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Abstract 

With the development of communication technology and mobile edge computing (MEC), self-driving has received 
more and more research interests. However, most object detection tasks for self-driving vehicles are still performed 
at vehicle terminals, which often requires a trade-off between detection accuracy and speed. To achieve efficient 
object detection without sacrificing accuracy, we propose an end–edge collaboration object detection approach 
based on Deep Reinforcement Learning (DRL) with a task prioritization mechanism. We use a time utility function 
to measure the efficiency of object detection task and aim to provide an online approach to maximize the average 
sum of the time utilities in all slots. Since this is an NP-hard mixed-integer nonlinear programming (MINLP) problem, 
we propose an online approach for task offloading and resource allocation based on Deep Reinforcement learning 
and Piecewise Linearization (DRPL). A deep neural network (DNN) is implemented as a flexible solution for learning 
offloading strategies based on road traffic conditions and wireless network environment, which can significantly 
reduce computational complexity. In addition, to accelerate DRPL network convergence, DNN outputs are grouped 
by in-vehicle cameras to form offloading strategies via permutation. Numerical results show that the DRPL scheme 
is at least 10% more effective and superior in terms of time utility compared to several representative offloading 
schemes for various vehicle local computing resource scenarios.

Keywords Mobile edge computing, Object detection, Deep reinforcement learning, Task offloading

Introduction
Thanks to the explosive growth of MEC, self-driving 
technology has undergone significant development. As 
an important component in self-driving vehicles, object 
detection has been widely used to help self-driving vehi-
cles detect surrounding objects, such as other vehicles, 
pedestrians, traffic signs, and lanes.

To improve the detection accuracy, there is a major 
trend to building convolutional neural networks (CNNs) 

with deeper layers and more complex structures. For 
example, networks such as AlexNet [1], visual geometry 
group (VGG) [2], deep residual network (ResNet) [3], 
densely connected convolutional network (DenseNet) 
[4] and ResNeXt [5] have been widely used in tasks 
such as image classification [6], object detection [7, 8] 
and semantic segmentation [9]. Although the accuracy 
of these networks has been improved, their depths also 
increased significantly. Well-trained network models 
typically have tens of millions of weight hyperparam-
eters, which can result in heavy demands on computing 
resources. In general, object detection tasks of self-driv-
ing vehicles have strict latency constraints and infer-
ence accuracy requirements. Hence it is challenging for 
resource-constrained vehicle terminals to perform such 
computationally-intensive tasks.
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Benefiting from MEC technology, vehicle-to-every-
thing (V2X) cellular telematics are growing exponen-
tially. V2X aims to enable vehicle-to-vehicle (V2V) [10, 
11], vehicle-to-infrastructure (V2I) [12], and vehicle-
to-network (V2N) [13] communications to support the 
efficient processing of terminal tasks by offloading all or 
part of them to the surrounding infrastructures. Edge 
devices can provide assistance for self-driving vehicles in 
executing object detection tasks, for example, by using a 
novel context-aware method [14] to accelerate the object 
detection speed or by extracting and compressing some 
regions of interest [15] to be sent to the edge cloud. 
These methods transfer the object detection tasks to 
edge clouds or cloud centers, which can effectively allevi-
ate local computational pressures; however, these meth-
ods excessively rely on edge servers, which are prone to 
network congestion under the influx of a large number 
of tasks. Once the wireless network state deteriorates, 
it is difficult to guarantee task execution efficiency. In 
addition, compressing image to ensure that the detec-
tion results are transmitted back within a specified time, 
which will inevitably lead to a loss in detection accuracy.

To improve the efficiency of object detection while 
ensuring accuracy, we need to work out a more intelli-
gent end–edge collaboration approach to cope with the 
time-varying wireless environment and complex traffic 
conditions. In this paper, we propose an end–edge col-
laboration object detection approach based on DRL to 
generate task offloading and local computing resource 
allocation strategies. According to time–varying wire-
less network environment and road traffic conditions, the 
approach can maximize the average sum of the time utili-
ties for each object detection task in all slots. The main 
contributions of this work are summarized as follows:

• To achieve efficient object detection tasks for self-
driving vehicles without sacrificing accuracy, we 
formulate a mixed integer non-linear programming 
(MINLP) problem to jointly optimize the task off-
loading and local computing resource allocation 
strategies. Specifically, detection tasks are offloaded 
to edge servers and completed with the maximize 
the average sum of the time utilities without losing 
accuracy. As far as we are concerned, previous stud-
ies only focus on one of these aspects.

• We propose an online approach based Deep Rein-
forcement learning and Piecewise Linearization 
(DRPL) to solve the MINLP problem mentioned 
above. In this approach, the MINLP problem is 
decomposed into an offloading strategy subproblem 
and a resource allocation subproblem.

• We develop a prioritization mechanism in accord-
ance with vehicle navigation commands and histori-

cal object detection results to adapt to complex road 
traffic environment. In addition, to speed up the 
DRPL algorithm, we group the deep neural network 
(DNN) outputs by cameras and expand them to form 
candidate offloading strategies via permutation.

The remaining parts of this paper are organized as fol-
lows. In Related work section, we review the related 
work. In System model and problem formalization sec-
tion, we describe the system model and formalize the 
problem. In The DRPL algorithm section, we present 
the detailed design of the DRPL algorithm. In Numeri-
cal results analysis section, we report numerical results. 
Finally, we conclude the paper.

Related work
Edge computing technology can provide services as close 
as possible to the device or data source by means of an 
open platform that integrates core networking, comput-
ing, storage, and application capabilities. Such technol-
ogy can reduce the energy and resource consumption of 
terminal devices while responding quickly to terminal 
requests and meeting real-time needs.

Edge computing technology
Edge computing technology is of great importance and 
has attracted extensive research attention. Some recent 
research works have focused on different application 
scenarios. For example, in terms of unmanned aerial 
vehicles (UAVs), Nan et  al. [16] studied the problem of 
joint task offloading and resource allocation for vehicu-
lar edge computing with result feedback delay. Gao et al. 
[17] investigated the problem of joint task offloading, task 
scheduling, and resource allocation in vehicle edge com-
puting, and the fast changing channel between a vehicle 
and an edge server to minimize the delay and energy 
consumption of vehicular edge computing. Deng et  al. 
[18] took DNN as the typical AI application and formu-
lated an optimization problem that optimizes the DNN 
model decision, computation, communication resource 
allocation, and UAV trajectory control. Zhou et  al. [19] 
proposed a gradient-based dynamic iterative search 
algorithm to obtain the approximate optimal solution. 
In terms of wireless powered mobile edge computing, 
Mao et  al. [20] investigated the fundamental tradeoff 
between energy efficiency and delay in a multi-user wire-
less powered MEC system. They filled the gap by jointly 
scheduling energy, radio, and computational resources 
to coordinate heterogeneous performance require-
ments in wireless powered MEC systems. Chen et  al. 
[21] presented an augmented two-staged deep Q-net-
work for online optimization of wireless power transfer 
MEC systems to minimize the long-term average energy 
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requirement of the systems. Deng et  al. [22] proposed 
a dynamic throughput maximum algorithm based on 
perturbed Lyapunov optimization to maximize the sys-
tem throughput under task and energy queue stability 
constraints.

While some research work has focused on the design 
of network resource scheduling or computation offload-
ing algorithms with various optimization objectives. Mao 
et  al. [23] proposed utilizing the intelligent reflecting 
surfaces technique to improve the efficiency of wireless 
energy transfer and task offloading in order to achieve 
a higher total computation rate. Shnaiwer et  al. [24] 
designed new methods for jointly optimizing the reflec-
tion coefficients of intelligent reflecting surfaces and 
path selection. They presented a general mathemati-
cal formulation for the problem of minimizing the total 
energy consumption of the system. Song et al. [25] pro-
posed a computation offloading scheme and a dynamic 
road network state update model for proximity detection 
in dynamic road networks, aiming to efficiently reduce 
the computational time of the optimal latency each time. 
Zhou et  al. [26] proposed a novel deep reinforcement 
learning-based computation offloading and service cach-
ing mechanism to jointly optimize the offloading deci-
sion, service caching, and resource allocation strategies. 
The aim is to minimize the cost while ensuring the delay 
requirements of mobile users.

However, the aforementioned studies are lacking in the 
context of self-driving object detection, despite the wide 
range of application scenarios and the variety of target 
problems being addressed.

Edge computing technology‑based visual object detection 
methods for self‑driving vehicles
The boom in edge computing has simultaneously led 
to significant growth in self-driving technology [27]. 
Recently, researchers have started to investigate edge 
computing methods to assist in self-driving object detec-
tion. Guo et  al. [14] collected contextual information 
(weather, time, traffic, etc.) from the current road envi-
ronment and combined these contextual features with 
the visual features of images on the MEC server. Kim 
et al. [15] deployed object detection networks on an edge 
server. When the channel quality was not sufficient to 
support real-time object detection, the self-driving vehi-
cles compressed the image data based on the regions of 
interest and transmitted the compressed data to the edge 
cloud. However, the above mentioned studies of edge-
computing-assisted object detection for self-driving vehi-
cles have certain limitations: the self-driving vehicles rely 
too much on the edge servers, ignoring the time-varying 
wireless transmission environment; moreover, compress-
ing images to speed up object detection may lead to loss 

of key traffic information and affect the object detec-
tion accuracy. Hence, developing an efficient, accurate 
and intelligent object detection approach is still an open 
problem.

DRL‑based task offloading methods
The DRL algorithm observes the surroundings in real 
time and relies on deep neural networks (DNNs) to learn 
from the training data samples. It eventually produces 
the optimal mapping from the time-varying state space 
[28] to the action space [29]. A number of works have 
recently begun to investigate how to use DRL to make 
task offloading strategies for mobile terminals. To cope 
with the joint optimization problem of computation off-
loading and resource allocation in MEC, Chen et al. [30] 
proposed a temporal attentional deterministic policy gra-
dient based on deep Q-network (DQN). Aiming at trust 
issues for service migration in vehicular edge computing, 
Ren et al. [31] designed a dynamic service offloading and 
migration algorithm based on A3C. To ensure the quality 
of internet of vehicles services, Hazarika et al. [32] pro-
posed a priority-sensitive task offloading and resource 
allocation scheme based on deep deterministic policy 
gradient (DDPG) and twin delayed DDPG algorithms. 
However, in our scenario, if we choose DQN-based net-
works, we may suffer from slow convergence when we 
take the time–varying wireless channel gains and traf-
fic conditions as the input state vector. Besides, because 
of its exhaustive search nature in selecting the action in 
each iteration, DQN is not suitable for handling prob-
lems with high-dimensional action spaces [33].

In this paper, based on deep reinforcement learning 
and piecewise linearization, we propose an end–edge 
collaboration object detection approach for self-driving 
vehicles, which can maximize the average sum of the 
time utilities for each object detection task in all slots. 
Moreover, to speed up our netwok, inspired by [34], we 
group the deep neural network (DNN) outputs by cam-
eras and expand them to form candidate offloading strat-
egies via permutation.

System model and problem formalization
As shown in Fig.  1, we consider a visual object detec-
tion problem for one self-driving vehicle with I cameras, 
denoted by I = {1, 2, 3, . . . , I} . I + 1 well-trained CNNs 
with the same structure are embedded, one in each cam-
era in I  and one in an edge server. At the same time, the 
vehicle terminal is equipped with a driving control sys-
tem (DCS), which is responsible for collecting wireless 
environment information and vehicle navigation com-
mand in each time slot j = {1, 2, 3, . . . ,N } , and generat-
ing corresponding task execution priorities in accordance 
with the object detection results of each camera in time 
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slot. Moreover, the DCS transmits the priority informa-
tion and wireless channel gain to DRPL on the edge side, 
and DRPL decides whether to execute locally or offload 
the output of logical block in the detection network of in-
vehicle camera i, to edge side as the input to logical block. 
At the same time, DRPL allocates the local computing 
resources of the vehicle terminal. Here we consider that 
the self-driving vehicle driving within the communica-
tion range of the edge server at all time slots. The nota-
tions we adopt are summarized in Table 1.

The priority of each in‑vehicle camera
The traffic conditions of self-driving vehicles are complex 
and rapidly changing, unexpected statuses may occur at 
any time and place. Moreover, the channel state between 
a vehicle terminal and the edge server also changes with 
variations in the transmission medium. Therefore, for a 
vehicle terminal with limited computing resources, effi-
cient and accurate detection of the surrounding environ-
ment is a great challenge. In this section, we develop a 
prioritization mechanism for each object detection task 
in accordance with the navigation commands in time slot 
j and the object detection results in time slot j − 1.

The impact of vehicle navigation commands on the execution 
priority of each task for every in‑vehicle camera
Different cameras in different parts of the self-driving vehi-
cle are mainly responsible for monitoring different ranges. 
For example, suppose that in a certain time slot, the navi-
gation command is to proceed directly ahead; then, the 

camera mainly responsible for monitoring the road envi-
ronment in front of the self-driving vehicle (such as detect-
ing the road, other surrounding, other vehicles, pedestrians 
and other targets) will be mobilized first, and its priority 
will be higher than that of the rest of the cameras.

The impact of object detection results on the execution 
priority of each task for every in‑vehicle camera
The self-driving traffic environment is ever-changing 
and unexpected conditions may occur at any time, so 
the vehicle needs to detect the surrounding environment 
always and make emergency operation in time. There-
fore, the priority of each camera should be determined 
not only taking into account the actual vehicle navigation 
commands, but also the road conditions.

We suppose that in time slot j, Xj
i objects are detected 

in the visual range of camera i. For each object x, x ∈ X
j
i , 

its features can be quantified as a six-tuple 
Z
j
i,x = Y

j
i,x,R

j
i,x,P

j
i,x,y,P

j
i,x,y,A

j,y
i,x, ǫ

j,y
i,x  , where Y j

i,x denotes 
the category of result Zj

i,x , R
j
i,x denotes the detection 

frame size of result Zj
i,x , P

j
i,x,y denotes the probability that 

result Zj
i,x belongs to category y when the object detec-

tion algorithm achieves correct detection, Pj
i,x,y denotes 

the probability that result Zj
i,x belongs to category y when 

the algorithm suffers from detection error, Aj,y
i,x denotes 

the score for result Zj
i,x corresponding to a dangerous 

object when it is determined to belong to category y, and 
ǫ
j,y
i,x denotes the threshold for result Zj

i,x corresponding to 
a dangerous object when it is determined to belong to 
category y.

Fig. 1 An offloading approach for object detection tasks based on end–edge collaboration
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In general, we can assume that the larger the detec-
tion frame size of the detected object, the higher dan-
ger level of it. However, in some complex and variable 
traffic environments (e.g., weather, light, and shading), 
even a well-trained object detection algorithm will 
inevitably produce detection errors. Figure  2 shows 
examples of object detection results against simple 
and complex backgrounds. The range of a detected 
object is represented by an orange rectangular box, 
and the probability value of the the detected object 
belonging to a certain category is shown above the 
rectangular box. Figure  2(a) shows detection result 
against a simple background. Since the object in this 
figure is clear and there is no interference from other 
factors, the precision is credible, and the framing of 
the object detection result is accurate. In contrast, 
in the scene with a complex background shown in 
Fig. 2(b), the black vehicle in the shadow of the sun is 
similar in color to its surroundings, while the vehicle 
in direct sunlight has characteristics similar to those 
of the white wall in its vicinity; in both cases, these 
similarities lead to detection errors. If we were to use 
the detection frame size as the only indicator to deter-
mine the danger level of an object, then the priorities 
of some tasks would be mismatched. So, we need to 
combine the detection frame size and the detection 
accuracy to make a joint judgment on the danger 
level of each object. In this paper, we propose to use 
the product of the detection frame size and the detec-
tion accuracy to express the danger level of an object, 
which is calculated as shown in Eq. (1).

where, considering the complexity of the traffic condi-
tions, E denotes the potential for the object detection 
algorithm to suffer from detection error. Referring back 
to the above, we can see that Pj

i,x,y denotes the probabil-
ity that result Zj

i,x belongs to category y when the object 
detection algorithm achieves correct detection, Pj

i,x,y 
denotes the probability that result Zj

i,x belongs to cat-
egory y when the algorithm suffers from detection error.

In any time slot j, if there is at least one object detec-
tion result for the camera i with a danger value larger 
than its danger threshold, i.e., A

j
i,x ≥ ǫ

j,y
i,x , ∃x ∈ X

j
i  , 

then the priority of the in-vehicle camera i is set to 
high. If there is no dangerous object is detected, i.e., 
A
j
i,x < ǫ

j,y
i,x , ∀x ∈ X

j
i  , the priority of each detection 

task is determined in accordance with the navigation 

(1)A
j,y
i,x = E × R

j
i,x × P

j
i,x,y + (1− E)× R

j
i,x × P

j
i,x,y,

Table 1 Notations

Notation Meaning

The object detection task of camera 
i in time slot j

The local computation size of task 
before offloading partition point v

The offload data size of task at parti-
tion point v

The delay tolerance of high-priority 
tasks

τL The delay tolerance of low-priority 
tasks

O
j
i The priority of task Sji

V The collection of alternative offload-
ing partition points

X
j
i

The number of objects included 
in the detection results of task

The detection result x of task Sji

Y
j
i,x The category of result Zji,x

R
j
i,x The detection frame size of result Zji,x

P
j
i,x ,y The probability that result Zji,x 

belongs to category y

A
j,y
i,x The score for result Zji,x correspond-

ing to a dangerous object when it 
is determined to belong to category 
y

The threshold for result Zji,x cor-
responding to a dangerous object 
when it is determined to belong 
to category y

f
j
i

The proportion of the local comput-
ing resources assigned to task Sji

r
j
i The data rate of transmitting task Sji 

to edge server

hj The channel gain in time slot j

t
j,v
i,l

The time cost of locally processing 
task Sji before partition point v

t
j,v
i,up

The time cost of offloading the fea-
ture data for task Sji at partition 
point v

t
j,v
i The total time cost for task Sji 

when offloading partition point v 
is selected

u
j,H
i,v

The time utility for high-priority task 
S
j
i when offloading partition

point v is selected

u
j,L
i,v

The time utility for low-priority task 
S
j
i when offloading partition

point v is selected

u
j
i The time utility for a task Sji of a cer-

tain priority in any time slot j
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command. The priority values for tasks determined to 
be of high priority are set to 1, and the rest are set to 0.

In summary, the rules for adjusting the priorities of 
object detection tasks belonging to each in-vehicle cam-
era are as follows: if no dangerous object is detected, the 
priority of each detection task is determined in accord-
ance with the navigation command; if any camera detects 
at least one dangerous object, the priority of that camera 
is set to high, and the priorities of the other object detec-
tion tasks of the remaining cameras are still determined 
in accordance with the navigation command. The details 
of the prioritization algorithm are given in Algorithm 1.

Algorithm 1 The priority determination algorithm 
for the in‑vehicle camerasThe task execution time utility 
model
In time slot j, the features of the object detection task of 
camera i can be represented by a four-tuple Sji

{

C
j
i,v ,M

j
i,v , τ

j
i ,O

j
i

} , 

where Sji denotes the object detection task of in-vehicle 
camera i in time slot j, Cj

i,v denotes the local computation 
size of task Sji before offloading partition point v, Mj

i,v 
denotes the data size of task Sji at offloading partition 
point v, τ ji  denotes the delay tolerance of task Sji , and Oj

i 
denotes the priority of task Sji . As the environment 
between the self-driving vehicle and the edge server 
changes, the wireless channel conditions change accord-
ingly. If the wireless link is available, the self-driving vehi-
cle can choose to offload object detection tasks to the 
edge server and can also receive the results from the edge 
server via the wireless link. Otherwise, for example, when 
the wireless channel suffers from deep fading, all object 
detection tasks must be executed locally. Here, we sup-
pose that the computational power of the edge server is 
much stronger than the self-driving vehicle, so we set the 
execution time on the edge server as a constant ϒ , and 
the time utility functions for tasks with different priori-
ties are shown as follows.

Local computing
We use tj,vi,l  to denote the local computing time of an 
object detection task before offloading partition point v, 
which can be calculated as shown in Eq. (2).

where FL denotes the computational resources of the 
vehicle terminal and f ji  denotes the proportion of the 
computational resources allocated to in-vehicle camera i 
in time slot j.

Edge computing
We use tj,vi,up to denote the time to transmit the feature 
data to the edge server at offloading partition point v. 
Here, we assume that the bandwidth is sufficient and 

(2)t
j,v
i,l =

C
j
i,v

f
j
i × FL

, ∀i ∈ I , j ∈ N , v ∈ V ,

Fig. 2 Detection accuracy against different backgrounds
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there is no need to allocate bandwidth among the in-
vehicle cameras. tj,vi,up and data transmission rate rji can 
be calculated as shown in Eqs. (3) and (4) respectively.

where hj denotes the channel gain in time slot j.
The total time for the object detection task Sji can be 

calculated as shown in Eq. (5).

Here, thanks to the ultra-low transmission latency in 
the context of 5G, we do not focus on the delay caused 
by data transmission failure. At the same time, we 
ignore the transmission time of the computation results 
from the edge server back to the vehicle terminal.

Time utility computation
The completion times of different-priority tasks have 
different impacts on the self-driving vehicle. Here, we 
set different time utility functions for different-priority 
tasks [35], which can be calculated as shown in Eqs. (6) 
and (7).

The time utility function of high-priority tasks can be 
written as follow:

The time utility function of low-priority tasks can be 
written as follow:

where τH and τL denote the delayed tolerance of high-pri-
ority and low-priority tasks.

Problem formulation
According to the tasks priorities, the average sum of 
the time utilities uji in a given time frame j is expressed 
as shown in Eq. (13).

(3)t
j,v
i,up =

M
j
i,v

r
j
i

, ∀i ∈ I , j ∈ N , v ∈ V ,

(4)r
j
i = B× log2(1+

P × hj

N0
), ∀i ∈ I , j ∈ N ,

(5)t
j,v
i = t

j,v
i,l + t

j,v
i,up + ϒ , ∀i ∈ I , j ∈ N , v ∈ V .

(6)u
j,H
i,v =



















log2(1+ τH −
C
j
i,v

f
j
j ×FL

−
M

j
i,v

B×log2(1+
P×hj
N0

)
)

t
j,v
i ≤ τH ,

−ϒH otherwise.

(7)

u
j,L
i,v =











ϒL t
j
i ≤ τL,

ϒL × e

−c(
C
j
i,v

f
j
i ×FL

+
M
j
i,v

B×log2(1+
P×hj
N0

)

−τL)

otherwise,

Here, we set Oj
i ∈ {0, 1} , where Oj

i = 1 denotes high 
priority, Oj

i = 0 denotes low priority, and aji denotes the 
offloading partition point for the object detection task 
of camera i in time slot j. In each time slot, we aim to 
maximize the average sum of the time utilities for each 
in-vehicle camera under a given channel gain and tasks 
priorities. The specific calculation are shown as follow:

In the set of constraints, constraint (10) guarantees 
that the sum of the proportions of vehicle terminal 
computing resources allocated to each in-vehicle cam-
era does not exceed 1. Constraints (11) ensures that the 
proportion of vehicle terminal computational resources 
allocated to any in-vehicle camera lies between 0 and 1. 
Constraints (12) makes sure that the offloading parti-
tion point for the object detection task of camera i in 
time slot j, i.e. aji , does not exceed the predetermined 
set of offloading partition points V for each in-vehicle 
camera.

Lemma 1 (Q1) is NP-hard.

Proof
We prove its NP-hardness by transforming the simplified 
form of (Q1) into an NP problem. �

Step 1: We first simplify the objective function as a lin-
ear function expressed as a closed form of f ji  and aji , i.e.:

where, g(f ji ) is an operation on f ji  , which we assume is 
known.

Step 2: The original question Qj
i is transformed as Q1’.

(8)
Q(hj ,O

j
i , f

j
i , a

j
i) =

1

N
×

N
∑

j=1

I
∑

i=1

u
j
i

=
1

N
×

N
∑

j=1

I
∑

i=1

O
j
i × u

j,H
i,v + (1− O

j
i)× u

j,L
i,v .

(9)(Q1) : Q̂(h
j
i,O

j
i) = max

f
j
i ,a

j
i

Q(hj ,O
j
i , f

j
i , a

j
i)

(10)s.t.

I
∑

i=1

f
j
i ≤ 1, j ∈ {1, 2, 3, . . . ,N },

(11)0 ≤ f
j
i ≤ 1,

(12)a
j
i ∈ {0, 1, 2, . . . ,V }.

(13)
Q
j
i(ω

j
i , f

j
i , a

j
i) =F

j
i (ω

j
i , f

j
i , a

j
i)

=ω
j
i × a

j
i × g(f

j
i ),
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It can be seen that Q1’ is a 0-1 backpack problem, 
which is a well-known NP problem. Since the simpli-
fied form of (Q1) is NP-hard, we can infer that (Q1) is 
NP-hard.

Problem (Q1) is a MINLP problem and is NP-hard 
[35–37]. However, once aji is determined, the number of 
unknowns decreases, and (Q1) becomes solvable. When 
a
j
i is determined, problem (Q1) can be transformed into 

problem (Q2):

Thus, problem (Q1) can be decomposed into two sub-
problems, i.e., the task offloading strategy problem and 
the resource allocation strategy problem (Q2), as shown 
in Fig. 3.

• Task offloading strategy: Intuitively, we need to 
search V I possible offloading strategies to find a satis-
factory one. However, due to the exponential growth 
of the search space, this method takes a long time to 
converge. We propose using a deep reinforcement 
learning based approach to assist in finding a reason-
able offloading strategy.

• Resource allocation strategy: In problem (Q2), the 
optimal allocation of the local computing resources is 
still a nonlinear programming problem. Therefore, we 
need to use the piecewise linearization method (PLM) 
to transform this problem into a linear programming 
problem and find its approximate solution.

(14)Q1′ : max
∑

i∈I ,j∈N

ω
j
i × a

j
i × g(f

j
i )

(15)s.t. (10), (11), (12).

(16)(Q2) : Q̂(h
j
i,O

j
i , a

j
i) = max

f
j
i

Q(hj ,O
j
i , f

j
i , a

j
i)

(17)s.t. (10), (11).

The main difficulty of solving problem (Q1) is handling 
the offloading strategy problem. Traditional optimization 
algorithms need to adjust the offloading strategy through 
multiple iterations, during which, the wireless environ-
ment and the road traffic are rapidly changing. It is very 
difficult to handle object detection tasks efficiently using 
such algorithms. To address the complexity problem, 
we propose a novel deep reinforcement learning based 
online offloading algorithm, DRPL, which can adapt well 
to time-varying environmental information to find a sat-
isfactory offloading strategy.

The DRPL algorithm
As mentioned in the previous section, to obtain the max-
imum average time utility, we must first obtain candidate 
offloading strategies with a DNN and then input them 
into (Q2) to determine the best local computing resource 
allocation strategy. Intuitively, we can compute V I fea-
sible offloading strategies through enumeration (each 
self-driving vehicle has I cameras, and each of them has 
V possible partition points). However, this brute force 
search is computationally intensive, especially when the 
local computing resources need to be frequently reallo-
cated due to time-varying channel gains and road traffic 
conditions, and it is difficult to obtain the object detec-
tion results efficiently. To address these problems, we 
propose DRPL, which can respond adaptively and quickly 
to the wireless and traffic environments.

Algorithm overview
The structure of the DRPL algorithm is illustrated in 
Fig.  4. We use a DNN as the fundamental network for 
generating candidate offloading policies, and we select 
the optimal strategy corresponding to the maximum time 
utility to participate in training in each time slot. Our 
goal is to derive an offloading strategy πj based on the 
channel gain hj and the execution priority of each object 

Fig. 3 The two-step optimization structure for solving (Q1)
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detection task Oj
i{i = 1, 2, . . . , I} in time slot j, denoted by 

πj :
{

hj ,O
j
i

}

→ a∗j .
Specifically, at the beginning of the first time slot, we ran-

domly set the internal DNN hyperparameters θ1 (i.e., the 
link weights between the hidden-layer neurons), and the 
DNN generates the first offloading strategy based on the 
channel state and the initial in-vehicle camera priority 
information (here, all cameras are set to low-priority in the 
first time slot by default). In time slot j ( j ≥ 2 ), the priority 
information which determined by the navigation command 
and the object detection results from time slot j − 1 , in 
combination with the current channel state is input into 
the DNN to obtain an initial vector âj . At this point, the 
internal DNN hyperparameters are updated to θj . We 
divide âj into I groups based on the different in-vehicle 
cameras. Each group contains V elements, and the sum of 
the probability values of the V elements in each group is 1. 
We separately select the k ′ elements in each group with the 
maximum probability values, thus obtaining K candidate 
offloading strategies (each offloading strategy has I dimen-
sions). We sequentially input the K candidate offloading 
vectors into (Q2) and select the offloading strategy a∗j  that 
corresponds to the maximum time utility value 
Q̂(h

j
i,O

j
i , a

∗
j ) . a

∗
j  is then combined with the state (hj ,O

j
i) to 

form the state–action pair 
{

(hj ,O
j
i), a

∗
j

}

 , which is added to 
the experience memory unit.

In a general time slot j, we randomly draw a batch of sam-
ples from memory to train the DNN, and its parameters are 
updated from θj to θj+1 . The new offloading strategy πj+1 
is then used for the next time frame. In time slot j + 1 , we 
generate offloading strategy a∗j+1 based on the new channel 

gain and the new in-vehicle camera priority information 
(hj+1,O

j+1
i ) observed by the DNN. Thereafter, with con-

tinued observations the environment and the repetition of 
these iterative operations, the strategies that the DNN gen-
erates gradually improve.

Offloading strategy generation based on grouping 
and expansion
The parameters of the DNN in time slot j are denoted by θj 
(here, the initial parameters θ1 are randomly assigned using 
the He initialization method. By inputting the channel gain 
hj and the priority information Oj

i into the DNN, we can 
obtain a vector âj with I × V  dimensions. The mapping 
relation is expressed as follows:

Here, we group the outputs âj based on the different 
cameras and add a softmax function to normalize the 
results before each group, such that the sum of the prob-
abilities of the V offloading partition points within each 
group will be 1.

However, if the number of selected offloading deci-
sion partition points V is larger than a certain value, this 
will lead to very small differences among the probabil-
ity in each group. If we select only the offloading deci-
sion partition point with the largest probability in each 
group during every training iteration, we will lose a great 
deal of information about other possible points. This will 
lead to slow convergence of the network, greatly increas-
ing the number of training rounds, consuming too much 
time and affecting the judgment ability of the network. 

(18)âj = Gθj (hj ,O
j
i), i = 1, 2, . . . ,N , âj ∈ [0, 1].

Fig. 4 DRPL-based offloading strategy generation and updating
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Therefore, we propose selecting the top k ′ candidate 
offloading partition points with the largest probability 
values within each group and combining them via per-
mutation to form K = k ′I offloading strategies. We then 
select the offloading strategy corresponding to the maxi-
mum time utility among these K candidate offloading 
strategies to participate in training in each time slot.

Piecewise linearization of the time utility function
As mentioned in the previous subsection, we need to 
input K offloading strategies into (Q2) sequentially to 
determine the local computational resource allocation 
policy by maximizing the task time utility value and then 
choose the corresponding best offloading policy a∗j  in 
each time slot.

Since the time utility function in this paper is a seg-
mentation function that is partially no-nconvex, the orig-
inal function needs to be transformed into a piecewise 
linear function to be solved. The PLM is commonly used 
to approximate complex nonlinear functions as piecewise 
ones; in this way, a complicated optimization problem 
can be transformed into a linear optimization problem 
[38, 39]. The segmentation points of the time utility func-
tion are transformed from a relationship between the 
delay tolerance τ ji  and the task execution time tji into a 
relationship with the local computing resource alloca-
tion policy f ji  . The time utility function uji is schemati-
cally plotted in Fig. 5. The specific steps of the PLM are 
as follows:

Step 1: We divide the local computing resource alloca-
tion proportion f (which lies in the interval [0,1]) into D 
segments, each corresponding to an interval of �f :

Step 2: For each segment d ∈ D , we connect (fd ,u
j
i(fd)) 

to (fd+1,u
j
i(fd+1)) and transform it into a linear function 

F
j
i,d , d ∈ {1, 2, . . . ,D} , i ∈ {1, 2, . . . , I} , j ∈ {1, 2, . . . ,N }.
Step 3: We use two sets of parameters, ϕj

i,d with 
d ∈ {1, 2, . . . ,D + 1} and θ ji,d with d ∈ {1, 2, . . . ,D} , and 
the following formulas to transform the original seg-
mented nonlinear function into a D-segment linear 
function:

(19)�f =
1

D
.

(20)
D
∑

d=1

θ
j
i,d = 1, ∀i ∈ I , j ∈ N ;

(21)f
j
i =

D+1
∑

d=1

ϕ
j
i,d × fd , ∀i ∈ I , j ∈ N ;

(22)
D+1
∑

d=1

ϕ
j
i,d = 1, ∀i ∈ I , j ∈ N ;

(23)u
j
i =

D+1
∑

d=1

ϕ
j
i,α × F

j
i,d(fd), ∀i ∈ I , j ∈ N ;

(24)ϕ
j
i,1 ≤ θ

j
i,1, ∀i ∈ I , j ∈ N ;

(25)
ϕ
j
i,d ≤ θ

j
i,d−1 + θ

j
i,d , 2 ≤ d ≤ D, ∀i ∈ I , j ∈ N ;

Fig. 5 Schematic diagram of the time utility function
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where ϕj
i,d ∈ [0, 1] is a weight associated with point fd and 

θ
j
i,d is a binary variable indicating whether f ji  falls within 

the d th segment.
Recall problem (Q2), by adding the new constraints 

given in Eqs. (20)–(28), we can obtain the following 
relaxed linear formulation (Q2’).

After piecewise linearization, the original nonconvex 
nonlinear problem (Q2) is transformed into a piece-
wise linear problem, which can be solved using CPLEX. 
CPLEX is a commercial optimization software package 
and widely used for solving mathematical programming 
problems, including linear programming, mixed integer 
programming, and quadratic programming, etc.

Offloading policy update
In the DNN training phase, the training samples are cor-
related with each other because the priority of each cam-
era is determined by the road condition information in 
consecutive frames. This may cause the offloading parti-
tion point selection algorithm to exhibit gradient descent 
in the same direction for a certain number of period of 
iterations in a row, and the training loss of the algorithm 
may not converge. To avoid this situation, we add an 
experience replay module to the algorithm to store past 
state–action pairs. In time slot j, the PLM is used to select 
the offloading actions a∗j  that corresponds to the maxi-
mum time utility among K candidate offloading strate-
gies. a∗j  , together with the state information (hj ,O

j
i) of 

that time slot, then forms a new training sample 
{

(hj ,O
j
i), a

∗
j

}

.
We use the experience memory unit to train the 

DNN by randomly selecting a batch of ξ training 
samples (hξ ,O

ξ
i ) from the state parts of the samples 

((hξ ,O
ξ
i ), a

∗
ξ , ξ ∈ �j) in the memory and feeding them 

into the DNN. Then, the results are compared with a∗ξ to 
calculate the cross-entropy, and the result is used as the 

(26)ϕ
j
i,D+1 ≤ θ

j
i,D, ∀i ∈ I , j ∈ N ;

(27)θ
j
i,d ∈ {0, 1}, ∀i ∈ I , j ∈ N ;

(28)0 ≤ ϕ
j
i,d ≤ 1, ∀i ∈ I , j ∈ N ,

(29)

(Q2
′) : Q̂(h

j
i ,O

j
i , a

j
i) = max

ϕ
j
i,d ,θ

j
i,d

Q(hj ,O
j
i , f

j
i , a

j
i)

∼= max

ϕ
j
i,d ,θ

j
i,d

1

N
×

I
∑

i=1

N
∑

j=1

D+1
∑

d=1

ϕ
j
i,α × F

j
i,d (fd )

(30)s.t. (20)− (28).

training loss Loss(θj) to train the DNN. The cross-entropy 
calculation formula is shown as follow:

where �j represents the set of time indexes selected from 
the memory unit.

Algorithm 2 The DRPL task offloading and resource allocation algo-

rithm based on end–edge collaboration

In summary, in every time slot, the priority status of 
each in-vehicle camera of the self-driving vehicle is deter-
mined based on its navigation commands and its object 
detection results from the previous time slot, and the pri-
ority information is fed into the DNN as state informa-
tion together with the channel gain for training. Then, we 
group the initial vector into several candidate actions and 
calculate the time utility values separately, select the 
action a∗j  corresponding to the maximum time utility, 
and then combine it with the state information 
{

(hj ,O
j
i), a

∗
j

}

 to obtain the current state–action pair, 
which is stored in the memory unit. Finally, the DNN 
iteratively learns from the stored state–action pairs to 
generate more reasonable offloading strategies over time. 
Here, due to the limited memory space, we set the DNN 
to learn only from the latest data samples generated from 
the offloading policy. For details, see Algorithm  2. Our 

(31)
Loss(θj) =−

1

|�j|

∑

ξ∈�j

((a∗j )
TlogGθj (hξ ,O

ξ
i )

+ (1− a∗j )
Tlog(1− Gθj (hξ ,O

ξ
i ))),
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algorithm does not involve any training or inference 
operations on the CNN. We mainly focuses on perform-
ing the inference of the DRL algorithm. We can easily 
obtain the computational complexity of our DRL model 
from formula FLOPs = (2× I − 1)× O . Here, I denotes 
the dimension of the input layer, O denotes the dimen-
sion of the output layer. For example, a four-layer struc-
tured DNN model: one input layer, two hidden layers, 
and one output layer. The number of neurons are 7, 160, 
80, 30. We can calculate that the computational effort of 
this model is about 30000FLOPs.

Numerical results analysis
In this section, we present the details of the experiments 
reported in this paper, including the setting of the in-
vehicle cameras, the parameters of the simulation experi-
ments, and the source of the training data. Here, we set 
the above parameters to closely approximate real-world 
traffic scenarios to the greatest extent possible. The 
experimental results are also analyzed and explained.

Experimental parameters
The in‑vehicle cameras
Here, we assume that the self-driving vehicle has six in-
vehicle cameras with views that collectively cover 360 
degrees around the vehicle, and each CNN in every cam-
era has five offloading partition points. The camera views 
including: the directly front, the left, the left front, the 

right, the right front, the left rear, the right rear, the directly 
rear to ensure all-round monitoring of the environment. 
The specific camera distribution is shown in Fig. 6.

The priority data for training the DNN
The vehicle navigation commands include directly ahead 
(DA), left turn/left front (L/LF), right turn/right front (R/
RF), left rear (LR), right rear (RR), and directly rear (DR). 
In accordance with Fig.  6, the correspondence between 
the navigation commands and the priority of each in-
vehicle camera is shown in Table 2.

Here, we consider four detection categories Y: pedes-
trian, car, truck, and bicycle. We assume that the prob-
ability of an object that appears on the road belonging to 
each of these four categories is 0.25. The ranges of pixel 
for the lengths and widths of the rectangular boxes cor-
responding to the detection results and their thresholds 
for each category are shown in Table 3.

Parameters of the simulation experiments
In this section, we use simulations to evaluate the DRPL 
algorithm. The simulation parameters used in the experi-
ments are listed in Table  4. The equipment used in our 
simulation is a laptop with the following parameters: the 
CPU is AMD Ryzen 7 5800H with Radeon Graphics, run-
ning at 3.20 GHz; the GPU is an RTX 3060 with 12GB of 
memory; the RAM size is 32.0 GB. In DRPL, we consider 
a fully connected DNN consisting of one input layer, two 

(a) (b) (c) (d)
Fig. 6 The distribution of the in-vehicle cameras and their fields of view. a The directly front. b he left / left front, the right / tight front. c The left 
rear, the right rear. d The directly rear

Table 2 In-vehicle camera priorities in accordance with different navigation commands (NCs)

Priority/NCs DA L/LF R/RF LR RR DR

High-priority 1,2,3 1,2,4 1,3,5 4,5,6 4,5,6 4,5,6

Low-priority 4,5,6 3,5,6 2,4,6 1,2,3 1,2,3 1,2,3
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hidden layers and one output layer, where the first and 
second hidden layers have 160 and 80 hidden neurons, 
respectively, and the output layer has 30 neurons.

Analysis of numerical results
In this section, we evaluate the performance of our pro-
posed DRPL algorithm through numerical simulations, 
which are divided into the following six topics for algo-
rithm validation: convergence validation; piecewise seg-
ments number validation; permutation base value k ′ 
validation; task execution time analysis; offloading strate-
gies and resource allocation results analysis; and the util-
ity comparison of DRPL with other offloading partition 
point selection algorithms.

Convergence validation
In Fig. 7, we plot the training loss function Loss(θj) and 
the average sum of the time utilities for DRPL. As shown 
in Fig.  7(a), the average sum of time utilities gradually 
converges under DRPL, and when the number of train-
ing rounds is ≥ 300 , the average time utility value exceeds 
0.17. Meanwhile, as shown in Fig. 7(b), the training loss 

gradually decreases and stabilizes at approximately 0.05, 
after which its fluctuation is mainly due to the random 
sampling of the training data.

We also investigate the effects of different hyperparam-
eters, including different learning rates, memory sizes, 
batch sizes, and training intervals, on the experimental 
convergence behavior. The effects of different training 
hyperparameters on the experimental results are shown 
in Fig. 8.

Figure 8(a) shows the convergence of the average time 
utility with different learning rates. When the learn-
ing rate is 0.1, the convergence of the time utility value 
reaches a local optimum. As the learning rate decreases, 
the time utility curve converges more slowly. Figure 8(b) 
shows the effect of different batch sizes on the conver-
gence of the average time utility. When the batch size is 
set to 32 or 64, the training process often cannot fully uti-
lize the abundance of data in the memory. On the other 
hand, when the batch size is too large, each iteration uses 
a large number of “old” data, which will greatly affect the 
network convergence performance. Figure 8(c) shows the 
effect of different memory sizes on the convergence of 
the average time utility. The time utility converges more 
slowly when the memory size is either too small or too 
large. In particular, when the memory size is equal to 
1024, the DNN needs more training data to reach conver-
gences. Figure 8(d) shows the effect of different training 
intervals on the convergence of the average time utility. 
The larger the training interval is, the more slowly the 
network converges; however, the training interval does 
not affect the final converged utility value.

Table 3 Pixel values of the rectangular detection boxes for each 
type of object

Category Pixel ranges Thresholds

Pedestrian width [30,50], length [100,200] width 45, length 115

Car width [180,220], length [180,400] width 210, length 350

Truck width [380,420], length [380,800] width 410, length 720

Bicycle width [20,200], length [180,220] width 170, length 215

Table 4 Simulation parameters

Parameter Meaning Value

B The bandwidth 11 MB/s

τH The execution delay tolerance of high-priority tasks 0.01 s

τL The execution delay tolerance of low-priority tasks 0.02 s

ϒH The utility constant for high-priority tasks 0.2

ϒL The utility constant for low-priority tasks 0.1

N0 The noise power 10−8

P The data transmission power 6 W

ϒ The computation time of the object detection task on the edge server 0.001s

FL The computing power of the vehicle terminal 1.08× 106 bytes/s

C
j
i,v The local computation size for task Sji at partition point v [0, 2000] bytes

M
j
i,v The data size of task Sji for offloading at partition point v [0,5] MB

E The potential for the object detection algorithm to suffer from detection error 0.02

P
j
i,x ,y

The probability that the object x belongs to category y when the object detection algorithm 
achieves correct detection

[0.85,1]

P
j
i,x ,y

The probability that the object x belongs to category y when the object detection algorithm suf-
fers from detection error

[0,0.85]
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The effect of the number of piecewise segments 
on the experimental results
In Fig. 9, we investigate the effect of different piecewise 
number on the experimental results. When the seg-
ment size is 2 or 5, the segmented curve does not fit the 
original function well, leading to poorer convergence 
results. As the segment size increases, the curve obtained 
through piecewise linearization (i.e., the curve of (Q2’)) 
more closely approaches the original utility curve (i.e., 
the curve of Eq. (13)), and once the segment size reaches 
a certain value, the time utility curve converges with basi-
cally the same trend. Considering the computational cost, 
we set the segment size to 10 in this paper.

Influence of the permutation base value on the experimental 
results
During the quantized expansion phase, we select the 
top k ′ offloading partition points with the maximum 
probability in each group for permutation, and feed 
the candidate offloading strategies obtained in this way 
sequentially into the linear planning block.

As shown in Fig. 10, when k ′ = 1 , we select only the off-
loading partition point corresponding to the maximum 
probability value in each group to form the offloading 
vector to participate in iterative network training. Since 
we update the network with only one offloading vector 
in each time slot, without providing any other option, 
many possibly better offloading solutions will be lost. So, 
it takes too many iterations for the network to converge. 
Therefore, we increase the value of k ′ appropriately. 

When the value is set to 2, the network convergence 
speed increases dramatically. However, when k ′ is further 
increased to 3, 4 or 5, the network convergence curves 
almost coincide. Considering that each increase in the k ′ 
value leading to an exponential increase in computation, 
we set k ′ = 2.

Analysis of task execution time
Figure  11 shows the object detection task execution 
time and the ratio of cameras with task execution times 
within their delay tolerance in each training step. Fig-
ure  11(a) shows the sum of the object detection task 
execution times within each camera of the self-driving 
vehicle for each training step. As the number of train-
ing steps increases, more appropriate offloading parti-
tion points are selected based on the channel state and 
the priority information, so that the task execution 
time decreases gradually. The task execution time fluc-
tuations as the channel state changes and the different 
offload partition points with different sizes of offloading 
data and local computation sizes. Figure 11(b) shows the 
ratio of cameras with task execution times within their 
delay tolerance in each training step. At the beginning 
of training, the network has not yet converged, and the 
offload partition points and computational resources 
allocated for each camera are not well adapted to the 
time-varying wireless and the traffic environment. As 
the network converges, the object detection tasks for 
the cameras are basically completed within their delay 
tolerance time.

Fig. 7 Convergence of the average utility and training loss values
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Analysis of offloading strategies and resource allocation 
results
We randomly select several time slots to further inves-
tigate the corresponding experimental results of task 
offloading and resource allocation after the neural net-
work has converged. As shown in Fig.  12(a), (b), and 
(c), we divide the selected experimental results into 
three groups in accordance with the channel gain h. 
Each block from left to right presents the information 
of cameras 1 to 6 in order. Among them, the numbers 
in white blocks indicate the execution priority of the 
object detection task. Colored blocks indicate the off-
loading partition points selected for the object detec-
tion task of each camera, and the numbers marked 
on the colored blocks indicate the proportions of the 

local computing resources allocated to each in-vehicle 
camera. We can see that when h is small, offloading 
tasks to the edge server will require more time, and it 
is preferable to execute high-priority tasks locally, as 
shown in Fig. 12(a). At the same time, according to the 
numbers on the colored blocks, the resource alloca-
tion strategy tends to allocate more resources to high-
priority tasks. When h is large, the data transfer time 
between the self-driving vehicle and the edge server is 
short. Then, the high-priority tasks are preferentially 
selected for offload execution, as shown in Fig.  12(c), 
and even when high-priority tasks are chosen to be 
locally executed, they are allocated more computing 
resources than low-priority tasks. When the h value is 
moderate, as shown in Fig. 12(b), the detection tasks of 

Fig. 8 Convergence of average utility under different typical hyperparameters
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Fig. 9 Convergence of the average utility with different numbers of piecewise linearized segments

Fig. 10 Convergence of the average utility with different permutation base values
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each in-vehicle camera are selected for offloading and 
resource allocation in accordance with the actual situ-
ation, with the goal of maximizing the task execution 
time utility value for each camera.

Comparative analysis of the execution time utility of different 
task offloading algorithms
To validate the effectiveness of DRPL, we have selected 
several representative algorithms for comparison.

• Edge computing [23]: In each time slot j, all object 
detection tasks of the in-vehicle cameras are 

offloaded to the edge server for execution, i.e., aji = 4 , 
i = 1, 2, . . . , I , j = 1, 2, . . . ,N .

• Local computing: In each time slot j, all object detec-
tion tasks of the in-vehicle cameras are executed 
locally, i.e., aji = 0 , i = 1, 2, . . . , I , j = 1, 2, . . . ,N .

• Greedy: In each time slot j, we select the parti-
tion point that contributes the most to maximize 
the average sum of time utilities for each object 
detection task in all slots. Here, we define the 
contribution degree at partition point v of cam-
era i as degreeji,v , which is calculated according to 
communication to computation ratio (CCR) [40]. 

Fig. 11 The sum of the tasks execution time and the ratio of cameras with task execution time within their delay tolerance in each training step

Fig. 12 Task offloading and resource allocation results under different channel states
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If the degreeji,v values are all less than 1, we select 
the offloading partition point corresponding to the 
minimum degreeji,v for the high-priority tasks, and 
the low-priority tasks for local computation. If the 
degree

j
i,v values are all greater than 1, the high-pri-

ority tasks perform the local calculation and the 
low-priority tasks select the partition point cor-
responding to the minimum degreeji,v for offload-
ing calculation. If both degreeji,v values greater than 
1 and less than 1 coexist, we calculate the farthest 
distance between the two parts of degreeji,v from 
1,i.e. djgreater and djless respectively, if djgreater > d

j
less , 

the situation is treated as if the degreeji,v values 
are all greater than 1, if djgreater < d

j
less , the case is 

treated as if the degreeji,v values are all less than 1.
• Random offloading: In this algorithm, we randomly 

select local or offloaded calculation for the detection 
task of each in-vehicle camera in each time slot.

In Fig. 13, we compare different offloading algorithms in 
terms of the average sum of time utilities for each object 
detection task in all slots under different sizes of local 
computing resources. Series 1 is the average time util-
ity with all computations offloaded, series 2 is the aver-
age time utility with all computations executed locally, 
series 3 is the average time utility with the greedy algo-
rithm, series 4 is the average time utility with the random 

offloading algorithm, and series 5 is the average time util-
ity with the DRPL algorithm proposed in this paper.

As seen in Fig.  13, since both the local computing 
resources and the wireless bandwidth are limited, if we 
select only local computing or offloaded computing, 
the average task execution time utility values are small 
and may even be negative when the abundance of local 
computing resources is sufficiently low. This indicates 
that even the high-priority tasks are not completed 
within their time delay tolerance. The greedy algorithm 
takes into account the time-varying wireless environ-
ment and obtains better time utility values. However, it 
does exploit the historical strategy experience. The off-
loading strategies chosen by the random algorithm are 
unstable; therefore, this algorithm is not effective. In 
contrast, DRPL produces offloading strategies which 
taking into account historical task offloading experi-
ence; consequently, it shows much better capabilities. 
We can see that under the different considered FL values, 
DRPL achieves improvements of 12.8% , 17.4% and 15.5% 
in average time utility compared to the task offloading 
method corresponding to the maximum average utility 
within each group.

Conclusion
In this paper, we propose DRPL for the object detection 
tasks of self-driving vehicles. We maximize the average 
sum of the time utilities for each object detection task 

Fig. 13 Comparisons of average utility performance for different offloading algorithms under different FL values
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in all slots. The proposed algorithm can make full use of 
historical task offloading experience, jointly with a PLM-
based local computing resource allocation strategy, and 
thus progressively improve a DNN to generate better 
offloading strategies. We also develop a priority deter-
mination mechanism based on the vehicle navigation 
commands and historical object detection results. Mean-
while, to speed up network convergence, we group the 
DNN outputs by cameras and expand them via permu-
tation. The DRPL algorithm well addresses the problem 
of object detection task offloading and local computing 
resource allocation for self-driving vehicles in complex 
traffic scenarios. Numerical results show that DRPL obvi-
ously superior effectiveness compared with the tradi-
tional algorithm schemes.

In this paper, we have explored the problem of task 
offloading and resource allocation for one self-driving 
vehicle. However, the proposed DRPL approach is also 
applicable to multiple self-driving vehicles. In future 
work, we will use actual traffic and wireless environment 
data to further validate our experiments. Additionally, 
we will explore training acceleration algorithms for DRL 
network models to ensure the timeliness of our proposed 
approach in practical scenarios as much as possible.
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