
Zhang et al. Journal of Cloud Computing          (2023) 12:130  
https://doi.org/10.1186/s13677-023-00507-6

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Dynamic deployment method based 
on double deep Q-network in UAV-assisted MEC 
systems
Suqin Zhang1, Lin Zhang2*, Fei Xu3, Song Cheng2, Weiya Su3 and Sen Wang2 

Abstract 

The unmanned aerial vehicle (UAV) assisted mobile edge computing (MEC) system leverages the high maneuverabil-
ity of UAVs to provide efficient computing services to terminals. A dynamic deployment algorithm based on double 
deep Q-networks (DDQN) is suggested to address issues with energy limitation and obstacle avoidance when pro-
viding edge services to terminals by UAV. First, the energy consumption of the UAV and the fairness of the terminal’s 
geographic location are jointly optimized in the case of multiple obstacles and multiple terminals on the ground. 
And the UAV can avoid obstacles. Furthermore, a double deep Q-network was introduced to address the slow 
convergence and risk of falling into local optima during the optimization problem training process. Also included 
in the learning process was a pseudo count exploration strategy. Finally, the improved DDQN algorithm achieves 
faster convergence and a higher average system reward, according to experimental results. Regarding the fairness 
of geographic locations of terminals, the improved DDQN algorithm outperforms Q-learning, DQN, and DDQN algo-
rithms by 50%, 20%, and 15.38%, respectively, and the stability of the improved algorithm is also validated.

Keywords Dynamic deployment, Unmanned aerial vehicle (UAV), Mobile edge computing (MEC), Double deep 
Q-network

Introduction
Edge computing offers computing, communication 
resources, network and storage at the edge of the net-
work near the terminal by sinking computing resources 
to the edge end of the terminal. Terminals can reduce 
their own energy consumption and task processing delay 
by transferring their computing tasks to the edge [1]. 
Mobile edge computing (MEC) is a significant 5G tech-
nology that has undergone extensive research. The theory 

and application of the related research have seen a rapid 
growth since 2015 [2].

Despite the many benefits of edge computing, tra-
ditional base stations are constrained by their fixed 
locations and high implementation costs. In addition, 
infrastructure may occasionally be harmed by natu-
ral disasters. In the aforementioned scenario, the edge 
server is unable to completely serve the terminals. Due 
to its advantages in mobility, flexibility, and cost effec-
tiveness, the unmanned aerial vehicle (UAV) has been 
widely used in both civil and military contexts for tasks 
like traffic management, disaster detection, emergency 
rescue, and target tracking [3]. Some progress has been 
made in the application research of UAV-assisted MEC 
taking into account the flexible mobility of UAVs [4, 
5]. One of the first to suggest UAV-assisted MEC was 
Motlagh et  al. [6]. By offloading to the edge, mobile 
terminals in MEC can significantly reduce energy 
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consumption and latency. The fusion of an edge com-
puting architecture and a UAV platform is referred 
to as UAV-assisted MEC. In addition to offloading to 
the edge computing server as a user node, the UAV 
can function as an air edge server for the terminal on 
the ground [7]. The UAV’s position can be adjusted to 
provide better service in accordance with the needs of 
the terminals. This architecture successfully addresses 
the drawbacks of fixed base stations. Offloading the 
workload to the UAV-carried edge server also helps to 
reduce communication congestion caused by frequent 
communications between multiple terminals and the 
cloud.

The limited endurance and storage capacity of the 
UAV have become the key issues in its application, 
which promotes the efficient and dynamic deployment 
of UAV-assisted MEC. In MEC, the energy require-
ments for flight and hovering propulsion, as well as 
computing offloading, are the two main determinants 
of the UAV’s energy consumption [8]. To fully utilize 
UAVs’ potential in the MEC system, it is critical to 
conduct research on their trajectory design, hovering 
height, and dynamic deployment [9–11]. Under con-
straints like energy consumption and UAV mobility, the 
dynamic deployment of UAVs for MEC involves plan-
ning the deployment trajectory of UAVs to satisfy the 
terminals’ unique service requirements.

In UAV-assisted MEC, traditional optimization algo-
rithms (such as heuristic algorithms [12], clustering 
algorithms [13], convex optimization algorithms [14], 
etc.) always have disadvantages, such as large amount, 
slow convergence speed, and poor processing effect 
in dynamic environments. Compared with traditional 
optimization algorithms, Deep Reinforcement Learn-
ing (DRL), which combines deep learning models 
with reinforcement learning algorithms, has powerful 
autonomous learning and decision-making capabilities, 
and can adapt to unstable environments. And through 
the adaptive adjustment strategy of technology, such as 
strategy gradient, so as to realize the optimal control in 
the dynamic environment. The environment is complex 
and changeable, with high real-time requirements that 
cannot be met by traditional optimization algorithms. 
In order to implement the dynamic deployment of the 
UAV in MEC scenarios, this paper will use the DRL 
method.

In order to meet the needs of terminals for comput-
ing offloading as well as to achieve obstacle avoidance, 
this paper will propose a DRL algorithm to dynami-
cally deploy the position of the edge server of the UAV 
in the case where the terminal position is moving and 
there are obstacles. The following are this paper’s main 
contributions:

• First, it considers the time-varying channel param-
eters caused by the terminal’s movement and the 
complex scene with obstacles on the ground, which is 
more realistic. We formulate the optimization prob-
lem and create a mathematical model for the opti-
mization objective. In order to realize the training of 
DRL, the problem is transformed into a Markov deci-
sion model.

• Second, on the basis of the double deep Q-network 
algorithm, a ε-pseudo count based exploration strat-
egy is proposed, which is a hybrid of the ε greedy and 
pseudo count exploration strategies. The goal is to 
encourage the agent to investigate more states and 
actions, maximizing fairness. And the jain fairness 
factor fn(t) ∈ (0, 1) is used to measure the fairness of 
terminals being provided with computation offload-
ing services by UAVs. When fn(t) is 1, the fairness is 
the greatest.

• Third, the simulation experiment verifies the effec-
tiveness of the proposed algorithm. The simulation 
results demonstrate that the improved algorithm is 
not only superior to the traditional DDQN, DQN 
algorithm and Q-learning algorithm in terms of con-
vergence speed and average reward value; under the 
fairness factor, the improved DDQN algorithm also 
performs better than the traditional DDQN, DQN 
algorithm and Q-learning algorithm. In addition, its 
stability and universality are verified by changing the 
position, number and size of obstacles.

Related work
The UAV’s energy use during flight is a key factor in 
determining the UAV’s flight time, so the flight path of 
the UAV must be planned. The algorithms for managing 
the deployment of UAVs dynamically are primarily clas-
sified into two types, one is the traditional optimization 
algorithm including clustering algorithms, successive 
convex approximation algorithms, greedy algorithms, 
etc., and the other is the DRL algorithm.

In order to reach the purpose of minimizing the sys-
tem’s energy consumption, Huang et  al. planned the 
trajectory of the UAV through three stages [12]. The 
three stages used the differential evolution algorithm 
with variable population size, the mean clustering algo-
rithm and greedy algorithm respectively. The authors 
implemented 3D UAV localization using the K-means 
clustering algorithm and grouped terminals into adja-
cent cluster heads [13]. In order to extend the UAV 
flight time with charging station, Muhammad et  al. 
proposed a three-stage joint routing and charging 
strategy, which uses optimization methods to design 
customer distribution area networks, charging station 
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distribution area networks and distribution routes [15]. 
In addition, the deployment of the UAV is generally 
optimized jointly with other indicators in the case of 
MEC with UAV assistance. Dai et  al. proposed a gen-
eralized propulsion energy consumption model for 
rotary-wing UAVs, and jointly optimize user schedul-
ing and UAVs trajectory to maximize UAVs energy effi-
ciency [16]. An effective approach based on successive 
convex approximation for concurrently optimizing the 
UAV’s trajectory and the bit allocation was suggested 
by Jeong et  al. so as to reduce the overall energy con-
sumption of the terminals while meeting the QoS cri-
teria [14]. In order to break down the problem with 
joint optimization issue of terminal scheduling strat-
egy, UAV’s trajectory and transmit power into a series 
of feasible sub-problems to tackle, Qi et  al. used suc-
cessive convex approximation, penalty function, and 
Dinkelbach approach [17]. On the problem with joint 
optimization of UAV’s trajectory and computing off-
loading, Hu et al. suggested a low-complexity offloading 
and trajectory scheduling method relying on Lyapunov 
optimization theory to minimize long-term energy 
efficiency [18]. Aiming at the communication security 
problem of UAV, Xu et al. suggested an approach based 
on penalized block coordinate descent by concurrently 
optimizing communication resources, UAV’s trajec-
tory, and computing resources to optimize the minimal 
safe computing capacity [19]. To increase the operat-
ing period of the UAV and the life of related network, 
Wang et al. decomposed region division and trajectory 
planning of UAV into two independent sub-problems, 
which were respectively modeled as semi-discrete opti-
mal transportation problem and traveling salesman 
problem for solving [20].

In dynamic wireless environments, it might not be 
possible to make quick decisions using traditional 
optimization algorithms, like [12–20]. The DRL which 
combines deep neural networks and reinforcement 
learning, has become a popular research topic in light 
of the quick development of artificial intelligence. 
Additionally, articles demonstrate how powerful DRL 
can be for solving complex control problems [21, 22]. 
Therefore, DRL method is widely employed to settle 
the trajectory planning problem of UAV-assisted MEC. 
In the case of limited UAV’s energy and QoS con-
straints of each terminal, the DRL method is utilized 
to improve the UAV’s trajectory in order to maximize 
the system’s long-term return. In order to maximize the 
system return and meet the constraint of QoS, Liu Qian 
et  al. suggested QoS behavior selection strategy based 
on a double deep Q network algorithm to plan the 

UAV’s flight path with limited energy [23]. Wang Liang 
et al. adopted multi-agent deep reinforcement learning 
algorithm to realize the dynamic deployment of multi-
UAV assisted MEC in the scenario of multi-UAV, so as 
to meet the load balancing among UAV clusters [24]. 
Yin et  al. used the multi-agent reinforcement learning 
approach to represent trajectory planning and resource 
allocation as a decentralized partially observable 
Markov decision process, with the goal of optimizing 
overall throughput and fair throughput [25]. UAVs can 
be utilized as temporary base stations to offer edge ser-
vices to road vehicles which have heavy traffic. The rea-
son is that the general mobile edge computing scheme 
with fixed base state cannot sufficiently manage the 
urgent communication needs in vehicle networks. A 
UAV-assisted vehicle communication network system 
was designed, and a traffic situational awareness-based 
algorithm for the best UAV flight trajectory was put 
forth to reduce the cost of UAVs [26]. Bor Yalinzi et al. 
considered both energy efficiency and coverage rate of 
terminals to optimize the UAV base station layout [27]. 
Hu et  al. investigated task offloading and trajectory 
design in tandem to minimize the weighted sum of sys-
tem energy consumption [28].

Furthermore, previous papers on UAV-assisted MEC 
rarely take collisions into account, which obviously does 
not conform to the display of real life. Therefore, Chang 
Huan et al. proposed to adopt a DRL method to realize 
the dynamic deployment of UAV edge computing plat-
form in a complex environment with obstacles on the 
ground [29]. However, the position of the terminal will 
change with time in reality. In order to ensure that the 
UAV can offer computing services to the mobile termi-
nals while avoiding obstacles, the UAV needs to adjust its 
trajectory in time. Moreover, in most existing studies, the 
deployment of UAVs is a one-time deployment. When 
the location of the terminal on the ground changes, the 
original deployment location may not provide the ter-
minal with the optimal edge computing service. To sum 
up, in the case of obstacles on the ground, movement 
of terminals, and continuous deployment of UAV posi-
tions according to the needs of the terminals, it is still 
challenging to design the deployment trajectory of UAV, 
which is also the main motivation for the research work 
in this paper.

System model
For mobile edge computing scenarios, when a sin-
gle UAV carrying an edge server provides edge com-
puting services for multiple mobile terminals on the 
ground, it needs to meet obstacle avoidance, UAV’s 
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own constraints, and fairness of geographic location 
of mobile terminals. System model is described in this 
section.

As shown in Fig.  1, there are a single UAV, N mobile 
terminals and K obstacles in a rectangular map with a 
length of ℓ and a width of w. The sets of terminals and 
obstacles are denoted as n ∈ N = {1, 2, · · · ,N } and 
k ∈ K = {1, 2, · · · ,K } respectively. The geometric center 
of the obstacle is used to represent the location infor-
mation, and it is denoted as bk = (xk , yk , h),∀k ∈ K , 
where h is the height of the center point of obstacle. This 
paper considers a discrete-time system and divides time 
into T slots, denoted as t ∈ T = {0, 1, 2, ...,T } . The UAV 
flies over the target area to offer edge computing ser-
vices for terminals at a fixed height H . The UAV’s loca-
tion is indicated as uuav,t = (xt , yt ,H),∀t ∈ T at the tth 
time slot. The initial positions of N terminals are ran-
domly distributed on the ground. Due to the mobil-
ity of terminals, the location coordinates of terminal 
n are un,t = (xn,t , yn,t , 0),∀n ∈ N, t ∈ T at the tth time 
slot. Assuming that terminals have a task of random size 

to offload in each time slot, we can derive the following 
constraints.

The main parameters and parameter meanings of this 
paper are displayed in the Table 1 below.

Movement model of terminals
Considering the mobility of terminals in the scenario, 
assuming that the position of the terminals does not 
change during the duration �t,t−1 between the tth and 
t-1th time slots. The Random Gauss-Markov Mobility 
(RGMM) model [30] is used to represent the mobil-
ity of the terminals. The RGMM is a model based on 
Gauss-Markov process, which is widely utilized in sig-
nal estimation and other fields. In a fixed interval, by 
changing its speed and direction to establish the cor-
relation of speed and time of a moving terminal. The 
speed vt and direction angle θt of the moving terminal 
on the ground at the tth time slot are defined as

(1)
vt = ϕvt−1 + (1− ϕ)µv + σv( 1− ϕ2)ωvt−1

, ∀t ∈ T

Fig. 1 System model of UAV dynamic deployment
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where 0 < ϕ < 1 is the memory level. µv and µθ are the 
mean values of speed and angle, respectively. σv and σθ 
are the standard deviation of speed and angle, respec-
tively. ωvt−1

 is an unrelated Gaussian process that is unre-
lated to vt−1 and has zero mean and unit variance. ωθt−1

 
is an unrelated Gaussian process that is unrelated to θt−1 
and has zero mean and unit variance. Therefore, the posi-
tion coordinate of moving terminal n is defined as

The location information of terminal n is repre-
sented by formulas (3), (4). Since the constant move-
ment of terminals will bring about the disaster of 
action space dimension, the action space needs to 
be preprocessed. The map is divided into multiple 
subdomains, and the location coordinates will be 
updated only when the terminals move outside the 
subdomain. Otherwise, the location coordinates will 
not be updated. But the channel transmission param-
eters are still time-varying.

Obstacle avoidance model
As shown in Fig.  2, it shows the top view of the rela-
tionship between the flight path of the UAV and the 
position of the obstacle k. The outline of obstacles on 
the ground is simplified into a cylinder with radius R, 

(2)
θt = ϕθt−1 + (1− ϕ)µθ + σθ (

√

1− ϕ2)ωθt−1
, ∀t ∈ T

(3)
xn,t = xn,t−1 + vt−1cosθt−1 ·�t,t−1, ∀n ∈ N, t ∈ T

(4)
yn,t = yn,t−1 + vt−1sinθt−1 ·�t,t−1, ∀n ∈ N, t ∈ T

Table 1 Main parameters

Parameters Implication

bk the position coordinates of obstacles

uuav ,t the position coordinates of the UAV

un,t the position coordinates of terminals

duav ,k,t the distance between obstacle k and the UAV

Rk the radius of obstacle k

Ok,t obstacle avoidance variable

duav ,t the flight distance of the UAV

vuav flight speed of the UAV

T
fly
uav ,t

flight time of the UAV

ruav ,n,t the uplink data transmission rate

B channel bandwidth

Ptr transmitted power

Toffuav ,n,t the time of computation offloading

Dn,t the task size needs to offload

Cn,t CPU cycle

E
fly
uav ,n,t

flight energy consumption of the UAV

Pf flight power

Eoffuav ,n,t computation offloading energy consumption

fuav CPU frequency of the UAV

Ehuav ,n,t hovering energy consumption of the UAV

Etotaluav ,n,t
total energy consumption

W total power of the UAV

Fig. 2 Diagram of obstacle avoidance
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and obstacles are represented by blue circles. Assum-
ing that the flying height H of the UAV is lower than 
the height h of obstacles, the UAV needs to avoid 
obstacles in flight to avoid collisions. At the tth time 
slot, the coordinate of the UAV is (xt , yt ,H) , and the 
coordinate is (xt−1, yt−1,H) at the t-1th time slot. The 
black dots indicate where the UAV stays at a certain 
moment, and the straight line between the two points 
indicates the flight trajectory of the UAV. Only relying 
on the distance between the current position of UAV 
and the center of the obstacle cannot accurately deter-
mine whether the UAV has collided with the obstacle. 
Therefore, it is judged whether the UAV collides with 
the obstacle during the flight according to the distance 
from the straight line where the flight track of the UAV 
is located to the center of the obstacle.

At the tth time slot, the equation of the horizontal 
flight path of the UAV is expressed as

The distance between the straight line of the flight path 
of the UAV and the center of obstacle k is

If the distance between the straight line where the 
flight path of the UAV is located and the center of the 
obstacle k is greater than the radius Rk of the obsta-
cle, the UAV will not hit the obstacle; If the radius Rk 
is smaller than the distance between the UAV and the 
obstacle k, it is necessary to judge cos A and cos B. if 
cosA > 0 and cosB > 0 then collide. cos A and cos B are 
expressed as

(5)

(yt − yt−1) · x + (xt − xt−1) · y+ xt−1yt − xtyt−1 = 0,

∀t ∈ T

(6)

duav,k ,t

=

∣

∣(yt − yt−1)xk + (xt − xt−1)yk + xt−1yt − xtyt−1

∣

∣

√

(yt − yt−1)2 + (xt − xt−1)2
,

∀k ∈ K, t ∈ T

Define the obstacle avoidance variable as Ok ,t = {0, 1} . 
Ok ,t = 0, ∀k ∈ K, t ∈ T indicates that the UAV col-
lides with obstacle k at the tth time slot, and 
Ok ,t = 1, ∀k ∈ K, t ∈ T indicates that UAV successfully 
avoids obstacle k, specifically it is expressed as

Energy consumption model
This paper assumes that the entire deployment process 
is divided into T time slots of unequal length, and each 
time slot t is divided into three parts. The first part is the 
scheduling decision. The agent obtains the next deploy-
ment position by analyzing the current position of ter-
minals and obstacles and other information; The second 
part is the flight time, that is, the time required for the 
UAV to fly to the new deployment location; The third 
part is the time of computation offloading. After the 
UAV arrives at the new deployment location, it provides 
edge services for terminals. The agent interacts with the 
environment and makes decisions quickly, so the deci-
sion time is negligible compared to the flight time and 
computation offload time, the tth time slot division is 
shown in Fig. 3 below.

The flying distance of the UAV is duav,t at the tth time 
slot, assume that the UAV is flying at a fixed speed vuav 

(7)

cosA

=
(xt − xt−1)

2 + (xt−1yt − xtyt−1)
2 − (yt − yt−1)

2

2(xt − xt−1)(xt−1yt − xtyt−1)
,

∀t ∈ T

(8)

cosB

=
(xt−1yt − xtyt−1)

2 + (yt − yt−1)
2 − (xt − xt−1)

2

2(yt − yt−1)(xt−1yt − xtyt−1)
,

∀t ∈ T

(9)

Ok ,t =

{

0, duav,k ,t < Rk ∩ (cosA > 0 ∩ cosB > 0)

1, else

Fig. 3 Diagram of the tth time slot division
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and the speed is not greater than the maximum flight 
speed vmax of the UAV. Then the flight time of the UAV at 
the tth time slot is defined as

where duav,t represents the horizontal distance of the 
UAV flying at the tth time slot, it is expressed as

In the MEC scenario, it is assumed that the flying height of 
the UAV is always lower than the height of the obstacle, and 
the UAV needs to avoid the obstacle before it can provide 
services for the terminals on the ground. Therefore, the wire-
less communication link between the UAV and the terminals 
adopts the line-of-sight link communication. At the tth time 
slot, the uplink data transmission rate is expressed as

where duav,n,t is the horizontal distance between the UAV 
and the terminal n at the tth time slot, and it is expressed 
as

B is the bandwidth of the channel and Ptr is the trans-
mission power, ρ = g0G0/σ

2 , G0 ≈ 2.2846 , where g0 rep-
resents the channel power gain at the reference distance 
of 1m, and σ 2 represents the noise power. At the tth time 
slot, the time for the UAV to compute unloading for ter-
minal n is defined as

The time of computation offloading is divided into two 
parts, one is the task transmission, and the other is the 
task calculation. Where Dn,t/ruav,n,t is the time required 
for terminal n to transmit mission data to the UAV at the 
tth time slot, indicates the amount of tasks that terminal n 
needs to offload at the tth time slot; Dn,t indicates the time 
required for the UAV to calculate tasks offloaded from ter-
minal n at the tth time slot, among them, Fn,t = Dn,tCn,t 
is defined as the CPU cycle required to calculate all tasks, 
Cn,t is the CPU cycle required to calculate each bit of data 
for the UAV, and fuav is the CPU frequency assigned to 
tasks by the edge server on the UAV.

Then the flight energy consumption of UAV at the tth 
time slot is defined as

(10)T
fly
uav,t =

duav,t

vuav
, ∀t ∈ T

(11)duav,t =

√

(xt − xt−1)2 + (yt − yt−1)2, ∀t ∈ T

(12)

ruav,n,t = Blog2(1+
ρPtr

H2 + d2uav,n,t
),∀n ∈ N, t ∈ T

(13)
duav,n,t =

√

(xt − xn,t)2 + (yt − yn,t)2, ∀n ∈ N, t ∈ T

(14)T
off
uav,n,t =

Dn,t

ruav,n,t
+

Fn,t

fuav
, ∀n ∈ N, t ∈ T

where Pf  represents the flight power of the UAV. At the 
tth time slot, the energy consumption required by the 
UAV to compute offloading for terminal n is defined as

The energy consumption of computation offloading 
is divided into two parts, one is transmission energy 
consumption, and the other is computing energy con-
sumption. PtrDn,t/ruav,n,t indicates the transmission 
energy consumption of terminal n offloading the task to 
the UAV at the tth time slot, where Ptr represents the 
transmission power; κDn,tCn,t f

2
uav indicates the compu-

tational energy consumption of the UAV at the tth time 
slot.κ = 10−26 is a hardware-related constant.

In order to ensure the stability and reliability of the 
communication link, the UAV needs to hover while 
providing computation offloading services for ter-
minals. Therefore, the hovering energy consumption 
of the UAV serving terminal n at the tth time slot is 
defined as

where Ph is the hovering power of the UAV. Then the 
total energy consumption of UAV at the tth time slot is

The UAV needs to serve terminals within the energy 
consumption range, 

∑T
t=0 E

total
uav,n,t ≤ Emax

uav  . The total 
power of the UAV is W. When the energy of the UAV is 
exhausted, it will stop serving or return to charge.

Problem formulation
In the case of obstacles on the ground, by dynamically 
deploying the position of the UAV to meet the com-
putation offloading requirements of the mobile ter-
minals and realize the obstacle avoidance of the UAV, 
it will lead to some unfair problems. For example, the 
UAV may only serve nearby terminals in order to save 
energy and avoid obstacles, and do not consider pro-
viding edge computing services for distant terminals. 
As a result, some terminals may be ignored and have 
not been served by the UAV. We use jain fairness fac-
tor to solve this problem. First, the offloading variable 
is defined as

(15)E
fly
uav,n,t = Pf T

fly
uav,t , ∀n ∈ N, t ∈ T

(16)

E
off
uav,n,t =

PtrDn,t

ruav,n,t
+ κDn,tCn,t f

2
uav , ∀n ∈ N, t ∈ T

(17)Eh
uav,n,t = PhT

off
uav,n,t , ∀n ∈ N, t ∈ T

(18)
Etotal
uav,n,t

= E
fly
uav,n,t + E

off
uav,n,t + Eh

uav,n,t , ∀n ∈ N, t ∈ T
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where Zn,t = 1, ∀n ∈ N, t ∈ T means that the terminal n is 
offloaded at the tth time slot, and Zn,t = 0, ∀n ∈ N, t ∈ T 
means that the terminal n is not offloaded. Moreover 
∑N

n=1 Zn,t = 1, ∀n ∈ N, t ∈ T , it means that the UAV 
can only serve one terminal at each time slot. The fair-
ness factor fn(t) is used to represent the fairness of the 
geographical location of the terminals (the fairness of the 
UAV’s service between the terminals)

If all terminals are served by UAV for similar times 
from the initial time slot t=0 to T, then the value of fn(t) 
is closer to 1, otherwise it is closer to 0. The optimization 
problem is formulated as follows: 

The optimization objective is to minimize the UAV’s 
energy consumption while maximizing the obsta-
cle avoidance variable between the UAV and obsta-
cles, and to realize the fairness of the terminals being 
served by the UAV. (21b) means that from t=1 to T, 
the UAV’s total energy consumption cannot exceed the 
maximum energy consumption; (21c) means the UAV 
cannot fly faster than its maximum speed; (21d) means 
that the UAV’s flight range is not allowed to go beyond 
the fixed area; (21e) means that the CPU frequency 
that the MEC server installed on the UAV assigns to 
the task cannot exceed the maximum frequency; (21f ) 
means that the UAV can only serve one terminal dur-
ing time slot t.

(19)Zn,t = {0, 1}, ∀n ∈ N, t ∈ T

(20)

fn(t)

= (
∑N

n=1

∑t

t=1
Zn,t)

2/N
∑N

n=1
(
∑t

t=1
Zn,t)

2

(21a)P1 : max
∑T

t=0
{Ok ,t +

fn(t)
∑N

n=1 E
total
uav,n,t

}

(21b)
∑T

t=0
Etotal
uav,n,t ≤ E, ∀n ∈ N, t ∈ T

(21c)vuav ≤ vmax

(21d)0 ≤ xt ≤ ℓmax, 0 ≤ yt ≤ wmax, ∀t ∈ T

(21e)fuav ≤ f max
uav

(21f )
∑N

n=1
Zn,t = 1, ∀n ∈ N, t ∈ T

MDP
The DRL takes advantage of the agent’s interaction with 
the environment and allows the agent to learn the optimal 
action through rewards. In accordance with the system 
model in the above section, the environment and action of 
the system are judged to have Markov properties, so the 
paper utilizes Markov decision process (MDP) to describe 
the system model. This section introduces the MDP and 
the DRL model for the above optimization problem. And 
a DRL algorithm based on an action selection strategy of ε
-pseudo count is used to realize the dynamic deployment 
of UAV edge server.

The MDP mainly consists of state, action, reward and 
discount factor γ , which is used to describe the interac-
tion process between agent and environment, and the 
learning process of agent in DRL. Considering the system 
model in the aforementioned section, the problem we 
need to solve conforms to the MDP, and the following is 
to establish the Markov decision model. 

1) State Space: first, we describe the state space for each 
episode as S = {s1, s2, · · · , si, · · · , st}, ∀t ∈ T , where 
si is the state at the ith time slot 

where un,i is the terminals’ location information at 
the ith time slot; uuav,i is the position information of 
the UAV at the ith time slot; bk is the location infor-
mation of obstacles on the ground; Dn,i is the amount 
of tasks that the terminal n needs to offload at the ith 
time slot; Ok ,i is the obstacle avoidance variable at the 
ith time slot; ruav,n,i is the channel transmission rate 
between the UAV and terminal n at the ith time slot; 
�i = {un,iZn,i} represents the terminal n served by 
the UAV at the itextth time slot.

2) Action Space: the agent selects the action with the 
greatest reward based on the current state, i.e. the 
next position of the UAV. Action space is defined as 

3) Reward Function: when the position of the UAV is 
deployed once, the reward can be calculated, which is 
the feedback of the whole system model to the DRL 
model. Specifically, reward refers to the ratio of fair-
ness factor of edge computing service to total energy 
consumption, obstacle avoidance variable and addi-
tional reward brought by pseudo count exploration 
for terminals after dynamic deployment of the UAV. 
Therefore, the reward obtained from the current state 
and action is defined as 

(22)si = {un,i,uuav,i, bk ,Dn,i,Ok ,i, ruav,n,i,�i}

(23)ai = {uuav,i+1}
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among them, ω1 and ω2 are the coefficients that 
adjust the reward ratio. Respectively, ψ(N (s)) rep-
resents the additional rewards explored by pseudo 
count strategy.

Deployment algorithm based on DDQN with ε
‑pseudo count selection strategy of action
The DDQN algorithm in the DRL algorithm is used to 
eliminate the overestimation problem of the DQN by 
decoupling the selection of actions in the target Q value 
and the calculation of the target Q value. The algorithm 
structure of DDQN and DQN is the similar, but the way 
of updating in the Q network is different. The DDQN 
chooses the action with the highest Q value in accordance 
with the parameters of the main network, whereas the 
DQN chooses the action in accordance with the param-
eters of the target network. This solves the problem of 
overestimation to a certain extent, making the Q value 
closer to the true value.

The DDQN consists of two neural networks: the tar-
get network and the main network. Specifically, Qmain is 
the output of the main network, which is a value func-
tion used to evaluate the current state-action. Qtarget is 
the output of the target network.

(24)

Ri+1 = ω1Ok ,t + ω2

fn(t)
∑N

n=1 E
total
uav,n,t

+ ψ(N (s))

(25)Qmain = Q(si, ai; θi)

(26)Qtarget = Q(si+1, argmax
a

Q(si+1, ai; θi); θ
−
i )

The special is that it is updated according to the 
action which maximizes the Q value in the main net-
work. The target Q value YDDQN  is defined as

In order to avoid suboptimal results in DRL algorithms, 
common DDQN algorithms generally use ε -greedy strat-
egy to explore and utilize. However, ε exploration may 
select the previously experienced states and actions, 
which cannot avoid the disadvantages of local optimality.

The core idea of pseudo count exploration is to calculate 
or estimate the frequency of each state-action by designing 
density model. And new state-actions are rewarded with 
higher bonuses, encouraging the agent to try more state-
actions. The DRL algorithm is utilized to train the UAV 
dynamic deployment to meet the fairness of terminals being 
served by the UAV in this paper. Considering the principle 
of pseudo count exploration mode, it can be found that the 
DRL algorithm based on ε-pseudo count exploration mode 
has better performance to solve this problem.

The probability density of occurrence of si is defined 
as ρ(si) = ρ(si|s1:t) , and the probability density is 
ρ′(si) = ρ(si|s1:t si) when si is observed in the next time. 
In order to better understand the density model, two con-
cepts are introduced, namely the pseudo count function 
N̂ (s, a) and the pseudo count total t̂ . Then the probability 
density of the state si appearing and the probability den-
sity of si observed in the next time are ρ(si) = N̂ (si)/t̂ and 
ρ′(si) = (N̂ (si)+ 1)/(t̂ + 1) , respectively. The relationship 
between ρ(si) and ρ′(si) is the learning-positive density 
model. Then we can get the expression of pseudo count

(27)YDDQN = Ri+1 + γQtarget

Fig. 4 Schematic diagram of deployment algorithm based on DDQN with ε-pseudo count
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In addition, the reward defined by pseudo count explo-
ration is ψ(N (s)) = N̂ (s)−1/2 . The pseudocode of ε

-pseudo count selection strategy of action is shown in the 
Algorithm 1.

Algorithm  1 The action selection strategy based on  ε
-pseudo countThe schematic diagram of the DDQN algo-
rithm based on the ε-pseudo count exploration strategy is 
shown in Fig. 4.

It can be seen from Fig. 4 that ① Environment includes 
information such as the position of the UAV and the 
terminals, channel transmission rate, etc.;② Using ε
-pseudo count exploration to explore the environment, 
and make the action ai according to the current state 
si . Negative rewards will be given when the UAV col-
lides with obstacles or consumes too much energy. The 
ε-pseudo count strategy based on the combination of 
the ε-greedy exploration strategy and the pseudo count 
exploration strategy can speed up the convergence rate 
and avoid local optimization, so as to achieve better 
exploration and utilization; Next, the reward Ri+1 and the 
next state si+1 are obtained, and then ③ the information 
obtained by the exploration is stored in the experience 
pool Memory M as a tuple (si, ai,Ri+1, si+1) . The experi-
ence pool has a fixed size. When the experience pool is 
full, the previously stored tuples will overflow; ④ Dur-
ing neural network training, a fixed number of small 
batches of experience are extracted from Memory M for 
training, which is called Mini-Batch; ⑤ and ⑥ are two 
neural networks of the DDQN algorithm, which are the 
main network and the target network, respectively. The 
purpose of neural network is to obtain the maximum tar-
get Q value. In order to ensure the stability of the algo-
rithm, the main network copies the parameter θ to the 

(28)N̂ (si) = t̂ρ(si) =
ρ(si)(1− ρ′(si))

ρ′(si)− ρ(si)

target network after every fixed interval step C;⑦ and 
⑧ are the Q values output by the two neural networks 
respectively, where ⑨ indicates that the Q value of ⑧ is 
updated according to the action of the maximum value 
of ⑦. ⑩Update network parameters by minimizing 
loss function. The pseudocode of deployment algorithm 
based on DDQN with ε-pseudo count selection strategy 
of action is shown in Algorithm 2.

Algorithm 2 Deployment algorithm based 
on DDQN with ε‑pseudo count selection strategy 
of actionSimulation experiment
In this part, we simulate the performance of the DDQN 
algorithm with the proposed ε-pseudo count selec-
tion strategy of action and analyze the results. In the 
PC environment of intel Core i7-1165G7, 2.8GHZ CPU, 
16GB, we use python3.6 and tensorflow2.0 to simulate. 
In the algorithm, the main network and target network 
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respectively adopt four fully connected hidden layers, 
and each layer has 50 neurons.

Create a simulation environment
On a map with a length of 1000m and a width of 600m, 
the UAV flies at a constant speed at a fixed height, and 
the obstacles in the training environment are simplified 
as cylinders, and the radius R of the cylinder, the height 
h and the coordinates of the obstacles are set; Secondly, 
set the starting positions of 30 terminals in the envi-
ronment, and the starting positions of the terminals are 
randomly set; Finally, add the UAV to the environment, 
and set the relevant attribute parameters of the UAV. 
The specific parameter settings are shown in Table  2 
below.

Algorithm hyperparameter settings
The hyperparameter setting of DRL algorithm is very 
important. Only by setting appropriate hyperparameters 
can the neural network play a better performance and the 
algorithm converge. A key hyperparameter in the algo-
rithm is the learning rate α . When α is too low, the con-
vergence complexity of the network increases, and it is 
easy to fall into a local minimum. When α is too high, the 
gradient oscillates around the minimum.

As shown in Fig.  5, it is the convergence of the pro-
posed algorithm under different learning rates α . It can 
be seen that the algorithm does not converge when α is 
0.1 and 0.01; The algorithm converges when α is 0.001 
and 0.0001, but when α=0.001, the algorithm converges 
in 5000 episodes, and the average reward value of conver-
gence is higher than when α=0.0001. So set the learning 
rate α equal to 0.001.

Figure 6 shows the convergence of the proposed algo-
rithm under different discount factors γ . It is used to 
control how future rewards affect the current reward 
value. A higher value of γ indicates that the agent has 
more steps to consider but is also more difficult to 
train, while a lower value of it indicates that the agent 
pays more attention to immediate interests. Therefore, 
an appropriate discount factor must be determined. It 
can be seen from the Fig. 6 that when γ=0.99, the agent 
is overly focused on potential future rewards, so the 
convergence speed is slower and more difficult. When 
γ is equal to 0.95 and 0.9, although the average reward 
value of the final convergence is similar, it converges at 
about 7500 episodes when γ=0.95, and it converges at 
about 5000 episodes when γ=0.9, which is obviously 
faster than when γ=0.95.

Table 2 Parameters of simulation environment

Parameters Value

Channel bandwidth B 1MHz

Flight speed of UAV 20m/s

Noise power σ 2 -140dB

Flying height of UAV H 50m

The power of the UAV W 200kJ

Amount of tasks to uninstall Dn,t [1,10]Kb

CPU cycles of UAV Cn,t 1000

CPU frequency of UAV fuav 2GHz

Flight energy consumption of UAV Pf 110W

Hovering energy consumption of UAV Ph 80W

Transmission power Ptr 0.1W

Fig. 5 The convergence of the proposed algorithm under various learning rates
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Figure 7 shows the convergence of the proposed algo-
rithm under different Mini-Batch sizes. Mini-Batch 
refers to the sample size that is subsampled from the 
experience pool and used for gradient calculation. The 
size setting should take into account both training sta-
bility and training speed.

It can be seen from Fig.  7 that when the Mini-
Batch is 32 and 64, effective training samples can-
not be extracted because the number of samples is 
too small, and the convergence trend is not obvious; 
When the Mini-Batch is 128, it converges at 5000 
episodes and converges at about 1300. So set Mini-
Batch equal to 128. Due to the mutual influence of the 

hyperparameters in DRL, after arranging and com-
bining the parameters, a large number of comparative 
experiments are performed to determine the specific 
values. The remaining algorithm hyperparameter set-
tings are shown in Table 3 below.

Result analysis
Figure  8 depicts the average rewards of the proposed 
algorithm, traditional DDQN, DQN algorithm and 
Q-learning algorithm. First, the algorithm proposed in 
this paper converges from about 6000 episodes and con-
verges around 1250; The traditional DDQN algorithm 
converges after about 10,000 episodes, and the final 

Fig. 6 The convergence of the proposed algorithm under various discount factors

Fig. 7 The convergence of the proposed algorithm under various Mini-Batch sizes
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reward value is 1200; The DQN algorithm converges to 
850 around 8000 episodes. However, the Q-learning 
algorithm cannot converge because it cannot handle 
high-dimensional action spaces. It can be seen that the 
algorithm we proposed achieves the fastest convergence 
speed and the largest average reward value, indicat-
ing that the action selection strategy based on ε-pseudo 
count can more effectively realize the selection and utili-
zation of actions by the agent.

Figure 9 depicts the fairness factor fn(t) of the proposed 
algorithm, traditional DDQN and DQN algorithms. It 
can be seen from the Fig. 9 that under the algorithm we 
proposed, it is around 0.9, which means that the UAV can 
satisfy the fairness of the geographical location of most 
terminals; Under the traditional DDQN algorithm, it 
is about 0.78, and under the DQN algorithm, it is about 
0.75, which means that the UAV can satisfy the fairness of 
the geographic location of some terminals. The fairness 
factor fn(t) under the Q-learning algorithm is always the 
lowest and decreases with the increase of training times. 

It can be seen that our proposed algorithm achieves the 
greatest fairness of geographical location among all com-
pared algorithms.

In order to verify the stability and effectiveness of the 
proposed algorithm, the fairness factors of the improved 
DDQN algorithm, DDQN algorithm, DQN algorithm 
and Q-learning algorithm are compared under different 
obstacle numbers to verify whether the algorithm can 
still maintain good effectiveness in different scenarios.

As shown in Fig.  10, when the number of obstacles 
is 2,4,6,8 or 10, the fairness factor under the improved 
DDQN algorithm can always be maintained at about 
0.9. The fairness factors of DDQN, DQN and Q-learning 
algorithms are maintained at about 0.78,0.77 and 0.67, 
respectively. The fairness factor under the improved 
DDQN algorithm is always stable and superior to other 
algorithms, indicating that the proposed algorithm has 
good stability and effectiveness.

Under the above parameter settings, after the agent 
passes training and learning, the dynamic deployment 
diagram of the UAV is shown in Fig. 11 below. Blue cir-
cles represent obstacles, and black lines represent the 
dynamic deployment trajectory of the UAV. The gray cir-
cles indicate the initial positions of the ground terminals, 
and the red circles indicate the position of the ground 
terminals when the UAV is serving the terminals. And 
the two green circles represent the start and end respec-
tively. It should be noted that the depletion of the UAV’s 
battery indicates the end of the UAV deployment. The 
end point is the last location deployed before power is 
exhausted. Therefore, the end point of UAV deployment 
in this paper is not fixed.

Table 3 The hyperparameters of the algorithm

Parameters Value

Number of hidden layer 4

Number of nodes 50

Activation function Relu

Optimizer Adam

Learning rate 0.001

Discount factor 0.9

Memory M size 20000

Mini-Batch size 128

Fig. 8 Average reward under different algorithms
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From Fig. 11(a) and (b), it can be seen that the UAV 
avoids obstacles from beginning to end; Secondly, it 
can be seen that UAVs tend to serve terminals on the 
ground at a closer distance, thereby saving energy con-
sumption; In addition, it can be seen that the deploy-
ment of UAV has basically realized the fairness of 
offloading service of terminals provided by UAV, 
and can basically meet the offloading requirements 
of terminals at various locations. Therefore, deploy-
ment algorithm based on DDQN with ε-pseudo count 

selection strategy of action can still realize the dynamic 
deployment of a single UAV when the number, size and 
position of obstacles on the ground change, which has 
certain stability and effectiveness.

Conclusion
The dynamic deployment of a single UAV is planned 
track in the scenario where there are multiple mobile 
terminals and multiple obstacles on the ground in order 
to achieve the fairness of the geographical location of 

Fig. 9 Fairness factor under different algorithms

Fig. 10 Fairness factors under different algorithms with different obstacle numbers
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the mobile terminals, the obstacle avoidance of the 
UAV, and the saving of energy consumption of UAV. 
To solve this planning problem, a mathematical model 
is established firstly, including the mobile model of the 
terminals, the obstacle avoidance model and the energy 
consumption model of the UAV, and the optimization 
objectives and constraints are formulated. Second, 
in order to realize the training and learning of DRL, a 
MDP is established. In order to improve the training 
speed and average reward, the ε-greedy exploration 
strategy is combined with the pseudo count explora-
tion strategy, and the ε-pseudo count selection strategy 
of action is proposed based on the DDQN algorithm. 

Finally, the environment for the simulation experiment 
is established. In order to achieve the optimal train-
ing effect, when using the improved DDQN algorithm 
to train the UAV, the hyperparameters are arranged 
and combined, and the hyperparameter values are 
adjusted until the optimal effect is achieved. The aver-
age reward value, convergence speed and the fairness 
of the geographical location of the ground terminals 
are used as evaluation indicators, and the improved 
algorithm in this paper is compared with the DDQN 
algorithm, DQN algorithm and Q-learning algorithm. 
The simulation results show that the improved DDQN 
algorithm in this paper has always maintained a good 

Fig. 11 Deployment trajectory diagram of the UAV
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performance. At the end of the experiment, the stability 
and universality of the algorithm are verified by chang-
ing the number, size and position of obstacles.

However, this paper only studies the single UAV-
assisted MEC. In the case of a large number of terminals 
and delay-sensitive task scenarios, a single UAV obvi-
ously cannot meet the needs. Therefore, we will conduct 
research on multi-UAV assisted edge computing net-
works in the future.
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