
Huang et al. Journal of Cloud Computing          (2023) 12:132  
https://doi.org/10.1186/s13677-023-00506-7

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Stateless Q-learning algorithm for service 
caching in resource constrained edge 
environment
Binbin Huang1, Ziqi Ran1, Dongjin Yu1*, Yuanyuan Xiang1, Xiaoying Shi1, Zhongjin Li1 and Zhengqian Xu1 

Abstract 

In resource constrained edge environment, multiple service providers can compete to rent the limited resources 
to cache their service instances on edge servers close to end users, thereby significantly reducing the service delay 
and improving quality of service (QoS). However, service providers renting the resources of different edge servers 
to deploy their service instances can incur different resource usage costs and service delay. To make full use of the lim-
ited resources of the edge servers to further reduce resource usage costs, multiple service providers on an edge 
server can form a coalition and share the limited resource of an edge server. In this paper, we investigate the service 
caching problem of multiple service providers in resource constrained edge environment, and propose an independ-
ent learners-based services caching scheme (ILSCS) which adopts a stateless Q-learning to learn an optimal service 
caching scheme. To verify the effectiveness of ILSCS scheme, we implement COALITION, RANDOM, MDU, and MCS 
four baseline algorithms, and compare the total collaboration cost and service latency of ILSCS scheme with these 
of these four baseline algorithms under different experimental parameter settings. The extensive experimental results 
show that the ILSCS scheme can achieve lower total collaboration cost and service latency.
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Introduction
With the explosive growth of smart end devices, vari-
ous latency-sensitive network services provided by dif-
ferent service providers [1], such as virtual reality (VR), 
real-time navigation, and interactive online games [2], 
have emerged, which bring great convenience to people’s 
lives. Traditionally, the service instances corresponding 
to these latency-sensitive services are deployed on the 
remote cloud datacenters. When a large number of end 
users frequently access these service instances, it will 
pose a long service latency and a huge traffic burden on 
the core networks [3, 4]. To address this problem, edge 

computing as a new computing paradigm, which sinks 
the computation, bandwidth and storage resources from 
remote cloud to the edge servers close to end users, pro-
vide a promising solution. In edge computing environ-
ment, service providers can rent Virtual Machines (VMs) 
encapsulating the computation and bandwidth resources 
of edge servers to deploy their service instances, thereby 
greatly reducing the service latency and improve the 
quality of service. However, the resources of edge serv-
ers are limited, and service providers renting the lim-
ited resource of different edge servers to cache service 
instances can incur different resource usage costs 
and service latency [5]. To reduce service latency and 
make full use of the limited resources to further reduce 
resource usage costs, multiple service providers can share 
leased VMs with other service providers.

There are some existing studies on service caching 
problem in edge environment [6–9]. In particular, Xia 
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et  al. [6] formulate the edge data caching problem into 
a constrained optimization problem and then adopt an 
integer programming and an approximation algorithm 
to solve this problem. Its main objective is to minimize 
the data caching cost and maximize the reduction in 
service latency. However, this work only considers col-
laborative service caching between adjacent edge serv-
ers in static scenarios. To address these problems, Xia 
et al. [7] propose a Lyapunov optimization based online 
algorithm to solve the dynamic collaborative edge data 
caching problem, aiming at minimizing the overall sys-
tem cost. However, this work mainly focuses on service 
cost optimization without considering service latency 
reduction. In order optimize the long-term utility defined 
as the weighted sum of the service cost and the service 
latency reduction, Huang et al. [8] propose a utility-aware 
collaborative service caching scheme to coordinate mul-
tiple edge servers to cache service instances. However, 
all of the above studies mainly focus that in resource 
constrained edge environment, edge servers cooperate 
with each other to quickly retrieve the required service 
instances. They don’t consider that multiple service pro-
viders can share leased VMs with other service providers 
to make full use of the limited resource of edge servers 
and reduce the collaboration cost.

In this paper, we investigate the service caching prob-
lem with resource sharing among multiple service pro-
viders in resource constrained edge environment. To 
address this problem, we construct the resource shar-
ing model by multiple service providers, cost model for 
service provider and service latency model, respectively. 
Based these models, we further formulate the service 
caching problem. In order to solve this problem, we 
propose an independent learners-based service caching 
scheme (ILSCS) to minimize the collaboration cost and 
the service latency. The ILSCS scheme adopt a state-
less Q-learning algorithm, in which each edge server is 
treated as an agent, the caching decision of each service 
instance as a base action, and the inverse of the collab-
oration costs, which is a function of the service latency 
and the usage cost of shared resource, as the immediate 
reward, to learn an optimal service caching policy. In 
order to verify the effectiveness of the ILSCS scheme, we 
implement COALITION, RANDOM, MDU and MCS 
four baseline algorithms. We compare the total collabo-
ration cost and the service latency of ILSCS scheme with 
these of these four baseline algorithms under different 
environmental parameters such as service size, number 
of services, number of edge servers, and storage capac-
ity of edge servers. The related experimental results dem-
onstrate that the ILSCS scheme can achieve lower total 
collaboration cost and service latency. Our main contri-
butions can be summarized as follows:

(1) We formulate the service caching problem with 
resource sharing among edge service providers in 
resource constraint edge environment.

(2) We propose an independent learner-based service 
caching scheme to minimize the total collabora-
tion cost and the service latency. The ILSCS scheme 
adopts a stateless Q-learning algorithm to learn an 
optimal service caching scheme.

(3) We implement four baseline algorithms and con-
duct extensive experiments to compare the total 
collaboration cost and the service latency with these 
of four baseline algorithms. The related experimen-
tal results demonstrate that the ILSCS schem can 
reduce the collaborative cost and the service latency.

We organize the remainder of this paper as follows. We 
summarize the state-of-the-arts on this topic in Related 
works. We formulate the service caching problem of mul-
tiple service providers in resource constraint edge envi-
ronment in System model and problem formulation. We 
describe the proposed ILSCS scheme in The independ-
ent learners-based service caching scheme. We conduct 
extensive experiments and analyse the related experi-
mental result in Experimental evaluation. Finally, we con-
clude this paper in Conclusions and future work.

Related works
The service caching problem in resource constrained 
edge environment is a very popular research topic. There 
are a large number of related studies on this service cach-
ing problem [10–20]. According to whether edge servers 
cooperate with each other, these related studies can be 
classified two types: service caching without cooperation 
and service caching with cooperation.

For service caching without cooperation, various 
approaches including popularity prediction, heuristic 
approach and etc., are adopted to make service caching 
decision [10–13]. For example, Du et  al. [10] adopted a 
reduced support vector regression (rSVR) model to pre-
dict the popularity of cached files to improve the hit rate 
of cached files. Compared to the original SVR model, the 
rSVR model learns only on a smaller reserved subset and 
requires less storage space. Rim et  al. [11] suggested to 
update caching content based on individual users’ short-
term content preferences and proposed a content cach-
ing strategy based on joint mobility prediction and user 
prefetching (MPJUP). This strategy reduces the average 
latency and backhaul load of data fetching by predicting the 
user’s location and the required data. Qi et al. [12] designed 
a neural network to predict the popularity of content, and 
based on which a heuristic approach is adopted to optimize 
active and responsive hybrid caching policies. Its main goal 
is to improve the overall successful offloading ratio of the 



Page 3 of 13Huang et al. Journal of Cloud Computing          (2023) 12:132  

mobile edge network. Wang et al. [13] modeled the cach-
ing problem as a Markov decision process and propsosed a 
distributed cache replacement strategy base on Q-learning 
to minimize the transmission cost. However, this paper 
mainly considers to optimize the traffic and does not focus 
the service cost and the service latency. In additon, this 
paper does not consider multiple service providers to share 
the limited resources of edge servers.

For service caching with cooperation, some related 
studies design various cooperation schemes to coor-
dinate multiple edge servers to cache service instances 
[14–20]. For example, Ahani et  al. [14] proposed an 
optimal content caching scheme in a time-slot system 
with delivery deadline and cache capacity constraints, 
the objective of which is to minimize the cost of the 
backhaul link load. Kim et  al. [15] proposed a distrib-
uted edge caching scheme to reduce the content deliv-
ery delay in edge network with limited storage, content 
popularity, content placement and access capacity. Gu 
et  al. [16] formulate a cooperative edge caching prob-
lem to be a non-cooperative game model and proposed 
a cooperative edge caching framework, aiming to reduce 
data transfer latency, relieve data traffic on the backbone 
network and reduce the workload of cloud servers. Kim 
et al. [17] proposed a cooperative edge caching approach 
based on deep reinforcement learning to promote coop-
eration among edge servers and improve the hit ratio 
of the system. Ren et  al. [18] proposed a cooperative 
caching scheme based on game theory to make cach-
ing decision. Its main goal is to minimize the average 
latency of acquiring content. However, all of the above 

studies mainly consider the service caching problem 
with service providers exclusive resources. They don’t 
consider multiple service providers to share leased VMs 
with other service providers. Its main goal of which is to 
minimize the resource usage cost of all service provid-
ers. Song et  al. [19] proposed a distributed algorithm 
based on alternating direction method of multipliers to 
jointly optimize the content caching in cooperative base 
stations, aiming at reducing cost of content retrieving. 
This paper does not focus the service latency. Lu et  al. 
[20] formulated the service placement problem as a 
mixed-integer linear programming problem. To address 
this problem, this paper proposed a deep reinforcement 
learning (DSP-DRL) based decentralized dynamic place-
ment framework to minimize the latency. However, this 
paper does not consider the cost. In addition, all of these 
above studies do not consider multiple service providers 
to share the limited resources of edge servers.

System model and problem formulation
In this section, we first introduce the system model. Then 
we present the resource sharing model by multiple ser-
vice providers, cost model for service provider, and util-
ity model for service caching in resource constrained 
edge environment, respectively. Finally, we formulate the 
service caching problem of multiple service providers in 
resource constrained edge environment. Each service 
provider is allowed to share its VM with others when the 
VM is idle. The key notation used throughout this paper 
are listed in Table 1.

Table 1 Key notation

Symbols Semantics

eNBi edge server eNBi
Ci the computational capacity of edge server eNBi
Bi The bandwidth capacity of edge server eNBi
Si The storage capacity of the edge server eNBi
VMi,j The jth VM in edge server eNBi
Ci,j The computational capacity of the VM VMi,j

Bi,j The bandwidth capacity of the VM VMi,j

SEk The service instance of service provider SPK
Wk the workload of the computation request processed by corresponding service instances SEk
Dk the size of the input data required by the computation request

gi The coalition on the edge server eNBi
ci,j the cost of the service provider occupying the VM VMi,j alone

dCLk
The service latency of the computation request processed by the service instance SEk in the central cloud CL

di,j,k The service latency of the computation request processed by the service instance SEk cached on VM VMi,j of edge server eNBi
dexei,j,k The service execution latency of the computation requests processed by service instance SEk cached on VM VMi,j of edge server eNBi

dtrani,k
The transfer time of input data required by service instance SEk

vk Delay preference weight
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System model
As shown in Fig.  1, we mainly consider an 
edge environment consisting of n edge servers 
eNB = {eNB1, . . . , eNBi, . . . , eNBn} and a central cloud 
CL . These edge servers are deployed near the end 
users. Each edge server eNBi can be represented by a 
three-tuple eNBi =< Ci,Bi, Si > , in which Ci , Bi and Si 
denote the computational capacity, bandwidth capac-
ity, and storage capacity of the edge server eNBi , 
respectively. These resources of edge server eNBi can 
be encapsulated to be m VMs. The set of m VMs can 
be denoted by VMi = {VMi,1, . . . ,VMi,j , . . . ,VMi,m} , 
in which VMi,j denotes the j th VM in edge server 
eNBi . Each VM VMi,j can be denoted by a two-tuple 
VMi,j =< Ci,j ,Bi,j > , in which Ci,j denotes the com-
putational capacity of the VM VMi,j , and Bi,j denotes 
the bandwidth capacity of the VM VMi,j . The central 
cloud CL hosts a set of original service instances that 
are to be cached to the VMs of edge servers. Due to 
the limited resources of edge servers, multiple service 
providers may compete to rent the limited resources to 
deploy their service instances [21].

Resource sharing model by multiple service providers
In our edge environment, there are K  service providers 
SP = {SP1, . . . , SPk, . . . , SPK } and each service provider 

has a service instance. The set of these service instances 
can be denoted by SE = {SE1, . . . , SEk , . . . , SEK } . The 
service instance SEk of the k th service provider SPk can 
be denoted by a two-tuple SEk =< Wk ,Dk > , in which 
Wk denotes the workload of the computation request 
processed by corresponding service instances SEk , Dk 
denotes the size of the input data required by the com-
putation request. Each service instance SEk have a 
set of user requests to process. If the k th service pro-
vider SPk caches its service instance SEk on VM VMi,j 
of edge server eNBi , the user requests will be redirected 
to the edge server eNBi to process. Otherwise, the user 
requests will be fulfilled by the original service instance 
in the central cloud CL . Each service provider provides 
services with relatively stable performance and has a sta-
ble users base. The users of a service provider will not 
move to other service providers in the short term. To 
improve the quality of service (QoS) and keep the user 
base, service providers cache their service instances to 
edge servers nearby end users [22]. However, caching 
service instances on the edge servers greatly increases 
the service cost of service providers. To reduce service 
cost, different service providers can cache their service 
instances to different VMs on the same edge server for 
resource sharing. Moreover, when the VM occupied by 
service provider is idle, it can also be shared with other 

Fig. 1 An example of service caching in edge environment
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service providers, and thereby greatly reducing the ser-
vice cost of service providers [23].

All service providers on the same edge server are 
referred as a coalition. The coalition on the edge server 
eNBi can be denote by gi . Since the storage resource 
of each edge server is limited, the sum of the size of 
input data required by the computation requests corre-
sponding to the service instances in the coalition can-
not exceed the storage capacity of the edge server, i.e., 
∑

SPk∈gi
Dk ≤ Si . Each service provider can apply to join 

in a coalition. Each coalition has an agent which decides 
whether service provider’s applying is accepted or not. 
When it is accepted, the agent further assigns the service 
instance to an optimal VM according to the resources of 
different VMs.

Cost model for service provider
To cache service providers’ service instances on edge 
servers incurs additional service costs [24]. When a VM 
only cache a service instance, the cost to rent this VM 
is undertaken by the corresponding service provider. 
When a VM is shared by multiple service instances, the 
cost will be shared among the cached instances [25]. We 
model the cost of a service provider occupying a VM 
alone and the cost of a service provider in a coalition 
sharing a VM, respectively.

When a service instance SEk is cached on a VM VMi,j , 
the computation and bandwidth resources of the VM 
VMi,j are exclusive to the service instance SEk . The cost 
of using per unit of computation resource of the edge 
server eNBi can be denoted by cpi  . The cost of using per 
unit of bandwidth resource of the edge server eNBi can 
be denoted by bpi  . Therefore, the exclusive resource 
usage cost incurred by the service provider SPk for 
exclusive ownership of the VM VMi,j can be calculated 
by Eq. (1):

It is note that the usage cost of exclusive resource is 
referred as its default cost.

When multiple service providers on an edge server 
form a coalition, the computation and bandwidth 
resources of the edge server can be shared by these ser-
vice providers. Since each service provider is self-inter-
ested, we adopt the cost policy proposed in the literature 
[26] to ensure the stability of the formed coalition. When 
service provider SPk joins in the coalition gi and caches 
its service instance SEk on VMi,j in coalition gi , the ser-
vice provider SPk shares the computation and bandwidth 
resources of edge server eNBi with other service provid-
ers in coalition gi and the usage cost pk ,j

(

gi
)

 of shared 
resource can be calculated by Eq. (2):

(1)ci,j = c
p
i · Ci,j + b

p
i · Bi,j

where 
∑

SPk′ ∈gi
ci,j′ denotes the sum of the default cost of 

the service providers in coalition gi . 
c
(

gi
)

= c
p
i · Ci + b

p
i · Bi denotes the cost of the edge 

server eNBi.

Service latency model
The service latency is defined to be the sum of service 
execution time and data transfer time. The service latency 
of the computation request processed by the service 
instance cached in edge server is very different from that 
by service instance cached the service in the central cloud 
CL . [27]. The service latency of the computation request 
processed by the service instance SEk in the central cloud 
CL can be denoted by dCLk  . The service latency of the 
computation request processed by the service instance 
SEk cached on VM VMi,j of edge server eNBi can be 
denoted by di,j,k . The service latency is composed of ser-
vice execution delay and data transfer time. The service 
execution latency of the computation requests processed 
by service instance SEk cached on VM VMi,j of edge 
server eNBi can be calculated by dexei,j,k = Wk/Ci,j , where 
Ci,j denotes the computing capacity of VMi,j . The transfer 
time of input data required by service instance SEk can be 
denoted by dtrani,k  . Therefore, the service latency di,j,k can 
be denoted by calculated by Eq. (3).

Since the edge server is closer to the end user than the 
central cloud, the service latency of the computation 
request processed by the service instance cached in the 
edge servers is usually much smaller than that by ser-
vice instance cached in the central cloud, expressed as 
di,j,k ≪ dCLk .

Utility model
To minimize the service cost and the service latency, the 
utility function can be defined as the weighted sum of the 
service cost and service latency. The utility obtained by 
the service instance SEk occupying the VM VMi,j of edge 
server eNBi alone is defined as the default utility, which 
can be denoted by udfti,j,k . The utility obtained by the ser-
vice instance SEk sharing the resources of edge server 
eNBi with other service providers in coalition gi is defined 
as the collaboration utility, which can be denoted by ucolli,j,k . 
Different service instances have different delay sensitivi-
ties. The importance of the service instance SEk can be 
adjusted by the weighted vk . Therefore, the default utility 
and the collaboration utility can be calculated by Eq. (4) 
and Eq. (5), respectively.

(2)pk ,j gi =
ci,j

SPk′ ∈gi
ci,j′

c(gi)

(3)di,j,k = dtrani,k + dexei,j,k
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A service provider can cache its service instance to 
a VM VMi,j to maximize its default utility. To further 
reduce the service cost and obtain greater utility, the ser-
vice provider can share the resources of VM VMi,j with 
other service providers in coalition gi . The additional util-
ity obtained by service provider SPk joining in the coali-
tion gi can be denoted by ui,j,k , which can be calculated 
by Eq. (6):

where udfti′,j′,k is the maximum default utility that can be 
obtained by the service provider SPk . Each service pro-
vider with occupying the VM VMi′,j′ of edge server eNBi′ 
alone has a default service cost ci′,j′ . 
pk ,j

(

gi
)

− vk · di′,j′,k + vk · di,j,k can reflect the collabora-
tion cost, which can be denoted by ccolli,j,k.

Problem formulation
Different edge servers have different computing 
resources and bandwidth resources [28]. Therefore, the 
service latency of the computation request processed by 
different edge servers vary greatly. Moreover, a service 
provider choosing different edge servers to form a coali-
tion also greatly affects its service cost. Therefore, with 
limited computing and bandwidth resources of edge 
servers, the main goal of service caching is to minimize 
the sum of the collaboration costs of all service providers 
[29]. Here, we formulate the service caching problem as 
follows:

where ai,j,k denotes whether the service instance SEk of 
service provider SPk is cached on VM VMi,j of edge server 
eNBi . If ai,j,k = 1 , it denotes that the service instance SEk 
is cached in VMi,j of the edge server eNBi . Otherwise, it 

(4)u
dft
i,j,k = vk ·

(

dCLk − di,j,k

)

− ci,j

(5)ucolli,j,k = vk ·
(

dCLk − di,j,k

)

− pk ,j
(

gi
)

(6)ui,j,k = ucolli,j,k − u
dft
i′ ,j′ ,k = ci′ ,j′ − (pk ,j

(

gi
)

− vk · di′ ,j′ ,k + vk · di,j,k)

(7)Minimize :
∑n

i=1

∑m

j=1

∑K

k=1
ai,j,k · c

coll
i,j,k

(8)Subject to :
∑

SPk∈gi
Dk ≤ Si

(9)
∑n

i=1

∑m

j=1

∑K

k=1
ai,j,k = 1

(10)ai,j,k ∈ {0, 1}

means that the service instance SEk is not cached in VMi,j 
of the edge server eNBi . Equation (8) ensures that the sum 
of the size of the input data required by the computation 
requests processed by corresponding service instances 
in the edge server does not exceed the maximum storage 
capacity Si of the edge server eNBi . Equation (9) denotes 
that the service instance SEk of service provider SPk is 
only cached on VM VMi,j of edge server eNBi . Service 
provider SPk no longer need to cache its service instance 
SEk on other edge servers, which increases the resource 
cost.

The independent learners‑based service caching scheme
To solve the service caching problem in a resource con-
strained edge environment, we adopt a stateless Q-learn-
ing algorithm, and design an independent learners-based 
service caching scheme. In this section, we first introduce 
the stateless Q-learning algorithm. Then, we define the 
action space and reward function of the service caching 
problem. Finally, we describe the independent learners-
based service caching scheme in detail.

Stateless Q‑learning algorithm
Q-learning algorithm is a simple and easy to understand 
reinforcement learning algorithm [30]. The Q value is the 
expected reward obtained after taking a specific action 
at a specific state. The Q value can be used to measure 
the effectiveness of the actions. The Q-learning algorithm 
can learn an estimated Q-value obtained by taking each 
action at each state. However, the environment state is 
sometimes only releated to actions and not to states [31]. 
Therefore, the Q-learning algorithm can be further sim-
plified to a stateless Q-learning algorithm [32]. In our 
problem model, the environment state is manly related to 
the caching action of service instances. Therefore, a state-
less Q-learning algorithm is adopted to solve the service 
caching problem. Each edge server eNBi is treated as an 
agent i , its caching decision as an action ai , the inverse of 
the sum of the collaboration costs of all service instances 
cached in edge server eNBi as the immediate reward Ri . 
The expected reward obtained by each agent i perform-
ing action ai in next time period can be denoted Qi(ai) . 
For the stateless Q-learning algorithm, the expected 
reward Qi(ai) can be updated by Eq. (11) [32]:

where �T denotes the learning rate.

Action space and reward function
The caching action a(τ ) at the time step τ can be defined 
by the Eq. (12):

(11)Qi(ai) ← Qi(ai)+ �T · (Ri(τ )− Qi(ai))
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where ai(τ ) = (ai,1,1(τ ), . . . , ai,j,k(τ ), ai,m,K (τ )) is a vec-
tor that indicates whether the K  service instances are 
cached on the edge server eNBi.ai,j,k(τ ) indicates whether 
service instance SEk is cached on VMi,j at the time step 
τ . If ai,j,k(τ ) = 1 , the service instance SEk is cached on 
VMi,j of edge server eNBi at the time step τ . Otherwise, 
ai,j,k(τ ) = 0 indicates that service instance SEk is not 
cached on VMi,j of the edge server eNBi at the time step τ.

The actions a(τ ) , ai(τ ) , and ai,j,k(τ ) are called super 
action, joint action and base action, respectively. Their 
action spaces’ sizes are n · 2MK  , 2MK  and 2, respec-
tively. Sine the action spaces’ sizes of the super action 
and joint action are exponential, the Q-learning algo-
rithm needs an exponential number of iterations to 
go through all actions and learn their Q values, which 
is clearly infeasible. To address this problem, refer 
to the literature [32], the Q-value Qi,j,k

(

ai,j,k
)

 of each 
base action ai,j,k is first learned. Then, according to the 
Q-values of all base action, the Q-value of the super 
action can be obtained. Therefore, the action space 
of super action can be greatly reduced to that of base 
action. After the agent i of edge server eNBi performing 
the base action ai,j,k(τ ) , the expected reward Qi,j,k

(

ai,j,k
)

 
can be obtained. Based on the Q-value Qi,j,k

(

ai,j,k
)

 of 
basic action ai,j,k , the Q-value Qi(ai) of the super action 
ai can be further calculated. The expected reward 
Qi,j,k

(

ai,j,k
)

 of base action ai,j,k(τ ) can be updated by 
Eq. (13):

where Ci,j,k

(

ai,j,k
)

 denotes the number of times that ser-
vice instances SEk is cached on VM VMi,j of edge server 
eNBi at time step τ . Ri,j,k(τ ) denotes the immediate 
reward obtained by caching the service instance SEk on 
VM VMi,j of edge server eNBi at time step τ . Since the 
immediate reward Ri,j,k(τ ) is the inverse of the cost of the 
service instance SEk cached on VM VMi,j of edge server 
eNBi , it can be denoted by Ri,j,k(τ ) = −ai,j,k · c

coll
i,j,k . The 

estimated reward obtained by caching the service 
instance SEk on VM VMi,j of edge server eNBi can be cal-
culated by Qi,j,k = Qi,j,k(1)− Qi,j,k(0) . When ai,j,k = 0 , 
Ri,j,k(τ ) = 0 . Based on the values of ai,j,k and Ri,j,k(τ ) , we 
can further compute the estimated rewards of action 
ai,j,k = 0 and action ai,j,k = 1 , and obtain Qi,j,k(0) = 0 
and Qi,j,k = Qi,j,k(1).

(12)a(τ ) = (a1(τ ), . . . , ai(τ ), . . . , an(τ ))

(13)Qi,j,k

(

ai,j,k
)

← Qi,j,k

(

ai,j,k
)

+
1

Ci,j,k

(

ai,j,k
)

+ 1
· (Ri,j,k(τ )− Qi,j,k

(

ai,j,k
)

)

Algorithm implementation
To solve this above problem, we propose an independ-
ent learners-based services caching scheme (ILSCS). 
The ILSCS scheme adopt a stateless Q-learning algo-
rithm to learn an optimal service caching with resource 
sharing among multiple service providers. The detail 
process of ILSCS scheme can be presented in Algo-
rithm 1. We first initialize all Ci,j,k and Qi,j,k to be 0 (line 
1). Then we calculate the immediate reward Ri,j,k(τ ) 
obtained by taking base action ai,j,k(τ ) (line 4). Accord-
ing to the immediate reward Ri,j,k(τ ) , we further update 
the corresponding Qi,j,k and Ci,j,k (line 5–6).Base on all 
base actions ai,j,k(τ ) , we can further to find an optimal 
super action a∗(τ ) . Referring to the literature [32, 33], 
the problem to find the optimal super action a∗ can be 
converted to be a 0–1 backpack problem. It can be for-
mulated as follows:

Subject to:(8)(9)(10).
The 0–1 knapsack problem is a classical NP-hard prob-

lem [34]. It is very difficult to find the optimal super 
action a∗ . In this paper, we adopt a greedy algorithm to 
solve the 0–1 knapsack problem and find an approxi-
mate optimal solution. We first calculate Qi,j,k/Dk , where 
i = 1, 2, . . . , n, j = 1, 2, . . . ,m,k = 1, 2, . . . , k . Then, we 
sort Qi,j,k/Dk in non-increasing order (line 9). Accord-
ing to the order of Qi,j,k/Dk , we sequentially perform the 
corresponding service caching actions. Specifically, the 

service caching action ai,j,k(τ ) corresponding to Qi,j,k/Dk 
is to cache the service instance SEk in the VMi,j of edge 
server eNBi . For the service caching action corresponding 
to the last 10% of Qi,j,k/Dk , we adopt an epsilon-greedy 
algorithm to select a service caching action (line 14). It 
means that we choose the service caching action corre-
sponding to the last 10% of Qi,j,k/Dk with probability ε 
and randomly select a service caching action with prob-
ability 1− ε . Otherwise, we perform the service caching 
action ai,j,k(τ ) corresponding to Qi,j,k/Dk until constraint 
conditions (8), (9) and (10) are not satisfied (line 15–16). 
Finally, in order to make service providers join in coali-
tions to reduce the service cost, the service providers that 
do not join in any coalition are required to cache their 
service instances on the edge servers that minimizes their 
collaboration cost.

(14)Maximize :
∑n

i=1

∑m

j=1

∑K

k=1
ai,j,k ·Qi,j,k
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Algorithm 1. Independent learners-based service caching scheme (ILSCS)

Experimental evaluation
In order to evaluate the effectiveness of our proposed 
ILSCS scheme, we conduct extensive experiments to 
compare ILSCS scheme against COALITION, RAN-
DOM, MDU, and MCS four baseline algorithms under 
different experimental settings. In this section, we first 
present the experiment parameters setting. Then we ana-
lyze the related experimental results.

Experimental parameter settings
In this paper, the edge environment mainly consists of K  
service providers, n edge servers and a central cloud CL . 
Each service provider has a service instance. We set the 
related experimental parameters referring to literatures 
[26]. These experimental parameters are described in 
detail as follows.

(1) The parameter settings for system model: the num-
ber n of edge servers is 50 in default. The compu-
tation capacity Ci of each edge server eNBi varies 
within the range [8000, 16000] MHz. The band-
width capacity Bi of each edge server eNBi varies 
within the range [100, 1000] Mbps. The storage 
capacity Si of each edge server eNBi varies within 
[200–300] GB. The computation capacity Ci,j of VM 
VMi,j in edge server eNBi varies within [4000–8000] 
MHz and its bandwidth capacity Bi,j varies within 
[10–100] Mbps. The usage cost per unit compute 
resource of each edge server eNBi is set to [$0.15, 
$0.22]. The usage cost per unit bandwidth resource 

of each edge server eNBi varies within [$0.05, 
$0.12]. The transmission delay dtrani,k  between the 
end user and the edge server eNBi where cache the 
service instance SEk required by the end user is set 
to 5-20 ms. The service latency of the computation 
request processed by the service instance cached in 
central cloud is set to [50, 100] ms.

(2) The parameter settings for resource sharing model 
by multiple service providers: the number K  of ser-
vice providers is 80 by default. The size Dk of the 
service instance SEk provided by service provider 
SPk varies within [30, 50] GB. The workload Wk of 
the computation request processed by correspond-
ing service instances SEk are set to [50, 100] MHz. 
The weighted vk varies within [100, 150].

Experimental analysis
To verify the effectiveness of ILSCS scheme, we imple-
ment COALITION, RANDOM, MDU and MCS four 
baseline algorithms. We compare the performance of 
ILSCS scheme with that of four baseline algorithms 
under different experimental parameter settings, and 
analyze these experimental results.

• ILSCS: This abbreviation standards for independent 
learners-based service caching scheme. This scheme 
treats each edge server as an agent, and adopts a stateless 
Q-learning to learn an optimal service caching policy.

• COALITION [26]: It adopts a distributed and stable 
game-theoretic mechanism to solve the service cach-
ing problem with resource sharing among multiple 
service providers, aiming at minimizing the social 
cost of all service providers.

• RANDOM: It randomly selects virtual machines to 
cache service instances of service providers.

• MDU (max default utility): It caches the ser-
vice instances of service providers to these virtual 
machines that maximum their default utility.

• MCS (max coalition size): It caches the service 
instances of service providers to these edge servers 
with the most members in the coalition.

Convergence of ILSCS
Figure  2 shows the learning curve of the ILSCS scheme. 
We can observe from Fig. 2 that the total collaboration cost 
gradually decreases and tends to be stable with the increase 
of the learning time (i.e., the number of episodes). It indi-
cates that the ILSCS scheme can learn an optimal service 
caching strategy that minimize the total collaboration 
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cost of all service providers. In resource constrained edge 
environment, each edge server is treated as an agent. Each 
agent can learn a collaboration caching scheme, that is how 
multiple service providers on this edge server can share the 
limited resource of the edge server to cache their service 
instances, to greatly reduce the resource usage cost.

Impact of the size of the input data required 
by computation request
To investigate the impact of the size of the input data 
required by computation request on the total collabora-
tion cost and the average services delay, we vary the input 
data’s size from 30 to 70 GB with the increment of 10 GB. 
Figure  3 show the impact of different sizes of the input 
data required by computation request on the total col-
laboration cost and the average latency. We can observe 

from the Fig. 3 that the total collaboration cost and the 
average service latency of ILSCS scheme are lower than 
these of COALITION, MDU, MCS and RANDOM four 
algorithms when the size of the service instances gradu-
ally increase. That is because that the ILSCS scheme can 
learn an optimal service caching policy with resource 
sharing among multiple service provider in a coalition of 
an edge server, which greatly reducing the collaboration 
cost and the server latency. Moreover, we can observe 
from Fig. 3(a) that the total collaboration cost of ILSCS, 
COALITION, MDU and MCS four algorithms gradu-
ally increase with the increase of the input data size. The 
main reason is that when the input data size increases, 
the number of service instances cached on an edge 
server decreases, thereby the number of service provid-
ers in coalition of the edge server decreasing. The smaller 
the number of service providers in coalition of the edge 

Fig. 2 The learning curve of ILSCS scheme

Fig. 3 The impact of the size of input data required by computation request
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server, the higher the collaboration cost that paid by the 
members in the coalition, and thereby leading to higher 
social cost.

The impact of the number of service providers
To examine the impact of the number of service provid-
ers on the total collaboration cost and the service delay, 
we vary the number of service providers from 40, 60, 80, 
100 to 120. Figure 4 plot the related experimental result. 
We can see from Fig. 4(a) that the total collaboration cost 
of ILSCS, COALITION, MDU, MCS and RANDOM 
five algorithms gradually increase with the increase of 
the number of service providers. The main reason for 
this phenomenon is that the total collaboration cost is 
the sum of the collaboration cost of all service provid-
ers. When the number of service providers increases, 
the sum of the collaboration cost of all service providers 
increases as well. Moreover, we can also see from Fig. 4 
that the total collaboration cost and the average service 
latency of ILSCS scheme are lower than these of COA-
LITION, MDU, MCS and RANDOM four baseline algo-
rithms. That is because that the ILSCS scheme can learn 
an optimal service caching policy once the number of 
service providers is fixed. On the one hand, the optimal 
service caching policy can cache service instances on 
optimal edge servers, which achieve a lower average ser-
vice latency. On the other hand, the optimal service cach-
ing policy enables multiple service provider to share the 
limited resources of edge servers to cache more service 
instances, and thereby incurring lower collaboration cost 
and the average service delay.

The impact of the number of edge servers
Figure  5 illustrates the impact of the number of edge 
servers on the total collaboration cost and the aver-
age service latency. In Fig. 5, we can see that with the 
number of edge servers varying from 20, 35, 50, 65, to 
80, the total collaboration cost and the average service 

latency of ILSCS scheme gradually decrease. This is due 
to that with the increase of the number of edge serv-
ers, there are more available edge servers that can be 
selected to cache service instances of service providers. 
The more available edge servers, the higher probability 
the service providers have to select more cost-effec-
tive edge servers to cache their service instances, and 
thereby reducing the collaborative cost, alleviating the 
resource contention and reducing the average service 
latency. The MCS algorithm selects these edge serv-
ers with the most members in the coalition, rather 
than the edge servers with the highest cost-effective, to 
cache service instances. Therefore, we can observe that 
the total collaboration cost and the service latency of 
MCS algorithm are not relative to the number of edge 
servers. The RANDOM algorithm randomly selects 
edge servers to cache their service instances. The more 
available edge servers, the more scattered the service 
instances will be cached, and thereby leading to higher 
collaboration cost. Therefore, the collaboration cost of 
the RANDOM algorithm gradually increases with the 
increase of the number of edge servers. In addition, we 
can observe that the collaboration cost and the service 
latency of ILSCS scheme are lower than these of COA-
LITION, MDU, MCS and RANDOM four algorithms. 
The main reason is that the ILSCS scheme can selects 
edge servers with the highest cost-effective to cache 
service instances and shares the resources of edge serv-
ers among multiple service instances on the same edge 
server.

The impact of the storage capacities of edge servers
To investigate the impact of the storage capacity of 
edge server on the total collaboration cost and the 
service latency, we vary the storage capacities of 
edge server from 200  GB, 250  GB, 300  GB, 350  GB 
to 400  GB. Figure  6 plots the related experimental 
result. We can observe from the Fig. 6(a) that the total 

Fig. 4 The impact of the number of service providers
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collaboration cost of MCS, COALITION and MRSCS 
algorithms decreases with the increase of the storage 
capacities of the edge servers. That is because that the 
larger the storage capacity of the edge server is, the 
more service providers can join in a coalition of an 
edge server, and thereby decreasing the collaboration 
cost of the service providers in the coalition. The total 
collaboration costs of RANDOM and MDU algorithms 
are not affected by the storage capacities of edge serv-
ers. In addition, the total collaborative cost of ILSCS 
and COALITION two algorithms decrease faster than 
that of RANDOM, MCS and MDU algorithms. This 
is because when the storage capacity of edge serv-
ers increases, the probabilities of resource conten-
tion among service providers decreases. With lower 
resource contention, the service providers can select 
the high cost-effective edge servers to cache service 
instances, and thereby greatly decreasing the social 
cost. Finally, we can further observe from the Fig. 6(a) 
that the total collaboration cost and the server latency 
of ILSCS scheme are lower than these of COALITION, 
MDU, MCS and RANDOM four algorithms. The main 

reason is discussed in The impact of the number of 
edge servers.

Conclusions and future work
In this paper, we investigate the service caching prob-
lem with resource sharing among multiple service pro-
viders in resource constrained edge environment. To 
address this problem, we first construct system model, 
resource sharing model by multiple service providers, 
cost model for service provider, service latency model 
and utility model, respectively. Then we formulate the 
service caching problem with resource sharing among 
multiple service providers. Next, we adopt a stateless 
Q-learning algorithm to learn an optimal service cach-
ing policy. Finally, to validate the effectiveness of our 
proposed ILSCS scheme, we implement COALITION, 
RANDOM, MDU and MCS four baseline algorithm, 
and compare the total collaborative cost and the ser-
vice latency of our proposed ILSCS scheme to these of 
four baseline algorithms under different experimental 
parameter settings such as the size of service instance, 
the number of service instances, the number of edge 

Fig. 5 The impact of the number of edge servers

Fig. 6 The impact of the storage capacities of edge servers (a) The total collaboration cost. (b) The average services latency
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servers, and the storage capacity of edge server. The 
extensive experimental results demonstrate the ILSCS 
scheme can achieve lower the service cost and the ser-
vice latency.

In our futher work, we will further investigate the cach-
ing problem of service instances with fault tolerance 
when some edge servers fail.
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