
Huang et al. Journal of Cloud Computing (2023) 12:132
https://doi.org/10.1186/s13677-023-00506-7

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Stateless Q-learning algorithm for service
caching in resource constrained edge
environment
Binbin Huang1, Ziqi Ran1, Dongjin Yu1*, Yuanyuan Xiang1, Xiaoying Shi1, Zhongjin Li1 and Zhengqian Xu1

Abstract

In resource constrained edge environment, multiple service providers can compete to rent the limited resources
to cache their service instances on edge servers close to end users, thereby significantly reducing the service delay
and improving quality of service (QoS). However, service providers renting the resources of different edge servers
to deploy their service instances can incur different resource usage costs and service delay. To make full use of the lim-
ited resources of the edge servers to further reduce resource usage costs, multiple service providers on an edge
server can form a coalition and share the limited resource of an edge server. In this paper, we investigate the service
caching problem of multiple service providers in resource constrained edge environment, and propose an independ-
ent learners-based services caching scheme (ILSCS) which adopts a stateless Q-learning to learn an optimal service
caching scheme. To verify the effectiveness of ILSCS scheme, we implement COALITION, RANDOM, MDU, and MCS
four baseline algorithms, and compare the total collaboration cost and service latency of ILSCS scheme with these
of these four baseline algorithms under different experimental parameter settings. The extensive experimental results
show that the ILSCS scheme can achieve lower total collaboration cost and service latency.

Keywords Edge environment, service caching, Stateless Q-learning, Collaboration cost, Service latency

Introduction
With the explosive growth of smart end devices, vari-
ous latency-sensitive network services provided by dif-
ferent service providers [1], such as virtual reality (VR),
real-time navigation, and interactive online games [2],
have emerged, which bring great convenience to people’s
lives. Traditionally, the service instances corresponding
to these latency-sensitive services are deployed on the
remote cloud datacenters. When a large number of end
users frequently access these service instances, it will
pose a long service latency and a huge traffic burden on
the core networks [3, 4]. To address this problem, edge

computing as a new computing paradigm, which sinks
the computation, bandwidth and storage resources from
remote cloud to the edge servers close to end users, pro-
vide a promising solution. In edge computing environ-
ment, service providers can rent Virtual Machines (VMs)
encapsulating the computation and bandwidth resources
of edge servers to deploy their service instances, thereby
greatly reducing the service latency and improve the
quality of service. However, the resources of edge serv-
ers are limited, and service providers renting the lim-
ited resource of different edge servers to cache service
instances can incur different resource usage costs
and service latency [5]. To reduce service latency and
make full use of the limited resources to further reduce
resource usage costs, multiple service providers can share
leased VMs with other service providers.

There are some existing studies on service caching
problem in edge environment [6–9]. In particular, Xia

*Correspondence:
Dongjin Yu
yudj@hdu.edu.cn
1 School of Computer, Hangzhou Dianzi University, Hangzhou 310018,
China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00506-7&domain=pdf

Page 2 of 13Huang et al. Journal of Cloud Computing (2023) 12:132

et al. [6] formulate the edge data caching problem into
a constrained optimization problem and then adopt an
integer programming and an approximation algorithm
to solve this problem. Its main objective is to minimize
the data caching cost and maximize the reduction in
service latency. However, this work only considers col-
laborative service caching between adjacent edge serv-
ers in static scenarios. To address these problems, Xia
et al. [7] propose a Lyapunov optimization based online
algorithm to solve the dynamic collaborative edge data
caching problem, aiming at minimizing the overall sys-
tem cost. However, this work mainly focuses on service
cost optimization without considering service latency
reduction. In order optimize the long-term utility defined
as the weighted sum of the service cost and the service
latency reduction, Huang et al. [8] propose a utility-aware
collaborative service caching scheme to coordinate mul-
tiple edge servers to cache service instances. However,
all of the above studies mainly focus that in resource
constrained edge environment, edge servers cooperate
with each other to quickly retrieve the required service
instances. They don’t consider that multiple service pro-
viders can share leased VMs with other service providers
to make full use of the limited resource of edge servers
and reduce the collaboration cost.

In this paper, we investigate the service caching prob-
lem with resource sharing among multiple service pro-
viders in resource constrained edge environment. To
address this problem, we construct the resource shar-
ing model by multiple service providers, cost model for
service provider and service latency model, respectively.
Based these models, we further formulate the service
caching problem. In order to solve this problem, we
propose an independent learners-based service caching
scheme (ILSCS) to minimize the collaboration cost and
the service latency. The ILSCS scheme adopt a state-
less Q-learning algorithm, in which each edge server is
treated as an agent, the caching decision of each service
instance as a base action, and the inverse of the collab-
oration costs, which is a function of the service latency
and the usage cost of shared resource, as the immediate
reward, to learn an optimal service caching policy. In
order to verify the effectiveness of the ILSCS scheme, we
implement COALITION, RANDOM, MDU and MCS
four baseline algorithms. We compare the total collabo-
ration cost and the service latency of ILSCS scheme with
these of these four baseline algorithms under different
environmental parameters such as service size, number
of services, number of edge servers, and storage capac-
ity of edge servers. The related experimental results dem-
onstrate that the ILSCS scheme can achieve lower total
collaboration cost and service latency. Our main contri-
butions can be summarized as follows:

(1) We formulate the service caching problem with
resource sharing among edge service providers in
resource constraint edge environment.

(2) We propose an independent learner-based service
caching scheme to minimize the total collabora-
tion cost and the service latency. The ILSCS scheme
adopts a stateless Q-learning algorithm to learn an
optimal service caching scheme.

(3) We implement four baseline algorithms and con-
duct extensive experiments to compare the total
collaboration cost and the service latency with these
of four baseline algorithms. The related experimen-
tal results demonstrate that the ILSCS schem can
reduce the collaborative cost and the service latency.

We organize the remainder of this paper as follows. We
summarize the state-of-the-arts on this topic in Related
works. We formulate the service caching problem of mul-
tiple service providers in resource constraint edge envi-
ronment in System model and problem formulation. We
describe the proposed ILSCS scheme in The independ-
ent learners-based service caching scheme. We conduct
extensive experiments and analyse the related experi-
mental result in Experimental evaluation. Finally, we con-
clude this paper in Conclusions and future work.

Related works
The service caching problem in resource constrained
edge environment is a very popular research topic. There
are a large number of related studies on this service cach-
ing problem [10–20]. According to whether edge servers
cooperate with each other, these related studies can be
classified two types: service caching without cooperation
and service caching with cooperation.

For service caching without cooperation, various
approaches including popularity prediction, heuristic
approach and etc., are adopted to make service caching
decision [10–13]. For example, Du et al. [10] adopted a
reduced support vector regression (rSVR) model to pre-
dict the popularity of cached files to improve the hit rate
of cached files. Compared to the original SVR model, the
rSVR model learns only on a smaller reserved subset and
requires less storage space. Rim et al. [11] suggested to
update caching content based on individual users’ short-
term content preferences and proposed a content cach-
ing strategy based on joint mobility prediction and user
prefetching (MPJUP). This strategy reduces the average
latency and backhaul load of data fetching by predicting the
user’s location and the required data. Qi et al. [12] designed
a neural network to predict the popularity of content, and
based on which a heuristic approach is adopted to optimize
active and responsive hybrid caching policies. Its main goal
is to improve the overall successful offloading ratio of the

Page 3 of 13Huang et al. Journal of Cloud Computing (2023) 12:132

mobile edge network. Wang et al. [13] modeled the cach-
ing problem as a Markov decision process and propsosed a
distributed cache replacement strategy base on Q-learning
to minimize the transmission cost. However, this paper
mainly considers to optimize the traffic and does not focus
the service cost and the service latency. In additon, this
paper does not consider multiple service providers to share
the limited resources of edge servers.

For service caching with cooperation, some related
studies design various cooperation schemes to coor-
dinate multiple edge servers to cache service instances
[14–20]. For example, Ahani et al. [14] proposed an
optimal content caching scheme in a time-slot system
with delivery deadline and cache capacity constraints,
the objective of which is to minimize the cost of the
backhaul link load. Kim et al. [15] proposed a distrib-
uted edge caching scheme to reduce the content deliv-
ery delay in edge network with limited storage, content
popularity, content placement and access capacity. Gu
et al. [16] formulate a cooperative edge caching prob-
lem to be a non-cooperative game model and proposed
a cooperative edge caching framework, aiming to reduce
data transfer latency, relieve data traffic on the backbone
network and reduce the workload of cloud servers. Kim
et al. [17] proposed a cooperative edge caching approach
based on deep reinforcement learning to promote coop-
eration among edge servers and improve the hit ratio
of the system. Ren et al. [18] proposed a cooperative
caching scheme based on game theory to make cach-
ing decision. Its main goal is to minimize the average
latency of acquiring content. However, all of the above

studies mainly consider the service caching problem
with service providers exclusive resources. They don’t
consider multiple service providers to share leased VMs
with other service providers. Its main goal of which is to
minimize the resource usage cost of all service provid-
ers. Song et al. [19] proposed a distributed algorithm
based on alternating direction method of multipliers to
jointly optimize the content caching in cooperative base
stations, aiming at reducing cost of content retrieving.
This paper does not focus the service latency. Lu et al.
[20] formulated the service placement problem as a
mixed-integer linear programming problem. To address
this problem, this paper proposed a deep reinforcement
learning (DSP-DRL) based decentralized dynamic place-
ment framework to minimize the latency. However, this
paper does not consider the cost. In addition, all of these
above studies do not consider multiple service providers
to share the limited resources of edge servers.

System model and problem formulation
In this section, we first introduce the system model. Then
we present the resource sharing model by multiple ser-
vice providers, cost model for service provider, and util-
ity model for service caching in resource constrained
edge environment, respectively. Finally, we formulate the
service caching problem of multiple service providers in
resource constrained edge environment. Each service
provider is allowed to share its VM with others when the
VM is idle. The key notation used throughout this paper
are listed in Table 1.

Table 1 Key notation

Symbols Semantics

eNBi edge server eNBi
Ci the computational capacity of edge server eNBi
Bi The bandwidth capacity of edge server eNBi
Si The storage capacity of the edge server eNBi
VMi,j The jth VM in edge server eNBi
Ci,j The computational capacity of the VM VMi,j

Bi,j The bandwidth capacity of the VM VMi,j

SEk The service instance of service provider SPK
Wk the workload of the computation request processed by corresponding service instances SEk
Dk the size of the input data required by the computation request

gi The coalition on the edge server eNBi
ci,j the cost of the service provider occupying the VM VMi,j alone

dCLk
The service latency of the computation request processed by the service instance SEk in the central cloud CL

di,j,k The service latency of the computation request processed by the service instance SEk cached on VM VMi,j of edge server eNBi
dexei,j,k The service execution latency of the computation requests processed by service instance SEk cached on VM VMi,j of edge server eNBi

dtrani,k
The transfer time of input data required by service instance SEk

vk Delay preference weight

Page 4 of 13Huang et al. Journal of Cloud Computing (2023) 12:132

System model
As shown in Fig. 1, we mainly consider an
edge environment consisting of n edge servers
eNB = {eNB1, . . . , eNBi, . . . , eNBn} and a central cloud
CL . These edge servers are deployed near the end
users. Each edge server eNBi can be represented by a
three-tuple eNBi =< Ci,Bi, Si > , in which Ci , Bi and Si
denote the computational capacity, bandwidth capac-
ity, and storage capacity of the edge server eNBi ,
respectively. These resources of edge server eNBi can
be encapsulated to be m VMs. The set of m VMs can
be denoted by VMi = {VMi,1, . . . ,VMi,j , . . . ,VMi,m} ,
in which VMi,j denotes the j th VM in edge server
eNBi . Each VM VMi,j can be denoted by a two-tuple
VMi,j =< Ci,j ,Bi,j > , in which Ci,j denotes the com-
putational capacity of the VM VMi,j , and Bi,j denotes
the bandwidth capacity of the VM VMi,j . The central
cloud CL hosts a set of original service instances that
are to be cached to the VMs of edge servers. Due to
the limited resources of edge servers, multiple service
providers may compete to rent the limited resources to
deploy their service instances [21].

Resource sharing model by multiple service providers
In our edge environment, there are K service providers
SP = {SP1, . . . , SPk, . . . , SPK } and each service provider

has a service instance. The set of these service instances
can be denoted by SE = {SE1, . . . , SEk , . . . , SEK } . The
service instance SEk of the k th service provider SPk can
be denoted by a two-tuple SEk =< Wk ,Dk > , in which
Wk denotes the workload of the computation request
processed by corresponding service instances SEk , Dk
denotes the size of the input data required by the com-
putation request. Each service instance SEk have a
set of user requests to process. If the k th service pro-
vider SPk caches its service instance SEk on VM VMi,j
of edge server eNBi , the user requests will be redirected
to the edge server eNBi to process. Otherwise, the user
requests will be fulfilled by the original service instance
in the central cloud CL . Each service provider provides
services with relatively stable performance and has a sta-
ble users base. The users of a service provider will not
move to other service providers in the short term. To
improve the quality of service (QoS) and keep the user
base, service providers cache their service instances to
edge servers nearby end users [22]. However, caching
service instances on the edge servers greatly increases
the service cost of service providers. To reduce service
cost, different service providers can cache their service
instances to different VMs on the same edge server for
resource sharing. Moreover, when the VM occupied by
service provider is idle, it can also be shared with other

Fig. 1 An example of service caching in edge environment

Page 5 of 13Huang et al. Journal of Cloud Computing (2023) 12:132

service providers, and thereby greatly reducing the ser-
vice cost of service providers [23].

All service providers on the same edge server are
referred as a coalition. The coalition on the edge server
eNBi can be denote by gi . Since the storage resource
of each edge server is limited, the sum of the size of
input data required by the computation requests corre-
sponding to the service instances in the coalition can-
not exceed the storage capacity of the edge server, i.e.,
∑

SPk∈gi
Dk ≤ Si . Each service provider can apply to join

in a coalition. Each coalition has an agent which decides
whether service provider’s applying is accepted or not.
When it is accepted, the agent further assigns the service
instance to an optimal VM according to the resources of
different VMs.

Cost model for service provider
To cache service providers’ service instances on edge
servers incurs additional service costs [24]. When a VM
only cache a service instance, the cost to rent this VM
is undertaken by the corresponding service provider.
When a VM is shared by multiple service instances, the
cost will be shared among the cached instances [25]. We
model the cost of a service provider occupying a VM
alone and the cost of a service provider in a coalition
sharing a VM, respectively.

When a service instance SEk is cached on a VM VMi,j ,
the computation and bandwidth resources of the VM
VMi,j are exclusive to the service instance SEk . The cost
of using per unit of computation resource of the edge
server eNBi can be denoted by cpi . The cost of using per
unit of bandwidth resource of the edge server eNBi can
be denoted by bpi . Therefore, the exclusive resource
usage cost incurred by the service provider SPk for
exclusive ownership of the VM VMi,j can be calculated
by Eq. (1):

It is note that the usage cost of exclusive resource is
referred as its default cost.

When multiple service providers on an edge server
form a coalition, the computation and bandwidth
resources of the edge server can be shared by these ser-
vice providers. Since each service provider is self-inter-
ested, we adopt the cost policy proposed in the literature
[26] to ensure the stability of the formed coalition. When
service provider SPk joins in the coalition gi and caches
its service instance SEk on VMi,j in coalition gi , the ser-
vice provider SPk shares the computation and bandwidth
resources of edge server eNBi with other service provid-
ers in coalition gi and the usage cost pk ,j

(

gi
)

 of shared
resource can be calculated by Eq. (2):

(1)ci,j = c
p
i · Ci,j + b

p
i · Bi,j

where
∑

SPk′ ∈gi
ci,j′ denotes the sum of the default cost of

the service providers in coalition gi .
c
(

gi
)

= c
p
i · Ci + b

p
i · Bi denotes the cost of the edge

server eNBi.

Service latency model
The service latency is defined to be the sum of service
execution time and data transfer time. The service latency
of the computation request processed by the service
instance cached in edge server is very different from that
by service instance cached the service in the central cloud
CL . [27]. The service latency of the computation request
processed by the service instance SEk in the central cloud
CL can be denoted by dCLk . The service latency of the
computation request processed by the service instance
SEk cached on VM VMi,j of edge server eNBi can be
denoted by di,j,k . The service latency is composed of ser-
vice execution delay and data transfer time. The service
execution latency of the computation requests processed
by service instance SEk cached on VM VMi,j of edge
server eNBi can be calculated by dexei,j,k = Wk/Ci,j , where
Ci,j denotes the computing capacity of VMi,j . The transfer
time of input data required by service instance SEk can be
denoted by dtrani,k . Therefore, the service latency di,j,k can
be denoted by calculated by Eq. (3).

Since the edge server is closer to the end user than the
central cloud, the service latency of the computation
request processed by the service instance cached in the
edge servers is usually much smaller than that by ser-
vice instance cached in the central cloud, expressed as
di,j,k ≪ dCLk .

Utility model
To minimize the service cost and the service latency, the
utility function can be defined as the weighted sum of the
service cost and service latency. The utility obtained by
the service instance SEk occupying the VM VMi,j of edge
server eNBi alone is defined as the default utility, which
can be denoted by udfti,j,k . The utility obtained by the ser-
vice instance SEk sharing the resources of edge server
eNBi with other service providers in coalition gi is defined
as the collaboration utility, which can be denoted by ucolli,j,k .
Different service instances have different delay sensitivi-
ties. The importance of the service instance SEk can be
adjusted by the weighted vk . Therefore, the default utility
and the collaboration utility can be calculated by Eq. (4)
and Eq. (5), respectively.

(2)pk ,j gi =
ci,j

SPk′ ∈gi
ci,j′

c(gi)

(3)di,j,k = dtrani,k + dexei,j,k

Page 6 of 13Huang et al. Journal of Cloud Computing (2023) 12:132

A service provider can cache its service instance to
a VM VMi,j to maximize its default utility. To further
reduce the service cost and obtain greater utility, the ser-
vice provider can share the resources of VM VMi,j with
other service providers in coalition gi . The additional util-
ity obtained by service provider SPk joining in the coali-
tion gi can be denoted by ui,j,k , which can be calculated
by Eq. (6):

where udfti′,j′,k is the maximum default utility that can be
obtained by the service provider SPk . Each service pro-
vider with occupying the VM VMi′,j′ of edge server eNBi′
alone has a default service cost ci′,j′ .
pk ,j

(

gi
)

− vk · di′,j′,k + vk · di,j,k can reflect the collabora-
tion cost, which can be denoted by ccolli,j,k.

Problem formulation
Different edge servers have different computing
resources and bandwidth resources [28]. Therefore, the
service latency of the computation request processed by
different edge servers vary greatly. Moreover, a service
provider choosing different edge servers to form a coali-
tion also greatly affects its service cost. Therefore, with
limited computing and bandwidth resources of edge
servers, the main goal of service caching is to minimize
the sum of the collaboration costs of all service providers
[29]. Here, we formulate the service caching problem as
follows:

where ai,j,k denotes whether the service instance SEk of
service provider SPk is cached on VM VMi,j of edge server
eNBi . If ai,j,k = 1 , it denotes that the service instance SEk
is cached in VMi,j of the edge server eNBi . Otherwise, it

(4)u
dft
i,j,k = vk ·

(

dCLk − di,j,k

)

− ci,j

(5)ucolli,j,k = vk ·
(

dCLk − di,j,k

)

− pk ,j
(

gi
)

(6)ui,j,k = ucolli,j,k − u
dft
i′ ,j′ ,k = ci′ ,j′ − (pk ,j

(

gi
)

− vk · di′ ,j′ ,k + vk · di,j,k)

(7)Minimize :
∑n

i=1

∑m

j=1

∑K

k=1
ai,j,k · c

coll
i,j,k

(8)Subject to :
∑

SPk∈gi
Dk ≤ Si

(9)
∑n

i=1

∑m

j=1

∑K

k=1
ai,j,k = 1

(10)ai,j,k ∈ {0, 1}

means that the service instance SEk is not cached in VMi,j
of the edge server eNBi . Equation (8) ensures that the sum
of the size of the input data required by the computation
requests processed by corresponding service instances
in the edge server does not exceed the maximum storage
capacity Si of the edge server eNBi . Equation (9) denotes
that the service instance SEk of service provider SPk is
only cached on VM VMi,j of edge server eNBi . Service
provider SPk no longer need to cache its service instance
SEk on other edge servers, which increases the resource
cost.

The independent learners‑based service caching scheme
To solve the service caching problem in a resource con-
strained edge environment, we adopt a stateless Q-learn-
ing algorithm, and design an independent learners-based
service caching scheme. In this section, we first introduce
the stateless Q-learning algorithm. Then, we define the
action space and reward function of the service caching
problem. Finally, we describe the independent learners-
based service caching scheme in detail.

Stateless Q‑learning algorithm
Q-learning algorithm is a simple and easy to understand
reinforcement learning algorithm [30]. The Q value is the
expected reward obtained after taking a specific action
at a specific state. The Q value can be used to measure
the effectiveness of the actions. The Q-learning algorithm
can learn an estimated Q-value obtained by taking each
action at each state. However, the environment state is
sometimes only releated to actions and not to states [31].
Therefore, the Q-learning algorithm can be further sim-
plified to a stateless Q-learning algorithm [32]. In our
problem model, the environment state is manly related to
the caching action of service instances. Therefore, a state-
less Q-learning algorithm is adopted to solve the service
caching problem. Each edge server eNBi is treated as an
agent i , its caching decision as an action ai , the inverse of
the sum of the collaboration costs of all service instances
cached in edge server eNBi as the immediate reward Ri .
The expected reward obtained by each agent i perform-
ing action ai in next time period can be denoted Qi(ai) .
For the stateless Q-learning algorithm, the expected
reward Qi(ai) can be updated by Eq. (11) [32]:

where �T denotes the learning rate.

Action space and reward function
The caching action a(τ) at the time step τ can be defined
by the Eq. (12):

(11)Qi(ai) ← Qi(ai)+ �T · (Ri(τ)− Qi(ai))

Page 7 of 13Huang et al. Journal of Cloud Computing (2023) 12:132

where ai(τ) = (ai,1,1(τ), . . . , ai,j,k(τ), ai,m,K (τ)) is a vec-
tor that indicates whether the K service instances are
cached on the edge server eNBi.ai,j,k(τ) indicates whether
service instance SEk is cached on VMi,j at the time step
τ . If ai,j,k(τ) = 1 , the service instance SEk is cached on
VMi,j of edge server eNBi at the time step τ . Otherwise,
ai,j,k(τ) = 0 indicates that service instance SEk is not
cached on VMi,j of the edge server eNBi at the time step τ.

The actions a(τ) , ai(τ) , and ai,j,k(τ) are called super
action, joint action and base action, respectively. Their
action spaces’ sizes are n · 2MK , 2MK and 2, respec-
tively. Sine the action spaces’ sizes of the super action
and joint action are exponential, the Q-learning algo-
rithm needs an exponential number of iterations to
go through all actions and learn their Q values, which
is clearly infeasible. To address this problem, refer
to the literature [32], the Q-value Qi,j,k

(

ai,j,k
)

 of each
base action ai,j,k is first learned. Then, according to the
Q-values of all base action, the Q-value of the super
action can be obtained. Therefore, the action space
of super action can be greatly reduced to that of base
action. After the agent i of edge server eNBi performing
the base action ai,j,k(τ) , the expected reward Qi,j,k

(

ai,j,k
)

can be obtained. Based on the Q-value Qi,j,k

(

ai,j,k
)

 of
basic action ai,j,k , the Q-value Qi(ai) of the super action
ai can be further calculated. The expected reward
Qi,j,k

(

ai,j,k
)

 of base action ai,j,k(τ) can be updated by
Eq. (13):

where Ci,j,k

(

ai,j,k
)

 denotes the number of times that ser-
vice instances SEk is cached on VM VMi,j of edge server
eNBi at time step τ . Ri,j,k(τ) denotes the immediate
reward obtained by caching the service instance SEk on
VM VMi,j of edge server eNBi at time step τ . Since the
immediate reward Ri,j,k(τ) is the inverse of the cost of the
service instance SEk cached on VM VMi,j of edge server
eNBi , it can be denoted by Ri,j,k(τ) = −ai,j,k · c

coll
i,j,k . The

estimated reward obtained by caching the service
instance SEk on VM VMi,j of edge server eNBi can be cal-
culated by Qi,j,k = Qi,j,k(1)− Qi,j,k(0) . When ai,j,k = 0 ,
Ri,j,k(τ) = 0 . Based on the values of ai,j,k and Ri,j,k(τ) , we
can further compute the estimated rewards of action
ai,j,k = 0 and action ai,j,k = 1 , and obtain Qi,j,k(0) = 0
and Qi,j,k = Qi,j,k(1).

(12)a(τ) = (a1(τ), . . . , ai(τ), . . . , an(τ))

(13)Qi,j,k

(

ai,j,k
)

← Qi,j,k

(

ai,j,k
)

+
1

Ci,j,k

(

ai,j,k
)

+ 1
· (Ri,j,k(τ)− Qi,j,k

(

ai,j,k
)

)

Algorithm implementation
To solve this above problem, we propose an independ-
ent learners-based services caching scheme (ILSCS).
The ILSCS scheme adopt a stateless Q-learning algo-
rithm to learn an optimal service caching with resource
sharing among multiple service providers. The detail
process of ILSCS scheme can be presented in Algo-
rithm 1. We first initialize all Ci,j,k and Qi,j,k to be 0 (line
1). Then we calculate the immediate reward Ri,j,k(τ)
obtained by taking base action ai,j,k(τ) (line 4). Accord-
ing to the immediate reward Ri,j,k(τ) , we further update
the corresponding Qi,j,k and Ci,j,k (line 5–6).Base on all
base actions ai,j,k(τ) , we can further to find an optimal
super action a∗(τ) . Referring to the literature [32, 33],
the problem to find the optimal super action a∗ can be
converted to be a 0–1 backpack problem. It can be for-
mulated as follows:

Subject to:(8)(9)(10).
The 0–1 knapsack problem is a classical NP-hard prob-

lem [34]. It is very difficult to find the optimal super
action a∗ . In this paper, we adopt a greedy algorithm to
solve the 0–1 knapsack problem and find an approxi-
mate optimal solution. We first calculate Qi,j,k/Dk , where
i = 1, 2, . . . , n, j = 1, 2, . . . ,m,k = 1, 2, . . . , k . Then, we
sort Qi,j,k/Dk in non-increasing order (line 9). Accord-
ing to the order of Qi,j,k/Dk , we sequentially perform the
corresponding service caching actions. Specifically, the

service caching action ai,j,k(τ) corresponding to Qi,j,k/Dk
is to cache the service instance SEk in the VMi,j of edge
server eNBi . For the service caching action corresponding
to the last 10% of Qi,j,k/Dk , we adopt an epsilon-greedy
algorithm to select a service caching action (line 14). It
means that we choose the service caching action corre-
sponding to the last 10% of Qi,j,k/Dk with probability ε
and randomly select a service caching action with prob-
ability 1− ε . Otherwise, we perform the service caching
action ai,j,k(τ) corresponding to Qi,j,k/Dk until constraint
conditions (8), (9) and (10) are not satisfied (line 15–16).
Finally, in order to make service providers join in coali-
tions to reduce the service cost, the service providers that
do not join in any coalition are required to cache their
service instances on the edge servers that minimizes their
collaboration cost.

(14)Maximize :
∑n

i=1

∑m

j=1

∑K

k=1
ai,j,k ·Qi,j,k

Page 8 of 13Huang et al. Journal of Cloud Computing (2023) 12:132

Algorithm 1. Independent learners-based service caching scheme (ILSCS)

Experimental evaluation
In order to evaluate the effectiveness of our proposed
ILSCS scheme, we conduct extensive experiments to
compare ILSCS scheme against COALITION, RAN-
DOM, MDU, and MCS four baseline algorithms under
different experimental settings. In this section, we first
present the experiment parameters setting. Then we ana-
lyze the related experimental results.

Experimental parameter settings
In this paper, the edge environment mainly consists of K
service providers, n edge servers and a central cloud CL .
Each service provider has a service instance. We set the
related experimental parameters referring to literatures
[26]. These experimental parameters are described in
detail as follows.

(1) The parameter settings for system model: the num-
ber n of edge servers is 50 in default. The compu-
tation capacity Ci of each edge server eNBi varies
within the range [8000, 16000] MHz. The band-
width capacity Bi of each edge server eNBi varies
within the range [100, 1000] Mbps. The storage
capacity Si of each edge server eNBi varies within
[200–300] GB. The computation capacity Ci,j of VM
VMi,j in edge server eNBi varies within [4000–8000]
MHz and its bandwidth capacity Bi,j varies within
[10–100] Mbps. The usage cost per unit compute
resource of each edge server eNBi is set to [$0.15,
$0.22]. The usage cost per unit bandwidth resource

of each edge server eNBi varies within [$0.05,
$0.12]. The transmission delay dtrani,k between the
end user and the edge server eNBi where cache the
service instance SEk required by the end user is set
to 5-20 ms. The service latency of the computation
request processed by the service instance cached in
central cloud is set to [50, 100] ms.

(2) The parameter settings for resource sharing model
by multiple service providers: the number K of ser-
vice providers is 80 by default. The size Dk of the
service instance SEk provided by service provider
SPk varies within [30, 50] GB. The workload Wk of
the computation request processed by correspond-
ing service instances SEk are set to [50, 100] MHz.
The weighted vk varies within [100, 150].

Experimental analysis
To verify the effectiveness of ILSCS scheme, we imple-
ment COALITION, RANDOM, MDU and MCS four
baseline algorithms. We compare the performance of
ILSCS scheme with that of four baseline algorithms
under different experimental parameter settings, and
analyze these experimental results.

• ILSCS: This abbreviation standards for independent
learners-based service caching scheme. This scheme
treats each edge server as an agent, and adopts a stateless
Q-learning to learn an optimal service caching policy.

• COALITION [26]: It adopts a distributed and stable
game-theoretic mechanism to solve the service cach-
ing problem with resource sharing among multiple
service providers, aiming at minimizing the social
cost of all service providers.

• RANDOM: It randomly selects virtual machines to
cache service instances of service providers.

• MDU (max default utility): It caches the ser-
vice instances of service providers to these virtual
machines that maximum their default utility.

• MCS (max coalition size): It caches the service
instances of service providers to these edge servers
with the most members in the coalition.

Convergence of ILSCS
Figure 2 shows the learning curve of the ILSCS scheme.
We can observe from Fig. 2 that the total collaboration cost
gradually decreases and tends to be stable with the increase
of the learning time (i.e., the number of episodes). It indi-
cates that the ILSCS scheme can learn an optimal service
caching strategy that minimize the total collaboration

Page 9 of 13Huang et al. Journal of Cloud Computing (2023) 12:132

cost of all service providers. In resource constrained edge
environment, each edge server is treated as an agent. Each
agent can learn a collaboration caching scheme, that is how
multiple service providers on this edge server can share the
limited resource of the edge server to cache their service
instances, to greatly reduce the resource usage cost.

Impact of the size of the input data required
by computation request
To investigate the impact of the size of the input data
required by computation request on the total collabora-
tion cost and the average services delay, we vary the input
data’s size from 30 to 70 GB with the increment of 10 GB.
Figure 3 show the impact of different sizes of the input
data required by computation request on the total col-
laboration cost and the average latency. We can observe

from the Fig. 3 that the total collaboration cost and the
average service latency of ILSCS scheme are lower than
these of COALITION, MDU, MCS and RANDOM four
algorithms when the size of the service instances gradu-
ally increase. That is because that the ILSCS scheme can
learn an optimal service caching policy with resource
sharing among multiple service provider in a coalition of
an edge server, which greatly reducing the collaboration
cost and the server latency. Moreover, we can observe
from Fig. 3(a) that the total collaboration cost of ILSCS,
COALITION, MDU and MCS four algorithms gradu-
ally increase with the increase of the input data size. The
main reason is that when the input data size increases,
the number of service instances cached on an edge
server decreases, thereby the number of service provid-
ers in coalition of the edge server decreasing. The smaller
the number of service providers in coalition of the edge

Fig. 2 The learning curve of ILSCS scheme

Fig. 3 The impact of the size of input data required by computation request

Page 10 of 13Huang et al. Journal of Cloud Computing (2023) 12:132

server, the higher the collaboration cost that paid by the
members in the coalition, and thereby leading to higher
social cost.

The impact of the number of service providers
To examine the impact of the number of service provid-
ers on the total collaboration cost and the service delay,
we vary the number of service providers from 40, 60, 80,
100 to 120. Figure 4 plot the related experimental result.
We can see from Fig. 4(a) that the total collaboration cost
of ILSCS, COALITION, MDU, MCS and RANDOM
five algorithms gradually increase with the increase of
the number of service providers. The main reason for
this phenomenon is that the total collaboration cost is
the sum of the collaboration cost of all service provid-
ers. When the number of service providers increases,
the sum of the collaboration cost of all service providers
increases as well. Moreover, we can also see from Fig. 4
that the total collaboration cost and the average service
latency of ILSCS scheme are lower than these of COA-
LITION, MDU, MCS and RANDOM four baseline algo-
rithms. That is because that the ILSCS scheme can learn
an optimal service caching policy once the number of
service providers is fixed. On the one hand, the optimal
service caching policy can cache service instances on
optimal edge servers, which achieve a lower average ser-
vice latency. On the other hand, the optimal service cach-
ing policy enables multiple service provider to share the
limited resources of edge servers to cache more service
instances, and thereby incurring lower collaboration cost
and the average service delay.

The impact of the number of edge servers
Figure 5 illustrates the impact of the number of edge
servers on the total collaboration cost and the aver-
age service latency. In Fig. 5, we can see that with the
number of edge servers varying from 20, 35, 50, 65, to
80, the total collaboration cost and the average service

latency of ILSCS scheme gradually decrease. This is due
to that with the increase of the number of edge serv-
ers, there are more available edge servers that can be
selected to cache service instances of service providers.
The more available edge servers, the higher probability
the service providers have to select more cost-effec-
tive edge servers to cache their service instances, and
thereby reducing the collaborative cost, alleviating the
resource contention and reducing the average service
latency. The MCS algorithm selects these edge serv-
ers with the most members in the coalition, rather
than the edge servers with the highest cost-effective, to
cache service instances. Therefore, we can observe that
the total collaboration cost and the service latency of
MCS algorithm are not relative to the number of edge
servers. The RANDOM algorithm randomly selects
edge servers to cache their service instances. The more
available edge servers, the more scattered the service
instances will be cached, and thereby leading to higher
collaboration cost. Therefore, the collaboration cost of
the RANDOM algorithm gradually increases with the
increase of the number of edge servers. In addition, we
can observe that the collaboration cost and the service
latency of ILSCS scheme are lower than these of COA-
LITION, MDU, MCS and RANDOM four algorithms.
The main reason is that the ILSCS scheme can selects
edge servers with the highest cost-effective to cache
service instances and shares the resources of edge serv-
ers among multiple service instances on the same edge
server.

The impact of the storage capacities of edge servers
To investigate the impact of the storage capacity of
edge server on the total collaboration cost and the
service latency, we vary the storage capacities of
edge server from 200 GB, 250 GB, 300 GB, 350 GB
to 400 GB. Figure 6 plots the related experimental
result. We can observe from the Fig. 6(a) that the total

Fig. 4 The impact of the number of service providers

Page 11 of 13Huang et al. Journal of Cloud Computing (2023) 12:132

collaboration cost of MCS, COALITION and MRSCS
algorithms decreases with the increase of the storage
capacities of the edge servers. That is because that the
larger the storage capacity of the edge server is, the
more service providers can join in a coalition of an
edge server, and thereby decreasing the collaboration
cost of the service providers in the coalition. The total
collaboration costs of RANDOM and MDU algorithms
are not affected by the storage capacities of edge serv-
ers. In addition, the total collaborative cost of ILSCS
and COALITION two algorithms decrease faster than
that of RANDOM, MCS and MDU algorithms. This
is because when the storage capacity of edge serv-
ers increases, the probabilities of resource conten-
tion among service providers decreases. With lower
resource contention, the service providers can select
the high cost-effective edge servers to cache service
instances, and thereby greatly decreasing the social
cost. Finally, we can further observe from the Fig. 6(a)
that the total collaboration cost and the server latency
of ILSCS scheme are lower than these of COALITION,
MDU, MCS and RANDOM four algorithms. The main

reason is discussed in The impact of the number of
edge servers.

Conclusions and future work
In this paper, we investigate the service caching prob-
lem with resource sharing among multiple service pro-
viders in resource constrained edge environment. To
address this problem, we first construct system model,
resource sharing model by multiple service providers,
cost model for service provider, service latency model
and utility model, respectively. Then we formulate the
service caching problem with resource sharing among
multiple service providers. Next, we adopt a stateless
Q-learning algorithm to learn an optimal service cach-
ing policy. Finally, to validate the effectiveness of our
proposed ILSCS scheme, we implement COALITION,
RANDOM, MDU and MCS four baseline algorithm,
and compare the total collaborative cost and the ser-
vice latency of our proposed ILSCS scheme to these of
four baseline algorithms under different experimental
parameter settings such as the size of service instance,
the number of service instances, the number of edge

Fig. 5 The impact of the number of edge servers

Fig. 6 The impact of the storage capacities of edge servers (a) The total collaboration cost. (b) The average services latency

Page 12 of 13Huang et al. Journal of Cloud Computing (2023) 12:132

servers, and the storage capacity of edge server. The
extensive experimental results demonstrate the ILSCS
scheme can achieve lower the service cost and the ser-
vice latency.

In our futher work, we will further investigate the cach-
ing problem of service instances with fault tolerance
when some edge servers fail.

Authors’ contributions
Binbin Huang, Ziqi Ran and Yuanyuan Xiang wrote the main manuscript text
and prepared all figures - original draft. Dongjin Yu and Xiaoying Shi validated
the manuscript. Zhongjin Li, Zhengqian Xu supervised to complete this work
on time.

Funding
(details of any funding received). Zhejiang Provincial National Science Foundation
of China, LY23F020015. National Natural Science Foundation of China, 61903109.

Availability of data and materials
(a statement on how any datasets used can be accessed). 1)The experiment
data supporting this experiment analysis are from previously reported studies,
which have been cited. 2)The experiment data used to support the findings of
this study are included within the article. 3)The experiment data are described
in Experimental evaluation in detail.

Declarations

Ethics approval and consent to particpate
(applicable for both human and/ or animal studies. Ethical committees, Inter-
nal Review Boards and guidelines followed must be named. When applicable,
additional headings with statements on consent to participate and consent to
publish are also required). This declaration is not applicable.

Competing interests
The authors declare no competing interests.

Received: 29 July 2022 Accepted: 14 August 2023

References
 1. Wang T, Mei Y, Jia W, Zheng X, Wang G, Xie M (2020) Edge-based dif-

ferential privacy computing for sensor–cloud systems. J Parallel Distrib
Comput 136:75–85. https:// doi. org/ 10. 1016/j. jpdc. 2019. 10. 009

 2. J. Xu, L. Chen, and P. Zhou (2018) “Joint service caching and task offload-
ing for mobile edge computing in dense networks,” arXiv

 3. S. Li, L. Da Xu, and S. Zhao (2018) “5G Internet of Things: A survey A R T I C
L E I N F O,” J. Ind. Inf. Integr. 10:1–9. Available: https:// doi. org/ 10. 1016/j. jii.
2018. 01. 005

 4. Zhang, Junna, Jiawei Chen, et al. (2023) “Dependent Task Offloading
Mechanism for Cloud–Edge-Device Collaboration.” J Netw Comput Appl.
216:103656, https:// doi. org/ 10. 1016/j. jnca. 2023. 103656

 5. Zhang, Junna, Xiaoyan Zhao, et al. (2022) “A Composite Service Provision-
ing Mechanism in Edge Computing.” Mobile Inf Syst. 2022:1–16, https://
doi. org/ 10. 1155/ 2022/ 90312 01

 6. Xia X, Chen F, He Q, Cui G, Lai P, Abdelrazek M, Grundy J, Jin H (2020)
Graph-based data caching optimization for edge computing. Future
Gener Syst 113:228–239. https:// doi. org/ 10. 1016/j. future. 2020. 07. 016

 7. Xia X, Chen F, He Q, Grundy J, Abdelrazek M, Jin H (2020) Online col-
laborative data caching in edge computing. IEEE Trans Parallel Distrib Syst
32(2):281–294. https:// doi. org/ 10. 1109/ TPDS. 2020. 30163 44

 8. B. Huang, X. Liu, Y. Xiang, D. Yu, S. Deng and S. Wang, (2022) “Reinforce-
ment learning for cost-effective IoT service caching at the edge. ”J Parallel
Distributed Comput. 168 https:// doi. org/ 10. 1016/j. jpdc. 2022. 06. 008

 9. Xia X, Chen F, Grundy J, Abdelrazek M, Jin H, He Q (2022) Constrained app
data caching over edge server graphs in edge computing environment.
IEEE Trans Serv Comput 15(5):2635–2647. https:// doi. org/ 10. 1109/ TSC.
2021. 30620 17

 10. Du B (2021) Mobile edge computation induced caching strategy for
huge online education with college teachers and students. Internet
Technol Lett 4(1):2–7. https:// doi. org/ 10. 1002/ itl2. 208

 11. Rim M, Kang CG (2020) Content Prefetching of Mobile Caching Devices
in Cooperative D2D Communication Systems. IEEE Access 8:141331–
141341. https:// doi. org/ 10. 1109/ ACCESS. 2020. 30124 42

 12. Qi K, Han S, Yang C (2019) Learning a Hybrid Proactive and Reactive
Caching Policy in Wireless Edge under Dynamic Popularity. IEEE Access
7:120788–120801. https:// doi. org/ 10. 1109/ ACCESS. 2019. 29368 66

 13. Wang W, Lan RN, Gu JX, et al (2017) Edge caching at base stations with
device-to-device offloading. IEEE Access 5:6399–6410. https:// doi. org/ 10.
1109/ ACCESS. 2017. 26791 98

 14. Ahani G, Yuan D (2020) “Optimal scheduling of content caching
subject to deadline.” arXiv. 1:293–307. https:// doi. org/ 10. 1109/ ojcoms.
2020. 29785 85

 15. C. K. Kim, T. Kim, A. Cho, and S. K. Lee (2020) “Delay-aware distributed
caching scheme in edge network,” Conex. 2020 - Proc. 16th Int. Conf.
Emerg. Netw. Exp. Technol. 544–545, https:// doi. org/ 10. 1145/ 33863 67.
34316 64

 16. Gu H, Wang H (2020) A Distributed Caching Scheme Using Non-Coop-
erative Game for Mobile Edge Networks. IEEE Access 8:142747–142757.
https:// doi. org/ 10. 1109/ ACCESS. 2020. 30096 83

 17. M. Kim, H. Cho, Y. Cui, and J. Lee (2020) “Service Caching and Computa-
tion Resource Allocation for Large-Scale Edge Computing-Enabled Net-
works,” 2020 IEEE Glob. Commun. Conf. GLOBECOM 2020 - Proc., https://
doi. org/ 10. 1109/ GLOBE COM42 002. 2020. 93222 97

 18. Ren Y (2021) Game theory based cooperative caching strategy in
information-centric networking. Internet Technol Lett 4(1):2–5. https://
doi. org/ 10. 1002/ itl2. 160

 19. Song, Jiongjiong, et al. (2017) “Learning Based Content Caching and
Sharing for Wireless Networks.” IEEE Transactions on Communications.
1–1, https:// doi. org/ 10. 1109/ tcomm. 2017. 27133 84

 20. Lu S et al (2022) A Dynamic Service Placement Based on Deep Reinforce-
ment Learning in Mobile Edge Computing. Network. 2:106–122. https://
doi. org/ 10. 3390/ netwo rk201 0008

 21. Chen Y et al (2023) A Distributed Game Theoretical Approach for
Credibility-Guaranteed Multimedia Data Offloading in MEC. Inf Sci.
644:119306. https:// doi. org/ 10. 1016/j. ins. 2023. 119306

 22. Liang J, Ma B, Feng Z, Huang J (2023) Reliability-aware Task Processing
and Offloading for Data-intensive Applications in Edge Computing. IEEE
Trans Netw Serv Manage. https:// doi. org/ 10. 1109/ TNSM. 2023. 32581 91

 23. Chen Y, Hu J, Zhao J, Min G. QoS-Aware Computation Offloading in
LEO Satellite Edge Computing for IoT: A Game-Theoretical Approach[J].
Chinese Journal of Electronics. https:// doi. org/ 10. 23919/ cje. 2022. 00. 412

 24. Chen, Ying, Jie Zhao, Jintao Hu, et al. (2023) “Distributed Task Offloading
and Resource Purchasing in Noma-Enabled Mobile Edge Computing:
Hierarchical Game Theoretical Approaches.” ACM Transactions on Embed-
ded Computing Systems. https:// doi. org/ 10. 1145/ 35970 23

 25. Zhang J, Chen D, Yang Q et al (2023) Proximity Ranking-Based Multimodal
Differential Evolution. Swarm and Evolutionary Computation. 78:101277.
https:// doi. org/ 10. 1016/j. swevo. 2023. 101277

 26. Z Xu, L Zhou, S Chi-Kin Chau, W Liang, Q Xia, P Zhou (2020) “Collaborate
or Separate? Distributed Service Caching in Mobile Edge Clouds.” IEEE
INFOCOM. 2020-July, 3:2066–2075. https:// doi. org/ 10. 1109/ INFOC OM410
43. 2020. 91553 65

 27. Zhang X et al (2022) Joint Edge Server Placement and Service Placement
in Mobile-Edge Computing. IEEE Internet of Things Journal. 9:11261–
11274. https:// doi. org/ 10. 1109/ jiot. 2021. 31259 57

 28. Y. Chen, W. Gu, J. Xu, Y. Zhang and G. Min, "Dynamic task offloading for
digital twin-empowered mobile edge computing via deep reinforcement
learning," in China Communications, https:// doi. org/ 10. 23919/ JCC. ea.
2022- 0372. 202302.

 29. Liu F, Huang J, Wang X (2023) Joint Task Offloading and Resource Alloca-
tion for Device-Edge-Cloud Collaboration with Subtask Dependencies.
IEEE Transactions on Cloud Computing. https:// doi. org/ 10. 1109/ TCC.
2023. 32515 61

https://doi.org/10.1016/j.jpdc.2019.10.009
https://doi.org/10.1016/j.jii.2018.01.005
https://doi.org/10.1016/j.jii.2018.01.005
https://doi.org/10.1016/j.jnca.2023.103656
https://doi.org/10.1155/2022/9031201
https://doi.org/10.1155/2022/9031201
https://doi.org/10.1016/j.future.2020.07.016
https://doi.org/10.1109/TPDS.2020.3016344
https://doi.org/10.1016/j.jpdc.2022.06.008
https://doi.org/10.1109/TSC.2021.3062017
https://doi.org/10.1109/TSC.2021.3062017
https://doi.org/10.1002/itl2.208
https://doi.org/10.1109/ACCESS.2020.3012442
https://doi.org/10.1109/ACCESS.2019.2936866
https://doi.org/10.1109/ACCESS.2017.2679198
https://doi.org/10.1109/ACCESS.2017.2679198
https://doi.org/10.1109/ojcoms.2020.2978585
https://doi.org/10.1109/ojcoms.2020.2978585
https://doi.org/10.1145/3386367.3431664
https://doi.org/10.1145/3386367.3431664
https://doi.org/10.1109/ACCESS.2020.3009683
https://doi.org/10.1109/GLOBECOM42002.2020.9322297
https://doi.org/10.1109/GLOBECOM42002.2020.9322297
https://doi.org/10.1002/itl2.160
https://doi.org/10.1002/itl2.160
https://doi.org/10.1109/tcomm.2017.2713384
https://doi.org/10.3390/network2010008
https://doi.org/10.3390/network2010008
https://doi.org/10.1016/j.ins.2023.119306
https://doi.org/10.1109/TNSM.2023.3258191
https://doi.org/10.23919/cje.2022.00.412
https://doi.org/10.1145/3597023
https://doi.org/10.1016/j.swevo.2023.101277
https://doi.org/10.1109/INFOCOM41043.2020.9155365
https://doi.org/10.1109/INFOCOM41043.2020.9155365
https://doi.org/10.1109/jiot.2021.3125957
https://doi.org/10.23919/JCC.ea.2022-0372.202302
https://doi.org/10.23919/JCC.ea.2022-0372.202302
https://doi.org/10.1109/TCC.2023.3251561
https://doi.org/10.1109/TCC.2023.3251561

Page 13 of 13Huang et al. Journal of Cloud Computing (2023) 12:132

 30. Huang J, Wan J, Lv B, Ye Q, Chen Y (2023) Joint Computation Offloading
and Resource Allocation for Edge-Cloud Collaboration in Internet of
Vehicles via Deep Reinforcement Learning. IEEE Syst J 17(2):2500–2511.
https:// doi. org/ 10. 1109/ JSYST. 2023. 32492 17

 31. Y. Chen, J. Zhao, Y. Wu, J. Huang and X. S. Shen, (2022) "QoE-Aware Decen-
tralized Task Offloading and Resource Allocation for End-Edge-Cloud
Systems: A Game-Theoretical Approach," in IEEE Transactions on Mobile
Computing. https:// doi. org/ 10. 1109/ TMC. 2022. 32231 19

 32. Jiang W, Feng G, Qin S, Yum TSP, Cao G (2019) Multi-Agent Reinforcement
Learning for Efficient Content Caching in Mobile D2D Networks. IEEE
Trans Wirel Commun 18(3):1610–1622. https:// doi. org/ 10. 1109/ TWC.
2019. 28944 03

 33. Kapetanakis S, Kudenko D, Strens MJA (2003) Reinforcement learning
approaches to coordination in cooperative multi-agent systems. Lect.
Notes Artif. Intell. (Subseries Lect. Notes Comput. Sci. 2636:18–32. https://
doi. org/ 10. 1007/3- 540- 44826-8_2

 34. Korbut AA, Sigal IK (2010) Exact and greedy solutions of the knapsack
problem: The ratio of values of objective functions. J Comput Syst Sci Int
49(5):757–764. https:// doi. org/ 10. 1134/ S1064 23071 00501 02

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/JSYST.2023.3249217
https://doi.org/10.1109/TMC.2022.3223119
https://doi.org/10.1109/TWC.2019.2894403
https://doi.org/10.1109/TWC.2019.2894403
https://doi.org/10.1007/3-540-44826-8_2
https://doi.org/10.1007/3-540-44826-8_2
https://doi.org/10.1134/S1064230710050102

	Stateless Q-learning algorithm for service caching in resource constrained edge environment
	Abstract
	Introduction
	Related works
	System model and problem formulation
	System model
	Resource sharing model by multiple service providers
	Cost model for service provider
	Service latency model
	Utility model
	Problem formulation
	The independent learners-based service caching scheme
	Stateless Q-learning algorithm
	Action space and reward function
	Algorithm implementation
	Experimental evaluation
	Experimental parameter settings
	Experimental analysis
	Convergence of ILSCS
	Impact of the size of the input data required by computation request
	The impact of the number of service providers
	The impact of the number of edge servers
	The impact of the storage capacities of edge servers

	Conclusions and future work
	References

