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Abstract 

With the increase development of Internet of Things devices, the data-intensive workflow has emerged as a new 
kinds of representation for IoT applications. Because most IoT systems are structured in multi-clouds environment 
and the data-intensive workflow has the characteristics of scattered data sources and distributed execution require-
ments at the cloud center and edge clouds, it brings many challenges to the scheduling of such workflow, such 
as data flow control management, data transmission scheduling, etc. Aiming at the execution constraints of business 
and technology and data transmission optimization of data-intensive workflow, a data-intensive workflow sched-
uling method based on deep reinforcement learning in multi-clouds is proposed. First, the execution constraints, 
edge node load and data transmission volume of IoT data workflow are modeled; then the data-intensive work-
flow is segmented with the consideration of business constraints and the first optimization goal of data transmis-
sion; besides, taking the workflow execution time and average load balancing as the secondary optimization goal, 
the improved DQN algorithm is used to schedule the workflow. Based on the DQN algorithm, the model reward 
function and action selection are redesigned and improved. The simulation results based on WorkflowSim show 
that, compared with MOPSO, NSGA-II, GTBGA and DQN, the algorithm proposed in this paper can effectively reduce 
the execution time of IoT data workflow under the condition of ensuring the execution constraints and load balanc-
ing of multi-clouds.
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Introduction
With the rapid development of Internet of Things (IoT) 
technology, the data that collected by various IoT devices 
are constantly generated and accumulated. Then the 
data-intensive applications are produced. However, the 
IoT devices have difficulty processing data-intensive 
applications locally due to the limited resources. It is 

difficult to provide all resources and schedule services for 
IoT users only by relying on a single cloud.

The IoT architecture composed of the center cloud 
and the edge clouds can be seen as multi-clouds [1]. 
For the data generated by the edge devices of the Inter-
net of Things, there are often corresponding storage 
devices in the edge cloud to meet the rapid response 
required by edge computing. However, due to the lim-
ited computing resources of the edge cloud, the center 
cloud is also needed as an important part to meet the 
processing requirements of massive data. The multi-
clouds are composed of the central cloud and the edge 
clouds, which complete multiple data-intensive work-
flow scheduling tasks. Different from the traditional 
workflow, the data-intensive workflow in the Internet 
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of Things environment has the characteristics of scat-
tered data sources, large data scale and distributed exe-
cution at the multi-clouds.

When executing this kind of workflow in multi-clouds 
environment, many factors such as business constraints 
about data privacy and long-distance data transmission 
should be considered. There are many challenges in the 
data flow control management and the data transmission 
scheduling.

The existing methods to solve data-intensive workflow 
scheduling mainly include cloud computing schedul-
ing strategy based on heuristic thought, cloud comput-
ing scheduling strategy based on segmentation thought 
and cloud computing scheduling strategy based on rein-
forcement learning [2]. The heterogeneous distributed 
resource environment of cloud computing and the par-
allel task structure of data-intensive workflow together 
form a large state space. The reinforcement learning has 
powerful decision-making ability when dealing with the 
complex space problem. Therefore, reinforcement learn-
ing is often used as a powerful means to solve scheduling 
problems in recent years [3].

However, applying reinforcement learning to solve the 
scheduling problem of data-intensive scientific work-
flow in cloud computing environment has the following 
difficulties:

On the one hand, the time and the cost of data-inten-
sive workflow mainly come from the link transmission 
process. The way to reduce the link loss is to reduce the 
data dependence among data centers, which usually 
requires the segmentation of workflow structure. On the 
other hand, the state set of workflow scheduling is com-
plex, and there is a problem of over-dimensionality. It is 
difficult to store all reward values in the form of a table. 
It is solved by generalization of state vectors by neural 
network, and the state values are extracted by deep rein-
forcement learning (DRL) technology, so as to achieve 
the goal of dimensionality reduction.

Therefore, this paper proposes a data-intensive work-
flow scheduling method based on deep reinforcement 
learning in multi-clouds. The contributions of this paper 
are summarized as follows:

(1) In order to deal with the scheduling problem of 
data-intensive workflow, this paper proposes a 
method of workflow segmentation to reduce the 
data transmission between partitions which will be 
deployed in cloud center and edge cloud. By divid-
ing the original workflow into several blocks with 
similar scale and low data dependence, the algo-
rithm provides a certain environmental state model 
foundation for the deep reinforcement learning 
scheduling algorithm in the subsequent chapters.

(2) In this paper, deep neural network is introduced 
into reinforcement learning, and it is used to train 
reinforcement learning process. Based on the DQN 
algorithm, the idea of bias correction is introduced 
to calculate the variance of the current state reward 
to solve the problem of overestimation of Q value. 
In addition, the reward function is improved so that 
the workflow scheduling results converge to a stable 
correlated equilibrium policy.

(3) Finally, the open source WorkflowSim simula-
tion environment is used to evaluate the proposed 
method. Compared with the traditional workflow 
scheduling method, the experimental results show 
that the proposed method can effectively improve 
the workflow execution time and load balancing.

The rest of this paper is organized as follows. The sec-
ond section introduces the related work of this paper. 
In the third section, the related definitions involved in 
scheduling method and the segmentation method of 
data-intensive workflow are given. In the fourth section, 
the detailed method of workflow scheduling strategy is 
designed. Then, in the fifth section, the effectiveness of 
this method is verified by experiments based on Word-
flowSim simulation environment. Finally, the sixth sec-
tion summarizes the full text.

Related work
The algorithm based on heuristic idea can efficiently 
find the approximate optimal solution of the work-
flow scheduling problem in cloud computing, and it is 
the mainstream type of cloud computing scheduling 
method in recent years. The basic prototypes are ant 
colony optimization (ACO), particle swarm optimiza-
tion (PSO), genetic algorithm (GA), etc. [4]. Literature 
[5] puts forward the earliest completion time algorithm 
(HEFT), which is a constructive heuristic algorithm. The 
algorithm first sets the priority of each task in the work-
flow based on the average execution cost and the average 
transmission cost. Then allocates resources for the tasks 
according to the task priority and the earliest comple-
tion time of the task on the virtual machine. Literature 
[6] puts forward the big cuckoo algorithm, which imi-
tates cuckoo’s sojourning behavior. It aims at minimiz-
ing the turnaround time and maximizing the resource 
utilization rate. However, this algorithm fails to take 
into account the interaction of big data and is not suit-
able for data-intensive workflow. Literature [7] puts for-
ward a multi-objective artificial bee colony algorithm, 
which is a swarm intelligence algorithm that can reduce 
energy consumption, execution time and cost respec-
tively and improve resource utilization, but it does not 
discuss mutually exclusive performance indicators, such 
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as execution time and overall cost, and provides a com-
promise solution. Literature [8] puts forward a hybrid 
particle swarm optimization (PSO) HEFT algorithm, 
which focuses on solving the problem of high energy 
consumption in the process of workflow scheduling in 
cloud computing system, and it can obtain a scheduling 
solution that balances the scheduling quality and energy 
consumption, but this algorithm is not suitable for deal-
ing with scientific workflow scheduling problems ori-
ented to data flow. This kind of algorithm can find the 
feasible solution under the constraint conditions, but 
because it can’t predict the deviation between the feasible 
solution and the optimal solution, the convergence speed 
is slow, and it often falls into the local optimal solution 
in the process of solving, so it is difficult to meet the task 
requirements of low latency.

When the workflow brings a heavy burden to the data 
link, researchers usually use graph segmentation to mini-
mize the data traffic between the blocks, so as to reduce 
the data coupling within the secondary workflow, thus 
reducing the link load between data centers [9]. There are 
two important principles for segmentation of workflow 
flow graph on cloud computing platform, one is to make 
the data dependency between segmented subgraphs as 
small as possible, which can give full play to the advan-
tages of distributed parallel computing of cloud com-
puting; The second is to make the scale of each block as 
balanced as possible, which can avoid the short-board 
effect of workflow and improve the system performance. 
Literature [10–12] offload computing-intensive tasks to 
the edge server or cloud for processing, which maximizes 
the quality of user experience under resource constraints. 
Literature [13] use cuckoo search (CS) to segment the 
workflow, and finally the decision tree is used to allo-
cate resources. Although this method can accelerate the 
iterative convergence and shorten the execution time, the 
selected fitness function can’t describe the segmentation 
result well.

In recent years, reinforcement learning is often used 
as a powerful means to solve scheduling problems. By 
using the excellent decision-making ability of reinforce-
ment learning to solve scheduling problems in com-
plex edge environments, the convergence speed can be 
accelerated by constantly correcting the deviation of 
feasible solutions and better solutions. Literature [14] 
uses Q-learning algorithm to match resources in online 
dynamic scheduling. This method is oriented to unre-
lated tasks and it can obviously shorten the average 
response time of tasks. However, it is not suitable for 
workflow problems with priority or dependence, and it 
is difficult to predict and classify the upcoming tasks. 
Literature [15] uses reinforcement learning method to 
optimize the scheduling of memory controller, which 

improves the running state of application and band-
width utilization. Finally, cerebellar neural network is 
used to reduce the dimension of state space, but it is not 
suitable for data-intensive workflow cloud scheduling. 
In literature [16], in order to improve the task process-
ing efficiency for Internet of Vehicles (IoV),the paper 
design a CORA algorithm and use the Markov decision 
process model for formulating the dynamic optimiza-
tion problem. In literature [17], the author developed 
a scheduling algorithm based on pointer network and 
reinforcement learning method. In the state set of the 
algorithm, parameters such as execution time, virtual 
machine failure probability, communication cost and 
associated tasks were defined, and a state neural net-
work based on these parameters was analyzed and con-
structed. Literature [18] uses the game-based method 
to offload the computing-intensive tasks to achieve the 
goal of minimizing user costs and maximizing server 
profits.

Due to the limitations of reinforcement learning itself, 
it can’t deal with the problem of high maintenance and 
continuity [19]. Deep learning method focuses on the 
expression of perception and input, and it is good at dis-
covering the characteristics of data. Because deep learn-
ing can make up for the shortcomings of reinforcement 
learning, deep reinforcement learning (DRL) uses deep 
neural network’s ability to capture environmental charac-
teristics and the decision-making ability of RL can solve 
complex system control problems, and it can use edge 
nodes as intelligent agents to learn scheduling strategies 
without global information about the environment. Aim-
ing at the data transmission overhead of data-intensive 
workflow, as well as the optimization objectives of work-
flow scheduling, such as execution time and load balance, 
etc., this paper studies the workflow scheduling algo-
rithm based on deep reinforcement learning.

Data‑intensive workflow segmentation method 
for Multi‑Clouds execute scheduling and related 
definitions
When dealing with data-intensive workflow, because the 
data link needs to transmit a large amount of data, the 
overall consumption mostly comes from the cost of data 
transmission [20]. In addition, the deployment positions 
of cloud-edge nodes are scattered in the edge cloud, and 
the dependencies among tasks of workflow are complex. 
In order to deal with the scheduling problem of data-
intensive workflow, this paper proposes a method of 
workflow segmentation to reduce the data transmission 
between partitions. Through the partition scheduling 
method based on constraints, the goal of minimizing the 
execution time of data-intensive workflow is achieved.
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Related definitions
Data transmission between tasks
In this paper, workflow is represented based on directed 
acyclic graph (DAG), in which nodes are composed of 
tasks and edges represent their dependencies. The work-
flow before segmentation is recorded as ODAG, as shown 
in Fig. 1:

ODAG = (T,E) , where t is the set of task vertices, and 
T = {T1,T2, ...,Tn} indicates that cloud workflow consists 
of n dependent tasks; E is a set of directed edges.
E = Ti, Tj , Dataij : Ti, Tj ∈ T ,(Ti,Tj ,Dataij) indi-

cates the dependency between tasks. Ti is the predeces-
sor of Tj , Tj is the successor of Ti , and Dataij indicates the 
amount of data transferred from Ti to Tj.

Data transmission between sub‑workflows
After the data-intensive workflow is divided, sub-work-
flows are formed, which are also described by directed 
acyclic graph, which is called SDAG. Each sub-workflow 
is regarded as a vertex, and the dependency among sub-
workflows is regarded as an edge.

Thus simplifying ODAG, as shown in Fig.  2. Write 
it as OG = (P,R) , where P is the set of sub-workflows, 
and P = {P1,P2, ...,Pm} indicates that the original work 

consists of m sub-workflows; R is the set of edges rep-
resenting the dependency among sub-workflows. 
R = {(Pi,Pj ,Dataij) : (Pi,Pj) ∈ P} . (Pi,Pj ,Dataij) repre-
sents the dependency relationship among sub-workflows, 
and Pi is the predecessor of Pj , which is the successor of 
Pj . Dataij represents the amount of data that the Pi passes 
to the the Pj.

Execution time
The data-intensive execution time before segmentation 
depends on the amount of data transmission and the 
computing power of node resources between its sub-
workflows Each sub-process will be assigned to a vir-
tual machine in a cloud center or edge node, and each 
sub-process has a start time and an end time, which are 
marked as sched(Pi) = (vmj , SPPi ,EPPi) , vmj indicate 
that sub-workflow Pi is executed on virtual machine of 
vmj . SPPi is the start time of Pi , EPPi is the end time of 
Pi . SPPi is determined by the time when all predecessor 
sub-workflows of Pi are executed and data is transmitted 
to the virtual machine where sub-workflow Pj is located. 
EPPi is the execution time of Pi and plus its start time 
SPPi , the formula is as follows:

Fig. 1 Original data workflow DAG

Fig. 2 Segmented data workflow ODAG
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EPPh is the end time of the precursor workflow Ph , 
Data(Phi)

b
 is the time when data is transmitted from Ph 

to Pi . b is the data transmission rate between nodes. 
work(Pi) is the instruction number of workflow Pi . Pvmj is 
the number of instructions processed per second for vmj . 
The time period from the first sub-workflow to the last 
sub-workflow is called the completion time of the whole 
IoT data workflow, so the completion time of the whole 
IoT data workflow is as follows:

Node load balance degree
Cloud and edge nodes, as the execution carriers of data-
intensive workflow, must ensure their stable and normal 
operation, and node load balancing can effectively guar-
antee the normal and stable operation of the whole sys-
tem [21]. Therefore, it is of great significance to ensure 
the load balancing of each node in the scheduling process 
for the stability of workflow execution. The load balanc-
ing is shown in Fig. 3. ni represents the computing node, 
and Pi represents the sub-workflow.

Compute resource node j (j = 1,2,…,K; K is the total 
number of resource nodes) to represent the frequency 
of the resource nodes executing sub-workflows, which 
is denoted by Nj . Assuming that each virtual machine in 
each compute node has the same computing power, the 
calculation formula of resource utilization of a single 
compute node is:

EPpi = SPPi +
work(Pi)

Pvmj

SPPi = max{EPPh +
Data(Phi)

b
: Ph ∈ pre(Pi)}

makespan = max
{

EPPh : Pi ∈ P
}

Here, it is expressed by the degree of equilibrium. In 
the process of optimization, the value of r needs to be as 
close to 1 as possible. In addition, in this paper, the aver-
age load of multiple computing nodes (cloud center and 
edge nodes), rN  is used as the optimization objective (n is 
the number of nodes).

Data‑intensive workflow segmentation algorithm
Business constraints
Business constraint refers to the data privacy protection 
constraint, that is, the data source or running scenario 
of the constrained task is fixed and must be executed on 
one or more specified nodes [22]. In this paper, based on 
business bundle, data-intensive workflow segmentation 
optimization and scheduling optimization are carried 
out. The locations in the scheduling range are one-hot 
encoding, and each geographical location is a string of 
length N, where N is the number of all locations, and only 
one number in the string is 1, and all other numbers are 
0, as shown in Fig. 4, ni represents the computing node, 
Pi represents the sub-workflow, and Di is the correspond-
ing dependent data. In this representation, if the position 
of the required data determines the position of the com-
puting task, the following formula must be satisfied:

Where locationdata is the position vector of the con-
strained data set and locationtask is the position vector 
corresponding to the data processing task.

r =

k
∑

j=1

Nj

K •maxNj

j≤k

× 100%

locationdata • locationtask = 1

Fig. 3 Node load balancing diagram
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Segmentation algorithm
Business constraints are the premise of segmentation 
location optimization. When the tasks of locationtask are 
equal, these tasks belong to the same set of constraints. 
On the basis of constraints, the following segmentation 
optimization algorithm is given, and the business con-
straint set is further optimized according to the data 
transmission volume to obtain a new task set.

The algorithm steps are as follows:

(1) Incorporate unconstrained tasks related to con-
strained tasks into constrained task sets: take the 
average value of internal data transmission in each 
constrained task set as a threshold value w of data 
transmission, and traverse unconstrained tasks in 
ODAG from tasks in constrained task sets. If the 
data transmission between two adjacent tasks is 
greater than the threshold value w, merge subse-
quent tasks into the constrained task set, and con-
tinue to traverse. If it is less than w, the traversal is 
finished. Traverse from the next constraint task set 
and repeat the above steps.

(2) The unconnected related unconstrained tasks form 
a new task set: traverse from the start node of 
ODAG, and form a new task set with continuous 
unconstrained tasks.

(3) Further optimizing the division position in the task 
set: if the task set is allowed to be scheduled to mul-

tiple service nodes, the set can be further divided 
into multiple sets according to the threshold W.

Data‑intensive workflow scheduling strategy
This paper presents a workflow scheduling method based 
on DQN algorithm. On the basis of DQN algorithm, 
the model reward function is redesigned and improved 
according to the characteristics of the research problem.

Multi‑objective optimal scheduling
In order to promote the development of multi-objective 
optimal scheduling method based on deep reinforcement 
learning, this paper puts forward the following assump-
tions [23]:

① Each task can only be performed by one cloud 
host;
② The running time of the task is the time interval 
between the start and end of the task;
③ The delay time of resource supply or cancellation 
is not considered;
④ Do not consider the delay time of transmission 
between tasks.

In this paper, two QoS indexes, namely the makespan 
of workflow and load balance, are considered. As the 
goal of cloud workflow scheduling, it is a bi-objective 

Fig. 4 Business constraint rules
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optimization problem. The goal of scheduling optimiza-
tion algorithm can be expressed as follows:

Among them, Twtotal is the execution time of IoT data 
workflow and Sltotal is the average load of the system; 
S(pi) is the constraint condition of the algorithm, and pi 
is the sub-workflow with business constraints and dcp is 
the service node assigned,rm is the resources required by 
sub-workflow pi on service node dcp.

These two optimization objectives are abstracted into 
two agents respectively, each agent is an agent based on 
DQN algorithm, and carries out adaptive learning and 
self-optimization process through interaction with the 
environment and other agents.

Workflow scheduling method based on improved DQN
DQN
DQN algorithm is a popular method in the field of deep 
reinforcement learning. Its main modules include: envi-
ronment module, loss function, experience replay mod-
ule and two neural networks with the same structure but 
different parameters, namely estimated value network 
and target value network [24].

The DQN algorithm learns the action value function 
Q* corresponding to the optimal strategy by minimizing 
the loss,

Among them, y is the objective Q function, and its 
parameters are updated periodically with the latest ones 
θ , which is helpful for stable learning.

DQN uses Q-table to store the Q values of each state-
action pair, and DQN uses neural network to extract 
complex features and analyze them to generate Q values 
[25]. The estimated Q value network is used to predict 
the estimated Q value. Its input comes from the latest 
parameters of the current environment, and the parame-
ters will be updated every iteration. θ is weight, Q∗(s, a|θ) 
is used to represent the output of the current estimated 
value network. The input parameters of the target Q 
value network are updated every once in a while. 
max
a′

(Q∗(s′, a′|θ−)) indicates the output of the target value 
network. The training goal of the neural network is to 
optimize the loss function constructed by these two Q 
values, and then update the parameters of the estimated 
Q value network by using the method of random gradient 
descent through back propagation. Every certain number 
of iterations, the parameters of the estimated Q value 

{

f (x) = min(Twtotal , Sltotal)
S(pi) = rm pi ∈ P, rm ∈ dcp

l(θ) = IEs,a,r,s′
[

(

Q∗(s, a|θ)− y
)2
]

y = r + δmax
a′

(

Q∗
(

s′, a′|θ−
))

network will be copied to the target Q value network reg-
ularly. To some extent, it reduces the correlation between 
the estimated Q value and the target Q value, making 
divergence or oscillation more impossible, thus improv-
ing the stability of the algorithm [26, 27].

The use of neural network module in DQN over-
comes the high-dimensional data disaster of single-agent 
reinforcement learning. and balances the contradic-
tion between exploration and utilization to some extent 
through the use of target value network, experience 
playback pool and exploration mechanism based on εO 
method.

DQN‑RL
In this paper, we propose a DQN method based on bias 
correction. Q-values are obtained from multiple histori-
cal online value network models and online value net-
work outputs. The variance of these multiple current 
state rewards is calculated, and then the bias correction 
term is calculated based on the variance and applied to 
the target Q-value formula, which solves the problem of 
Q-value overestimation to some extent.

The formula for calculating the target Q value in DQN 
is shown in the following equation:

The improved Q-value calculation formula:

In the above equation, rt shows the estimate of the tth 
immediate reward. θ shows the parameters of the saved 
historical online value network model. a shows the saved 
actions in the empirical data. B(s, a, r) is the modified 
bias correction term.

In multi-agent learning systems, it is usually faced 
with the challenges of difficult determination of learn-
ing objectives, unstable learning problems and coordina-
tion of processing. In this paper, the reward function is 
improved so that the workflow scheduling results con-
verge to a stable correlated equilibrium policy.

(1) State Space

The state space set in this paper is represented by a 
vector Vector = [s1, s2, ..., si, ..., sn] where n is the number 
of tasks in the workflow, the index in the vector repre-
sents the IDtid of each task, si is is an integer represents 
the state of the ith task, and -1 represents that the task 
has been executed. -2 means that the task can be exe-
cuted; -3 means that the predecessor node of the task 
has not been executed, that is, the execution conditions 

yt = rt + γ max
a

Q(st+1, a; θ
−)

yDQN−DL = rt + γ max
a

Q(st+1, a; θ
−)− B(s, a, r)
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are not met;0 ~ m represents being executed by the vir-
tual machine,and the value is the id of virtual machine 
[28].

(2) Reward function

A suitable reward function design can ensure the 
stability and convergence of the algorithm in multi-
agent learning scenarios. For the agent with maximum 
completion time, the reward function designed in this 
paper is as follows,

The reward function of load balancing is as follows,

The value ranges of the reward function of execution 
time w1 and the reward function of load balancing w2 
both fall within [0,1], which means that the execution 
time is updated to make the value of the increased exe-
cution time as small as possible, and the corresponding 
reward value is closer to 1; Otherwise, it approaches 
0. Similarly, the second formula represents that the 
smaller the added value of load balancing is, the more 
desirable its strategy is, and the closer its reward value 
is to 1; Otherwise, there is no reward and the value is 0.

(3) Action selection

In the process of reinforcement learning, the action 
with the largest Q value will be selected every time, 
which is to use greedy strategy to perform action selec-
tion [29, 30]. However, in the initial stage of reinforce-
ment learning, agents can’t master the Q value, so they 
need to explore and choose unknown actions in a ran-
dom way. After a period of learning, they can get a cer-
tain amount of Q value. However, at this time, whether 
to continue to explore unknown actions or make use of 
the current action with the largest Q value is the bal-
ance problem of exploration and utilization faced by 
reinforcement learning. In order to solve this problem, 
this paper uses the variable εO strategy, that is, at the 
beginning, s is set to be larger, such as 0.9, to give the 
model more opportunities to explore; With the increase 
of training rounds, the learning ability of the model 
becomes stronger, and the updated state action value 
becomes better. The value of s is gradually reduced, and 
the learned Q value is more used to choose the best 
behavior.

w1 = [
ETk ,i,j(a)− (makespan′ −makespan)

ETk ,i,j(a)
]3

w2 = [
ETk ,i,j(a)− (r′ − r)

ETk ,i,j(a)
]

Simulation analysis
Experimental data set
In this paper, CyberShake is used as the workflow for 
experiments. CyberShake workflow is usually used to 
process seismic data, and was originally used by South-
ern California Earthquake Center [31]. As shown in 
Fig. 5. Cybershake is a computation-intensive and data-
intensive workflow. The number of task nodes can be 
different, and it can also handle large data sets, which 
is very suitable for verifying the effectiveness of the 
algorithm proposed in this paper. And each color rep-
resents a different workflow.

Experimental environment and parameter setting
Experimental environment
Through the effective integration of workflow simula-
tion platform WorkflowSim and cloud computing envi-
ronment simulation platform CloudSim, the scheduling 
simulation of workflow in edge cloud is carried out, and 
the software development environment is JDK1.7.0; 
Hardware development environment is inter (r) core 
(TM) i7-5600 CPU @ 2.60ghz, and memory is 16 GB.

Data center and virtual machine configuration 
in WorkflowSim
The experiment was conducted in five data centers in 
different geographical locations, with the first four 
data centers representing four edge computing nodes 
and the remaining one representing the cloud comput-
ing center. Each data center in the first four data cent-
ers is equipped with one host, and the fifth data center 
is equipped with three hosts, as shown in Table 1. The 
parameter settings of edge nodes and cloud computing 
centers are shown in Table  2. At the same time, three 
types of virtual machines, 10 in each type, were ran-
domly allocated to five data centers (Table 3).

Parameter setting
Training parameter settings are shown in Table 4.

Comparison method
In this paper, MOPSO [32], NSGA-II [33] GTBGA 
[34] and DQN [35] are used as benchmark comparison 
algorithms.

(1) The GTBGA combines game theory and greedy 
strategy. Firstly, the tasks of different scientific 
workflows are divided into task packages that can 
be executed at different stages. The game between 
phased assignable tasks and available cloud hosts is 
balanced and matched. Because there are multiple 
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stages, and the scheduling process only considers 
the optimization of a single stage, it is greedy.

(2) The MOPSO is a multi-objective optimization algo-
rithm based on heuristics, combined with Pareto 
optimization technology. On the basis of PSO algo-
rithm, MOPSO added an external Archive and 

combined with special mutation operations to find 
the Pareto optimal solution set.

Fig. 5 CyberShake

Table 1 Configuration of five data centers

Data Center Number of 
hosts

Broadband Remark

Datacenter_0 1 1.5e7 Edge

Datacenter_1 1 1.5e7 Edge

Datacenter_2 1 1.5e7 Edge

Datacenter_3 1 1.5e7 Edge

Datacenter_4 3 0.75e7 Cloud

Table 2 Parameter configuration of edge nodes and cloud 
computing centers

Parameter Edge node Cloud node

Mips 3000 3000

Ram 1800 2048

Storage 10,000 10,000

BW 10,000 10,000

Table 3 Parameter configuration of virtual machines

Parameter 1 2 3

Size 1100 800 1100

Mips 512 512 512

Ram 1000 800 1200

Bw 1000 1200 800

Table 4 Parameter configuration of training

Parameters Value

Learning rate 0.002

Reward attenuation rate 0.9

Greed factor 0.7

Max 0.95

Growth rate 1e-5

Experience pool storage size 10,000

Minibatch 128

replace_target_iter 500

Activation function Relu

Hidden layer 7
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(3) NSGA-II is a multi-objective optimization algo-
rithm based on heuristics. NSGA-II is an improved 
algorithm based on NSGA, which ensures the 
diversity of solutions by using elite selection strat-
egy and crowding distance and does not have to rely 
on shared parameters.

(4) The DQN method combines Q Learning with deep 
learning, uses the deep network to approximate the 
action value function. And the DQN uses the expe-

rience playback mechanism and the target network 
to stabilize the training process.

Experimental results
To evaluate the effectiveness of the scheduling algorithm 
proposed in this paper, it is compared with MOPSO, 
NSGA-II, GTBGA and DQN. Then, the execution time 
of workflow and load balance of nodes are taken as 

Fig. 6 Comparison of execution time

Fig. 7 Comparison of load balancing



Page 11 of 12Zhang et al. Journal of Cloud Computing          (2023) 12:125  

optimization objectives. Comparative experimental 
results are shown in Figs. 6 and 7.

The comparison between this method and the baseline 
method in workflow execution time is shown in Fig.  6. 
The abscissa is the number of tasks. The ordinate is the 
execution time,and the unit is seconds.

As can be seen from Fig. 6, compared with DQN algo-
rithm, the makespan of workflow tasks deployed by 
DQN-DL algorithm saves 21% on average, 40% on aver-
age compared with MOPSO algorithm, 50% on average 
compared with NSGA-II algorithm and 57% on average 
compared with GTBGA algorithm. It can be seen from 
the graph that the method proposed in this paper has the 
shortest execution time, with the shortest execution time 
of 100, and the best effect.

The comparison between this method and the base-
line method in load balancing is shown in Fig.  7. The 
abscissa is the number of tasks, the ordinate is the degree 
of load balance, and the unit is rate. As can be seen from 
Fig.  7, compared with DQN algorithm, the load bal-
ance of workflow tasks deployed by DQN-DL algorithm 
has increased by 5% on average, by 11% compared with 
MOPSO algorithm, by 24% compared with NSGA-II 
algorithm and by 27% compared with GTBGA algorithm. 
To sum up, in the aspect of server load balancing of 
workflow tasks, the DQN-DL algorithm is better than the 
other four algorithms, thus better ensuring the stability 
of computing nodes.

In a word, the scheduling scheme given by the DQN-
RL algorithm proposed in this paper is far superior to 
other comparison algorithms in terms of the execution 
time of workflow and the load balance of nodes. All of 
them have such good performance, precisely because of 
the excellent performance of deep reinforcement learn-
ing in this large-scale decision-making problem, and its 
decision-making ability and the ability to find the opti-
mal solution are far superior to the traditional heuristic 
algorithm.

Conclusion
In the cloud-edge collaborative environment, IoT data 
workflow has a large amount of data and scattered data 
sources, so the data dependence among tasks of IoT data 
workflow is complex, and data transmission is inevitable 
during scheduling. This paper adopts the method based 
on deep reinforcement learning to optimize the multi-
objective scheduling of data-intensive workflows, first 
divides the data-intensive workflows, and then uses the 
improved DQN algorithm to schedule multiple work-
flows. Through the experimental evaluation, this method 
can effectively optimize the execution time of data work-
flow adjustment, effectively improve the service quality, 

and make the average load of each node more balanced, 
making the system work more stable.
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