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Abstract 

Current deep learning technologies used a large number of parameters to achieve a high accuracy rate, and the num-
ber of parameters is commonly more than a hundred million for image-related tasks. To improve both training speed 
and accuracy in multi-clouds, distributed deep learning is also widely applied. Therefore, reducing the network scale 
or improving the training speed has become an urgent problem to be solved in multi-clouds. Concerning this issue, 
we proposed a game architecture in multi-clouds, which can be supported by resource provision and service sched-
ule. Furthermore, we trained a deep learning network, which can ensure high accuracy while reducing the number 
of network parameters. An adapted game, called flappy bird, is used as an experimental environment to test our 
neural network. Experimental results showed that the decision logic of the flappy bird, including flight planning, 
avoidance, and sacrifice, is accurate. In addition, we published the parameters of the neural network, so other scholars 
can reuse our neural network parameters for further research.
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Introduction
IoT users, virtual reality application developers, or game 
platform operators just need to rent resources from the 
cloud providers without maintaining the cloud system. 
However, a single cloud may not have sufficient services 
for applications in different regions, and the lonely cloud 
sometimes has performance degradation. Therefore, it is 
not a feasible way to rely solely on a single cloud to pro-
vide all resources and services for some users to avoid the 
cloud provider lock-in.

The resource capacity of the cloud is different 
and the service request arrivals are dynamic. Cloud 

users will have bad quality of experience (QoE) if the 
resources are not enough. To provide good QoE cost-
effectively in multi-clouds, an effective resource provi-
sion and service scheduling method is critical, which 
will reduce network congestion or system crashes. 
However, AI applications that are deployed on it 
should change their architecture to better adapt to 
multi-cloud scenarios.

Deep learning techniques are good at dealing with 
complex and dynamic systems. It is common for deep 
learning to have hundreds of millions of parameters 
and hundreds of megabytes of storage space. Therefore, 
it is an urgent problem to reduce the network size and 
improve the training speed in multi-cloud. To solve this 
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(1) We trained a deep learning network, which can 
ensure high accuracy while reducing the scale of 
network parameters.

(2) We adapted a flappy bird game, which is originally 
played by human beings, to build an evaluation 
environment.

Through the mouse or the keyboard, players in the 
game have two action options. One action is to make 
the bird flap its wings, and the other action is to do 
nothing. If the bird flaps its wings, it will experience 
an upward force, which will cause an upward accelera-
tion, and the bird will fly upward. If the player does 
nothing, the bird will fall to the ground due to gravity. 
The flappy bird may touch both the upper and lower 
pipes during flight. When it hits them, the game is 
over and the flappy bird gets a negative payoff. The 
purpose of the bird is to pass most pipes to get the 
highest payoff. We trained a deep neural network to 
enable computers freely choose between two actions 
previously chosen by humans: the bird flaps its wings 
or not at a given point in time. To increase the ran-
domness, we added random factors to the environ-
ment, such as the height of the pipes, the spacing 
between the upper pipes and the lower pipes, and the 
location of the pipes. However, the distance between 
the two pipes in the horizontal direction is fixed, and 
this fixed form does not affect the learning ability of 
the neural network and the generalization ability of 
the neural network.

Related works
Cloud computing has significantly promoted the altera-
tion of many industries [1]. Myers et al. [2] used cloud 
resources by attaching the storage capacity and web 
server. Service scheduling [3] in the multi-cloud envi-
ronment is a multi-constraint, multi-objective, and 
multi-type optimization problem [4], where traditional 
basic scheduling algorithms do not consider the real 
load and linking status of the work node. The schedul-
ing problem is to find the optimal group of resources 
satisfying multiple constraint objectives, which are 
combinatorial optimization problems [5].

Panwar et  al. [6] divided task scheduling into two 
stages to reduce task time and improve cloud resource 
utilization. Taking both the execution period and cost 
into account, Chen et al. [4] modeled cloud scheduling 

[7] as an optimization problem and proposed a multi-
objective ant colony system. George et al. [8] used the 
Cuckoo Search algorithm for minimizing the compu-
tation time of tasks, while Ghasemi et al. [9] proposed 
a scheduling method for minimizing the processing 
time and transmission cost. Compared with tradi-
tional scheduling algorithms, heuristic algorithms 
have a robust ability for optimization, but still have 
slow convergence, and easily fall into local optimal 
solutions.

Considering the dynamic nature of computing 
resources and the heterogeneity of cloud platforms, 
Deep Reinforcement Learning (DRL) shows continu-
ous decision-making ability [10] for resource allocation 
and service scheduling policies in cloud environments 
[11]. Cheng et  al. [12] designed a scheduler combin-
ing resource and scheduling based on Deep Q-Learn-
ing, which reduced the energy consumption and the 
task rejection rate in the cloud. Based on the Deep 
Q-Learning algorithm, Wei et al. [13] proposed a QoS-
aware scheduling framework that can reduce the aver-
age response time of jobs under variable loads. Meng 
et  al. [14] designed an online server-side task sched-
uling algorithm by combining reinforcement learning 
with DNN. Ran et al. [15] used the Deep Determining 
Policy Gradient (DDPG) algorithm to find the optimal 
task assignment structure. Zhang et  al. [16] proposed 
a multi-task scheduling algorithm based on deep rein-
forcement learning to reduce the completion time of 
the job. Dong et al. [17] proposed an algorithm to vig-
orously schedule tasks that have priority associations 
in the cloud manufacturing environment. For indus-
trial IoT, an AoI-aware energy control and computa-
tion offloading method [18] is proposed to enhance 
intelligence.

Without discussing the related services and their 
diversity, references [6, 11, 19] discussed a single 
service type, while references [7, 20] just gave the 
resource weight coefficients. References [16, 17] 
did not consider the data transmission cost in the 
scheduling process of composite services. References 
[4, 10, 20, 21] did not take into account the service 
scheduling parallelism. Although artificial intelli-
gence and game theory are well applied to this topic, 
they are used in specific cloud environments [22]. 
In addition, we compared parts of the algorithms in 
Table 1.
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AI‑empowered game architecture and application
The software components in one cloud application can 
be wrapped by cloud services, and these cloud services 
can be deployed in multi-clouds when a service regis-
tration component is ready. In addition, offloading and 
resource allocation should be concerned in certain areas. 
Figure  1 shows a deployment graph for multi-cloud 
applications, where the gateways represent service regis-
trations (Zookeeper, Eureka, Nacos, or Consul). In addi-
tion, load balancing, fault handling, routing, etc. can be 
added by Eureka, Ribbon, Feign, and Hystrix services. 
The component of resource provision and service sched-
ule can be deployed in other network nodes.

Cloud applications including games can be divided 
into multiple software components, and these soft-
ware components can be deployed in different places, 
such as different servers in one cloud, or even in dif-
ferent clouds. Therefore, a distributed game theoreti-
cal and credibility-guaranteed approach [28] is suitable 
for this purpose. Figure  2 shows an architecture of a 
cloud game that is deployed in different clouds, where 
each software component interacts with the other. This 
architecture is suitable for more broad applications in 
multi-clouds.

The player in our game controlled a flappy bird and 
made it fly over obstacles made of pipes of different 
lengths, avoid humans, and attack wolves. The game 
ends when the flappy bird hits the pipe or falls to the 
bottom of the screen. The flappy bird will obtain a posi-
tive payoff for each pipe it passes, and the player needs 
to score as many points as possible.

Our method is based on reinforcement learning, 
and Fig.  3 shows the method framework. The test 
begins in the process of ‘Finish Train and Valida-
tion’. To reduce the number of neural network param-
eters, we adjusted the input layer and preprocessed 
the input data. The neural network parameters are 
trained on batches by replay buffers and a current 
optimal strategy.

Algorithm  1 shows the process in each game 
step: the first pipe will be removed if it is out of 
the screen before the next blocker is shown. Then 
we check if the bird, the human, the wolf, the 
upper pipes, and the lower pipes crash by the func-
tion checkCrash (player, upperPipes, lowerPipes, 
blocker). The function returns ‘hard’ if the player 
collided with the ground or pipes and obtains dif-
ferent rewards.

Table 1 Summary

References Solved problem Process Advantage

[23] Action is of low importance in some states The advantages and disadvantages of state 
and action, are respectively analyzed

Lessened the range of Q-value

[24] Overestimation Decomposing the max operation More stable training results

[25] Changed samples in experience replay Improved the experience buffer training 
policy

Improved the performance of DDQN

[4] Optimized execution time and cost A pheromone update rule is designed Better global search ability

[6] Improved resource utilization, processing 
cost, and transmission time

The task scheduling is performed in two 
phases

Reduced makespan for tasks

[9] Optimized load balancing Each firefly flies towards a firefly that looks 
brighter than itself

Reduced transmission cost of workflow

[13] Met the QoS requirements of users Learned from its experiences without prior 
knowledge

Improved user satisfaction

[14] Delay-sensitive task scheduling Designed a reward function to reduce 
the average timeout period of tasks

Improved the scheduling efficiency of server-
side tasks

[15] Model-free policy for continuous action Combines DPG and DQN continuous action space

[16] Scalable parallel tasks A fully connected layer and an output layer Improved task scheduling performance

[20] Reduced energy consumption Used the task priority to calculate the critical 
resources of the task graph

Reduced energy consumption in the data 
center

[26] Optimize multiple objectives Trained two DRL-based agents as scheduling 
agents

Reduced the average job duration

[27] The efficiency of resource management Proposed a blacklist mechanism Converged quickly
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Algorithm 1. 
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Fig. 1 Deployment graph for multi-cloud applications

Fig. 2 Architecture of cloud games
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Axis Aligned Bounding Boxes or Oriented Bounding 
Boxes and Bounding Spheres are often used for collision 
detections:

Experiments and data analysis
We trained the neural network by having Al and the 
player play the adapted flappy bird game, and recorded 
their actions during the game. Table 2 shows the parame-
ter settings for recording the data. In addition, the neural 
network training process and data collection process are 
shown in two videos.

Game data and analysis
The game speed, data collected speed, and neural net-
work training speed can be accelerated in many ways. 
Parts of the game parameters are used to simulate a true 
physical world. Notice that X and Y are screen coordi-
nates, and there is a relative movement between the bird 
and the pipes:

(1)

Radius =
(xmax−xmin)

2+(ymax−ymin)
2
+(zmax−zmin)

2

2

Dist = ||Centera − Centerb||
Dist < Radiusa + Radiusb → intersect(a, b)

1. velocity along X of pipe, human, and wolves: -4
2. bird’s starting velocity along Y: 0
3. bird max velocity along Y or max descend speed: 10
4. bird min velocity along Y or max ascend speed: -8
5. bird downward acceleration: 1
6. bird acceleration on flapping: -9

The actions of Al were recorded. The neural net-
work training process and data collection process are 
shown in two videos. Video 1 is divided into two parts. 
The first part shows the results of our deep neural net-
work at the initial state of training. The results can be 
directly watched through the game images. At this time, 
the flappy bird flaps its wings at random, does not learn 
some strategies, does not avoid people, and occasionally 
attacks the wolf. The second part of the video shows the 
results of the model of the trained neural network. This 
model makes the bird avoid all pipes, the ground, and 
the sky while ensuring that it only attacks wolves, not 
humans. Under this situation, the flappy bird with the 
current model is suicidal.

Model data of deep neural network
Table 3 shows that our neural network only needs to train 
69,506 parameters to implement all the decision logic of 
the flappy bird, including flight planning, avoidance, and 

Fig. 3 Framework

Table 2 Parameters

Parameters Meanings

Gamma = 0.99 The decay rate of past observations

Observation = 320 Timesteps to observe before training

Batch = 320 Size of minibatch

Explore = 20,000 Frames over which to anneal epsilon

Initial_epsilon = 0.1 Starting value of epsilon

Final_epsilon = 0.0001 The final value of epsilon

Replay_memory = 50,000 Size of experiences

Frame_per_action = 1 Actions can be used per frame

Learning_rate = 1e-4 Learning rate

Actions = 2 Number of valid actions

Table 3 Model data summary

Total params: 69,506

Trainable params: 69,506

Non-trainable params: 0

Layer (type) Output Shape Param #

dense_1 (Dense) (None, 512) 3584

dense_2 (Dense) (None, 128) 65,664

dense_3 (Dense) (None, 2) 258
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sacrifice. This is a small neural network than neural net-
works that often require millions or hundreds of millions 
of training parameters because we optimized the algo-
rithm and do not use Convolutional Neural Networks 
(CNN). Comparing CNNs that take all information as 
input, we found that human knowledge and elaborate 
designing can significantly reduce the input size of the 
neural network, and then reduce the whole size of the 
neural network in the experiments. That is why our neu-
ral network is small and the training is extremely fast.

In addition, the following methods are used in the 
neural network: Activation: relu, Loss: mse, Optimizer: 
adam. The human and wolf in the lower pipe can be 
regarded as two organisms blocking the progress of the 
flappy bird. The neural network shown in video 2 trained 
a cruel flappy bird. To achieve its goal of passing through 
most pipes, the bird attacks any creature. The goal of 
training the flappy bird is just to keep it from falling or 
hitting the pipe, so we can see that it has already passed 
through 410 pipes.

Interpreting the two systems
We added some game environment parameters. For 
example, the spacing of pipes is random, and the other 
randomness is reflected in the timing of the appearance 
of humans and wolves. Therefore, the entire game envi-
ronment is uncertain, requiring a lot of time to debug the 
game and deep learning modules.

The whole software system consists of two modules. 
The first module is responsible for the game’s operation 
and display, including the collision effect and animation 
effect. And the other module is responsible for letting Al 
play the game, which uses deep learning. Software bugs 
generated by these two modules will affect each other, 
causing a bug cycle, so debugging takes a certain amount 
of time. However, there are many skills in the software 
development process and the process of deep learning 
and training. Using these skills can speed up software 
development, system debugging, and training, which can 
avoid endless bug cycles. Sometimes, game bugs slow 
down deep learning, and even fail deep learning. Some-
times, deep learning bugs affect the game, so it is a mutu-
ally influencing system. Therefore, when readers reuse our 
dataset, they need to use it in conjunction with the game.

Self‑control and explainable AI
Some scholars now believe that neural networks have a 
rudimentary self-consciousness. Our neural network 
also has some self-consciousness because it is composed 
of three psychological components: self-awareness, 
self-experience, and self-control, which are interre-
lated and mutually restricted. Self-awareness includes 

self-perception, self-analysis, and self-criticism. Our bird 
is written by program code. Without self-analysis and 
self-perception, it cannot live longer in this virtual envi-
ronment. The second point of self-consciousness is self-
experience. Individuals can feel self-love, self-esteem, a 
sense of responsibility, a sense of obligation, and a sense 
of superiority. The third point of self-consciousness is 
self-control. The main elements of self-control are self-
restraint and self-discipline. The strongest point of our 
bird is self-control. Therefore, from the definition point 
of view, our neural network already has a certain degree 
of self-awareness. According to the design of the param-
eters of our neural network, an artificial agent can be 
trained into a cold agent, a sentimental agent, or an agent 
with morality, obligation, and self-love.

In video 1, we adjusted and optimized the neural net-
work parameters to create a new agent. The agent in 
the face of different social groups has a certain sense of 
self-consciousness and can make different judgments. In 
other words, it can make different choices depending on 
whether the blocker is a person or a wolf. It can choose 
to commit suicide to save human life or sacrifice the wolf 
so that the bird can live longer. In the latter case, we can 
imagine that the bird carries important information and 
the cost of passing on the information is the loss of a wolf 
or the loss of all the wolves in the path.

Conclusion
Cloud applications including games can be divided 
into multiple software components, and these soft-
ware components can be deployed in different clouds. 
We proposed an architecture that is suitable for more 
broad applications in multi-clouds, which can be sup-
ported by resource provision and service schedule. To 
reduce the number of neural network parameters in 
multi-clouds, we adjusted the input layer and preproc-
essed the input data. The neural network parameters 
are trained on batches by replay buffers and a current 
optimal strategy. Our method is based on deep rein-
forcement learning, while current deep reinforcement 
learning technologies use a large number of param-
eters and the number of parameters is commonly 
huge. To improve both training speed and accuracy in 
multi-clouds, distributed deep learning is also widely 
applied. An adapted game, called flappy bird, is used 
as an experimental environment to test our neural 
network. Experimental results showed that the deci-
sion logic is accurate. In addition, the results show that 
our neural network only needs to train 69,506 param-
eters to implement all the decision logic of the flappy 
bird, including flight planning, avoidance, and sacrifice 
because we optimized the algorithm and do not use 
Convolutional Neural Networks.
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