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Abstract 

The evolution of the Internet of Things technology (IoT) has boosted the drastic increase in network traffic demand. 
Caching and multicasting in the multi-clouds scenario are effective approaches to alleviate the backhaul burden 
of networks and reduce service latency. However, existing works do not jointly exploit the advantages of these two 
approaches. In this paper, we propose COCAM, a cooperative video edge caching and multicasting approach based 
on multi-agent deep reinforcement learning to minimize the transmission number in the multi-clouds scenario 
with limited storage capacity in each edge cloud. Specifically, by integrating a cooperative transmission model 
with the caching model, we provide a concrete formulation of the joint problem. Then, we cast this decision-making 
problem as a multi-agent extension of the Markov decision process and propose a multi-agent actor-critic algorithm 
in which each agent learns a local caching strategy and further encompasses the observations of neighboring agents 
as constituents of the overall state. Finally, to validate the COCAM algorithm, we conduct extensive experiments 
on a real-world dataset. The results show that our proposed algorithm outperforms other baseline algorithms in terms 
of the number of video transmissions.
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Graphical Abstract

Introduction
As the Internet of Things (IoT) technology evolves, 
users are becoming increasingly interconnected with 
their electronic devices [1]. The advent of new wireless 
networks such as the fifth-generation (5G) network, 
the proliferation of smart devices, and users’ high usage 
of diverse applications such as video streaming, online 
gaming, and virtual reality have resulted in a profound 
surge in video traffic. According to the Cisco report [2], 
studies predicted that the traffic of video types would 
account for 79% of all Internet traffic worldwide by 
2022. The extensive prevalence of video traffic and the 
stringent quality of experience (QoE) requirements have 
put tremendous backhaul pressure on networks [3]. 
Therefore, the issue of minimizing the network resource 
consumption during transmission while simultaneously 
satisfying user demand has become one of the most 
critical concerns of network operators [4].

In traditional cloud environments, the service 
process requires moving data to remote data centers for 

centralized computing and storage. This leads to high 
network transmission latency, which can negatively 
impact the performance of mobile applications. To 
address this problem and provide reliable services for 
latency-sensitive applications, researchers have explored 
deploying small-scale cloud servers at the edge so that 
these edge cloud servers can provide resources closer to 
edge IoT devices [5–7]. Edge cloud servers are equipped 
with finite resources and can be utilized to deliver 
bandwidth-optimized services at the edge, thus enabling 
the provision of fast and immediate services [8, 9]. The 
multi-clouds architecture, including the remote cloud 
and edge clouds, is a promising paradigm to improve 
the QoE of users and reduce energy consumption [10, 
11]. This potential stems from its ability to facilitate 
ubiquitous caching and efficient content delivery for end 
users, as highlighted by several studies.

During the content request phase, the network engages 
in content searching upon receiving a user’s request. To 
alleviate traffic congestion, edge caching is an efficient 
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manner of caching popular files on edge cloud servers 
closer to their requesters. It tackles the problem of 
which content to be cached in the edge cloud [12]. 
Recent scholarly investigations have substantiated the 
effectiveness of collaborative caching, which has attracted 
considerable scholarly attention. Collaborative caching 
works by allowing edge clouds to collectively distribute 
content through internal connections. Song et  al. [13] 
presented an adaptive cooperative caching scheme that 
incorporates an enhanced quantum genetic algorithm to 
address the energy-delay tradeoff problem. Zhang et  al. 
[14] proposed a spatially cooperative caching strategy 
for a two-tier heterogeneous network. The objective of 
this strategy is to minimize storage usage for duplicated 
content with caching while maximizing the likelihood of 
successful content retrieval (hit probability).

During the content delivery phase, traditional unicast 
mechanisms for distributing content from remote cloud 
to edge clouds and user ends (UEs) result in inefficient 
delivery. Multicasting, on the other hand, can leverage 
the available network bandwidth to deliver the same 
content to multiple receivers, benefiting from the 
similarity of users’ preferences for content in close 
geographic locations. This mechanism reduces traffic 
generated during delivery by delivering the requested 
file through a single multicast rather than multiple 
unicasts [15]. Significant efforts have been devoted to 
video coding and multicast transmission [16–19]. For 
instance, Guo et  al. [18] proposed a layer-based multi-
quality multicast beamforming scheme based on scalable 
video coding. Wu et al. [19] designed an adaptive video 
streaming scheme using named data network multicast. 
However, these algorithms, while addressing video 
coding and multicast transmission, did not consider 
the integration of coded multicasting with caching in a 
cooperative environment.

Intuitively, Caching reduces latency and network 
bandwidth consumption by serving frequently requested 
content locally at the edge clouds [10, 20]. Multicasting 
further reduces bandwidth usage by efficiently delivering 
popular content to multiple users simultaneously, 
especially in scenarios with concurrent requests for 
the same content. Joint consideration of caching 
and multicasting can enhance the overall network 
performance and resource utilization by dynamically 
allocating caching and multicasting resources based 
on real-time user demand and network conditions. 
This adaptive strategy optimizes the content availability 
and delivery efficiency, leading to an improved user 
experience. Notably, it facilitates the deployment of 
various latency-sensitive applications and services 
[21, 22]. In the context of large-scale cache-enabled 
wireless networks, Jiang et  al. [23] applied an iterative 

numerical algorithm to analyze and optimize caching 
and multicasting. Various coding multicasting 
mechanisms have been proposed in different scenarios 
[24–27]. Nevertheless, in large-scale cooperative caching 
scenarios, finding a balance between edge caching and 
multicasting to improve resource efficiency remains a 
challenging task.

In this paper, we exploit the benefits of mobile 
edge caching with multicasting in the multi-clouds 
environment to reduce network transmission 
consumption. We investigate the collaborative caching 
among different edge clouds to effectively adapt to 
dynamic edge environments. We propose a multi-agent 
DRL-based approach for COoperative video CAching 
and Multicasting named COCAM to minimize the 
average transmission number, thereby enhancing 
video delivery efficiency. Our main contributions are 
summarized as follows:

•	 We investigate the cooperative video edge caching 
and multicasting issue to reduce the transmission 
number in the multi-clouds scenario. Moreover, we 
present the problem formulation as a multi-agent 
Markov decision process (MDP).

•	 A novel multi-agent actor-critic algorithm is 
designed to address the formulated MDP. Specifically, 
each agent learns a local caching strategy and further 
encompasses the observations of neighboring agents 
as constituents of the overall state. Multiple agents 
work in collaboration to efficiently adapt to the 
dynamic network environment.

•	 Extensive trace-driven simulations demonstrate that 
our proposed algorithm outperforms other baselines 
in terms of video transmission number.

The rest of this paper is organized as follows. In Related 
work section, we introduce the related works. System 
model and problem formulation section presents the 
system model and problem formulation. The details of 
the COCAM approach are presented in The COCAM 
approach section. We compare the experimental 
performance and analyze the results in Performance 
evaluation section.  Conclusion section concludes the 
paper.

Related work
Caching algorithms
Edge caching stores popular content locally on edge 
clouds, allowing them to deliver the requested content 
directly to users. It significantly reduces network latency 
and network consumption. Li et  al. [28] investigated a 
cost-effective greedy algorithm with consideration for 
different video characteristics. It optimized the mobile 
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edge cache placement problem for QoE-driven dynamic 
adaptive video streams. Tran et  al. [29] proposed 
a federated collaborative caching and processing 
framework based on integer linear programming to 
accommodate adaptive bitrate video streams in mobile 
edge computing networks. The caching decision process 
in wireless communication networks can be represented 
as an MDP, and reinforcement learning has been 
commonly employed in this domain. Based on a multi-
agent framework, Wang et al. [30] proposed a deep actor-
critic reinforcement learning algorithm to address the 
dynamic control of caching decisions by enabling each 
edge to learn an optimal policy through self-adaptation. 
However, the existing research primarily focused 
on content caching policies and did not incorporate 
consideration for the content delivery process.

Multicasting algorithms
Multicast transmission is extensively utilized in edge 
networks, demonstrating its efficacy in enhancing 
network performance by reducing bandwidth, routing, 
and cost [31]. Damera et  al. [32] constructed a new 
feasible architectural model to transmit the required 
content to the user using the multicell transmission. 
The Signal Noise Ratio was improved using the 
multicell transmission. The optimized MEC scheduling 
algorithm showed better performance compared to the 
existing model. Zahoor et  al. [33] proposed a suggested 
enhanced eMBMS network architecture to address 
the significant limitations of the standard eMBMS 
architecture, i.e., a network architecture using network 
function virtualization (NFV) and MEC. The proposed 
architecture allows the multicasting of crowdsourcing 
live streams. Ren et al. [15] considered the fundamental 
issues of NFV-enabled multicast in mobile edge clouds 
and designed a heuristic algorithm. Qin et al. [34] studied 
the multicast traffic for IoT applications in edge networks 
under the delay-oriented network slicing problem. 
Nevertheless, these works focused on the network 
architecture and multicast protocols without integration 
with the practical applications of the edge cloud servers.

Joint caching and multicasting algorithms
The utilization of multicast transmission at the base 
station, enabling concurrent servicing of distinct 
user requests for the identical file, is recognized as a 
highly efficacious approach for supporting the delivery 
of extensive content over wireless networks. This 
approach is regarded as an effective strategy in wireless 
communications to meet the constantly increasing 

demand for content transmission. Maddah-Ali et  al. 
[35] used the joint encoding of multiple files and the 
multicasting feature of downlink channels to optimize 
content placement and delivery under encoded multicast. 
They also evaluated the caching gain and demonstrated 
that the joint optimization problem could improve the 
caching gain. Liao et al. [36] used the benefits of multicast 
content delivery and collaborative content sharing jointly 
to develop a compound caching technique (multicast-
aware cooperative caching). He et al. [37] designed partial 
caching bulk transmission and partial caching pipelined 
transmission to reduce the delivery latency of cache-
enabled multi-group multicast networks. Somuyiwa et al. 
[38] combined active caching and multicast transmission 
to model the single-user multi-request problem as an 
MDP and used a DRL approach to solve the problem. 
Since traditional approaches are difficult to adapt to this 
highly diverse and dynamic environment under multi-
clouds cooperative caching, we propose a COCAM-
based framework to maximize the traffic consumption 
during the video delivery phase.

System model and problem formulation
In this section, we introduce the cooperative video 
edge caching and multicasting model and give concrete 
definitions. Then, we state the corresponding cache 
decision-making problem. For convenience, we 
summarize some key modeling parameters and notations 
in Table 1.

Network model
We consider the multi-clouds system, which con-
sists of three types of layers: the remote cloud layer, 
the edge cloud layer, and the UE layer. Assuming that 
the remote cloud provides all the requested video files 
F = {1, 2, · · · , F} . Since video service generally frag-
ments a video into equally sized chunks, we assume all 
files are unit-sized. The set of edge cloud servers can be 
denoted as N = {1, 2, · · · ,N } . We denote the time slot 
of requests as T = {1, 2, · · · ,T } . The edge clouds receive 
the requests and make the caching decision at each time 
slot t. At each time slot t, the edge clouds receive requests 
and determine caching decisions. The request received 
by edge cloud n for file f is denoted as qft,n ∈ {0, 1} , where 
q
f
t,n = 1 represents a request for file f, and qft,n = 0 signi-

fies no request for file f. A variable xft,n is used to denote 
the transmission decision, i.e., whether the requested 
video f is transmitted from the remote cloud to the edge 
cloud n at time t. If no, we have xft,n = 0 , and xft,n ∈ (0, 1] 
otherwise. xft,n = 1 means a transmission channel is fully 
used by edge cloud n and it occurs only under unicast 
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conditions. Otherwise, if multiple edge cloud servers 
share a channel under one of the multicast conditions, we 
assume these edge clouds share the channel equally.

Caching model
At each time t, we assume that only one UE under the 
edge cloud server n will request the video. For each UE, 
if the requested video has been cached in the upper edge 
cloud, the edge cloud server can deliver it to the UE 
directly. Else the edge cloud server requests the file from 
the remote cloud.

Each edge cloud has the same maximum capacity C. 
We use a binary variable yft,n to indicate whether the 
requested video f has been stored in edge cloud n at time 
t. If yes, we have yft,n = 1 , and 0 otherwise. Each server 
stores content limited to its maximum storage capacity:

After the edge cloud gets the requested video, the edge 
cloud will decide whether to cache the content or not. If 
the edge cloud storage capacity is not fully filled, we store 
the video directly. Otherwise, we update our caching 
space based on the policy.

(1)
f ∈F

y
f
t,n ≤ C .

Transmission model
The remote cloud delivers the videos to the requested 
edge clouds. Figure  1 gives four schemes in our 
cooperative transmission model which are described as 
follows:

•	 Localcast (LC): If the requested video has been 
cached in the local edge cloud server at time t, 
the UE can fetch it from the edge cloud directly 
without requesting from the remote cloud. We use 
NLC = {n|y

f
t,n = 1, ∀n ∈ N , ∀f ∈ F} to denote the 

set of edge clouds from which UEs can get videos 
at time t through LC schema without fetching from 
the remote cloud. We have: 

 as shown in the LC part of Fig. 1, N1 requests f1 , f1 
has been stored in N1.

•	 Multicast (MC): If the requested video has not 
been cached in the edge cloud, then the edge cloud 
requests the file from the remote cloud. If there are 
other different edge clouds requesting the same 
video f at time t, then these edge clouds can obtain 
the requested video f through MC schema. We use 

(2)x
f
t,n = 0, ∀n ∈ NLC ,

Table 1  Summary of important notations

Notations Definition

β The hyperparameter of the entropy term

γ The discount factor

N,N The number and set of edge clouds

G The video set through the XC scheme

F ,F The number and set of videos

xft ,n The variable whether the requested video f is transmitted from the remote cloud 
to edge cloud n at time t

yft ,n The variable whether the requested video f has been stored in edge cloud n at time t

qft ,n The request for file f received by the edge cloud n at time t

C The maximum capacity of edge cloud

st ,n The state of agent n at time t

ŝt ,n The joint observation state of an agent n

πt ,n The policy of agent n

at ,n The action of agent n

ωn The parameter of the critic network for agent n

θn The parameter of the actor network for agent n

Rt ,n The expected value equation for edge cloud n

rn The global reward

B The replay buffer memory

ζ The target network update parameter n

V The value function of the critic network

Ãt ,n The advantage function

Nn The neighborhoods set of agent n
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the N f
MC = {n|q

f
t,n = 1, y

f
t,n = 0, ∀n ∈ N \NLC} to 

denote the set of edge clouds that can use multicast 
transmission to obtain the requested video f. We 
have: 

 as shown in the MC part of Fig.  1, N2 and N3 
simultaneously request f2 that have not been cached.

•	 XOR-cast (XC): We form a special edge cloud set 
named exclusive OR (XOR) set where each edge 
cloud in the set stores the video files requested by the 
other edge clouds. We denote this set as: 

 where the video set through the XC scheme can be 
denoted as: 

 The XOR set receives the XOR-encoded bit stream 
by one transmission. Then, each edge cloud restores 
its video by decoding the received bit stream with the 
contents stored in its cache. We have: 

(3)

∑

n∈N
f
MC

x
f
t,n = 1,

(4)
NG

XC =
{

n | q
f
t,n = 1, y

f
t,n = 0, y

f
t,n′ = 1,

∀n ∈ N\
(

NLC ∪N
f
MC

)

, ∀n′ ∈ NG
XC \ n, ∀f ∈ G

}

,

(5)
G =

{

f | q
f
t,n = 1, y

f
t,n = 0, y

f ′

t,n = 1,

∀n ∈ N \
(

NLC ∪N
f
MC

)

, ∀f ′ ∈ G \ f
}

.

 as shown in the XC part of Fig.  1, N4 and N5 
simultaneously request f5 and f4 that have been 
cached not by themselves but by each other. We 
denote the coded XOR information as f. If there 
are multiple XC combinations, we choose the 
combination that will generate the smallest number 
of XC sets with the participation of the same 
number of edge clouds. This preference is based on 
the effectiveness of our proposed XC approach in 
significantly reducing internal energy consumption 
during unicast transmission. While this paper does 
not explicitly consider the energy consumption 
associated with XOR operations, it is important to 
acknowledge that such operations still entail a non-
negligible energy overhead. Considering a fixed 
number of edge clouds, our objective is to minimize 
the number of XC combinations to mitigate the 
impact of XOR energy consumption.

•	 Unicast (UC): When the relationship between the 
requests from edge clouds and the cache list does not 
satisfy any of the above cases, edge clouds fetch 
videos directly from the remote cloud by establishing 
a transmission channel. We denote the UC set as 
NUC =

{

N\
(

NLC ∪N
f
MC ∪N F

XC

)}

 . We have: 

(6)
∑

n∈N F
XC

∑

f ∈F

x
f
t,n = 1,

(7)x
f
t,n = 1, ∀n ∈ NUC .

Fig. 1  System model
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 as shown in the UC part of Fig. 1, the edge cloud gets 
content from the remote cloud.

To use fewer transmissions to deliver all the data dur-
ing the delivery process, we use the network coding tech-
nique. The transmitted content is encoded at the network 
nodes and then decoded at the destination. We use XOR 
coding techniques. These edge clouds have not cached 
the requested video but have cached the video requested 
by other edge clouds. The caching policy determines 
what will be cached in the edge cloud, and then the 
remote cloud classifies the transmission based on the 
cache state in the edge clouds. According to the above 
four cases, we can formulate the joint multicast transmis-
sion and cache replacement problem that aims to mini-
mize the total number of transmissions from the remote 
cloud to the edge cloud as:

The COCAM approach
Our modeling problem is a mixed integer programming 
(MIP) problem [22], which is strictly NP-hard. Solving 
MIP problems with traditional computational methods 
has been proven challenging in natural caching systems 
with low computational efficiency. Thus we consider 
a learning approach. We explore the collaboration 
between different edge cloud servers with a multi-agent 
reinforcement learning-based algorithm to better adapt 
to dynamic edge environments.

In this section, each edge cloud operates as an 
independent agent, while maintaining a cooperative 
relationship with other edge clouds. We model the 
cache decision-making problem as a multi-agent 
extension of the Markov Decision Process (MDP) and 
introduce a novel multi-agent actor-critic-based caching 
approach. Our proposed approach aims to minimize 
the average number of transmissions during the request 
transmission process. Multi-agent reinforcement 
learning consists of agents and the environment. Based 
on the state and the reward from the environment, 
each agent executes an action according to its certain 
strategy. Then the environment changes to a new state. 
An MDP is a mathematical framework for modeling 

(8)min
∑

n∈N

∑

f ∈F

∑

t∈T

q
f
t,nx

f
t,n

N

(9)s.t. (1), (2), (3), (6), (7)

(10)0 ≤ x
f
t,n ≤ 1− y

f
t,n,

(11)y
f
t,n ∈ {0, 1}.

sequential decision-making consisting of state, action, 
transition probability, and reward. Each agent learns the 
optimal decision-making sequence through continuous 
interaction with the environment. We define the basic 
elements of a multi-agent MDP as follows:

State
The state of agent n at time t be denoted as 
st,n = {yt,n, q

f
t,n} , where qft,n indicates the current request 

demands and yt,n = {y
f
t,n}∀f ∈F  denotes the caching state 

of edge cloud n. We define the neighborhoods that can be 
observed by the agent n as Nn . We use πt,n to denote the 
policy of agent n. Thus, the adjacent agent policy of agent 
n can be denoted as πt,Nn . Each agent can observe the 
states and policies of the neighborhoods. Therefore, the 
joint state of an agent n to be fed into the input network 
is ŝt,n = {st,m}∀m∈{n,Nn}.

Action
An agent decides which video should be replaced from 
the cache list based on its policy. We denote the action of 
agent n as at,n = v , where v ∈ {0, 1, 2, · · · ,C} . If v = 0 , the 
requested video will not be cached. Else, the v-th content 
in the cache space of edge cloud n will be replaced by the 
current requested video.

Reward
The goal is to minimize the average transmission number. 
We define the negative value of the transmission number 
as the reward:

So the global reward is calculated as:

Network architecture
As shown in Fig. 2, each agent consists of two parts: actor 
network (as θ ) and critic network (as ω ). The actor net-
work and critic network are essential components of a 
policy network. The actor network receives environmen-
tal states as input and generates corresponding action 
outputs, aiming to learn an optimal policy πθn that maxi-
mizes the expected return or value function associated 
with accumulated rewards. On the other hand, the critic 
network serves as a value function estimation network, 
evaluating the quality of actions chosen by the actor net-
work within a given state. Its primary objective is to learn 

(12)rt,n = −
∑

f ∈F

q
f
t,nx

f
t,n

N
.

(13)rt =
∑

n∈N

rt,n.
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a value function Vωn capable of estimating the expected 
return or value based on the current state and the actions 
selected by the actor network. The actor network consists 
of two fully connected hidden layers with ReLU activa-
tion functions, where the dimensions are determined by 
the variable state size of the cache. Its output layer is a 
fully connected layer utilizing a hyperbolic tangent (tanh) 
activation function. Similarly, the critic network shares 
the same architecture as the actor network, comprising 
two fully connected hidden layers with ReLU activation 
functions. The critic network’s output layer consists of a 
single unit activated by a linear function. Each network 
contains a target network and a primary network of the 
same network structure. We use the target network to 
improve the stability and convergence of training. After 
the primary network learns a certain number of times, 
the parameters of the primary network are used to 
update the parameters of the target network.

Agents get the policies π based on their actor networks. 
The actor network is denoted as a function to seek 
optimal policy πt,n = πθn(at,n|ŝt,n,πt−1,Nn) , where θn 
denotes the actor network parameter of agent n. An 
agent gets the action by random sampling with the 
policy distribution. We denote the parameter of the critic 
network for agent n as ωn . Thus, Vωn denotes the value 
function of the critic network trained as an estimate of 
the expected reward.

We formulate the expected value equation for edge 
cloud n as:

where γ denotes the discount reward factor. At each time 
t, the agent stores the experience (ŝt,n, at,n, rt,n, ŝt+1,n) in 
replay memory B.

We use the temporal difference (TD) algorithm to 
update the critic network. The loss function of the critic 
network can be calculated as:

The actor network is updated by the policy gradient 
(PG) algorithm. The loss function of the actor network 
can be defined as:

where the β denotes a hyperparameter to control 
the entropy term, and the advantage function 
Ãt,n = Rt,n − Vwn

(

ŝt,n,πt−1,Nn

)

 is the discounted reward 
minus a baseline.

Then we update the target network parameters for 
each agent n as:

(14)Rt,n = rt + γV ′
wn

(

ŝt+1,n,πt,Nn

)

,

(15)L(wn) =
1

2|B|

∑

t

(

Rt,n − Vwn

(

ŝt,n,πt−1,Nn

))2
.

(16)

L(θn) =−
1

|B|

∑

t

(log πθn

(

at,n | ŝt,n,πt−1,Nn

)

Ãt,n

− β
∑

πθn log πθn

(

at,n | ŝt,n,πt−1,Nn

)

),

(17)θ ′n = ζθn + (1− ζ )θ ′n,

Fig. 2  The COCAM approach
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where ζ denotes the target network update parameter. 
The target network is updated every τ step.

After the training is completed, each agent can get 
the most effective action strategy in the current state 
according to its own state in each execution step.

Algorithm  1 The COCAM AlgorithmThe COCAM 
algorithm is given in Algorithm 1. Each local agent col-
lects the experience tuple by following the current policy 
until enough samples are collected for batch updating 
(lines 8 to 15). Then a batch will be sampled randomly to 
update the actor and the critic network (lines 17 to 20). 
For every τ step, the target network is updated (lines 21 
to 23).

Performance evaluation
Experiment setup
We conduct experiments on a real-world dataset from 
iQIYI which contains 300,000 individual videos watched 
by 2 million users over two weeks. We randomly select 
10,000 records from it. Figure  3 illustrates a descend-
ing order trend in video request preferences observed 
in the iQIYI dataset. The popularity distribution of vid-
eos exhibits notable skewness, adhering to a Zipf dis-
tribution. This implies that a small subset of highly 
popular videos significantly contributes to the majority 
of access volume, while a large number of other videos 
receive minimal attention. Popular videos are frequently 
accessed, necessitating regular updates to their cached 
content. Conversely, a substantial proportion of less 
popular videos are rarely accessed, rendering them 

(18)ω′
n = ζωn + (1− ζ )ω′

n,

ineffective for caching purposes. However, despite their 
limited popularity, these less popular videos still contrib-
ute to users’ demand. Therefore, it becomes imperative 
to design an adaptive cooperative caching and multicast-
ing strategy that captures the distribution and dynamics 
in video popularity. We divide the dataset into 30 edge 
areas based on geographic information with the K-means 
algorithm [39]. We select 20 to deploy edge cloud serv-
ers (i.e., agents) to provide the video service for users. By 
default, we set the cache size to 50. We assume that each 
agent can observe the states of all the other agents from 
the environment. The key experimental parameters are 
listed in Table 2.

Comparisons and results
The contents in different edge cloud servers are related to 
each other in multicast delivery, leading to the tendency 
of multicast caches to store similar contents. In contrast, 
for cooperative caching, the cached contents in different 
units should be mutually exclusive for better utilization 
of the limited storage space. The combination is balanced 
by using multi-agent reinforcement learning in the 
combination.

Figure  4 shows the variation of transmission number 
of COCAM with the increasing training episode. We 

Table 2  Simulation parameters

Parameter Description Value

β Hyperparameter of the entropy term 0.01

γ Discount factor 0.99

τ Parameter of update time 64

ζ Parameter of soft update 0.01

|B| Batch size 64

Fig. 3  Number of requests of a content versus its rank on iQIYI 
dataset
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can see that the transmission number decreases linearly 
at the beginning and steadily converges at around 150 
episodes.

According to Eq. (8), we measure the performance of 
our proposed algorithm using the average number of 
transmissions during the entire process of requesting. 
The average number of transmissions can show the 
efficiency of multicast transmission, which is affected 
by the caching decision. A lower average number of 
transmissions means fewer channel resources and higher 
multicast transmission efficiency for the same request, 
which can effectively relieve network transmission 
pressure.

To evaluate the performance of the COCAM algorithm, 
we compare it with other algorithms in different cases.

Comparison with non‑cooperative caching algorithms
In Fig.  5, we compare the COCAM algorithm with 
non-cooperative caching algorithms under cooperative 
transmission in terms of the number of transmissions. 

LRU [40]: The new content will replace the cached con-
tent which has been least recently requested. LFU [40]: 
The new content will replace the cached content which 
has been least frequently requested. FIFO [41]: The 
new content will replace the cached content which has 
been stored earliest. Lecar [42]: It adopts LRU or LFU 
algorithm to update the cache according to the weight 
adaption by regret minimization technique. Arc [43]: It 
dynamically adjusts the size of the two queues and per-
forms cache updates based on the LRU algorithm.

In these caching algorithms, each edge cloud server 
individually caches the content based on its caching 
decision without combining the cooperative caching 
among the edge clouds.

Figure 5a shows the comparison result under different 
numbers of requests. The request numbers are set 
ranging from 300 to 1500. Our COCAM algorithm 
performs better than the other baselines, with an average 
improvement of 2% to 15% in global benefits. Besides, 
the variations in the number of requests hardly affect the 
performance except for the LRU algorithm. It is because 
LRU works better for popular content and tends to lead 
to cache pollution in smooth datasets. Figure  5b shows 
the performance comparison under different edge cloud 
cache sizes. The cache size ranges from 30 to 90.

From Fig.  5b, it is observed that the transmission 
number decrease as the edge cloud cache sizes increase 
for all methods. Since the requested videos are more 
likely to be hit locally or built a multicast transmission 
as the cache capacity increases, our COCAM algorithm 
performs better than the other baselines.

Figure  5c shows the comparison under different 
amounts of edge clouds. We set the edge cloud server 
numbers ranging from 5 to 25 with a cache size of 50. We 
compare the results after 1500 requests. We can see that 
COCAM achieves the minimum transmission number. 
The performance of our algorithm is significantly better 

Fig. 4  The values of transmission number in the training process 
of COCAM

Fig. 5  Performance comparison with non-cooperative caching algorithms
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than other algorithms and stabilizes when there are fewer 
edge clouds.

Comparison with cooperative caching algorithms
In Fig. 6, we compare the COCAM algorithm with A2C 
algorithms that apply cooperative caching under coop-
erative transmission. A2C [44]: This algorithm uses a sin-
gle-agent advantage actor-critic algorithm to select the 
action with the best reward.

As seen in the figure, the two cooperative caching 
algorithm curves converge, with the COCAM 
significantly outperforming the A2C algorithm. 
Compared to the A2C algorithm, our proposed 
algorithm results in an average improvement of 4 % . 
It is mainly because COCAM yields more intelligent 
decision-making that learns the dynamic request 
pattern based on the global state. The performance 
of the learning-based algorithm can adapt well to the 
multicast environment and is not significantly affected 

by the variations in the number of edge clouds. With 
the cooperation of different agents, COCAM shows 
better and more stable performance.

Comparison of algorithms with different multicasting 
schemes
Figure  7 shows the performance of multicast trans-
mission and coding transmission during the delivery 
phase in the cooperative caching scenario. COCAM-
w/o-MC &XC: We design the COCAM-w/o-MC &XC 
by using COCAM without using the part of MC and 
XC. COCAM-w/o-XC: We design the COCAM-w/o-
XC by using COCAM without using the part of XC.

The experimental results illustrate that our 
proposed COCAM algorithm works better than the 
design-altered COCAM algorithms. It shows that 
our proposed MC and XC schemes effectively reduce 
the transmission number. As shown in the figure, the 

Fig. 6  Performance comparison with cooperative caching algorithms

Fig. 7  Performance comparison in different parts
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two altered algorithm curves are closer in results, 
indicating MC scheme is less effective on this dataset. 
This phenomenon can be attributed to the observation 
that users within the same region tend to have similar 
request preferences, while their activities of accessing 
the same content may vary across different time 
slots. It indicates that our XC scheme can effectively 
leverage this insight to achieve superior performance 
in the integrated caching and multicasting scenario.

Conclusion
In this paper, we have proposed a joint cache replacement 
and multicast transmission strategy in the multi-clouds 
scenario. This strategy could reduce the transmission 
number efficiently for video delivery. We have designed 
a multi-agent actor-critic algorithm named COCAM, 
enabling multiple edge clouds to cooperate to achieve 
intelligent caching decisions. In addition, we have 
conducted experiments on a real-world dataset. The 
evaluation results have shown that our COCAM 
algorithm could reduce the average transmission number 
by cooperation between different agents compared 
to other baselines. In our future work, we will further 
enhance reinforcement learning algorithms to achieve 
improved adaptation in resource-constrained and 
bandwidth-limited multi-clouds environment at a large 
scale.
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