 of 20Nie et al. Journal of Cloud Computing (2023) 12:131

slot. Moreover, the DCS transmits the priority informa-
tion and wireless channel gain to DRPL on the edge side,
and DRPL decides whether to execute locally or offload
the output of logical block in the detection network of in-
vehicle camera i, to edge side as the input to logical block.
At the same time, DRPL allocates the local computing
resources of the vehicle terminal. Here we consider that
the self-driving vehicle driving within the communica-
tion range of the edge server at all time slots. The nota-
tions we adopt are summarized in Table 1.

The priority of each in‑vehicle camera
The traffic conditions of self-driving vehicles are complex
and rapidly changing, unexpected statuses may occur at
any time and place. Moreover, the channel state between
a vehicle terminal and the edge server also changes with
variations in the transmission medium. Therefore, for a
vehicle terminal with limited computing resources, effi-
cient and accurate detection of the surrounding environ-
ment is a great challenge. In this section, we develop a
prioritization mechanism for each object detection task
in accordance with the navigation commands in time slot
j and the object detection results in time slot j − 1.

The impact of vehicle navigation commands on the execution
priority of each task for every in‑vehicle camera
Different cameras in different parts of the self-driving vehi-
cle are mainly responsible for monitoring different ranges.
For example, suppose that in a certain time slot, the navi-
gation command is to proceed directly ahead; then, the

camera mainly responsible for monitoring the road envi-
ronment in front of the self-driving vehicle (such as detect-
ing the road, other surrounding, other vehicles, pedestrians
and other targets) will be mobilized first, and its priority
will be higher than that of the rest of the cameras.

The impact of object detection results on the execution
priority of each task for every in‑vehicle camera
The self-driving traffic environment is ever-changing
and unexpected conditions may occur at any time, so
the vehicle needs to detect the surrounding environment
always and make emergency operation in time. There-
fore, the priority of each camera should be determined
not only taking into account the actual vehicle navigation
commands, but also the road conditions.

We suppose that in time slot j, Xj
i objects are detected

in the visual range of camera i. For each object x, x ∈ X
j
i ,

its features can be quantified as a six-tuple
Z
j
i,x = Y

j
i,x,R

j
i,x,P

j
i,x,y,P

j
i,x,y,A

j,y
i,x, ǫ

j,y
i,x , where Y j

i,x denotes
the category of result Zj

i,x , R
j
i,x denotes the detection

frame size of result Zj
i,x , P

j
i,x,y denotes the probability that

result Zj
i,x belongs to category y when the object detec-

tion algorithm achieves correct detection, Pj
i,x,y denotes

the probability that result Zj
i,x belongs to category y when

the algorithm suffers from detection error, Aj,y
i,x denotes

the score for result Zj
i,x corresponding to a dangerous

object when it is determined to belong to category y, and
ǫ
j,y
i,x denotes the threshold for result Zj

i,x corresponding to
a dangerous object when it is determined to belong to
category y.

Fig. 1 An offloading approach for object detection tasks based on end–edge collaboration

Page 5 of 20Nie et al. Journal of Cloud Computing (2023) 12:131

In general, we can assume that the larger the detec-
tion frame size of the detected object, the higher dan-
ger level of it. However, in some complex and variable
traffic environments (e.g., weather, light, and shading),
even a well-trained object detection algorithm will
inevitably produce detection errors. Figure 2 shows
examples of object detection results against simple
and complex backgrounds. The range of a detected
object is represented by an orange rectangular box,
and the probability value of the the detected object
belonging to a certain category is shown above the
rectangular box. Figure 2(a) shows detection result
against a simple background. Since the object in this
figure is clear and there is no interference from other
factors, the precision is credible, and the framing of
the object detection result is accurate. In contrast,
in the scene with a complex background shown in
Fig. 2(b), the black vehicle in the shadow of the sun is
similar in color to its surroundings, while the vehicle
in direct sunlight has characteristics similar to those
of the white wall in its vicinity; in both cases, these
similarities lead to detection errors. If we were to use
the detection frame size as the only indicator to deter-
mine the danger level of an object, then the priorities
of some tasks would be mismatched. So, we need to
combine the detection frame size and the detection
accuracy to make a joint judgment on the danger
level of each object. In this paper, we propose to use
the product of the detection frame size and the detec-
tion accuracy to express the danger level of an object,
which is calculated as shown in Eq. (1).

where, considering the complexity of the traffic condi-
tions, E denotes the potential for the object detection
algorithm to suffer from detection error. Referring back
to the above, we can see that Pj

i,x,y denotes the probabil-
ity that result Zj

i,x belongs to category y when the object
detection algorithm achieves correct detection, Pj

i,x,y
denotes the probability that result Zj

i,x belongs to cat-
egory y when the algorithm suffers from detection error.

In any time slot j, if there is at least one object detec-
tion result for the camera i with a danger value larger
than its danger threshold, i.e., A

j
i,x ≥ ǫ

j,y
i,x , ∃x ∈ X

j
i ,

then the priority of the in-vehicle camera i is set to
high. If there is no dangerous object is detected, i.e.,
A
j
i,x < ǫ

j,y
i,x , ∀x ∈ X

j
i , the priority of each detection

task is determined in accordance with the navigation

(1)A
j,y
i,x = E × R

j
i,x × P

j
i,x,y + (1− E)× R

j
i,x × P

j
i,x,y,

Table 1 Notations

Notation Meaning

The object detection task of camera
i in time slot j

The local computation size of task
before offloading partition point v

The offload data size of task at parti-
tion point v

The delay tolerance of high-priority
tasks

τL The delay tolerance of low-priority
tasks

O
j
i The priority of task Sji

V The collection of alternative offload-
ing partition points

X
j
i

The number of objects included
in the detection results of task

The detection result x of task Sji

Y
j
i,x The category of result Zji,x

R
j
i,x The detection frame size of result Zji,x

P
j
i,x ,y The probability that result Zji,x

belongs to category y

A
j,y
i,x The score for result Zji,x correspond-

ing to a dangerous object when it
is determined to belong to category
y

The threshold for result Zji,x cor-
responding to a dangerous object
when it is determined to belong
to category y

f
j
i

The proportion of the local comput-
ing resources assigned to task Sji

r
j
i The data rate of transmitting task Sji

to edge server

hj The channel gain in time slot j

t
j,v
i,l

The time cost of locally processing
task Sji before partition point v

t
j,v
i,up

The time cost of offloading the fea-
ture data for task Sji at partition
point v

t
j,v
i The total time cost for task Sji

when offloading partition point v
is selected

u
j,H
i,v

The time utility for high-priority task
S
j
i when offloading partition

point v is selected

u
j,L
i,v

The time utility for low-priority task
S
j
i when offloading partition

point v is selected

u
j
i The time utility for a task Sji of a cer-

tain priority in any time slot j

Page 6 of 20Nie et al. Journal of Cloud Computing (2023) 12:131

command. The priority values for tasks determined to
be of high priority are set to 1, and the rest are set to 0.

In summary, the rules for adjusting the priorities of
object detection tasks belonging to each in-vehicle cam-
era are as follows: if no dangerous object is detected, the
priority of each detection task is determined in accord-
ance with the navigation command; if any camera detects
at least one dangerous object, the priority of that camera
is set to high, and the priorities of the other object detec-
tion tasks of the remaining cameras are still determined
in accordance with the navigation command. The details
of the prioritization algorithm are given in Algorithm 1.

Algorithm 1 The priority determination algorithm
for the in‑vehicle camerasThe task execution time utility
model
In time slot j, the features of the object detection task of
camera i can be represented by a four-tuple Sji

{

C
j
i,v ,M

j
i,v , τ

j
i ,O

j
i

} ,

where Sji denotes the object detection task of in-vehicle
camera i in time slot j, Cj

i,v denotes the local computation
size of task Sji before offloading partition point v, Mj

i,v
denotes the data size of task Sji at offloading partition
point v, τ ji denotes the delay tolerance of task Sji , and Oj

i
denotes the priority of task Sji . As the environment
between the self-driving vehicle and the edge server
changes, the wireless channel conditions change accord-
ingly. If the wireless link is available, the self-driving vehi-
cle can choose to offload object detection tasks to the
edge server and can also receive the results from the edge
server via the wireless link. Otherwise, for example, when
the wireless channel suffers from deep fading, all object
detection tasks must be executed locally. Here, we sup-
pose that the computational power of the edge server is
much stronger than the self-driving vehicle, so we set the
execution time on the edge server as a constant ϒ , and
the time utility functions for tasks with different priori-
ties are shown as follows.

Local computing
We use tj,vi,l to denote the local computing time of an
object detection task before offloading partition point v,
which can be calculated as shown in Eq. (2).

where FL denotes the computational resources of the
vehicle terminal and f ji denotes the proportion of the
computational resources allocated to in-vehicle camera i
in time slot j.

Edge computing
We use tj,vi,up to denote the time to transmit the feature
data to the edge server at offloading partition point v.
Here, we assume that the bandwidth is sufficient and

(2)t
j,v
i,l =

C
j
i,v

f
j
i × FL

, ∀i ∈ I , j ∈ N , v ∈ V ,

Fig. 2 Detection accuracy against different backgrounds

Page 7 of 20Nie et al. Journal of Cloud Computing (2023) 12:131

there is no need to allocate bandwidth among the in-
vehicle cameras. tj,vi,up and data transmission rate rji can
be calculated as shown in Eqs. (3) and (4) respectively.

where hj denotes the channel gain in time slot j.
The total time for the object detection task Sji can be

calculated as shown in Eq. (5).

Here, thanks to the ultra-low transmission latency in
the context of 5G, we do not focus on the delay caused
by data transmission failure. At the same time, we
ignore the transmission time of the computation results
from the edge server back to the vehicle terminal.

Time utility computation
The completion times of different-priority tasks have
different impacts on the self-driving vehicle. Here, we
set different time utility functions for different-priority
tasks [35], which can be calculated as shown in Eqs. (6)
and (7).

The time utility function of high-priority tasks can be
written as follow:

The time utility function of low-priority tasks can be
written as follow:

where τH and τL denote the delayed tolerance of high-pri-
ority and low-priority tasks.

Problem formulation
According to the tasks priorities, the average sum of
the time utilities uji in a given time frame j is expressed
as shown in Eq. (13).

(3)t
j,v
i,up =

M
j
i,v

r
j
i

, ∀i ∈ I , j ∈ N , v ∈ V ,

(4)r
j
i = B× log2(1+

P × hj

N0
), ∀i ∈ I , j ∈ N ,

(5)t
j,v
i = t

j,v
i,l + t

j,v
i,up + ϒ , ∀i ∈ I , j ∈ N , v ∈ V .

(6)u
j,H
i,v =

log2(1+ τH −
C
j
i,v

f
j
j ×FL

−
M

j
i,v

B×log2(1+
P×hj
N0

)
)

t
j,v
i ≤ τH ,

−ϒH otherwise.

(7)

u
j,L
i,v =

ϒL t
j
i ≤ τL,

ϒL × e

−c(
C
j
i,v

f
j
i ×FL

+
M
j
i,v

B×log2(1+
P×hj
N0

)

−τL)

otherwise,

Here, we set Oj
i ∈ {0, 1} , where Oj

i = 1 denotes high
priority, Oj

i = 0 denotes low priority, and aji denotes the
offloading partition point for the object detection task
of camera i in time slot j. In each time slot, we aim to
maximize the average sum of the time utilities for each
in-vehicle camera under a given channel gain and tasks
priorities. The specific calculation are shown as follow:

In the set of constraints, constraint (10) guarantees
that the sum of the proportions of vehicle terminal
computing resources allocated to each in-vehicle cam-
era does not exceed 1. Constraints (11) ensures that the
proportion of vehicle terminal computational resources
allocated to any in-vehicle camera lies between 0 and 1.
Constraints (12) makes sure that the offloading parti-
tion point for the object detection task of camera i in
time slot j, i.e. aji , does not exceed the predetermined
set of offloading partition points V for each in-vehicle
camera.

Lemma 1 (Q1) is NP-hard.

Proof
We prove its NP-hardness by transforming the simplified
form of (Q1) into an NP problem. �

Step 1: We first simplify the objective function as a lin-
ear function expressed as a closed form of f ji and aji , i.e.:

where, g(f ji) is an operation on f ji , which we assume is
known.

Step 2: The original question Qj
i is transformed as Q1’.

(8)
Q(hj ,O

j
i , f

j
i , a

j
i) =

1

N
×

N
∑

j=1

I
∑

i=1

u
j
i

=
1

N
×

N
∑

j=1

I
∑

i=1

O
j
i × u

j,H
i,v + (1− O

j
i)× u

j,L
i,v .

(9)(Q1) : Q̂(h
j
i,O

j
i) = max

f
j
i ,a

j
i

Q(hj ,O
j
i , f

j
i , a

j
i)

(10)s.t.

I
∑

i=1

f
j
i ≤ 1, j ∈ {1, 2, 3, . . . ,N },

(11)0 ≤ f
j
i ≤ 1,

(12)a
j
i ∈ {0, 1, 2, . . . ,V }.

(13)
Q
j
i(ω

j
i , f

j
i , a

j
i) =F

j
i (ω

j
i , f

j
i , a

j
i)

=ω
j
i × a

j
i × g(f

j
i),

Page 8 of 20Nie et al. Journal of Cloud Computing (2023) 12:131

It can be seen that Q1’ is a 0-1 backpack problem,
which is a well-known NP problem. Since the simpli-
fied form of (Q1) is NP-hard, we can infer that (Q1) is
NP-hard.

Problem (Q1) is a MINLP problem and is NP-hard
[35–37]. However, once aji is determined, the number of
unknowns decreases, and (Q1) becomes solvable. When
a
j
i is determined, problem (Q1) can be transformed into

problem (Q2):

Thus, problem (Q1) can be decomposed into two sub-
problems, i.e., the task offloading strategy problem and
the resource allocation strategy problem (Q2), as shown
in Fig. 3.

• Task offloading strategy: Intuitively, we need to
search V I possible offloading strategies to find a satis-
factory one. However, due to the exponential growth
of the search space, this method takes a long time to
converge. We propose using a deep reinforcement
learning based approach to assist in finding a reason-
able offloading strategy.

• Resource allocation strategy: In problem (Q2), the
optimal allocation of the local computing resources is
still a nonlinear programming problem. Therefore, we
need to use the piecewise linearization method (PLM)
to transform this problem into a linear programming
problem and find its approximate solution.

(14)Q1′ : max
∑

i∈I ,j∈N

ω
j
i × a

j
i × g(f

j
i)

(15)s.t. (10), (11), (12).

(16)(Q2) : Q̂(h
j
i,O

j
i , a

j
i) = max

f
j
i

Q(hj ,O
j
i , f

j
i , a

j
i)

(17)s.t. (10), (11).

The main difficulty of solving problem (Q1) is handling
the offloading strategy problem. Traditional optimization
algorithms need to adjust the offloading strategy through
multiple iterations, during which, the wireless environ-
ment and the road traffic are rapidly changing. It is very
difficult to handle object detection tasks efficiently using
such algorithms. To address the complexity problem,
we propose a novel deep reinforcement learning based
online offloading algorithm, DRPL, which can adapt well
to time-varying environmental information to find a sat-
isfactory offloading strategy.

The DRPL algorithm
As mentioned in the previous section, to obtain the max-
imum average time utility, we must first obtain candidate
offloading strategies with a DNN and then input them
into (Q2) to determine the best local computing resource
allocation strategy. Intuitively, we can compute V I fea-
sible offloading strategies through enumeration (each
self-driving vehicle has I cameras, and each of them has
V possible partition points). However, this brute force
search is computationally intensive, especially when the
local computing resources need to be frequently reallo-
cated due to time-varying channel gains and road traffic
conditions, and it is difficult to obtain the object detec-
tion results efficiently. To address these problems, we
propose DRPL, which can respond adaptively and quickly
to the wireless and traffic environments.

Algorithm overview
The structure of the DRPL algorithm is illustrated in
Fig. 4. We use a DNN as the fundamental network for
generating candidate offloading policies, and we select
the optimal strategy corresponding to the maximum time
utility to participate in training in each time slot. Our
goal is to derive an offloading strategy πj based on the
channel gain hj and the execution priority of each object

Fig. 3 The two-step optimization structure for solving (Q1)

Page 9 of 20Nie et al. Journal of Cloud Computing (2023) 12:131

detection task Oj
i{i = 1, 2, . . . , I} in time slot j, denoted by

πj :
{

hj ,O
j
i

}

→ a∗j .
Specifically, at the beginning of the first time slot, we ran-

domly set the internal DNN hyperparameters θ1 (i.e., the
link weights between the hidden-layer neurons), and the
DNN generates the first offloading strategy based on the
channel state and the initial in-vehicle camera priority
information (here, all cameras are set to low-priority in the
first time slot by default). In time slot j (j ≥ 2), the priority
information which determined by the navigation command
and the object detection results from time slot j − 1 , in
combination with the current channel state is input into
the DNN to obtain an initial vector âj . At this point, the
internal DNN hyperparameters are updated to θj . We
divide âj into I groups based on the different in-vehicle
cameras. Each group contains V elements, and the sum of
the probability values of the V elements in each group is 1.
We separately select the k ′ elements in each group with the
maximum probability values, thus obtaining K candidate
offloading strategies (each offloading strategy has I dimen-
sions). We sequentially input the K candidate offloading
vectors into (Q2) and select the offloading strategy a∗j that
corresponds to the maximum time utility value
Q̂(h

j
i,O

j
i , a

∗
j) . a

∗
j is then combined with the state (hj ,O

j
i) to

form the state–action pair
{

(hj ,O
j
i), a

∗
j

}

 , which is added to
the experience memory unit.

In a general time slot j, we randomly draw a batch of sam-
ples from memory to train the DNN, and its parameters are
updated from θj to θj+1 . The new offloading strategy πj+1
is then used for the next time frame. In time slot j + 1 , we
generate offloading strategy a∗j+1 based on the new channel

gain and the new in-vehicle camera priority information
(hj+1,O

j+1
i) observed by the DNN. Thereafter, with con-

tinued observations the environment and the repetition of
these iterative operations, the strategies that the DNN gen-
erates gradually improve.

Offloading strategy generation based on grouping
and expansion
The parameters of the DNN in time slot j are denoted by θj
(here, the initial parameters θ1 are randomly assigned using
the He initialization method. By inputting the channel gain
hj and the priority information Oj

i into the DNN, we can
obtain a vector âj with I × V dimensions. The mapping
relation is expressed as follows:

Here, we group the outputs âj based on the different
cameras and add a softmax function to normalize the
results before each group, such that the sum of the prob-
abilities of the V offloading partition points within each
group will be 1.

However, if the number of selected offloading deci-
sion partition points V is larger than a certain value, this
will lead to very small differences among the probabil-
ity in each group. If we select only the offloading deci-
sion partition point with the largest probability in each
group during every training iteration, we will lose a great
deal of information about other possible points. This will
lead to slow convergence of the network, greatly increas-
ing the number of training rounds, consuming too much
time and affecting the judgment ability of the network.

(18)âj = Gθj (hj ,O
j
i), i = 1, 2, . . . ,N , âj ∈ [0, 1].

Fig. 4 DRPL-based offloading strategy generation and updating

Page 10 of 20Nie et al. Journal of Cloud Computing (2023) 12:131

Therefore, we propose selecting the top k ′ candidate
offloading partition points with the largest probability
values within each group and combining them via per-
mutation to form K = k ′I offloading strategies. We then
select the offloading strategy corresponding to the maxi-
mum time utility among these K candidate offloading
strategies to participate in training in each time slot.

Piecewise linearization of the time utility function
As mentioned in the previous subsection, we need to
input K offloading strategies into (Q2) sequentially to
determine the local computational resource allocation
policy by maximizing the task time utility value and then
choose the corresponding best offloading policy a∗j in
each time slot.

Since the time utility function in this paper is a seg-
mentation function that is partially no-nconvex, the orig-
inal function needs to be transformed into a piecewise
linear function to be solved. The PLM is commonly used
to approximate complex nonlinear functions as piecewise
ones; in this way, a complicated optimization problem
can be transformed into a linear optimization problem
[38, 39]. The segmentation points of the time utility func-
tion are transformed from a relationship between the
delay tolerance τ ji and the task execution time tji into a
relationship with the local computing resource alloca-
tion policy f ji . The time utility function uji is schemati-
cally plotted in Fig. 5. The specific steps of the PLM are
as follows:

Step 1: We divide the local computing resource alloca-
tion proportion f (which lies in the interval [0,1]) into D
segments, each corresponding to an interval of �f :

Step 2: For each segment d ∈ D , we connect (fd ,u
j
i(fd))

to (fd+1,u
j
i(fd+1)) and transform it into a linear function

F
j
i,d , d ∈ {1, 2, . . . ,D} , i ∈ {1, 2, . . . , I} , j ∈ {1, 2, . . . ,N }.
Step 3: We use two sets of parameters, ϕj

i,d with
d ∈ {1, 2, . . . ,D + 1} and θ ji,d with d ∈ {1, 2, . . . ,D} , and
the following formulas to transform the original seg-
mented nonlinear function into a D-segment linear
function:

(19)�f =
1

D
.

(20)
D
∑

d=1

θ
j
i,d = 1, ∀i ∈ I , j ∈ N ;

(21)f
j
i =

D+1
∑

d=1

ϕ
j
i,d × fd , ∀i ∈ I , j ∈ N ;

(22)
D+1
∑

d=1

ϕ
j
i,d = 1, ∀i ∈ I , j ∈ N ;

(23)u
j
i =

D+1
∑

d=1

ϕ
j
i,α × F

j
i,d(fd), ∀i ∈ I , j ∈ N ;

(24)ϕ
j
i,1 ≤ θ

j
i,1, ∀i ∈ I , j ∈ N ;

(25)
ϕ
j
i,d ≤ θ

j
i,d−1 + θ

j
i,d , 2 ≤ d ≤ D, ∀i ∈ I , j ∈ N ;

Fig. 5 Schematic diagram of the time utility function

Page 11 of 20Nie et al. Journal of Cloud Computing (2023) 12:131

where ϕj
i,d ∈ [0, 1] is a weight associated with point fd and

θ
j
i,d is a binary variable indicating whether f ji falls within

the d th segment.
Recall problem (Q2), by adding the new constraints

given in Eqs. (20)–(28), we can obtain the following
relaxed linear formulation (Q2’).

After piecewise linearization, the original nonconvex
nonlinear problem (Q2) is transformed into a piece-
wise linear problem, which can be solved using CPLEX.
CPLEX is a commercial optimization software package
and widely used for solving mathematical programming
problems, including linear programming, mixed integer
programming, and quadratic programming, etc.

Offloading policy update
In the DNN training phase, the training samples are cor-
related with each other because the priority of each cam-
era is determined by the road condition information in
consecutive frames. This may cause the offloading parti-
tion point selection algorithm to exhibit gradient descent
in the same direction for a certain number of period of
iterations in a row, and the training loss of the algorithm
may not converge. To avoid this situation, we add an
experience replay module to the algorithm to store past
state–action pairs. In time slot j, the PLM is used to select
the offloading actions a∗j that corresponds to the maxi-
mum time utility among K candidate offloading strate-
gies. a∗j , together with the state information (hj ,O

j
i) of

that time slot, then forms a new training sample
{

(hj ,O
j
i), a

∗
j

}

.
We use the experience memory unit to train the

DNN by randomly selecting a batch of ξ training
samples (hξ ,O

ξ
i) from the state parts of the samples

((hξ ,O
ξ
i), a

∗
ξ , ξ ∈ �j) in the memory and feeding them

into the DNN. Then, the results are compared with a∗ξ to
calculate the cross-entropy, and the result is used as the

(26)ϕ
j
i,D+1 ≤ θ

j
i,D, ∀i ∈ I , j ∈ N ;

(27)θ
j
i,d ∈ {0, 1}, ∀i ∈ I , j ∈ N ;

(28)0 ≤ ϕ
j
i,d ≤ 1, ∀i ∈ I , j ∈ N ,

(29)

(Q2
′) : Q̂(h

j
i ,O

j
i , a

j
i) = max

ϕ
j
i,d ,θ

j
i,d

Q(hj ,O
j
i , f

j
i , a

j
i)

∼= max

ϕ
j
i,d ,θ

j
i,d

1

N
×

I
∑

i=1

N
∑

j=1

D+1
∑

d=1

ϕ
j
i,α × F

j
i,d (fd)

(30)s.t. (20)− (28).

training loss Loss(θj) to train the DNN. The cross-entropy
calculation formula is shown as follow:

where �j represents the set of time indexes selected from
the memory unit.

Algorithm 2 The DRPL task offloading and resource allocation algo-

rithm based on end–edge collaboration

In summary, in every time slot, the priority status of
each in-vehicle camera of the self-driving vehicle is deter-
mined based on its navigation commands and its object
detection results from the previous time slot, and the pri-
ority information is fed into the DNN as state informa-
tion together with the channel gain for training. Then, we
group the initial vector into several candidate actions and
calculate the time utility values separately, select the
action a∗j corresponding to the maximum time utility,
and then combine it with the state information
{

(hj ,O
j
i), a

∗
j

}

 to obtain the current state–action pair,
which is stored in the memory unit. Finally, the DNN
iteratively learns from the stored state–action pairs to
generate more reasonable offloading strategies over time.
Here, due to the limited memory space, we set the DNN
to learn only from the latest data samples generated from
the offloading policy. For details, see Algorithm 2. Our

(31)
Loss(θj) =−

1

|�j|

∑

ξ∈�j

((a∗j)
TlogGθj (hξ ,O

ξ
i)

+ (1− a∗j)
Tlog(1− Gθj (hξ ,O

ξ
i))),

Page 12 of 20Nie et al. Journal of Cloud Computing (2023) 12:131

algorithm does not involve any training or inference
operations on the CNN. We mainly focuses on perform-
ing the inference of the DRL algorithm. We can easily
obtain the computational complexity of our DRL model
from formula FLOPs = (2× I − 1)× O . Here, I denotes
the dimension of the input layer, O denotes the dimen-
sion of the output layer. For example, a four-layer struc-
tured DNN model: one input layer, two hidden layers,
and one output layer. The number of neurons are 7, 160,
80, 30. We can calculate that the computational effort of
this model is about 30000FLOPs.

Numerical results analysis
In this section, we present the details of the experiments
reported in this paper, including the setting of the in-
vehicle cameras, the parameters of the simulation experi-
ments, and the source of the training data. Here, we set
the above parameters to closely approximate real-world
traffic scenarios to the greatest extent possible. The
experimental results are also analyzed and explained.

Experimental parameters
The in‑vehicle cameras
Here, we assume that the self-driving vehicle has six in-
vehicle cameras with views that collectively cover 360
degrees around the vehicle, and each CNN in every cam-
era has five offloading partition points. The camera views
including: the directly front, the left, the left front, the

right, the right front, the left rear, the right rear, the directly
rear to ensure all-round monitoring of the environment.
The specific camera distribution is shown in Fig. 6.

The priority data for training the DNN
The vehicle navigation commands include directly ahead
(DA), left turn/left front (L/LF), right turn/right front (R/
RF), left rear (LR), right rear (RR), and directly rear (DR).
In accordance with Fig. 6, the correspondence between
the navigation commands and the priority of each in-
vehicle camera is shown in Table 2.

Here, we consider four detection categories Y: pedes-
trian, car, truck, and bicycle. We assume that the prob-
ability of an object that appears on the road belonging to
each of these four categories is 0.25. The ranges of pixel
for the lengths and widths of the rectangular boxes cor-
responding to the detection results and their thresholds
for each category are shown in Table 3.

Parameters of the simulation experiments
In this section, we use simulations to evaluate the DRPL
algorithm. The simulation parameters used in the experi-
ments are listed in Table 4. The equipment used in our
simulation is a laptop with the following parameters: the
CPU is AMD Ryzen 7 5800H with Radeon Graphics, run-
ning at 3.20 GHz; the GPU is an RTX 3060 with 12GB of
memory; the RAM size is 32.0 GB. In DRPL, we consider
a fully connected DNN consisting of one input layer, two

(a) (b) (c) (d)
Fig. 6 The distribution of the in-vehicle cameras and their fields of view. a The directly front. b he left / left front, the right / tight front. c The left
rear, the right rear. d The directly rear

Table 2 In-vehicle camera priorities in accordance with different navigation commands (NCs)

Priority/NCs DA L/LF R/RF LR RR DR

High-priority 1,2,3 1,2,4 1,3,5 4,5,6 4,5,6 4,5,6

Low-priority 4,5,6 3,5,6 2,4,6 1,2,3 1,2,3 1,2,3

Page 13 of 20Nie et al. Journal of Cloud Computing (2023) 12:131

hidden layers and one output layer, where the first and
second hidden layers have 160 and 80 hidden neurons,
respectively, and the output layer has 30 neurons.

Analysis of numerical results
In this section, we evaluate the performance of our pro-
posed DRPL algorithm through numerical simulations,
which are divided into the following six topics for algo-
rithm validation: convergence validation; piecewise seg-
ments number validation; permutation base value k ′
validation; task execution time analysis; offloading strate-
gies and resource allocation results analysis; and the util-
ity comparison of DRPL with other offloading partition
point selection algorithms.

Convergence validation
In Fig. 7, we plot the training loss function Loss(θj) and
the average sum of the time utilities for DRPL. As shown
in Fig. 7(a), the average sum of time utilities gradually
converges under DRPL, and when the number of train-
ing rounds is ≥ 300 , the average time utility value exceeds
0.17. Meanwhile, as shown in Fig. 7(b), the training loss

gradually decreases and stabilizes at approximately 0.05,
after which its fluctuation is mainly due to the random
sampling of the training data.

We also investigate the effects of different hyperparam-
eters, including different learning rates, memory sizes,
batch sizes, and training intervals, on the experimental
convergence behavior. The effects of different training
hyperparameters on the experimental results are shown
in Fig. 8.

Figure 8(a) shows the convergence of the average time
utility with different learning rates. When the learn-
ing rate is 0.1, the convergence of the time utility value
reaches a local optimum. As the learning rate decreases,
the time utility curve converges more slowly. Figure 8(b)
shows the effect of different batch sizes on the conver-
gence of the average time utility. When the batch size is
set to 32 or 64, the training process often cannot fully uti-
lize the abundance of data in the memory. On the other
hand, when the batch size is too large, each iteration uses
a large number of “old” data, which will greatly affect the
network convergence performance. Figure 8(c) shows the
effect of different memory sizes on the convergence of
the average time utility. The time utility converges more
slowly when the memory size is either too small or too
large. In particular, when the memory size is equal to
1024, the DNN needs more training data to reach conver-
gences. Figure 8(d) shows the effect of different training
intervals on the convergence of the average time utility.
The larger the training interval is, the more slowly the
network converges; however, the training interval does
not affect the final converged utility value.

Table 3 Pixel values of the rectangular detection boxes for each
type of object

Category Pixel ranges Thresholds

Pedestrian width [30,50], length [100,200] width 45, length 115

Car width [180,220], length [180,400] width 210, length 350

Truck width [380,420], length [380,800] width 410, length 720

Bicycle width [20,200], length [180,220] width 170, length 215

Table 4 Simulation parameters

Parameter Meaning Value

B The bandwidth 11 MB/s

τH The execution delay tolerance of high-priority tasks 0.01 s

τL The execution delay tolerance of low-priority tasks 0.02 s

ϒH The utility constant for high-priority tasks 0.2

ϒL The utility constant for low-priority tasks 0.1

N0 The noise power 10−8

P The data transmission power 6 W

ϒ The computation time of the object detection task on the edge server 0.001s

FL The computing power of the vehicle terminal 1.08× 106 bytes/s

C
j
i,v The local computation size for task Sji at partition point v [0, 2000] bytes

M
j
i,v The data size of task Sji for offloading at partition point v [0,5] MB

E The potential for the object detection algorithm to suffer from detection error 0.02

P
j
i,x ,y

The probability that the object x belongs to category y when the object detection algorithm
achieves correct detection

[0.85,1]

P
j
i,x ,y

The probability that the object x belongs to category y when the object detection algorithm suf-
fers from detection error

[0,0.85]

Page 14 of 20Nie et al. Journal of Cloud Computing (2023) 12:131

The effect of the number of piecewise segments
on the experimental results
In Fig. 9, we investigate the effect of different piecewise
number on the experimental results. When the seg-
ment size is 2 or 5, the segmented curve does not fit the
original function well, leading to poorer convergence
results. As the segment size increases, the curve obtained
through piecewise linearization (i.e., the curve of (Q2’))
more closely approaches the original utility curve (i.e.,
the curve of Eq. (13)), and once the segment size reaches
a certain value, the time utility curve converges with basi-
cally the same trend. Considering the computational cost,
we set the segment size to 10 in this paper.

Influence of the permutation base value on the experimental
results
During the quantized expansion phase, we select the
top k ′ offloading partition points with the maximum
probability in each group for permutation, and feed
the candidate offloading strategies obtained in this way
sequentially into the linear planning block.

As shown in Fig. 10, when k ′ = 1 , we select only the off-
loading partition point corresponding to the maximum
probability value in each group to form the offloading
vector to participate in iterative network training. Since
we update the network with only one offloading vector
in each time slot, without providing any other option,
many possibly better offloading solutions will be lost. So,
it takes too many iterations for the network to converge.
Therefore, we increase the value of k ′ appropriately.

When the value is set to 2, the network convergence
speed increases dramatically. However, when k ′ is further
increased to 3, 4 or 5, the network convergence curves
almost coincide. Considering that each increase in the k ′
value leading to an exponential increase in computation,
we set k ′ = 2.

Analysis of task execution time
Figure 11 shows the object detection task execution
time and the ratio of cameras with task execution times
within their delay tolerance in each training step. Fig-
ure 11(a) shows the sum of the object detection task
execution times within each camera of the self-driving
vehicle for each training step. As the number of train-
ing steps increases, more appropriate offloading parti-
tion points are selected based on the channel state and
the priority information, so that the task execution
time decreases gradually. The task execution time fluc-
tuations as the channel state changes and the different
offload partition points with different sizes of offloading
data and local computation sizes. Figure 11(b) shows the
ratio of cameras with task execution times within their
delay tolerance in each training step. At the beginning
of training, the network has not yet converged, and the
offload partition points and computational resources
allocated for each camera are not well adapted to the
time-varying wireless and the traffic environment. As
the network converges, the object detection tasks for
the cameras are basically completed within their delay
tolerance time.

Fig. 7 Convergence of the average utility and training loss values

Page 15 of 20Nie et al. Journal of Cloud Computing (2023) 12:131

Analysis of offloading strategies and resource allocation
results
We randomly select several time slots to further inves-
tigate the corresponding experimental results of task
offloading and resource allocation after the neural net-
work has converged. As shown in Fig. 12(a), (b), and
(c), we divide the selected experimental results into
three groups in accordance with the channel gain h.
Each block from left to right presents the information
of cameras 1 to 6 in order. Among them, the numbers
in white blocks indicate the execution priority of the
object detection task. Colored blocks indicate the off-
loading partition points selected for the object detec-
tion task of each camera, and the numbers marked
on the colored blocks indicate the proportions of the

local computing resources allocated to each in-vehicle
camera. We can see that when h is small, offloading
tasks to the edge server will require more time, and it
is preferable to execute high-priority tasks locally, as
shown in Fig. 12(a). At the same time, according to the
numbers on the colored blocks, the resource alloca-
tion strategy tends to allocate more resources to high-
priority tasks. When h is large, the data transfer time
between the self-driving vehicle and the edge server is
short. Then, the high-priority tasks are preferentially
selected for offload execution, as shown in Fig. 12(c),
and even when high-priority tasks are chosen to be
locally executed, they are allocated more computing
resources than low-priority tasks. When the h value is
moderate, as shown in Fig. 12(b), the detection tasks of

Fig. 8 Convergence of average utility under different typical hyperparameters

Page 16 of 20Nie et al. Journal of Cloud Computing (2023) 12:131

Fig. 9 Convergence of the average utility with different numbers of piecewise linearized segments

Fig. 10 Convergence of the average utility with different permutation base values

Page 17 of 20Nie et al. Journal of Cloud Computing (2023) 12:131

each in-vehicle camera are selected for offloading and
resource allocation in accordance with the actual situ-
ation, with the goal of maximizing the task execution
time utility value for each camera.

Comparative analysis of the execution time utility of different
task offloading algorithms
To validate the effectiveness of DRPL, we have selected
several representative algorithms for comparison.

• Edge computing [23]: In each time slot j, all object
detection tasks of the in-vehicle cameras are

offloaded to the edge server for execution, i.e., aji = 4 ,
i = 1, 2, . . . , I , j = 1, 2, . . . ,N .

• Local computing: In each time slot j, all object detec-
tion tasks of the in-vehicle cameras are executed
locally, i.e., aji = 0 , i = 1, 2, . . . , I , j = 1, 2, . . . ,N .

• Greedy: In each time slot j, we select the parti-
tion point that contributes the most to maximize
the average sum of time utilities for each object
detection task in all slots. Here, we define the
contribution degree at partition point v of cam-
era i as degreeji,v , which is calculated according to
communication to computation ratio (CCR) [40].

Fig. 11 The sum of the tasks execution time and the ratio of cameras with task execution time within their delay tolerance in each training step

Fig. 12 Task offloading and resource allocation results under different channel states

Page 18 of 20Nie et al. Journal of Cloud Computing (2023) 12:131

If the degreeji,v values are all less than 1, we select
the offloading partition point corresponding to the
minimum degreeji,v for the high-priority tasks, and
the low-priority tasks for local computation. If the
degree

j
i,v values are all greater than 1, the high-pri-

ority tasks perform the local calculation and the
low-priority tasks select the partition point cor-
responding to the minimum degreeji,v for offload-
ing calculation. If both degreeji,v values greater than
1 and less than 1 coexist, we calculate the farthest
distance between the two parts of degreeji,v from
1,i.e. djgreater and djless respectively, if djgreater > d

j
less ,

the situation is treated as if the degreeji,v values
are all greater than 1, if djgreater < d

j
less , the case is

treated as if the degreeji,v values are all less than 1.
• Random offloading: In this algorithm, we randomly

select local or offloaded calculation for the detection
task of each in-vehicle camera in each time slot.

In Fig. 13, we compare different offloading algorithms in
terms of the average sum of time utilities for each object
detection task in all slots under different sizes of local
computing resources. Series 1 is the average time util-
ity with all computations offloaded, series 2 is the aver-
age time utility with all computations executed locally,
series 3 is the average time utility with the greedy algo-
rithm, series 4 is the average time utility with the random

offloading algorithm, and series 5 is the average time util-
ity with the DRPL algorithm proposed in this paper.

As seen in Fig. 13, since both the local computing
resources and the wireless bandwidth are limited, if we
select only local computing or offloaded computing,
the average task execution time utility values are small
and may even be negative when the abundance of local
computing resources is sufficiently low. This indicates
that even the high-priority tasks are not completed
within their time delay tolerance. The greedy algorithm
takes into account the time-varying wireless environ-
ment and obtains better time utility values. However, it
does exploit the historical strategy experience. The off-
loading strategies chosen by the random algorithm are
unstable; therefore, this algorithm is not effective. In
contrast, DRPL produces offloading strategies which
taking into account historical task offloading experi-
ence; consequently, it shows much better capabilities.
We can see that under the different considered FL values,
DRPL achieves improvements of 12.8% , 17.4% and 15.5%
in average time utility compared to the task offloading
method corresponding to the maximum average utility
within each group.

Conclusion
In this paper, we propose DRPL for the object detection
tasks of self-driving vehicles. We maximize the average
sum of the time utilities for each object detection task

Fig. 13 Comparisons of average utility performance for different offloading algorithms under different FL values

Page 19 of 20Nie et al. Journal of Cloud Computing (2023) 12:131

in all slots. The proposed algorithm can make full use of
historical task offloading experience, jointly with a PLM-
based local computing resource allocation strategy, and
thus progressively improve a DNN to generate better
offloading strategies. We also develop a priority deter-
mination mechanism based on the vehicle navigation
commands and historical object detection results. Mean-
while, to speed up network convergence, we group the
DNN outputs by cameras and expand them via permu-
tation. The DRPL algorithm well addresses the problem
of object detection task offloading and local computing
resource allocation for self-driving vehicles in complex
traffic scenarios. Numerical results show that DRPL obvi-
ously superior effectiveness compared with the tradi-
tional algorithm schemes.

In this paper, we have explored the problem of task
offloading and resource allocation for one self-driving
vehicle. However, the proposed DRPL approach is also
applicable to multiple self-driving vehicles. In future
work, we will use actual traffic and wireless environment
data to further validate our experiments. Additionally,
we will explore training acceleration algorithms for DRL
network models to ensure the timeliness of our proposed
approach in practical scenarios as much as possible.

Acknowledgements
This work is supported by the Natural Science Foundation of China (No.
61872104), the Fundamental Research Fund for the Central Universities in
China and Tianjin Key Laboratory of Advanced Networking (TANK) in College
of Intelligence and Computing of Tianjin University. This work is partially
supported by the project “PCL Future Greater-Bay Area Network Facilities for
Large-scale Experiments and Applications (LZC0019)”.

Authors’ contributions
Lili Nie wrote the main manuscript text. All authors reviewed the manuscript.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 20 March 2023 Accepted: 11 August 2023

References
 1. Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with

deep convolutional neural networks. Commun ACM 60(6):84–90
 2. Deng J, Ding N, Jia Y, Frome A, Murphy K, Bengio S, Li Y, Neven H, Adam

H (2014) Large-scale object classification using label relation graphs. In:

European Conference on Computer Visio. vol 8689. Springer, Zurich, p 48–64.
https:// doi. org/ 10. 1007/ 978-3- 319- 10590- 1_4

 3. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image
recognition. In: 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). IEEE, Las Vegas, p 770–778. https:// doi. org/ 10. 1109/
CVPR. 2016. 90

 4. Huang G, Liu Z, van der Maaten L, Weinberger KQ (2017) Densely con-
nected convolutional networks. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, Honolulu, p 4700–4708.
https:// doi. org/ 10. 1109/ CVPR. 2017. 243

 5. Xie S, Girshick R, Dollár P, Tu Z, He K (2017) Aggregated residual transfor-
mations for deep neural networks. In: 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE, Honolulu, p 1492–1500.
https:// doi. org/ 10. 1109/ CVPR. 2017. 634

 6. Deng J, Ding N, Jia Y, Frome A, Murphy K, Bengio S, Li Y, Neven H, Adam
H (2014) Large-scale object classification using label relation graphs. In:
Fleet DJ, Pajdla T, Schiele B, Tuytelaars T (eds) European conference on
computer vision, vol 8689. pp 48–64

 7. Chen L, Hu X, Xu T, Kuang H, Li Q (2017) Turn signal detection during
nighttime by CNN detector and perceptual hashing tracking. IEEE Trans
Intell Transp Syst 18(12):3303–3314

 8. Chen L, Zou Q, Pan Z, Lai D, Zhu L, Hou Z, Wang J, Cao D (2020) Surround-
ing vehicle detection using an FPGA panoramic camera and deep cnns.
IEEE Trans Intell Transp Syst 21(12):5110–5122

 9. Zou Q, Zhang Z, Li Q, Qi X, Wang Q, Wang S (2019) Deepcrack: Learning
hierarchical convolutional features for crack detection. IEEE Trans Image
Process 28(3):1498–1512

 10. Qi Q, Wang J, Ma Z, Sun H, Cao Y, Zhang L, Liao J (2019) Knowledge-
driven service offloading decision for vehicular edge computing:
A deep reinforcement learning approach. IEEE Trans Veh Technol
68(5):4192–4203

 11. Liu Y, Yu H, Xie S, Zhang Y (2019) Deep reinforcement learning for offload-
ing and resource allocation in vehicle edge computing and networks.
IEEE Trans Veh Technol 68(11):11158–11168

 12. Fan W, Liu J, Hua M, Wu F, Liu Y (2022) Joint task offloading and resource
allocation for multi-access edge computing assisted by parked and mov-
ing vehicles. IEEE Trans Veh Technol 71(5):5314–5330

 13. Tan LT, Hu RQ, Hanzo L (2019) Twin-timescale artificial intelligence aided
mobility-aware edge caching and computing in vehicular networks. IEEE
Trans Veh Technol 68(4):3086–3099

 14. Guo J, Song B, Chen S, Yu FR, Du X, Guizani M (2020) Context-aware
object detection for vehicular networks based on edge-cloud coopera-
tion. IEEE Internet Things J 7(7):5783–5791

 15. Kim S, Ko K, Ko H, Leung VCM (2021) Edge-network-assisted real-
time object detection framework for autonomous driving. IEEE Netw
35(1):177–183

 16. Zhaojun N, Sheng Z, Yunjian J, Zhisheng N (2023) Joint task offloading
and resource allocation for vehicular edge computing with result feed-
back delay. IEEE Trans Wirel Commun 1–1. https:// doi. org/ 10. 1109/ TWC.
2023. 32443 91

 17. Gao J, Kuang Z, Gao J, Zhao L (2023) Joint offloading scheduling and
resource allocation in vehicular edge computing: A two layer solution.
IEEE Trans Veh Technol 72(3):3999–4009

 18. Deng C, Fang X, Wang X (2023) Uav-enabled mobile-edge computing for
AI applications: Joint model decision, resource allocation, and trajectory
optimization. IEEE Internet Things J 10(7):5662–5675

 19. Zhou H, Wang Z, Min G, Zhang H (2023) Uav-aided computation offload-
ing in mobile-edge computing networks: A stackelberg game approach.
IEEE Internet Things J 10(8, April 15):6622–6633

 20. Mao S, Leng S, Maharjan S, Zhang Y (2020) Energy efficiency and delay
tradeoff for wireless powered mobile-edge computing systems with
multi-access schemes. IEEE Trans Wirel Commun 19(3):1855–1867

 21. Chen X, Dai W, Ni W, Wang X, Zhang S, Xu S, Sun Y (2023) Augmented
deep reinforcement learning for online energy minimization of wireless
powered mobile edge computing. IEEE Trans Commun 71(5):2698–2710

 22. Deng X, Li J, Shi L, Wei Z, Zhou X, Yuan J (2022) Wireless powered mobile
edge computing: Dynamic resource allocation and throughput maximi-
zation. IEEE Trans Mob Comput 21(6):2271–2288

 23. Mao S, Zhang N, Liu L, Wu J, Dong M, Ota K, Liu T, Wu D (2021) Computa-
tion rate maximization for intelligent reflecting surface enhanced wireless

https://doi.org/10.1007/978-3-319-10590-1_4
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2017.243
https://doi.org/10.1109/CVPR.2017.634
https://doi.org/10.1109/TWC.2023.3244391
https://doi.org/10.1109/TWC.2023.3244391

Page 20 of 20Nie et al. Journal of Cloud Computing (2023) 12:131

powered mobile edge computing networks. IEEE Trans Veh Technol
70(10):10820–10831

 24. Shnaiwer YN, Kaneko M (2023) Minimizing iot energy consumption by
irs-aided UAV mobile edge computing. IEEE Netw Lett 5(1):16–20

 25. Song Y, Liu Y, Zhang Y, Li Z, Shou G (2023) Latency minimization for
mobile edge computing enhanced proximity detection in road networks.
IEEE Trans Netw Sci Eng 10(2):966–979

 26. Zhou H, Wang Z, Zheng H, He S, Dong M (2023) Cost minimization-
oriented computation offloading and service caching in mobile
cloud-edge computing: An a3c-based approach. IEEE Trans Netw Sci Eng
10(3):1326–1338

 27. Liu S, Liu L, Tang J, Yu B, Wang Y, Shi W (2019) Edge computing for autono-
mous driving: Opportunities and challenges. Proc IEEE 107(8):1697–1716

 28. Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare MG, Graves
A, Riedmiller MA, Fidjeland A, Ostrovski G, Petersen S, Beattie C, Sadik
A, Antonoglou I, King H, Kumaran D, Wierstra D, Legg S, Hassabis D
(2015) Human-level control through deep reinforcement learning. Nat
518(7540):529–533

 29. Wei F, Feng G, Sun Y, Wang Y, Qin S, Liang Y (2020) Network slice recon-
figuration by exploiting deep reinforcement learning with large action
space. IEEE Trans Netw Serv Manag 17(4):2197–2211

 30. Chen J, Xing H, Xiao Z, Xu L, Tao T (2021) A DRL agent for jointly optimiz-
ing computation offloading and resource allocation in MEC. IEEE Internet
Things J 8(24):17508–17524

 31. Ren Y, Chen X, Guo S, Guo S, Xiong A (2021) Blockchain-based VEC net-
work trust management: A DRL algorithm for vehicular service offloading
and migration. IEEE Trans Veh Technol 70(8):8148–8160

 32. Hazarika B, Singh K, Biswas S, Li C (2022) Drl-based resource alloca-
tion for computation offloading in iov networks. IEEE Trans Ind Inform
18(11):8027–8038

 33. Lillicrap TP, Hunt JJ, Pritzel A, Heess N, Erez T, Tassa Y, Silver D, Wierstra D
(2016) Continuous control with deep reinforcement learning. In: 4th Inter-
national Conference on Learning Representations (ICLR). San Juan, p 2–4.
http:// arxiv. org/ abs/ 1509. 02971

 34. Huang L, Bi S, Zhang YA (2020) Deep reinforcement learning for online
computation offloading in wireless powered mobile-edge computing
networks. IEEE Trans Mob Comput 19(11):2581–2593

 35. Shi J, Du J, Wang J, Wang J, Yuan J (2020) Priority-aware task offloading
in vehicular fog computing based on deep reinforcement learning. IEEE
Trans Veh Technol 69(12):16067–16081

 36. Murty KG, Kabadi SN (1987) Some np-complete problems in quadratic
and nonlinear programming. Math Program 39(2):117–129

 37. Ao W, Psounis K (2018) Fast content delivery via distributed caching and
small cell cooperation. IEEE Trans Mob Comput 17(5):1048–1061

 38. Correa-Posada CM, Sanchez-Martin P (2014) Integrated power and natu-
ral gas model for energy adequacy in short-term operation. IEEE Trans
Power Syst 30(6):3347–3355

 39. Shao C, Wang X, Shahidehpour M, Wang X, Wang B (2016) An milp-based
optimal power flow in multicarrier energy systems. IEEE Trans Sustain
Energy 8(1):239–248

 40. Li W, Yang T, Delicato FC, Pires PF, Tari Z, Khan SU, Zomaya AY (2018) On
enabling sustainable edge computing with renewable energy resources.
IEEE Commun Mag 56(5):94–101

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

http://arxiv.org/abs/1509.02971

	A deep reinforcement learning assisted task offloading and resource allocation approach towards self-driving object detection
	Abstract
	Introduction
	Related work
	Edge computing technology
	Edge computing technology-based visual object detection methods for self-driving vehicles
	DRL-based task offloading methods

	System model and problem formalization
	The priority of each in-vehicle camera
	The impact of vehicle navigation commands on the execution priority of each task for every in-vehicle camera
	The impact of object detection results on the execution priority of each task for every in-vehicle camera

	The task execution time utility model
	Local computing
	Edge computing
	Time utility computation

	Problem formulation

	The DRPL algorithm
	Algorithm overview
	Offloading strategy generation based on grouping and expansion
	Piecewise linearization of the time utility function
	Offloading policy update

	Numerical results analysis
	Experimental parameters
	The in-vehicle cameras
	The priority data for training the DNN
	Parameters of the simulation experiments

	Analysis of numerical results
	Convergence validation
	The effect of the number of piecewise segments on the experimental results
	Influence of the permutation base value on the experimental results
	Analysis of task execution time
	Analysis of offloading strategies and resource allocation results
	Comparative analysis of the execution time utility of different task offloading algorithms

	Conclusion
	Acknowledgements
	References

