
Zhang et al. Journal of Cloud Computing (2023) 12:130
https://doi.org/10.1186/s13677-023-00507-6

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Dynamic deployment method based
on double deep Q-network in UAV-assisted MEC
systems
Suqin Zhang1, Lin Zhang2*, Fei Xu3, Song Cheng2, Weiya Su3 and Sen Wang2

Abstract

The unmanned aerial vehicle (UAV) assisted mobile edge computing (MEC) system leverages the high maneuverabil-
ity of UAVs to provide efficient computing services to terminals. A dynamic deployment algorithm based on double
deep Q-networks (DDQN) is suggested to address issues with energy limitation and obstacle avoidance when pro-
viding edge services to terminals by UAV. First, the energy consumption of the UAV and the fairness of the terminal’s
geographic location are jointly optimized in the case of multiple obstacles and multiple terminals on the ground.
And the UAV can avoid obstacles. Furthermore, a double deep Q-network was introduced to address the slow
convergence and risk of falling into local optima during the optimization problem training process. Also included
in the learning process was a pseudo count exploration strategy. Finally, the improved DDQN algorithm achieves
faster convergence and a higher average system reward, according to experimental results. Regarding the fairness
of geographic locations of terminals, the improved DDQN algorithm outperforms Q-learning, DQN, and DDQN algo-
rithms by 50%, 20%, and 15.38%, respectively, and the stability of the improved algorithm is also validated.

Keywords Dynamic deployment, Unmanned aerial vehicle (UAV), Mobile edge computing (MEC), Double deep
Q-network

Introduction
Edge computing offers computing, communication
resources, network and storage at the edge of the net-
work near the terminal by sinking computing resources
to the edge end of the terminal. Terminals can reduce
their own energy consumption and task processing delay
by transferring their computing tasks to the edge [1].
Mobile edge computing (MEC) is a significant 5G tech-
nology that has undergone extensive research. The theory

and application of the related research have seen a rapid
growth since 2015 [2].

Despite the many benefits of edge computing, tra-
ditional base stations are constrained by their fixed
locations and high implementation costs. In addition,
infrastructure may occasionally be harmed by natu-
ral disasters. In the aforementioned scenario, the edge
server is unable to completely serve the terminals. Due
to its advantages in mobility, flexibility, and cost effec-
tiveness, the unmanned aerial vehicle (UAV) has been
widely used in both civil and military contexts for tasks
like traffic management, disaster detection, emergency
rescue, and target tracking [3]. Some progress has been
made in the application research of UAV-assisted MEC
taking into account the flexible mobility of UAVs [4,
5]. One of the first to suggest UAV-assisted MEC was
Motlagh et al. [6]. By offloading to the edge, mobile
terminals in MEC can significantly reduce energy

*Correspondence:
Lin Zhang
1550765068@qq.com
1 School of Basic, Xi’an Technological University, Xi’An 710021, China
2 School of Ordnance Science and Technology, Xi’an Technological
University, 710021 Xi’An, China
3 School of Computer Science and Engineering, Xi’an Technological
University, 710021 Xi’An, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00507-6&domain=pdf

Page 2 of 16Zhang et al. Journal of Cloud Computing (2023) 12:130

consumption and latency. The fusion of an edge com-
puting architecture and a UAV platform is referred
to as UAV-assisted MEC. In addition to offloading to
the edge computing server as a user node, the UAV
can function as an air edge server for the terminal on
the ground [7]. The UAV’s position can be adjusted to
provide better service in accordance with the needs of
the terminals. This architecture successfully addresses
the drawbacks of fixed base stations. Offloading the
workload to the UAV-carried edge server also helps to
reduce communication congestion caused by frequent
communications between multiple terminals and the
cloud.

The limited endurance and storage capacity of the
UAV have become the key issues in its application,
which promotes the efficient and dynamic deployment
of UAV-assisted MEC. In MEC, the energy require-
ments for flight and hovering propulsion, as well as
computing offloading, are the two main determinants
of the UAV’s energy consumption [8]. To fully utilize
UAVs’ potential in the MEC system, it is critical to
conduct research on their trajectory design, hovering
height, and dynamic deployment [9–11]. Under con-
straints like energy consumption and UAV mobility, the
dynamic deployment of UAVs for MEC involves plan-
ning the deployment trajectory of UAVs to satisfy the
terminals’ unique service requirements.

In UAV-assisted MEC, traditional optimization algo-
rithms (such as heuristic algorithms [12], clustering
algorithms [13], convex optimization algorithms [14],
etc.) always have disadvantages, such as large amount,
slow convergence speed, and poor processing effect
in dynamic environments. Compared with traditional
optimization algorithms, Deep Reinforcement Learn-
ing (DRL), which combines deep learning models
with reinforcement learning algorithms, has powerful
autonomous learning and decision-making capabilities,
and can adapt to unstable environments. And through
the adaptive adjustment strategy of technology, such as
strategy gradient, so as to realize the optimal control in
the dynamic environment. The environment is complex
and changeable, with high real-time requirements that
cannot be met by traditional optimization algorithms.
In order to implement the dynamic deployment of the
UAV in MEC scenarios, this paper will use the DRL
method.

In order to meet the needs of terminals for comput-
ing offloading as well as to achieve obstacle avoidance,
this paper will propose a DRL algorithm to dynami-
cally deploy the position of the edge server of the UAV
in the case where the terminal position is moving and
there are obstacles. The following are this paper’s main
contributions:

• First, it considers the time-varying channel param-
eters caused by the terminal’s movement and the
complex scene with obstacles on the ground, which is
more realistic. We formulate the optimization prob-
lem and create a mathematical model for the opti-
mization objective. In order to realize the training of
DRL, the problem is transformed into a Markov deci-
sion model.

• Second, on the basis of the double deep Q-network
algorithm, a ε-pseudo count based exploration strat-
egy is proposed, which is a hybrid of the ε greedy and
pseudo count exploration strategies. The goal is to
encourage the agent to investigate more states and
actions, maximizing fairness. And the jain fairness
factor fn(t) ∈ (0, 1) is used to measure the fairness of
terminals being provided with computation offload-
ing services by UAVs. When fn(t) is 1, the fairness is
the greatest.

• Third, the simulation experiment verifies the effec-
tiveness of the proposed algorithm. The simulation
results demonstrate that the improved algorithm is
not only superior to the traditional DDQN, DQN
algorithm and Q-learning algorithm in terms of con-
vergence speed and average reward value; under the
fairness factor, the improved DDQN algorithm also
performs better than the traditional DDQN, DQN
algorithm and Q-learning algorithm. In addition, its
stability and universality are verified by changing the
position, number and size of obstacles.

Related work
The UAV’s energy use during flight is a key factor in
determining the UAV’s flight time, so the flight path of
the UAV must be planned. The algorithms for managing
the deployment of UAVs dynamically are primarily clas-
sified into two types, one is the traditional optimization
algorithm including clustering algorithms, successive
convex approximation algorithms, greedy algorithms,
etc., and the other is the DRL algorithm.

In order to reach the purpose of minimizing the sys-
tem’s energy consumption, Huang et al. planned the
trajectory of the UAV through three stages [12]. The
three stages used the differential evolution algorithm
with variable population size, the mean clustering algo-
rithm and greedy algorithm respectively. The authors
implemented 3D UAV localization using the K-means
clustering algorithm and grouped terminals into adja-
cent cluster heads [13]. In order to extend the UAV
flight time with charging station, Muhammad et al.
proposed a three-stage joint routing and charging
strategy, which uses optimization methods to design
customer distribution area networks, charging station

Page 3 of 16Zhang et al. Journal of Cloud Computing (2023) 12:130

distribution area networks and distribution routes [15].
In addition, the deployment of the UAV is generally
optimized jointly with other indicators in the case of
MEC with UAV assistance. Dai et al. proposed a gen-
eralized propulsion energy consumption model for
rotary-wing UAVs, and jointly optimize user schedul-
ing and UAVs trajectory to maximize UAVs energy effi-
ciency [16]. An effective approach based on successive
convex approximation for concurrently optimizing the
UAV’s trajectory and the bit allocation was suggested
by Jeong et al. so as to reduce the overall energy con-
sumption of the terminals while meeting the QoS cri-
teria [14]. In order to break down the problem with
joint optimization issue of terminal scheduling strat-
egy, UAV’s trajectory and transmit power into a series
of feasible sub-problems to tackle, Qi et al. used suc-
cessive convex approximation, penalty function, and
Dinkelbach approach [17]. On the problem with joint
optimization of UAV’s trajectory and computing off-
loading, Hu et al. suggested a low-complexity offloading
and trajectory scheduling method relying on Lyapunov
optimization theory to minimize long-term energy
efficiency [18]. Aiming at the communication security
problem of UAV, Xu et al. suggested an approach based
on penalized block coordinate descent by concurrently
optimizing communication resources, UAV’s trajec-
tory, and computing resources to optimize the minimal
safe computing capacity [19]. To increase the operat-
ing period of the UAV and the life of related network,
Wang et al. decomposed region division and trajectory
planning of UAV into two independent sub-problems,
which were respectively modeled as semi-discrete opti-
mal transportation problem and traveling salesman
problem for solving [20].

In dynamic wireless environments, it might not be
possible to make quick decisions using traditional
optimization algorithms, like [12–20]. The DRL which
combines deep neural networks and reinforcement
learning, has become a popular research topic in light
of the quick development of artificial intelligence.
Additionally, articles demonstrate how powerful DRL
can be for solving complex control problems [21, 22].
Therefore, DRL method is widely employed to settle
the trajectory planning problem of UAV-assisted MEC.
In the case of limited UAV’s energy and QoS con-
straints of each terminal, the DRL method is utilized
to improve the UAV’s trajectory in order to maximize
the system’s long-term return. In order to maximize the
system return and meet the constraint of QoS, Liu Qian
et al. suggested QoS behavior selection strategy based
on a double deep Q network algorithm to plan the

UAV’s flight path with limited energy [23]. Wang Liang
et al. adopted multi-agent deep reinforcement learning
algorithm to realize the dynamic deployment of multi-
UAV assisted MEC in the scenario of multi-UAV, so as
to meet the load balancing among UAV clusters [24].
Yin et al. used the multi-agent reinforcement learning
approach to represent trajectory planning and resource
allocation as a decentralized partially observable
Markov decision process, with the goal of optimizing
overall throughput and fair throughput [25]. UAVs can
be utilized as temporary base stations to offer edge ser-
vices to road vehicles which have heavy traffic. The rea-
son is that the general mobile edge computing scheme
with fixed base state cannot sufficiently manage the
urgent communication needs in vehicle networks. A
UAV-assisted vehicle communication network system
was designed, and a traffic situational awareness-based
algorithm for the best UAV flight trajectory was put
forth to reduce the cost of UAVs [26]. Bor Yalinzi et al.
considered both energy efficiency and coverage rate of
terminals to optimize the UAV base station layout [27].
Hu et al. investigated task offloading and trajectory
design in tandem to minimize the weighted sum of sys-
tem energy consumption [28].

Furthermore, previous papers on UAV-assisted MEC
rarely take collisions into account, which obviously does
not conform to the display of real life. Therefore, Chang
Huan et al. proposed to adopt a DRL method to realize
the dynamic deployment of UAV edge computing plat-
form in a complex environment with obstacles on the
ground [29]. However, the position of the terminal will
change with time in reality. In order to ensure that the
UAV can offer computing services to the mobile termi-
nals while avoiding obstacles, the UAV needs to adjust its
trajectory in time. Moreover, in most existing studies, the
deployment of UAVs is a one-time deployment. When
the location of the terminal on the ground changes, the
original deployment location may not provide the ter-
minal with the optimal edge computing service. To sum
up, in the case of obstacles on the ground, movement
of terminals, and continuous deployment of UAV posi-
tions according to the needs of the terminals, it is still
challenging to design the deployment trajectory of UAV,
which is also the main motivation for the research work
in this paper.

System model
For mobile edge computing scenarios, when a sin-
gle UAV carrying an edge server provides edge com-
puting services for multiple mobile terminals on the
ground, it needs to meet obstacle avoidance, UAV’s

Page 4 of 16Zhang et al. Journal of Cloud Computing (2023) 12:130

own constraints, and fairness of geographic location
of mobile terminals. System model is described in this
section.

As shown in Fig. 1, there are a single UAV, N mobile
terminals and K obstacles in a rectangular map with a
length of ℓ and a width of w. The sets of terminals and
obstacles are denoted as n ∈ N = {1, 2, · · · ,N } and
k ∈ K = {1, 2, · · · ,K } respectively. The geometric center
of the obstacle is used to represent the location infor-
mation, and it is denoted as bk = (xk , yk , h),∀k ∈ K ,
where h is the height of the center point of obstacle. This
paper considers a discrete-time system and divides time
into T slots, denoted as t ∈ T = {0, 1, 2, ...,T } . The UAV
flies over the target area to offer edge computing ser-
vices for terminals at a fixed height H . The UAV’s loca-
tion is indicated as uuav,t = (xt , yt ,H),∀t ∈ T at the tth
time slot. The initial positions of N terminals are ran-
domly distributed on the ground. Due to the mobil-
ity of terminals, the location coordinates of terminal
n are un,t = (xn,t , yn,t , 0),∀n ∈ N, t ∈ T at the tth time
slot. Assuming that terminals have a task of random size

to offload in each time slot, we can derive the following
constraints.

The main parameters and parameter meanings of this
paper are displayed in the Table 1 below.

Movement model of terminals
Considering the mobility of terminals in the scenario,
assuming that the position of the terminals does not
change during the duration �t,t−1 between the tth and
t-1th time slots. The Random Gauss-Markov Mobility
(RGMM) model [30] is used to represent the mobil-
ity of the terminals. The RGMM is a model based on
Gauss-Markov process, which is widely utilized in sig-
nal estimation and other fields. In a fixed interval, by
changing its speed and direction to establish the cor-
relation of speed and time of a moving terminal. The
speed vt and direction angle θt of the moving terminal
on the ground at the tth time slot are defined as

(1)
vt = ϕvt−1 + (1− ϕ)µv + σv(1− ϕ2)ωvt−1

, ∀t ∈ T

Fig. 1 System model of UAV dynamic deployment

Page 5 of 16Zhang et al. Journal of Cloud Computing (2023) 12:130

where 0 < ϕ < 1 is the memory level. µv and µθ are the
mean values of speed and angle, respectively. σv and σθ
are the standard deviation of speed and angle, respec-
tively. ωvt−1

 is an unrelated Gaussian process that is unre-
lated to vt−1 and has zero mean and unit variance. ωθt−1

is an unrelated Gaussian process that is unrelated to θt−1
and has zero mean and unit variance. Therefore, the posi-
tion coordinate of moving terminal n is defined as

The location information of terminal n is repre-
sented by formulas (3), (4). Since the constant move-
ment of terminals will bring about the disaster of
action space dimension, the action space needs to
be preprocessed. The map is divided into multiple
subdomains, and the location coordinates will be
updated only when the terminals move outside the
subdomain. Otherwise, the location coordinates will
not be updated. But the channel transmission param-
eters are still time-varying.

Obstacle avoidance model
As shown in Fig. 2, it shows the top view of the rela-
tionship between the flight path of the UAV and the
position of the obstacle k. The outline of obstacles on
the ground is simplified into a cylinder with radius R,

(2)
θt = ϕθt−1 + (1− ϕ)µθ + σθ (

√

1− ϕ2)ωθt−1
, ∀t ∈ T

(3)
xn,t = xn,t−1 + vt−1cosθt−1 ·�t,t−1, ∀n ∈ N, t ∈ T

(4)
yn,t = yn,t−1 + vt−1sinθt−1 ·�t,t−1, ∀n ∈ N, t ∈ T

Table 1 Main parameters

Parameters Implication

bk the position coordinates of obstacles

uuav ,t the position coordinates of the UAV

un,t the position coordinates of terminals

duav ,k,t the distance between obstacle k and the UAV

Rk the radius of obstacle k

Ok,t obstacle avoidance variable

duav ,t the flight distance of the UAV

vuav flight speed of the UAV

T
fly
uav ,t

flight time of the UAV

ruav ,n,t the uplink data transmission rate

B channel bandwidth

Ptr transmitted power

Toffuav ,n,t the time of computation offloading

Dn,t the task size needs to offload

Cn,t CPU cycle

E
fly
uav ,n,t

flight energy consumption of the UAV

Pf flight power

Eoffuav ,n,t computation offloading energy consumption

fuav CPU frequency of the UAV

Ehuav ,n,t hovering energy consumption of the UAV

Etotaluav ,n,t
total energy consumption

W total power of the UAV

Fig. 2 Diagram of obstacle avoidance

Page 6 of 16Zhang et al. Journal of Cloud Computing (2023) 12:130

and obstacles are represented by blue circles. Assum-
ing that the flying height H of the UAV is lower than
the height h of obstacles, the UAV needs to avoid
obstacles in flight to avoid collisions. At the tth time
slot, the coordinate of the UAV is (xt , yt ,H) , and the
coordinate is (xt−1, yt−1,H) at the t-1th time slot. The
black dots indicate where the UAV stays at a certain
moment, and the straight line between the two points
indicates the flight trajectory of the UAV. Only relying
on the distance between the current position of UAV
and the center of the obstacle cannot accurately deter-
mine whether the UAV has collided with the obstacle.
Therefore, it is judged whether the UAV collides with
the obstacle during the flight according to the distance
from the straight line where the flight track of the UAV
is located to the center of the obstacle.

At the tth time slot, the equation of the horizontal
flight path of the UAV is expressed as

The distance between the straight line of the flight path
of the UAV and the center of obstacle k is

If the distance between the straight line where the
flight path of the UAV is located and the center of the
obstacle k is greater than the radius Rk of the obsta-
cle, the UAV will not hit the obstacle; If the radius Rk
is smaller than the distance between the UAV and the
obstacle k, it is necessary to judge cos A and cos B. if
cosA > 0 and cosB > 0 then collide. cos A and cos B are
expressed as

(5)

(yt − yt−1) · x + (xt − xt−1) · y+ xt−1yt − xtyt−1 = 0,

∀t ∈ T

(6)

duav,k ,t

=

∣

∣(yt − yt−1)xk + (xt − xt−1)yk + xt−1yt − xtyt−1

∣

∣

√

(yt − yt−1)2 + (xt − xt−1)2
,

∀k ∈ K, t ∈ T

Define the obstacle avoidance variable as Ok ,t = {0, 1} .
Ok ,t = 0, ∀k ∈ K, t ∈ T indicates that the UAV col-
lides with obstacle k at the tth time slot, and
Ok ,t = 1, ∀k ∈ K, t ∈ T indicates that UAV successfully
avoids obstacle k, specifically it is expressed as

Energy consumption model
This paper assumes that the entire deployment process
is divided into T time slots of unequal length, and each
time slot t is divided into three parts. The first part is the
scheduling decision. The agent obtains the next deploy-
ment position by analyzing the current position of ter-
minals and obstacles and other information; The second
part is the flight time, that is, the time required for the
UAV to fly to the new deployment location; The third
part is the time of computation offloading. After the
UAV arrives at the new deployment location, it provides
edge services for terminals. The agent interacts with the
environment and makes decisions quickly, so the deci-
sion time is negligible compared to the flight time and
computation offload time, the tth time slot division is
shown in Fig. 3 below.

The flying distance of the UAV is duav,t at the tth time
slot, assume that the UAV is flying at a fixed speed vuav

(7)

cosA

=
(xt − xt−1)

2 + (xt−1yt − xtyt−1)
2 − (yt − yt−1)

2

2(xt − xt−1)(xt−1yt − xtyt−1)
,

∀t ∈ T

(8)

cosB

=
(xt−1yt − xtyt−1)

2 + (yt − yt−1)
2 − (xt − xt−1)

2

2(yt − yt−1)(xt−1yt − xtyt−1)
,

∀t ∈ T

(9)

Ok ,t =

{

0, duav,k ,t < Rk ∩ (cosA > 0 ∩ cosB > 0)

1, else

Fig. 3 Diagram of the tth time slot division

Page 7 of 16Zhang et al. Journal of Cloud Computing (2023) 12:130

and the speed is not greater than the maximum flight
speed vmax of the UAV. Then the flight time of the UAV at
the tth time slot is defined as

where duav,t represents the horizontal distance of the
UAV flying at the tth time slot, it is expressed as

In the MEC scenario, it is assumed that the flying height of
the UAV is always lower than the height of the obstacle, and
the UAV needs to avoid the obstacle before it can provide
services for the terminals on the ground. Therefore, the wire-
less communication link between the UAV and the terminals
adopts the line-of-sight link communication. At the tth time
slot, the uplink data transmission rate is expressed as

where duav,n,t is the horizontal distance between the UAV
and the terminal n at the tth time slot, and it is expressed
as

B is the bandwidth of the channel and Ptr is the trans-
mission power, ρ = g0G0/σ

2 , G0 ≈ 2.2846 , where g0 rep-
resents the channel power gain at the reference distance
of 1m, and σ 2 represents the noise power. At the tth time
slot, the time for the UAV to compute unloading for ter-
minal n is defined as

The time of computation offloading is divided into two
parts, one is the task transmission, and the other is the
task calculation. Where Dn,t/ruav,n,t is the time required
for terminal n to transmit mission data to the UAV at the
tth time slot, indicates the amount of tasks that terminal n
needs to offload at the tth time slot; Dn,t indicates the time
required for the UAV to calculate tasks offloaded from ter-
minal n at the tth time slot, among them, Fn,t = Dn,tCn,t
is defined as the CPU cycle required to calculate all tasks,
Cn,t is the CPU cycle required to calculate each bit of data
for the UAV, and fuav is the CPU frequency assigned to
tasks by the edge server on the UAV.

Then the flight energy consumption of UAV at the tth
time slot is defined as

(10)T
fly
uav,t =

duav,t

vuav
, ∀t ∈ T

(11)duav,t =

√

(xt − xt−1)2 + (yt − yt−1)2, ∀t ∈ T

(12)

ruav,n,t = Blog2(1+
ρPtr

H2 + d2uav,n,t
),∀n ∈ N, t ∈ T

(13)
duav,n,t =

√

(xt − xn,t)2 + (yt − yn,t)2, ∀n ∈ N, t ∈ T

(14)T
off
uav,n,t =

Dn,t

ruav,n,t
+

Fn,t

fuav
, ∀n ∈ N, t ∈ T

where Pf represents the flight power of the UAV. At the
tth time slot, the energy consumption required by the
UAV to compute offloading for terminal n is defined as

The energy consumption of computation offloading
is divided into two parts, one is transmission energy
consumption, and the other is computing energy con-
sumption. PtrDn,t/ruav,n,t indicates the transmission
energy consumption of terminal n offloading the task to
the UAV at the tth time slot, where Ptr represents the
transmission power; κDn,tCn,t f

2
uav indicates the compu-

tational energy consumption of the UAV at the tth time
slot.κ = 10−26 is a hardware-related constant.

In order to ensure the stability and reliability of the
communication link, the UAV needs to hover while
providing computation offloading services for ter-
minals. Therefore, the hovering energy consumption
of the UAV serving terminal n at the tth time slot is
defined as

where Ph is the hovering power of the UAV. Then the
total energy consumption of UAV at the tth time slot is

The UAV needs to serve terminals within the energy
consumption range,

∑T
t=0 E

total
uav,n,t ≤ Emax

uav . The total
power of the UAV is W. When the energy of the UAV is
exhausted, it will stop serving or return to charge.

Problem formulation
In the case of obstacles on the ground, by dynamically
deploying the position of the UAV to meet the com-
putation offloading requirements of the mobile ter-
minals and realize the obstacle avoidance of the UAV,
it will lead to some unfair problems. For example, the
UAV may only serve nearby terminals in order to save
energy and avoid obstacles, and do not consider pro-
viding edge computing services for distant terminals.
As a result, some terminals may be ignored and have
not been served by the UAV. We use jain fairness fac-
tor to solve this problem. First, the offloading variable
is defined as

(15)E
fly
uav,n,t = Pf T

fly
uav,t , ∀n ∈ N, t ∈ T

(16)

E
off
uav,n,t =

PtrDn,t

ruav,n,t
+ κDn,tCn,t f

2
uav , ∀n ∈ N, t ∈ T

(17)Eh
uav,n,t = PhT

off
uav,n,t , ∀n ∈ N, t ∈ T

(18)
Etotal
uav,n,t

= E
fly
uav,n,t + E

off
uav,n,t + Eh

uav,n,t , ∀n ∈ N, t ∈ T

Page 8 of 16Zhang et al. Journal of Cloud Computing (2023) 12:130

where Zn,t = 1, ∀n ∈ N, t ∈ T means that the terminal n is
offloaded at the tth time slot, and Zn,t = 0, ∀n ∈ N, t ∈ T
means that the terminal n is not offloaded. Moreover
∑N

n=1 Zn,t = 1, ∀n ∈ N, t ∈ T , it means that the UAV
can only serve one terminal at each time slot. The fair-
ness factor fn(t) is used to represent the fairness of the
geographical location of the terminals (the fairness of the
UAV’s service between the terminals)

If all terminals are served by UAV for similar times
from the initial time slot t=0 to T, then the value of fn(t)
is closer to 1, otherwise it is closer to 0. The optimization
problem is formulated as follows:

The optimization objective is to minimize the UAV’s
energy consumption while maximizing the obsta-
cle avoidance variable between the UAV and obsta-
cles, and to realize the fairness of the terminals being
served by the UAV. (21b) means that from t=1 to T,
the UAV’s total energy consumption cannot exceed the
maximum energy consumption; (21c) means the UAV
cannot fly faster than its maximum speed; (21d) means
that the UAV’s flight range is not allowed to go beyond
the fixed area; (21e) means that the CPU frequency
that the MEC server installed on the UAV assigns to
the task cannot exceed the maximum frequency; (21f)
means that the UAV can only serve one terminal dur-
ing time slot t.

(19)Zn,t = {0, 1}, ∀n ∈ N, t ∈ T

(20)

fn(t)

= (
∑N

n=1

∑t

t=1
Zn,t)

2/N
∑N

n=1
(
∑t

t=1
Zn,t)

2

(21a)P1 : max
∑T

t=0
{Ok ,t +

fn(t)
∑N

n=1 E
total
uav,n,t

}

(21b)
∑T

t=0
Etotal
uav,n,t ≤ E, ∀n ∈ N, t ∈ T

(21c)vuav ≤ vmax

(21d)0 ≤ xt ≤ ℓmax, 0 ≤ yt ≤ wmax, ∀t ∈ T

(21e)fuav ≤ f max
uav

(21f)
∑N

n=1
Zn,t = 1, ∀n ∈ N, t ∈ T

MDP
The DRL takes advantage of the agent’s interaction with
the environment and allows the agent to learn the optimal
action through rewards. In accordance with the system
model in the above section, the environment and action of
the system are judged to have Markov properties, so the
paper utilizes Markov decision process (MDP) to describe
the system model. This section introduces the MDP and
the DRL model for the above optimization problem. And
a DRL algorithm based on an action selection strategy of ε
-pseudo count is used to realize the dynamic deployment
of UAV edge server.

The MDP mainly consists of state, action, reward and
discount factor γ , which is used to describe the interac-
tion process between agent and environment, and the
learning process of agent in DRL. Considering the system
model in the aforementioned section, the problem we
need to solve conforms to the MDP, and the following is
to establish the Markov decision model.

1) State Space: first, we describe the state space for each
episode as S = {s1, s2, · · · , si, · · · , st}, ∀t ∈ T , where
si is the state at the ith time slot

where un,i is the terminals’ location information at
the ith time slot; uuav,i is the position information of
the UAV at the ith time slot; bk is the location infor-
mation of obstacles on the ground; Dn,i is the amount
of tasks that the terminal n needs to offload at the ith
time slot; Ok ,i is the obstacle avoidance variable at the
ith time slot; ruav,n,i is the channel transmission rate
between the UAV and terminal n at the ith time slot;
�i = {un,iZn,i} represents the terminal n served by
the UAV at the itextth time slot.

2) Action Space: the agent selects the action with the
greatest reward based on the current state, i.e. the
next position of the UAV. Action space is defined as

3) Reward Function: when the position of the UAV is
deployed once, the reward can be calculated, which is
the feedback of the whole system model to the DRL
model. Specifically, reward refers to the ratio of fair-
ness factor of edge computing service to total energy
consumption, obstacle avoidance variable and addi-
tional reward brought by pseudo count exploration
for terminals after dynamic deployment of the UAV.
Therefore, the reward obtained from the current state
and action is defined as

(22)si = {un,i,uuav,i, bk ,Dn,i,Ok ,i, ruav,n,i,�i}

(23)ai = {uuav,i+1}

Page 9 of 16Zhang et al. Journal of Cloud Computing (2023) 12:130

among them, ω1 and ω2 are the coefficients that
adjust the reward ratio. Respectively, ψ(N (s)) rep-
resents the additional rewards explored by pseudo
count strategy.

Deployment algorithm based on DDQN with ε
‑pseudo count selection strategy of action
The DDQN algorithm in the DRL algorithm is used to
eliminate the overestimation problem of the DQN by
decoupling the selection of actions in the target Q value
and the calculation of the target Q value. The algorithm
structure of DDQN and DQN is the similar, but the way
of updating in the Q network is different. The DDQN
chooses the action with the highest Q value in accordance
with the parameters of the main network, whereas the
DQN chooses the action in accordance with the param-
eters of the target network. This solves the problem of
overestimation to a certain extent, making the Q value
closer to the true value.

The DDQN consists of two neural networks: the tar-
get network and the main network. Specifically, Qmain is
the output of the main network, which is a value func-
tion used to evaluate the current state-action. Qtarget is
the output of the target network.

(24)

Ri+1 = ω1Ok ,t + ω2

fn(t)
∑N

n=1 E
total
uav,n,t

+ ψ(N (s))

(25)Qmain = Q(si, ai; θi)

(26)Qtarget = Q(si+1, argmax
a

Q(si+1, ai; θi); θ
−
i)

The special is that it is updated according to the
action which maximizes the Q value in the main net-
work. The target Q value YDDQN is defined as

In order to avoid suboptimal results in DRL algorithms,
common DDQN algorithms generally use ε -greedy strat-
egy to explore and utilize. However, ε exploration may
select the previously experienced states and actions,
which cannot avoid the disadvantages of local optimality.

The core idea of pseudo count exploration is to calculate
or estimate the frequency of each state-action by designing
density model. And new state-actions are rewarded with
higher bonuses, encouraging the agent to try more state-
actions. The DRL algorithm is utilized to train the UAV
dynamic deployment to meet the fairness of terminals being
served by the UAV in this paper. Considering the principle
of pseudo count exploration mode, it can be found that the
DRL algorithm based on ε-pseudo count exploration mode
has better performance to solve this problem.

The probability density of occurrence of si is defined
as ρ(si) = ρ(si|s1:t) , and the probability density is
ρ′(si) = ρ(si|s1:t si) when si is observed in the next time.
In order to better understand the density model, two con-
cepts are introduced, namely the pseudo count function
N̂ (s, a) and the pseudo count total t̂ . Then the probability
density of the state si appearing and the probability den-
sity of si observed in the next time are ρ(si) = N̂ (si)/t̂ and
ρ′(si) = (N̂ (si)+ 1)/(t̂ + 1) , respectively. The relationship
between ρ(si) and ρ′(si) is the learning-positive density
model. Then we can get the expression of pseudo count

(27)YDDQN = Ri+1 + γQtarget

Fig. 4 Schematic diagram of deployment algorithm based on DDQN with ε-pseudo count

Page 10 of 16Zhang et al. Journal of Cloud Computing (2023) 12:130

In addition, the reward defined by pseudo count explo-
ration is ψ(N (s)) = N̂ (s)−1/2 . The pseudocode of ε

-pseudo count selection strategy of action is shown in the
Algorithm 1.

Algorithm 1 The action selection strategy based on ε
-pseudo countThe schematic diagram of the DDQN algo-
rithm based on the ε-pseudo count exploration strategy is
shown in Fig. 4.

It can be seen from Fig. 4 that ① Environment includes
information such as the position of the UAV and the
terminals, channel transmission rate, etc.;② Using ε
-pseudo count exploration to explore the environment,
and make the action ai according to the current state
si . Negative rewards will be given when the UAV col-
lides with obstacles or consumes too much energy. The
ε-pseudo count strategy based on the combination of
the ε-greedy exploration strategy and the pseudo count
exploration strategy can speed up the convergence rate
and avoid local optimization, so as to achieve better
exploration and utilization; Next, the reward Ri+1 and the
next state si+1 are obtained, and then ③ the information
obtained by the exploration is stored in the experience
pool Memory M as a tuple (si, ai,Ri+1, si+1) . The experi-
ence pool has a fixed size. When the experience pool is
full, the previously stored tuples will overflow; ④ Dur-
ing neural network training, a fixed number of small
batches of experience are extracted from Memory M for
training, which is called Mini-Batch; ⑤ and ⑥ are two
neural networks of the DDQN algorithm, which are the
main network and the target network, respectively. The
purpose of neural network is to obtain the maximum tar-
get Q value. In order to ensure the stability of the algo-
rithm, the main network copies the parameter θ to the

(28)N̂ (si) = t̂ρ(si) =
ρ(si)(1− ρ′(si))

ρ′(si)− ρ(si)

target network after every fixed interval step C;⑦ and
⑧ are the Q values output by the two neural networks
respectively, where ⑨ indicates that the Q value of ⑧ is
updated according to the action of the maximum value
of ⑦. ⑩Update network parameters by minimizing
loss function. The pseudocode of deployment algorithm
based on DDQN with ε-pseudo count selection strategy
of action is shown in Algorithm 2.

Algorithm 2 Deployment algorithm based
on DDQN with ε‑pseudo count selection strategy
of actionSimulation experiment
In this part, we simulate the performance of the DDQN
algorithm with the proposed ε-pseudo count selec-
tion strategy of action and analyze the results. In the
PC environment of intel Core i7-1165G7, 2.8GHZ CPU,
16GB, we use python3.6 and tensorflow2.0 to simulate.
In the algorithm, the main network and target network

Page 11 of 16Zhang et al. Journal of Cloud Computing (2023) 12:130

respectively adopt four fully connected hidden layers,
and each layer has 50 neurons.

Create a simulation environment
On a map with a length of 1000m and a width of 600m,
the UAV flies at a constant speed at a fixed height, and
the obstacles in the training environment are simplified
as cylinders, and the radius R of the cylinder, the height
h and the coordinates of the obstacles are set; Secondly,
set the starting positions of 30 terminals in the envi-
ronment, and the starting positions of the terminals are
randomly set; Finally, add the UAV to the environment,
and set the relevant attribute parameters of the UAV.
The specific parameter settings are shown in Table 2
below.

Algorithm hyperparameter settings
The hyperparameter setting of DRL algorithm is very
important. Only by setting appropriate hyperparameters
can the neural network play a better performance and the
algorithm converge. A key hyperparameter in the algo-
rithm is the learning rate α . When α is too low, the con-
vergence complexity of the network increases, and it is
easy to fall into a local minimum. When α is too high, the
gradient oscillates around the minimum.

As shown in Fig. 5, it is the convergence of the pro-
posed algorithm under different learning rates α . It can
be seen that the algorithm does not converge when α is
0.1 and 0.01; The algorithm converges when α is 0.001
and 0.0001, but when α=0.001, the algorithm converges
in 5000 episodes, and the average reward value of conver-
gence is higher than when α=0.0001. So set the learning
rate α equal to 0.001.

Figure 6 shows the convergence of the proposed algo-
rithm under different discount factors γ . It is used to
control how future rewards affect the current reward
value. A higher value of γ indicates that the agent has
more steps to consider but is also more difficult to
train, while a lower value of it indicates that the agent
pays more attention to immediate interests. Therefore,
an appropriate discount factor must be determined. It
can be seen from the Fig. 6 that when γ=0.99, the agent
is overly focused on potential future rewards, so the
convergence speed is slower and more difficult. When
γ is equal to 0.95 and 0.9, although the average reward
value of the final convergence is similar, it converges at
about 7500 episodes when γ=0.95, and it converges at
about 5000 episodes when γ=0.9, which is obviously
faster than when γ=0.95.

Table 2 Parameters of simulation environment

Parameters Value

Channel bandwidth B 1MHz

Flight speed of UAV 20m/s

Noise power σ 2 -140dB

Flying height of UAV H 50m

The power of the UAV W 200kJ

Amount of tasks to uninstall Dn,t [1,10]Kb

CPU cycles of UAV Cn,t 1000

CPU frequency of UAV fuav 2GHz

Flight energy consumption of UAV Pf 110W

Hovering energy consumption of UAV Ph 80W

Transmission power Ptr 0.1W

Fig. 5 The convergence of the proposed algorithm under various learning rates

Page 12 of 16Zhang et al. Journal of Cloud Computing (2023) 12:130

Figure 7 shows the convergence of the proposed algo-
rithm under different Mini-Batch sizes. Mini-Batch
refers to the sample size that is subsampled from the
experience pool and used for gradient calculation. The
size setting should take into account both training sta-
bility and training speed.

It can be seen from Fig. 7 that when the Mini-
Batch is 32 and 64, effective training samples can-
not be extracted because the number of samples is
too small, and the convergence trend is not obvious;
When the Mini-Batch is 128, it converges at 5000
episodes and converges at about 1300. So set Mini-
Batch equal to 128. Due to the mutual influence of the

hyperparameters in DRL, after arranging and com-
bining the parameters, a large number of comparative
experiments are performed to determine the specific
values. The remaining algorithm hyperparameter set-
tings are shown in Table 3 below.

Result analysis
Figure 8 depicts the average rewards of the proposed
algorithm, traditional DDQN, DQN algorithm and
Q-learning algorithm. First, the algorithm proposed in
this paper converges from about 6000 episodes and con-
verges around 1250; The traditional DDQN algorithm
converges after about 10,000 episodes, and the final

Fig. 6 The convergence of the proposed algorithm under various discount factors

Fig. 7 The convergence of the proposed algorithm under various Mini-Batch sizes

Page 13 of 16Zhang et al. Journal of Cloud Computing (2023) 12:130

reward value is 1200; The DQN algorithm converges to
850 around 8000 episodes. However, the Q-learning
algorithm cannot converge because it cannot handle
high-dimensional action spaces. It can be seen that the
algorithm we proposed achieves the fastest convergence
speed and the largest average reward value, indicat-
ing that the action selection strategy based on ε-pseudo
count can more effectively realize the selection and utili-
zation of actions by the agent.

Figure 9 depicts the fairness factor fn(t) of the proposed
algorithm, traditional DDQN and DQN algorithms. It
can be seen from the Fig. 9 that under the algorithm we
proposed, it is around 0.9, which means that the UAV can
satisfy the fairness of the geographical location of most
terminals; Under the traditional DDQN algorithm, it
is about 0.78, and under the DQN algorithm, it is about
0.75, which means that the UAV can satisfy the fairness of
the geographic location of some terminals. The fairness
factor fn(t) under the Q-learning algorithm is always the
lowest and decreases with the increase of training times.

It can be seen that our proposed algorithm achieves the
greatest fairness of geographical location among all com-
pared algorithms.

In order to verify the stability and effectiveness of the
proposed algorithm, the fairness factors of the improved
DDQN algorithm, DDQN algorithm, DQN algorithm
and Q-learning algorithm are compared under different
obstacle numbers to verify whether the algorithm can
still maintain good effectiveness in different scenarios.

As shown in Fig. 10, when the number of obstacles
is 2,4,6,8 or 10, the fairness factor under the improved
DDQN algorithm can always be maintained at about
0.9. The fairness factors of DDQN, DQN and Q-learning
algorithms are maintained at about 0.78,0.77 and 0.67,
respectively. The fairness factor under the improved
DDQN algorithm is always stable and superior to other
algorithms, indicating that the proposed algorithm has
good stability and effectiveness.

Under the above parameter settings, after the agent
passes training and learning, the dynamic deployment
diagram of the UAV is shown in Fig. 11 below. Blue cir-
cles represent obstacles, and black lines represent the
dynamic deployment trajectory of the UAV. The gray cir-
cles indicate the initial positions of the ground terminals,
and the red circles indicate the position of the ground
terminals when the UAV is serving the terminals. And
the two green circles represent the start and end respec-
tively. It should be noted that the depletion of the UAV’s
battery indicates the end of the UAV deployment. The
end point is the last location deployed before power is
exhausted. Therefore, the end point of UAV deployment
in this paper is not fixed.

Table 3 The hyperparameters of the algorithm

Parameters Value

Number of hidden layer 4

Number of nodes 50

Activation function Relu

Optimizer Adam

Learning rate 0.001

Discount factor 0.9

Memory M size 20000

Mini-Batch size 128

Fig. 8 Average reward under different algorithms

Page 14 of 16Zhang et al. Journal of Cloud Computing (2023) 12:130

From Fig. 11(a) and (b), it can be seen that the UAV
avoids obstacles from beginning to end; Secondly, it
can be seen that UAVs tend to serve terminals on the
ground at a closer distance, thereby saving energy con-
sumption; In addition, it can be seen that the deploy-
ment of UAV has basically realized the fairness of
offloading service of terminals provided by UAV,
and can basically meet the offloading requirements
of terminals at various locations. Therefore, deploy-
ment algorithm based on DDQN with ε-pseudo count

selection strategy of action can still realize the dynamic
deployment of a single UAV when the number, size and
position of obstacles on the ground change, which has
certain stability and effectiveness.

Conclusion
The dynamic deployment of a single UAV is planned
track in the scenario where there are multiple mobile
terminals and multiple obstacles on the ground in order
to achieve the fairness of the geographical location of

Fig. 9 Fairness factor under different algorithms

Fig. 10 Fairness factors under different algorithms with different obstacle numbers

Page 15 of 16Zhang et al. Journal of Cloud Computing (2023) 12:130

the mobile terminals, the obstacle avoidance of the
UAV, and the saving of energy consumption of UAV.
To solve this planning problem, a mathematical model
is established firstly, including the mobile model of the
terminals, the obstacle avoidance model and the energy
consumption model of the UAV, and the optimization
objectives and constraints are formulated. Second,
in order to realize the training and learning of DRL, a
MDP is established. In order to improve the training
speed and average reward, the ε-greedy exploration
strategy is combined with the pseudo count explora-
tion strategy, and the ε-pseudo count selection strategy
of action is proposed based on the DDQN algorithm.

Finally, the environment for the simulation experiment
is established. In order to achieve the optimal train-
ing effect, when using the improved DDQN algorithm
to train the UAV, the hyperparameters are arranged
and combined, and the hyperparameter values are
adjusted until the optimal effect is achieved. The aver-
age reward value, convergence speed and the fairness
of the geographical location of the ground terminals
are used as evaluation indicators, and the improved
algorithm in this paper is compared with the DDQN
algorithm, DQN algorithm and Q-learning algorithm.
The simulation results show that the improved DDQN
algorithm in this paper has always maintained a good

Fig. 11 Deployment trajectory diagram of the UAV

Page 16 of 16Zhang et al. Journal of Cloud Computing (2023) 12:130

performance. At the end of the experiment, the stability
and universality of the algorithm are verified by chang-
ing the number, size and position of obstacles.

However, this paper only studies the single UAV-
assisted MEC. In the case of a large number of terminals
and delay-sensitive task scenarios, a single UAV obvi-
ously cannot meet the needs. Therefore, we will conduct
research on multi-UAV assisted edge computing net-
works in the future.

Abbreviations
UAV Unmanned Aerial Vehicle
MEC Mobile Edge Computing
DRL Deep Reinforcement Learning

Authors’ contributions
Zhang Suqin, Zhang Lin, Xu Fei, Cheng Song, Su Weiya and Wang Sen conceived
and designed the study. Zhang Suqin and Zhang Lin conceived the original idea
and theoretical analysis. Xu Fei, Cheng Song, Su Weiya and Wang Sen performed
the simulations. Zhang Lin wrote the paper. All authors reviewed and edited the
manuscript. All authors read and approved the final manuscript.

Funding
1.Regional innovation capability guidance plan of Shaanxi Provincial Depart-
ment of science and Technology (2022QFY01-14);
2.Science and technology planning project of Beilin District, Xi’an City, Shaanxi
Province (GX2137);
3.Funded by Lab of High Confidence Embedded Software Engineering
Technology; 4.Key R &D projects of Xianyang science and Technology Bureau
(2021ZDYF-NY-0019).

Availability of data and materials
The data that support the findings of this study are available from the cor-
responding author upon reasonable request.

Declarations

Competing interests
The authors declare no competing interests.

Received: 21 April 2023 Accepted: 14 August 2023

References
 1. Shi W, Sun H, Cao J, Zhang Q, Liu W (2017) Edge computing : a new computing

model in the era of internet of everything. Comput Res Dev 54(05):907–924
 2. Zhao M (2020) Overview of edge computing technology and its applica-

tion. Comput Sci 47(6A):268–272
 3. Zeng Y, Zhang R, Lim T (2016) Wireless communications with unmanned

aerial vehicles: Opportunities and challenges. IEEE Commun Mag
54(05):36–42

 4. Zhou Y, Pan C, Yeoh P (2019) Secure communications for uav-enabled
mobile edge computing systems. IEEE Trans Commun 68(01):376–388

 5. Yang Z, Pan C, Wang K (2019) Energy efficient resource allocation in uav-
enabled mobile edge computing networks. IEEE Trans Wirel Commun
18(09):4576–4589

 6. Motlagh N, Bagga M, Taleb T (2017) Uav-based iot platform: A crowd
surveillance use case. IEEE Commun Mag 55(02):128–134

 7. Dong C, Shen Y, Qu Y (2020) Survey of edge intelligent computing based
on uav. J Intell Sci Technol 2(03):227–239

 8. Yuan Y, Lei L, Vu T (2021) Energy minimization in uav-aided networks:
Actor-critic learning for constrained scheduling optimization. IEEE Trans
Veh Technol 70(05):5028–5042

 9. Duong T, Nguyen L, Tuan H (2019) Learning-aided realtime performance
optimisation of cognitive uav-assisted disaster communication. Waikoloa,
HI, USA.IEEE. In: Proceedings of the 2019 IEEE Global Communications
Conference. https:// doi. org/ 10. 1109/ GLOBE COM38 437. 2019. 90143 13

 10. Liu X, Liu Y, Chen Y (2019) Trajectory design and power control for multi-
uav assisted wireless networks: A machine learning approach. IEEE Trans
Veh Technol 68(08):7957–7969

 11. Wang J, Jiang C, Wei Z (2018) Joint uav hovering altitude and power
control for space-air-ground iot networks. IEEE Internet Things J
6(02):1741–1753

 12. Huang P, Wang Y, Wang K (2020) Energy-efficient trajectory planning for
a multi-uav-assisted mobile edge computing system. Front Inf Technol
Electron Eng 21(12):1713–1725

 13. Lai C, Wang L, Han Z (2019) Data-driven 3d placement of uav base sta-
tions for arbitrarily distributed crowds. In: Proceedings of the 2019 IEEE
Global Communications Conference (GLOBECOM)

 14. Jeong S, Simeone O, Kang J (2017) Mobile edge computing via a uav-
mounted cloudlet: Optimization of bit allocation and path planning. IEEE
Trans Veh Technol 67(03):2049–2063

 15. Arafat MY, Moh S (2022) Jrcs: Joint routing and charging strategy for
logistics drones. IEEE Internet Things J 9(21):21751–21764

 16. Dai X, Duo B, Yuan X, Tang W (2022) Energy-efficient uav communica-
tions: A generalized propulsion energy consumption model. IEEE Wirel
Commun Lett 11(10):2150–2154

 17. Qi X, Yuan M, Zhang Q (2022) Joint power - trajectory scheduling optimi-
zation in a mobile uav-enabled network via alternating iteration. China
Commun 19(01):136–152

 18. Hu H, Zhou X, Wang Q (2022) Online computation offloading and trajec-
tory scheduling for uav-enabled wireless powered mobile edge comput-
ing. China Commun 19(04):257–273

 19. Xu Y, Zhang T, Yang D (2020) Joint resource and trajectory optimiza-
tion for security in uav-assisted mec systems. IEEE Trans Commun
69(01):573–588

 20. Wang D, Tian J, Zhang H (2021) Task offloading and trajectory scheduling
for uav-enabled mec networks: an optimal transport theory perspective.
IEEE Wirel Commun Lett 11(01):150–154

 21. Wang J, Jiang C, Zhang K (2019) Distributed q-learning aided hetero-
geneous network association for energy-efficient iiot. IEEE Trans Ind Inf
16(04):2756–2764

 22. Lillicrap T, Hunt J, Pritzel A (2015) Continuous control with deep reinforce-
ment learning.arXiv:1509.02971 [cs.LG]. https:// doi. org/ 10. 48550/ arXiv.
1509. 02971

 23. Liu Q, Shi L, Sun L (2020) Path planning for uav-mounted mobile edge
computing with deep reinforcement learning. IEEE Trans Veh Technol
69(05):5723–5728

 24. Wang L, Wang K, Pan C (2020) Multi-agent deep reinforcement learning-
based trajectory planning for multi-uav assisted mobile edge computing.
IEEE Trans Cogn Commun Netw 7(01):73–84

 25. Yin S, Yu R (2021) Resource allocation and trajectory design in uav-aided
cellular networks based on multiagent reinforcement learning. IEEE
Internet J 9(04):2933–2943

 26. Wu Z, Yang Z, Yang C (2021) Joint deployment and trajectory optimiza-
tion in uav-assisted vehicular edge computing networks. J Commun
Netw 24(01):47–58

 27. Bor-Yaliniz R, El-Keyi A, Yanikomeroglu H (2016) Efficient 3-d placement of
an aerial base station in next generation cellular networks.Kuala Lumpur,
Malaysia. IEEE. In: Proceedings of the 2016 IEEE international conference
on communications (ICC). https:// doi. org/ 10. 1109/ ICC. 2016. 75108 20

 28. Hu Q, Cai Y, Yu G (2018) Joint offloading and trajectory design for
uav-enabled mobile edge computing systems. IEEE Internet Things J
6(02):1879–1892

 29. Chang H, Chen Y, Zhang B (2021) Multi-uav mobile edge computing
and path planning platform based on reinforcement learning. IEEE Trans
Emerg Top Comput Intell 6(03):489–498

 30. Liu Y, Liu D, Yue D (2018) Bgmm: a body gauss-markov based mobility
model for body area networks. Tsinghua Sci Technol 23(03):277–287

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/GLOBECOM38437.2019.9014313
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.48550/arXiv.1509.02971
https://doi.org/10.1109/ICC.2016.7510820

	Dynamic deployment method based on double deep Q-network in UAV-assisted MEC systems
	Abstract
	Introduction
	Related work
	System model
	Movement model of terminals
	Obstacle avoidance model
	Energy consumption model

	Problem formulation
	MDP
	Deployment algorithm based on DDQN with -pseudo count selection strategy of action
	Simulation experiment
	Create a simulation environment
	Algorithm hyperparameter settings
	Result analysis

	Conclusion
	References

