
Yu and Duan Journal of Cloud Computing (2023) 12:129
https://doi.org/10.1186/s13677-023-00505-8

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

AI-empowered game architecture
and application for resource provision
and scheduling in multi-clouds
Lei Yu1 and Yucong Duan2*

Abstract

Current deep learning technologies used a large number of parameters to achieve a high accuracy rate, and the num-
ber of parameters is commonly more than a hundred million for image-related tasks. To improve both training speed
and accuracy in multi-clouds, distributed deep learning is also widely applied. Therefore, reducing the network scale
or improving the training speed has become an urgent problem to be solved in multi-clouds. Concerning this issue,
we proposed a game architecture in multi-clouds, which can be supported by resource provision and service sched-
ule. Furthermore, we trained a deep learning network, which can ensure high accuracy while reducing the number
of network parameters. An adapted game, called flappy bird, is used as an experimental environment to test our
neural network. Experimental results showed that the decision logic of the flappy bird, including flight planning,
avoidance, and sacrifice, is accurate. In addition, we published the parameters of the neural network, so other scholars
can reuse our neural network parameters for further research.

Keywords Deep neural network, Resource provision, Model data, AI-empowered application, Game in multi-clouds

Introduction
IoT users, virtual reality application developers, or game
platform operators just need to rent resources from the
cloud providers without maintaining the cloud system.
However, a single cloud may not have sufficient services
for applications in different regions, and the lonely cloud
sometimes has performance degradation. Therefore, it is
not a feasible way to rely solely on a single cloud to pro-
vide all resources and services for some users to avoid the
cloud provider lock-in.

The resource capacity of the cloud is different
and the service request arrivals are dynamic. Cloud

users will have bad quality of experience (QoE) if the
resources are not enough. To provide good QoE cost-
effectively in multi-clouds, an effective resource provi-
sion and service scheduling method is critical, which
will reduce network congestion or system crashes.
However, AI applications that are deployed on it
should change their architecture to better adapt to
multi-cloud scenarios.

Deep learning techniques are good at dealing with
complex and dynamic systems. It is common for deep
learning to have hundreds of millions of parameters
and hundreds of megabytes of storage space. Therefore,
it is an urgent problem to reduce the network size and
improve the training speed in multi-cloud. To solve this
problem:*Correspondence:

Yucong Duan
duanyucong@hotmail.com
1 Department of Computer Science, Inner Mongolia University, Hohhot,
China
2 Department of Data Science and Big Data Technology, Hainan
University, Haikou, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00505-8&domain=pdf

Page 2 of 8Yu and Duan Journal of Cloud Computing (2023) 12:129

(1) We trained a deep learning network, which can
ensure high accuracy while reducing the scale of
network parameters.

(2) We adapted a flappy bird game, which is originally
played by human beings, to build an evaluation
environment.

Through the mouse or the keyboard, players in the
game have two action options. One action is to make
the bird flap its wings, and the other action is to do
nothing. If the bird flaps its wings, it will experience
an upward force, which will cause an upward accelera-
tion, and the bird will fly upward. If the player does
nothing, the bird will fall to the ground due to gravity.
The flappy bird may touch both the upper and lower
pipes during flight. When it hits them, the game is
over and the flappy bird gets a negative payoff. The
purpose of the bird is to pass most pipes to get the
highest payoff. We trained a deep neural network to
enable computers freely choose between two actions
previously chosen by humans: the bird flaps its wings
or not at a given point in time. To increase the ran-
domness, we added random factors to the environ-
ment, such as the height of the pipes, the spacing
between the upper pipes and the lower pipes, and the
location of the pipes. However, the distance between
the two pipes in the horizontal direction is fixed, and
this fixed form does not affect the learning ability of
the neural network and the generalization ability of
the neural network.

Related works
Cloud computing has significantly promoted the altera-
tion of many industries [1]. Myers et al. [2] used cloud
resources by attaching the storage capacity and web
server. Service scheduling [3] in the multi-cloud envi-
ronment is a multi-constraint, multi-objective, and
multi-type optimization problem [4], where traditional
basic scheduling algorithms do not consider the real
load and linking status of the work node. The schedul-
ing problem is to find the optimal group of resources
satisfying multiple constraint objectives, which are
combinatorial optimization problems [5].

Panwar et al. [6] divided task scheduling into two
stages to reduce task time and improve cloud resource
utilization. Taking both the execution period and cost
into account, Chen et al. [4] modeled cloud scheduling

[7] as an optimization problem and proposed a multi-
objective ant colony system. George et al. [8] used the
Cuckoo Search algorithm for minimizing the compu-
tation time of tasks, while Ghasemi et al. [9] proposed
a scheduling method for minimizing the processing
time and transmission cost. Compared with tradi-
tional scheduling algorithms, heuristic algorithms
have a robust ability for optimization, but still have
slow convergence, and easily fall into local optimal
solutions.

Considering the dynamic nature of computing
resources and the heterogeneity of cloud platforms,
Deep Reinforcement Learning (DRL) shows continu-
ous decision-making ability [10] for resource allocation
and service scheduling policies in cloud environments
[11]. Cheng et al. [12] designed a scheduler combin-
ing resource and scheduling based on Deep Q-Learn-
ing, which reduced the energy consumption and the
task rejection rate in the cloud. Based on the Deep
Q-Learning algorithm, Wei et al. [13] proposed a QoS-
aware scheduling framework that can reduce the aver-
age response time of jobs under variable loads. Meng
et al. [14] designed an online server-side task sched-
uling algorithm by combining reinforcement learning
with DNN. Ran et al. [15] used the Deep Determining
Policy Gradient (DDPG) algorithm to find the optimal
task assignment structure. Zhang et al. [16] proposed
a multi-task scheduling algorithm based on deep rein-
forcement learning to reduce the completion time of
the job. Dong et al. [17] proposed an algorithm to vig-
orously schedule tasks that have priority associations
in the cloud manufacturing environment. For indus-
trial IoT, an AoI-aware energy control and computa-
tion offloading method [18] is proposed to enhance
intelligence.

Without discussing the related services and their
diversity, references [6, 11, 19] discussed a single
service type, while references [7, 20] just gave the
resource weight coefficients. References [16, 17]
did not consider the data transmission cost in the
scheduling process of composite services. References
[4, 10, 20, 21] did not take into account the service
scheduling parallelism. Although artificial intelli-
gence and game theory are well applied to this topic,
they are used in specific cloud environments [22].
In addition, we compared parts of the algorithms in
Table 1.

Page 3 of 8Yu and Duan Journal of Cloud Computing (2023) 12:129

AI‑empowered game architecture and application
The software components in one cloud application can
be wrapped by cloud services, and these cloud services
can be deployed in multi-clouds when a service regis-
tration component is ready. In addition, offloading and
resource allocation should be concerned in certain areas.
Figure 1 shows a deployment graph for multi-cloud
applications, where the gateways represent service regis-
trations (Zookeeper, Eureka, Nacos, or Consul). In addi-
tion, load balancing, fault handling, routing, etc. can be
added by Eureka, Ribbon, Feign, and Hystrix services.
The component of resource provision and service sched-
ule can be deployed in other network nodes.

Cloud applications including games can be divided
into multiple software components, and these soft-
ware components can be deployed in different places,
such as different servers in one cloud, or even in dif-
ferent clouds. Therefore, a distributed game theoreti-
cal and credibility-guaranteed approach [28] is suitable
for this purpose. Figure 2 shows an architecture of a
cloud game that is deployed in different clouds, where
each software component interacts with the other. This
architecture is suitable for more broad applications in
multi-clouds.

The player in our game controlled a flappy bird and
made it fly over obstacles made of pipes of different
lengths, avoid humans, and attack wolves. The game
ends when the flappy bird hits the pipe or falls to the
bottom of the screen. The flappy bird will obtain a posi-
tive payoff for each pipe it passes, and the player needs
to score as many points as possible.

Our method is based on reinforcement learning,
and Fig. 3 shows the method framework. The test
begins in the process of ‘Finish Train and Valida-
tion’. To reduce the number of neural network param-
eters, we adjusted the input layer and preprocessed
the input data. The neural network parameters are
trained on batches by replay buffers and a current
optimal strategy.

Algorithm 1 shows the process in each game
step: the first pipe will be removed if it is out of
the screen before the next blocker is shown. Then
we check if the bird, the human, the wolf, the
upper pipes, and the lower pipes crash by the func-
tion checkCrash (player, upperPipes, lowerPipes,
blocker). The function returns ‘hard’ if the player
collided with the ground or pipes and obtains dif-
ferent rewards.

Table 1 Summary

References Solved problem Process Advantage

[23] Action is of low importance in some states The advantages and disadvantages of state
and action, are respectively analyzed

Lessened the range of Q-value

[24] Overestimation Decomposing the max operation More stable training results

[25] Changed samples in experience replay Improved the experience buffer training
policy

Improved the performance of DDQN

[4] Optimized execution time and cost A pheromone update rule is designed Better global search ability

[6] Improved resource utilization, processing
cost, and transmission time

The task scheduling is performed in two
phases

Reduced makespan for tasks

[9] Optimized load balancing Each firefly flies towards a firefly that looks
brighter than itself

Reduced transmission cost of workflow

[13] Met the QoS requirements of users Learned from its experiences without prior
knowledge

Improved user satisfaction

[14] Delay-sensitive task scheduling Designed a reward function to reduce
the average timeout period of tasks

Improved the scheduling efficiency of server-
side tasks

[15] Model-free policy for continuous action Combines DPG and DQN continuous action space

[16] Scalable parallel tasks A fully connected layer and an output layer Improved task scheduling performance

[20] Reduced energy consumption Used the task priority to calculate the critical
resources of the task graph

Reduced energy consumption in the data
center

[26] Optimize multiple objectives Trained two DRL-based agents as scheduling
agents

Reduced the average job duration

[27] The efficiency of resource management Proposed a blacklist mechanism Converged quickly

Page 4 of 8Yu and Duan Journal of Cloud Computing (2023) 12:129

Algorithm 1.

Page 5 of 8Yu and Duan Journal of Cloud Computing (2023) 12:129

Fig. 1 Deployment graph for multi-cloud applications

Fig. 2 Architecture of cloud games

Page 6 of 8Yu and Duan Journal of Cloud Computing (2023) 12:129

Axis Aligned Bounding Boxes or Oriented Bounding
Boxes and Bounding Spheres are often used for collision
detections:

Experiments and data analysis
We trained the neural network by having Al and the
player play the adapted flappy bird game, and recorded
their actions during the game. Table 2 shows the parame-
ter settings for recording the data. In addition, the neural
network training process and data collection process are
shown in two videos.

Game data and analysis
The game speed, data collected speed, and neural net-
work training speed can be accelerated in many ways.
Parts of the game parameters are used to simulate a true
physical world. Notice that X and Y are screen coordi-
nates, and there is a relative movement between the bird
and the pipes:

(1)

Radius =
(xmax−xmin)

2+(ymax−ymin)
2
+(zmax−zmin)

2

2

Dist = ||Centera − Centerb||
Dist < Radiusa + Radiusb → intersect(a, b)

1. velocity along X of pipe, human, and wolves: -4
2. bird’s starting velocity along Y: 0
3. bird max velocity along Y or max descend speed: 10
4. bird min velocity along Y or max ascend speed: -8
5. bird downward acceleration: 1
6. bird acceleration on flapping: -9

The actions of Al were recorded. The neural net-
work training process and data collection process are
shown in two videos. Video 1 is divided into two parts.
The first part shows the results of our deep neural net-
work at the initial state of training. The results can be
directly watched through the game images. At this time,
the flappy bird flaps its wings at random, does not learn
some strategies, does not avoid people, and occasionally
attacks the wolf. The second part of the video shows the
results of the model of the trained neural network. This
model makes the bird avoid all pipes, the ground, and
the sky while ensuring that it only attacks wolves, not
humans. Under this situation, the flappy bird with the
current model is suicidal.

Model data of deep neural network
Table 3 shows that our neural network only needs to train
69,506 parameters to implement all the decision logic of
the flappy bird, including flight planning, avoidance, and

Fig. 3 Framework

Table 2 Parameters

Parameters Meanings

Gamma = 0.99 The decay rate of past observations

Observation = 320 Timesteps to observe before training

Batch = 320 Size of minibatch

Explore = 20,000 Frames over which to anneal epsilon

Initial_epsilon = 0.1 Starting value of epsilon

Final_epsilon = 0.0001 The final value of epsilon

Replay_memory = 50,000 Size of experiences

Frame_per_action = 1 Actions can be used per frame

Learning_rate = 1e-4 Learning rate

Actions = 2 Number of valid actions

Table 3 Model data summary

Total params: 69,506

Trainable params: 69,506

Non-trainable params: 0

Layer (type) Output Shape Param #

dense_1 (Dense) (None, 512) 3584

dense_2 (Dense) (None, 128) 65,664

dense_3 (Dense) (None, 2) 258

Page 7 of 8Yu and Duan Journal of Cloud Computing (2023) 12:129

sacrifice. This is a small neural network than neural net-
works that often require millions or hundreds of millions
of training parameters because we optimized the algo-
rithm and do not use Convolutional Neural Networks
(CNN). Comparing CNNs that take all information as
input, we found that human knowledge and elaborate
designing can significantly reduce the input size of the
neural network, and then reduce the whole size of the
neural network in the experiments. That is why our neu-
ral network is small and the training is extremely fast.

In addition, the following methods are used in the
neural network: Activation: relu, Loss: mse, Optimizer:
adam. The human and wolf in the lower pipe can be
regarded as two organisms blocking the progress of the
flappy bird. The neural network shown in video 2 trained
a cruel flappy bird. To achieve its goal of passing through
most pipes, the bird attacks any creature. The goal of
training the flappy bird is just to keep it from falling or
hitting the pipe, so we can see that it has already passed
through 410 pipes.

Interpreting the two systems
We added some game environment parameters. For
example, the spacing of pipes is random, and the other
randomness is reflected in the timing of the appearance
of humans and wolves. Therefore, the entire game envi-
ronment is uncertain, requiring a lot of time to debug the
game and deep learning modules.

The whole software system consists of two modules.
The first module is responsible for the game’s operation
and display, including the collision effect and animation
effect. And the other module is responsible for letting Al
play the game, which uses deep learning. Software bugs
generated by these two modules will affect each other,
causing a bug cycle, so debugging takes a certain amount
of time. However, there are many skills in the software
development process and the process of deep learning
and training. Using these skills can speed up software
development, system debugging, and training, which can
avoid endless bug cycles. Sometimes, game bugs slow
down deep learning, and even fail deep learning. Some-
times, deep learning bugs affect the game, so it is a mutu-
ally influencing system. Therefore, when readers reuse our
dataset, they need to use it in conjunction with the game.

Self‑control and explainable AI
Some scholars now believe that neural networks have a
rudimentary self-consciousness. Our neural network
also has some self-consciousness because it is composed
of three psychological components: self-awareness,
self-experience, and self-control, which are interre-
lated and mutually restricted. Self-awareness includes

self-perception, self-analysis, and self-criticism. Our bird
is written by program code. Without self-analysis and
self-perception, it cannot live longer in this virtual envi-
ronment. The second point of self-consciousness is self-
experience. Individuals can feel self-love, self-esteem, a
sense of responsibility, a sense of obligation, and a sense
of superiority. The third point of self-consciousness is
self-control. The main elements of self-control are self-
restraint and self-discipline. The strongest point of our
bird is self-control. Therefore, from the definition point
of view, our neural network already has a certain degree
of self-awareness. According to the design of the param-
eters of our neural network, an artificial agent can be
trained into a cold agent, a sentimental agent, or an agent
with morality, obligation, and self-love.

In video 1, we adjusted and optimized the neural net-
work parameters to create a new agent. The agent in
the face of different social groups has a certain sense of
self-consciousness and can make different judgments. In
other words, it can make different choices depending on
whether the blocker is a person or a wolf. It can choose
to commit suicide to save human life or sacrifice the wolf
so that the bird can live longer. In the latter case, we can
imagine that the bird carries important information and
the cost of passing on the information is the loss of a wolf
or the loss of all the wolves in the path.

Conclusion
Cloud applications including games can be divided
into multiple software components, and these soft-
ware components can be deployed in different clouds.
We proposed an architecture that is suitable for more
broad applications in multi-clouds, which can be sup-
ported by resource provision and service schedule. To
reduce the number of neural network parameters in
multi-clouds, we adjusted the input layer and preproc-
essed the input data. The neural network parameters
are trained on batches by replay buffers and a current
optimal strategy. Our method is based on deep rein-
forcement learning, while current deep reinforcement
learning technologies use a large number of param-
eters and the number of parameters is commonly
huge. To improve both training speed and accuracy in
multi-clouds, distributed deep learning is also widely
applied. An adapted game, called flappy bird, is used
as an experimental environment to test our neural
network. Experimental results showed that the deci-
sion logic is accurate. In addition, the results show that
our neural network only needs to train 69,506 param-
eters to implement all the decision logic of the flappy
bird, including flight planning, avoidance, and sacrifice
because we optimized the algorithm and do not use
Convolutional Neural Networks.

Page 8 of 8Yu and Duan Journal of Cloud Computing (2023) 12:129

Authors’ contributions
Y.L. and YC.D. wrote the main manuscript text and all authors reviewed the
manuscript.

Funding
This work was supported by Natural Science Foundation of Inner Mongolia
Autonomous Region (No. 2022MS06024), NSFC (No. 61962040), Hainan Prov-
ince Key R&D Program(ZDYF2022GXJS007,ZDYF2022GXJS010), Hainan Natural
Science Foundation(620RC561), Hainan Province Higher Education and Teach-
ing Reform Research Project(Hnjg2021ZD-3).

Availability of data and materials
The datasets generated for this study can be found here: sinacloud.net/
dump123/model.h5.
The two videos generated for this study can be found here:
video 1: https:// www. bilib ili. com/ video/ BV1eZ 4y1a7 MJ/.
video 2: https:// www. bilib ili. com/ video/ BV1u5 411Q7 rs/.

Declarations

Ethics approval and consent to participate
The research has consent for Ethical Approval and Consent to participate.

Consent for publication
Consent has been granted by all authors and there is no conflict.

Competing interests
The authors declare no competing interests.

Received: 5 December 2022 Accepted: 14 August 2023

References
 1. Chen Y, Hu J, Zhao J, Min G (2023) Qos-aware computation offloading in

Leo satellite edge computing for IoT: A game-theoretical approach. Chin
J Electron 33:1–12

 2. Myers TA, Chanock SJ, Machiela MJ (2020) Ldlinkr: An r package for rapidly
calculating linkage disequilibrium statistics in diverse populations. Front
Genet 11:157

 3. Chen Y, Zhao J, Wu Y, Huang J, Shen XS (2022) Qoe-aware decentralized
task offloading and resource allocation for end-edge-cloud systems: A
game-theoretical approach. IEEE Trans Mob Comput 21:1–17

 4. Chen Z-G, Zhan Z-H, Lin Y, Gong Y-J, Gu T-L, Zhao F et al (2019) Multiob-
jective cloud workflow scheduling: a multiple populations ant colony
system approach. IEEE Trans Cybern 49:2912–2926. https:// doi. org/ 10.
1109/ TCYB. 2018. 28326 40

 5. Chen Y, Zhao J, Hu J, Wan S, Huang J (2023) Distributed task offloading
and resource purchasing in NOMA-enabled mobile edge computing:
hierarchical game theoretical approaches. ACM Trans Embed Comput Syst

 6. Panwar N, Negi S, Rauthan MMS, Vaisla KS (2019) Topsis–pso inspired
non-preemptive tasks scheduling algorithm in cloud environment. Clust
Comput 22:1379–1396. https:// doi. org/ 10. 1007/ s10586- 019- 02915-3

 7. Fangzheng Liu, Jiwei Huang, Xianbin Wang (2023) Joint Task Offloading
and Resource Allocation for Device-Edge-Cloud Collaboration with Sub-
task Dependencies. IEEE Trans Cloud Comput. https:// doi. org/ 10. 1109/
TCC. 2023. 32515 61

 8. George N, Chandrasekaran K, Binu A (2016) Optimization-aware schedul-
ing in cloud computing. In: Proceedings of the International Conference
on Informatics and Analytics. Pondicherry India, pp 1–5

 9. Ghasemi S, Kheyrolahi A, Shaltooki AA (2019) Workflow scheduling in
cloud environment using firefly optimization algorithm. JOIV Int J Inf Vis
3:237–242. https:// doi. org/ 10. 30630/ joiv.3. 3. 266

 10. Orhean AI, Pop F, Raicu I (2018) New scheduling approach using reinforce-
ment learning for heterogeneous distributed systems. J Parallel Distributed
Comput 117:292–302. https:// doi. org/ 10. 1016/j. jpdc. 2017. 05. 001

 11. Liang J, Ma B, Feng Z, Huang J (2023) Reliability-aware task processing
and offloading for data-intensive applications in edge computing. IEEE
Trans Netw Serv Manage. https:// doi. org/ 10. 1109/ TNSM. 2023. 32581 91

 12. Cheng M, Li J, Nazarian S (2018) Drl-cloud: Deep reinforcement learning-
based resource provisioning and task scheduling for cloud service pro-
viders. In: IEEE 23rd Asia and South Pacific design automation conference,
Jeju, Korea (South). pp 129–134

 13. Wei Y, Pan L, Liu S, Wu L, Meng X (2018) Drl-scheduling: An intelligent
QoS-aware job scheduling framework for applications in clouds. IEEE
Access 6:55112–55125. https:// doi. org/ 10. 1109/ access. 2018. 28726 74

 14. Meng H, Chao D, Huo R, Guo Q, Li X, Huang T (2019) Deep reinforcement
learning based delay-sensitive task scheduling and resource manage-
ment algorithm for multi-user mobile-edge computing systems. In: 4th
International Conference on Mathematics and Artificial Intelligence,
Chengdu China. pp 66–70

 15. Ran L, Shi X, Shang M (2019) Slas-aware online task scheduling based on
deep reinforcement learning method in cloud environment. In: IEEE 21st
International Conference on High Performance Computing and Com-
munications; IEEE 17th International Conference on Smart City; IEEE 5th
International Conference on Data Science and Systems (HPCC/SmartCity/
DSS), Zhangjiajie, China. pp 1518–1525

 16. Zhang L, Qi Q, Wang J, Sun H, Liao J (2019) Multi-task deep reinforcement
learning for scalable parallel task scheduling. In: IEEE International Confer-
ence on Big Data (Big Data), Los Angeles, CA, USA. pp 2992–3001

 17. Dong T, Xue F, Xiao C, Li J (2020) Task scheduling based on deep
reinforcement learning in a cloud manufacturing environment. Concurr
Comput Pract Exper 32:e5654. https:// doi. org/ 10. 1002/ cpe. 5654

 18. Huang J, Gao H, Wan S, Chen Y (2023) AoI-aware energy control and com-
putation offloading for industrial IoT. Futur Gener Comput Syst 139:29–37

 19. Almezeini N, Hafez A (2017) Task scheduling in cloud computing using
lion optimization algorithm. Int J Adv Comput Sci Appl 8. https:// doi. org/
10. 14569/ ijacsa. 2017. 081110

 20. Xiaoqing Z, Yajie H, Chunlin A (2018) Data-dependent tasks reschedul-
ing energy efficient algorithm. In: IEEE 4th International Conference on
Computer and Communications, Chengdu, p 2542–2546

 21. Chen Y, Gu W, Xu J, Zhang Y, Min G (2023) Dynamic task offloading for
digital twin-empowered mobile edge computing via deep reinforcement
learning. In: China Communications. pp 1–12

 22. Huang J, Wan J, Lv B, Ye Q, Chen Y (2023) Joint computation offload-
ing and resource allocation for edge-cloud collaboration in internet of
vehicles via deep reinforcement learning. IEEE Syst J 17:2500–2511

 23. Wang Z, Schaul T, Hessel M, Hasselt H, Lanctot M, Freitas N (2016) Dueling
network architectures for deep reinforcement learning. In: International
conference on machine learning, New York NY USA. pp 1995–2003

 24. Van Hasselt H, Guez A, Silver D (2016) Deep reinforcement learning with
double q-learning”, Phoenix, Arizona USA. Proc. AAAI Conf. Artif. Intell.30,
pp 2094–2100

 25. Schaul T, Quan J, Antonoglou I, Silver D (2016) Prioritized experience
replay. In: International Conference on Learning Representations, San
Juan, Puerto Rico. https:// doi. org/ 10. 48550/ arXiv. 1511. 05952

 26. Islam MT, Karunasekera S, Buyya R (2021) Performance and cost-efficient
spark job scheduling based on deep reinforcement learning in cloud
computing environments. IEEE Trans Parallel Distrib Syst 33:1695–1710.
https:// doi. org/ 10. 1109/ tpds. 2021. 31246 70

 27. Liang S, Yang Z, Jin F, Chen Y (2020) Data centers job scheduling with
deep reinforcement learning. Advances in knowledge discovery and data
mining. Springer International Publishing, New York, pp 906–917

 28. Chen Y, Zhao J, Zhou X (2023) A distributed game theoretical approach
for credibility-guaranteed multimedia data offloading in MEC. In: Infor-
mation Sciences

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.bilibili.com/video/BV1eZ4y1a7MJ/
https://www.bilibili.com/video/BV1u5411Q7rs/
https://doi.org/10.1109/TCYB.2018.2832640
https://doi.org/10.1109/TCYB.2018.2832640
https://doi.org/10.1007/s10586-019-02915-3
https://doi.org/10.1109/TCC.2023.3251561
https://doi.org/10.1109/TCC.2023.3251561
https://doi.org/10.30630/joiv.3.3.266
https://doi.org/10.1016/j.jpdc.2017.05.001
https://doi.org/10.1109/TNSM.2023.3258191
https://doi.org/10.1109/access.2018.2872674
https://doi.org/10.1002/cpe.5654
https://doi.org/10.14569/ijacsa.2017.081110
https://doi.org/10.14569/ijacsa.2017.081110
https://doi.org/10.48550/arXiv.1511.05952
https://doi.org/10.1109/tpds.2021.3124670

	AI-empowered game architecture and application for resource provision and scheduling in multi-clouds
	Abstract
	Introduction
	Related works
	AI-empowered game architecture and application
	Experiments and data analysis
	Game data and analysis
	Model data of deep neural network
	Interpreting the two systems
	Self-control and explainable AI

	Conclusion
	References

