
Shi et al. Journal of Cloud Computing (2023) 12:123
https://doi.org/10.1186/s13677-023-00510-x

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

COCAM: a cooperative video edge
caching and multicasting approach based
on multi‑agent deep reinforcement learning
in multi‑clouds environment
Ruohan Shi1, Qilin Fan1*, Shu Fu2, Xu Zhang3, Xiuhua Li1,4 and Meng Chen1 

Abstract 

The evolution of the Internet of Things technology (IoT) has boosted the drastic increase in network traffic demand.
Caching and multicasting in the multi-clouds scenario are effective approaches to alleviate the backhaul burden
of networks and reduce service latency. However, existing works do not jointly exploit the advantages of these two
approaches. In this paper, we propose COCAM, a cooperative video edge caching and multicasting approach based
on multi-agent deep reinforcement learning to minimize the transmission number in the multi-clouds scenario
with limited storage capacity in each edge cloud. Specifically, by integrating a cooperative transmission model
with the caching model, we provide a concrete formulation of the joint problem. Then, we cast this decision-making
problem as a multi-agent extension of the Markov decision process and propose a multi-agent actor-critic algorithm
in which each agent learns a local caching strategy and further encompasses the observations of neighboring agents
as constituents of the overall state. Finally, to validate the COCAM algorithm, we conduct extensive experiments
on a real-world dataset. The results show that our proposed algorithm outperforms other baseline algorithms in terms
of the number of video transmissions.

Keywords  Multi-clouds, Edge caching, Multicasting, Deep reinforcement learning

*Correspondence:
Qilin Fan
fanqilin@cqu.edu.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00510-x&domain=pdf

Page 2 of 13Shi et al. Journal of Cloud Computing (2023) 12:123

Graphical Abstract

Introduction
As the Internet of Things (IoT) technology evolves,
users are becoming increasingly interconnected with
their electronic devices [1]. The advent of new wireless
networks such as the fifth-generation (5G) network,
the proliferation of smart devices, and users’ high usage
of diverse applications such as video streaming, online
gaming, and virtual reality have resulted in a profound
surge in video traffic. According to the Cisco report [2],
studies predicted that the traffic of video types would
account for 79% of all Internet traffic worldwide by
2022. The extensive prevalence of video traffic and the
stringent quality of experience (QoE) requirements have
put tremendous backhaul pressure on networks [3].
Therefore, the issue of minimizing the network resource
consumption during transmission while simultaneously
satisfying user demand has become one of the most
critical concerns of network operators [4].

In traditional cloud environments, the service
process requires moving data to remote data centers for

centralized computing and storage. This leads to high
network transmission latency, which can negatively
impact the performance of mobile applications. To
address this problem and provide reliable services for
latency-sensitive applications, researchers have explored
deploying small-scale cloud servers at the edge so that
these edge cloud servers can provide resources closer to
edge IoT devices [5–7]. Edge cloud servers are equipped
with finite resources and can be utilized to deliver
bandwidth-optimized services at the edge, thus enabling
the provision of fast and immediate services [8, 9]. The
multi-clouds architecture, including the remote cloud
and edge clouds, is a promising paradigm to improve
the QoE of users and reduce energy consumption [10,
11]. This potential stems from its ability to facilitate
ubiquitous caching and efficient content delivery for end
users, as highlighted by several studies.

During the content request phase, the network engages
in content searching upon receiving a user’s request. To
alleviate traffic congestion, edge caching is an efficient

Page 3 of 13Shi et al. Journal of Cloud Computing (2023) 12:123 	

manner of caching popular files on edge cloud servers
closer to their requesters. It tackles the problem of
which content to be cached in the edge cloud [12].
Recent scholarly investigations have substantiated the
effectiveness of collaborative caching, which has attracted
considerable scholarly attention. Collaborative caching
works by allowing edge clouds to collectively distribute
content through internal connections. Song et al. [13]
presented an adaptive cooperative caching scheme that
incorporates an enhanced quantum genetic algorithm to
address the energy-delay tradeoff problem. Zhang et al.
[14] proposed a spatially cooperative caching strategy
for a two-tier heterogeneous network. The objective of
this strategy is to minimize storage usage for duplicated
content with caching while maximizing the likelihood of
successful content retrieval (hit probability).

During the content delivery phase, traditional unicast
mechanisms for distributing content from remote cloud
to edge clouds and user ends (UEs) result in inefficient
delivery. Multicasting, on the other hand, can leverage
the available network bandwidth to deliver the same
content to multiple receivers, benefiting from the
similarity of users’ preferences for content in close
geographic locations. This mechanism reduces traffic
generated during delivery by delivering the requested
file through a single multicast rather than multiple
unicasts [15]. Significant efforts have been devoted to
video coding and multicast transmission [16–19]. For
instance, Guo et al. [18] proposed a layer-based multi-
quality multicast beamforming scheme based on scalable
video coding. Wu et al. [19] designed an adaptive video
streaming scheme using named data network multicast.
However, these algorithms, while addressing video
coding and multicast transmission, did not consider
the integration of coded multicasting with caching in a
cooperative environment.

Intuitively, Caching reduces latency and network
bandwidth consumption by serving frequently requested
content locally at the edge clouds [10, 20]. Multicasting
further reduces bandwidth usage by efficiently delivering
popular content to multiple users simultaneously,
especially in scenarios with concurrent requests for
the same content. Joint consideration of caching
and multicasting can enhance the overall network
performance and resource utilization by dynamically
allocating caching and multicasting resources based
on real-time user demand and network conditions.
This adaptive strategy optimizes the content availability
and delivery efficiency, leading to an improved user
experience. Notably, it facilitates the deployment of
various latency-sensitive applications and services
[21, 22]. In the context of large-scale cache-enabled
wireless networks, Jiang et al. [23] applied an iterative

numerical algorithm to analyze and optimize caching
and multicasting. Various coding multicasting
mechanisms have been proposed in different scenarios
[24–27]. Nevertheless, in large-scale cooperative caching
scenarios, finding a balance between edge caching and
multicasting to improve resource efficiency remains a
challenging task.

In this paper, we exploit the benefits of mobile
edge caching with multicasting in the multi-clouds
environment to reduce network transmission
consumption. We investigate the collaborative caching
among different edge clouds to effectively adapt to
dynamic edge environments. We propose a multi-agent
DRL-based approach for COoperative video CAching
and Multicasting named COCAM to minimize the
average transmission number, thereby enhancing
video delivery efficiency. Our main contributions are
summarized as follows:

•	 We investigate the cooperative video edge caching
and multicasting issue to reduce the transmission
number in the multi-clouds scenario. Moreover, we
present the problem formulation as a multi-agent
Markov decision process (MDP).

•	 A novel multi-agent actor-critic algorithm is
designed to address the formulated MDP. Specifically,
each agent learns a local caching strategy and further
encompasses the observations of neighboring agents
as constituents of the overall state. Multiple agents
work in collaboration to efficiently adapt to the
dynamic network environment.

•	 Extensive trace-driven simulations demonstrate that
our proposed algorithm outperforms other baselines
in terms of video transmission number.

The rest of this paper is organized as follows. In Related
work section, we introduce the related works. System
model and problem formulation section presents the
system model and problem formulation. The details of
the COCAM approach are presented in The COCAM
approach section. We compare the experimental
performance and analyze the results in Performance
evaluation section. Conclusion section concludes the
paper.

Related work
Caching algorithms
Edge caching stores popular content locally on edge
clouds, allowing them to deliver the requested content
directly to users. It significantly reduces network latency
and network consumption. Li et al. [28] investigated a
cost-effective greedy algorithm with consideration for
different video characteristics. It optimized the mobile

Page 4 of 13Shi et al. Journal of Cloud Computing (2023) 12:123

edge cache placement problem for QoE-driven dynamic
adaptive video streams. Tran et al. [29] proposed
a federated collaborative caching and processing
framework based on integer linear programming to
accommodate adaptive bitrate video streams in mobile
edge computing networks. The caching decision process
in wireless communication networks can be represented
as an MDP, and reinforcement learning has been
commonly employed in this domain. Based on a multi-
agent framework, Wang et al. [30] proposed a deep actor-
critic reinforcement learning algorithm to address the
dynamic control of caching decisions by enabling each
edge to learn an optimal policy through self-adaptation.
However, the existing research primarily focused
on content caching policies and did not incorporate
consideration for the content delivery process.

Multicasting algorithms
Multicast transmission is extensively utilized in edge
networks, demonstrating its efficacy in enhancing
network performance by reducing bandwidth, routing,
and cost [31]. Damera et al. [32] constructed a new
feasible architectural model to transmit the required
content to the user using the multicell transmission.
The Signal Noise Ratio was improved using the
multicell transmission. The optimized MEC scheduling
algorithm showed better performance compared to the
existing model. Zahoor et al. [33] proposed a suggested
enhanced eMBMS network architecture to address
the significant limitations of the standard eMBMS
architecture, i.e., a network architecture using network
function virtualization (NFV) and MEC. The proposed
architecture allows the multicasting of crowdsourcing
live streams. Ren et al. [15] considered the fundamental
issues of NFV-enabled multicast in mobile edge clouds
and designed a heuristic algorithm. Qin et al. [34] studied
the multicast traffic for IoT applications in edge networks
under the delay-oriented network slicing problem.
Nevertheless, these works focused on the network
architecture and multicast protocols without integration
with the practical applications of the edge cloud servers.

Joint caching and multicasting algorithms
The utilization of multicast transmission at the base
station, enabling concurrent servicing of distinct
user requests for the identical file, is recognized as a
highly efficacious approach for supporting the delivery
of extensive content over wireless networks. This
approach is regarded as an effective strategy in wireless
communications to meet the constantly increasing

demand for content transmission. Maddah-Ali et al.
[35] used the joint encoding of multiple files and the
multicasting feature of downlink channels to optimize
content placement and delivery under encoded multicast.
They also evaluated the caching gain and demonstrated
that the joint optimization problem could improve the
caching gain. Liao et al. [36] used the benefits of multicast
content delivery and collaborative content sharing jointly
to develop a compound caching technique (multicast-
aware cooperative caching). He et al. [37] designed partial
caching bulk transmission and partial caching pipelined
transmission to reduce the delivery latency of cache-
enabled multi-group multicast networks. Somuyiwa et al.
[38] combined active caching and multicast transmission
to model the single-user multi-request problem as an
MDP and used a DRL approach to solve the problem.
Since traditional approaches are difficult to adapt to this
highly diverse and dynamic environment under multi-
clouds cooperative caching, we propose a COCAM-
based framework to maximize the traffic consumption
during the video delivery phase.

System model and problem formulation
In this section, we introduce the cooperative video
edge caching and multicasting model and give concrete
definitions. Then, we state the corresponding cache
decision-making problem. For convenience, we
summarize some key modeling parameters and notations
in Table 1.

Network model
We consider the multi-clouds system, which con-
sists of three types of layers: the remote cloud layer,
the edge cloud layer, and the UE layer. Assuming that
the remote cloud provides all the requested video files
F = {1, 2, · · · , F} . Since video service generally frag-
ments a video into equally sized chunks, we assume all
files are unit-sized. The set of edge cloud servers can be
denoted as N = {1, 2, · · · ,N } . We denote the time slot
of requests as T = {1, 2, · · · ,T } . The edge clouds receive
the requests and make the caching decision at each time
slot t. At each time slot t, the edge clouds receive requests
and determine caching decisions. The request received
by edge cloud n for file f is denoted as qft,n ∈ {0, 1} , where
q
f
t,n = 1 represents a request for file f, and qft,n = 0 signi-

fies no request for file f. A variable xft,n is used to denote
the transmission decision, i.e., whether the requested
video f is transmitted from the remote cloud to the edge
cloud n at time t. If no, we have xft,n = 0 , and xft,n ∈ (0, 1]
otherwise. xft,n = 1 means a transmission channel is fully
used by edge cloud n and it occurs only under unicast

Page 5 of 13Shi et al. Journal of Cloud Computing (2023) 12:123 	

conditions. Otherwise, if multiple edge cloud servers
share a channel under one of the multicast conditions, we
assume these edge clouds share the channel equally.

Caching model
At each time t, we assume that only one UE under the
edge cloud server n will request the video. For each UE,
if the requested video has been cached in the upper edge
cloud, the edge cloud server can deliver it to the UE
directly. Else the edge cloud server requests the file from
the remote cloud.

Each edge cloud has the same maximum capacity C.
We use a binary variable yft,n to indicate whether the
requested video f has been stored in edge cloud n at time
t. If yes, we have yft,n = 1 , and 0 otherwise. Each server
stores content limited to its maximum storage capacity:

After the edge cloud gets the requested video, the edge
cloud will decide whether to cache the content or not. If
the edge cloud storage capacity is not fully filled, we store
the video directly. Otherwise, we update our caching
space based on the policy.

(1)
f ∈F

y
f
t,n ≤ C .

Transmission model
The remote cloud delivers the videos to the requested
edge clouds. Figure 1 gives four schemes in our
cooperative transmission model which are described as
follows:

•	 Localcast (LC): If the requested video has been
cached in the local edge cloud server at time t,
the UE can fetch it from the edge cloud directly
without requesting from the remote cloud. We use
NLC = {n|y

f
t,n = 1, ∀n ∈ N , ∀f ∈ F} to denote the

set of edge clouds from which UEs can get videos
at time t through LC schema without fetching from
the remote cloud. We have:

 as shown in the LC part of Fig. 1, N1 requests f1 , f1
has been stored in N1.

•	 Multicast (MC): If the requested video has not
been cached in the edge cloud, then the edge cloud
requests the file from the remote cloud. If there are
other different edge clouds requesting the same
video f at time t, then these edge clouds can obtain
the requested video f through MC schema. We use

(2)x
f
t,n = 0, ∀n ∈ NLC ,

Table 1  Summary of important notations

Notations Definition

β The hyperparameter of the entropy term

γ The discount factor

N,N The number and set of edge clouds

G The video set through the XC scheme

F ,F The number and set of videos

xft ,n The variable whether the requested video f is transmitted from the remote cloud
to edge cloud n at time t

yft ,n The variable whether the requested video f has been stored in edge cloud n at time t

qft ,n The request for file f received by the edge cloud n at time t

C The maximum capacity of edge cloud

st ,n The state of agent n at time t

ŝt ,n The joint observation state of an agent n

πt ,n The policy of agent n

at ,n The action of agent n

ωn The parameter of the critic network for agent n

θn The parameter of the actor network for agent n

Rt ,n The expected value equation for edge cloud n

rn The global reward

B The replay buffer memory

ζ The target network update parameter n

V The value function of the critic network

Ãt ,n The advantage function

Nn The neighborhoods set of agent n

Page 6 of 13Shi et al. Journal of Cloud Computing (2023) 12:123

the N f
MC = {n|q

f
t,n = 1, y

f
t,n = 0, ∀n ∈ N \NLC} to

denote the set of edge clouds that can use multicast
transmission to obtain the requested video f. We
have:

 as shown in the MC part of Fig. 1, N2 and N3
simultaneously request f2 that have not been cached.

•	 XOR-cast (XC): We form a special edge cloud set
named exclusive OR (XOR) set where each edge
cloud in the set stores the video files requested by the
other edge clouds. We denote this set as:

 where the video set through the XC scheme can be
denoted as:

 The XOR set receives the XOR-encoded bit stream
by one transmission. Then, each edge cloud restores
its video by decoding the received bit stream with the
contents stored in its cache. We have:

(3)

∑

n∈N
f
MC

x
f
t,n = 1,

(4)
NG

XC =
{

n | q
f
t,n = 1, y

f
t,n = 0, y

f
t,n′ = 1,

∀n ∈ N\
(

NLC ∪N
f
MC

)

, ∀n′ ∈ NG
XC \ n, ∀f ∈ G

}

,

(5)
G =

{

f | q
f
t,n = 1, y

f
t,n = 0, y

f ′

t,n = 1,

∀n ∈ N \
(

NLC ∪N
f
MC

)

, ∀f ′ ∈ G \ f
}

.

 as shown in the XC part of Fig. 1, N4 and N5
simultaneously request f5 and f4 that have been
cached not by themselves but by each other. We
denote the coded XOR information as f. If there
are multiple XC combinations, we choose the
combination that will generate the smallest number
of XC sets with the participation of the same
number of edge clouds. This preference is based on
the effectiveness of our proposed XC approach in
significantly reducing internal energy consumption
during unicast transmission. While this paper does
not explicitly consider the energy consumption
associated with XOR operations, it is important to
acknowledge that such operations still entail a non-
negligible energy overhead. Considering a fixed
number of edge clouds, our objective is to minimize
the number of XC combinations to mitigate the
impact of XOR energy consumption.

•	 Unicast (UC): When the relationship between the
requests from edge clouds and the cache list does not
satisfy any of the above cases, edge clouds fetch
videos directly from the remote cloud by establishing
a transmission channel. We denote the UC set as
NUC =

{

N\
(

NLC ∪N
f
MC ∪N F

XC

)}

 . We have:

(6)
∑

n∈N F
XC

∑

f ∈F

x
f
t,n = 1,

(7)x
f
t,n = 1, ∀n ∈ NUC .

Fig. 1  System model

Page 7 of 13Shi et al. Journal of Cloud Computing (2023) 12:123 	

 as shown in the UC part of Fig. 1, the edge cloud gets
content from the remote cloud.

To use fewer transmissions to deliver all the data dur-
ing the delivery process, we use the network coding tech-
nique. The transmitted content is encoded at the network
nodes and then decoded at the destination. We use XOR
coding techniques. These edge clouds have not cached
the requested video but have cached the video requested
by other edge clouds. The caching policy determines
what will be cached in the edge cloud, and then the
remote cloud classifies the transmission based on the
cache state in the edge clouds. According to the above
four cases, we can formulate the joint multicast transmis-
sion and cache replacement problem that aims to mini-
mize the total number of transmissions from the remote
cloud to the edge cloud as:

The COCAM approach
Our modeling problem is a mixed integer programming
(MIP) problem [22], which is strictly NP-hard. Solving
MIP problems with traditional computational methods
has been proven challenging in natural caching systems
with low computational efficiency. Thus we consider
a learning approach. We explore the collaboration
between different edge cloud servers with a multi-agent
reinforcement learning-based algorithm to better adapt
to dynamic edge environments.

In this section, each edge cloud operates as an
independent agent, while maintaining a cooperative
relationship with other edge clouds. We model the
cache decision-making problem as a multi-agent
extension of the Markov Decision Process (MDP) and
introduce a novel multi-agent actor-critic-based caching
approach. Our proposed approach aims to minimize
the average number of transmissions during the request
transmission process. Multi-agent reinforcement
learning consists of agents and the environment. Based
on the state and the reward from the environment,
each agent executes an action according to its certain
strategy. Then the environment changes to a new state.
An MDP is a mathematical framework for modeling

(8)min
∑

n∈N

∑

f ∈F

∑

t∈T

q
f
t,nx

f
t,n

N

(9)s.t. (1), (2), (3), (6), (7)

(10)0 ≤ x
f
t,n ≤ 1− y

f
t,n,

(11)y
f
t,n ∈ {0, 1}.

sequential decision-making consisting of state, action,
transition probability, and reward. Each agent learns the
optimal decision-making sequence through continuous
interaction with the environment. We define the basic
elements of a multi-agent MDP as follows:

State
The state of agent n at time t be denoted as
st,n = {yt,n, q

f
t,n} , where qft,n indicates the current request

demands and yt,n = {y
f
t,n}∀f ∈F denotes the caching state

of edge cloud n. We define the neighborhoods that can be
observed by the agent n as Nn . We use πt,n to denote the
policy of agent n. Thus, the adjacent agent policy of agent
n can be denoted as πt,Nn . Each agent can observe the
states and policies of the neighborhoods. Therefore, the
joint state of an agent n to be fed into the input network
is ŝt,n = {st,m}∀m∈{n,Nn}.

Action
An agent decides which video should be replaced from
the cache list based on its policy. We denote the action of
agent n as at,n = v , where v ∈ {0, 1, 2, · · · ,C} . If v = 0 , the
requested video will not be cached. Else, the v-th content
in the cache space of edge cloud n will be replaced by the
current requested video.

Reward
The goal is to minimize the average transmission number.
We define the negative value of the transmission number
as the reward:

So the global reward is calculated as:

Network architecture
As shown in Fig. 2, each agent consists of two parts: actor
network (as θ ) and critic network (as ω ). The actor net-
work and critic network are essential components of a
policy network. The actor network receives environmen-
tal states as input and generates corresponding action
outputs, aiming to learn an optimal policy πθn that maxi-
mizes the expected return or value function associated
with accumulated rewards. On the other hand, the critic
network serves as a value function estimation network,
evaluating the quality of actions chosen by the actor net-
work within a given state. Its primary objective is to learn

(12)rt,n = −
∑

f ∈F

q
f
t,nx

f
t,n

N
.

(13)rt =
∑

n∈N

rt,n.

Page 8 of 13Shi et al. Journal of Cloud Computing (2023) 12:123

a value function Vωn capable of estimating the expected
return or value based on the current state and the actions
selected by the actor network. The actor network consists
of two fully connected hidden layers with ReLU activa-
tion functions, where the dimensions are determined by
the variable state size of the cache. Its output layer is a
fully connected layer utilizing a hyperbolic tangent (tanh)
activation function. Similarly, the critic network shares
the same architecture as the actor network, comprising
two fully connected hidden layers with ReLU activation
functions. The critic network’s output layer consists of a
single unit activated by a linear function. Each network
contains a target network and a primary network of the
same network structure. We use the target network to
improve the stability and convergence of training. After
the primary network learns a certain number of times,
the parameters of the primary network are used to
update the parameters of the target network.

Agents get the policies π based on their actor networks.
The actor network is denoted as a function to seek
optimal policy πt,n = πθn(at,n|ŝt,n,πt−1,Nn) , where θn
denotes the actor network parameter of agent n. An
agent gets the action by random sampling with the
policy distribution. We denote the parameter of the critic
network for agent n as ωn . Thus, Vωn denotes the value
function of the critic network trained as an estimate of
the expected reward.

We formulate the expected value equation for edge
cloud n as:

where γ denotes the discount reward factor. At each time
t, the agent stores the experience (ŝt,n, at,n, rt,n, ŝt+1,n) in
replay memory B.

We use the temporal difference (TD) algorithm to
update the critic network. The loss function of the critic
network can be calculated as:

The actor network is updated by the policy gradient
(PG) algorithm. The loss function of the actor network
can be defined as:

where the β denotes a hyperparameter to control
the entropy term, and the advantage function
Ãt,n = Rt,n − Vwn

(

ŝt,n,πt−1,Nn

)

 is the discounted reward
minus a baseline.

Then we update the target network parameters for
each agent n as:

(14)Rt,n = rt + γV ′
wn

(

ŝt+1,n,πt,Nn

)

,

(15)L(wn) =
1

2|B|

∑

t

(

Rt,n − Vwn

(

ŝt,n,πt−1,Nn

))2
.

(16)

L(θn) =−
1

|B|

∑

t

(log πθn

(

at,n | ŝt,n,πt−1,Nn

)

Ãt,n

− β
∑

πθn log πθn

(

at,n | ŝt,n,πt−1,Nn

)

),

(17)θ ′n = ζθn + (1− ζ)θ ′n,

Fig. 2  The COCAM approach

Page 9 of 13Shi et al. Journal of Cloud Computing (2023) 12:123 	

where ζ denotes the target network update parameter.
The target network is updated every τ step.

After the training is completed, each agent can get
the most effective action strategy in the current state
according to its own state in each execution step.

Algorithm 1 The COCAM AlgorithmThe COCAM
algorithm is given in Algorithm 1. Each local agent col-
lects the experience tuple by following the current policy
until enough samples are collected for batch updating
(lines 8 to 15). Then a batch will be sampled randomly to
update the actor and the critic network (lines 17 to 20).
For every τ step, the target network is updated (lines 21
to 23).

Performance evaluation
Experiment setup
We conduct experiments on a real-world dataset from
iQIYI which contains 300,000 individual videos watched
by 2 million users over two weeks. We randomly select
10,000 records from it. Figure 3 illustrates a descend-
ing order trend in video request preferences observed
in the iQIYI dataset. The popularity distribution of vid-
eos exhibits notable skewness, adhering to a Zipf dis-
tribution. This implies that a small subset of highly
popular videos significantly contributes to the majority
of access volume, while a large number of other videos
receive minimal attention. Popular videos are frequently
accessed, necessitating regular updates to their cached
content. Conversely, a substantial proportion of less
popular videos are rarely accessed, rendering them

(18)ω′
n = ζωn + (1− ζ)ω′

n,

ineffective for caching purposes. However, despite their
limited popularity, these less popular videos still contrib-
ute to users’ demand. Therefore, it becomes imperative
to design an adaptive cooperative caching and multicast-
ing strategy that captures the distribution and dynamics
in video popularity. We divide the dataset into 30 edge
areas based on geographic information with the K-means
algorithm [39]. We select 20 to deploy edge cloud serv-
ers (i.e., agents) to provide the video service for users. By
default, we set the cache size to 50. We assume that each
agent can observe the states of all the other agents from
the environment. The key experimental parameters are
listed in Table 2.

Comparisons and results
The contents in different edge cloud servers are related to
each other in multicast delivery, leading to the tendency
of multicast caches to store similar contents. In contrast,
for cooperative caching, the cached contents in different
units should be mutually exclusive for better utilization
of the limited storage space. The combination is balanced
by using multi-agent reinforcement learning in the
combination.

Figure 4 shows the variation of transmission number
of COCAM with the increasing training episode. We

Table 2  Simulation parameters

Parameter Description Value

β Hyperparameter of the entropy term 0.01

γ Discount factor 0.99

τ Parameter of update time 64

ζ Parameter of soft update 0.01

|B| Batch size 64

Fig. 3  Number of requests of a content versus its rank on iQIYI
dataset

Page 10 of 13Shi et al. Journal of Cloud Computing (2023) 12:123

can see that the transmission number decreases linearly
at the beginning and steadily converges at around 150
episodes.

According to Eq. (8), we measure the performance of
our proposed algorithm using the average number of
transmissions during the entire process of requesting.
The average number of transmissions can show the
efficiency of multicast transmission, which is affected
by the caching decision. A lower average number of
transmissions means fewer channel resources and higher
multicast transmission efficiency for the same request,
which can effectively relieve network transmission
pressure.

To evaluate the performance of the COCAM algorithm,
we compare it with other algorithms in different cases.

Comparison with non‑cooperative caching algorithms
In Fig. 5, we compare the COCAM algorithm with
non-cooperative caching algorithms under cooperative
transmission in terms of the number of transmissions.

LRU [40]: The new content will replace the cached con-
tent which has been least recently requested. LFU [40]:
The new content will replace the cached content which
has been least frequently requested. FIFO [41]: The
new content will replace the cached content which has
been stored earliest. Lecar [42]: It adopts LRU or LFU
algorithm to update the cache according to the weight
adaption by regret minimization technique. Arc [43]: It
dynamically adjusts the size of the two queues and per-
forms cache updates based on the LRU algorithm.

In these caching algorithms, each edge cloud server
individually caches the content based on its caching
decision without combining the cooperative caching
among the edge clouds.

Figure 5a shows the comparison result under different
numbers of requests. The request numbers are set
ranging from 300 to 1500. Our COCAM algorithm
performs better than the other baselines, with an average
improvement of 2% to 15% in global benefits. Besides,
the variations in the number of requests hardly affect the
performance except for the LRU algorithm. It is because
LRU works better for popular content and tends to lead
to cache pollution in smooth datasets. Figure 5b shows
the performance comparison under different edge cloud
cache sizes. The cache size ranges from 30 to 90.

From Fig. 5b, it is observed that the transmission
number decrease as the edge cloud cache sizes increase
for all methods. Since the requested videos are more
likely to be hit locally or built a multicast transmission
as the cache capacity increases, our COCAM algorithm
performs better than the other baselines.

Figure 5c shows the comparison under different
amounts of edge clouds. We set the edge cloud server
numbers ranging from 5 to 25 with a cache size of 50. We
compare the results after 1500 requests. We can see that
COCAM achieves the minimum transmission number.
The performance of our algorithm is significantly better

Fig. 4  The values of transmission number in the training process
of COCAM

Fig. 5  Performance comparison with non-cooperative caching algorithms

Page 11 of 13Shi et al. Journal of Cloud Computing (2023) 12:123 	

than other algorithms and stabilizes when there are fewer
edge clouds.

Comparison with cooperative caching algorithms
In Fig. 6, we compare the COCAM algorithm with A2C
algorithms that apply cooperative caching under coop-
erative transmission. A2C [44]: This algorithm uses a sin-
gle-agent advantage actor-critic algorithm to select the
action with the best reward.

As seen in the figure, the two cooperative caching
algorithm curves converge, with the COCAM
significantly outperforming the A2C algorithm.
Compared to the A2C algorithm, our proposed
algorithm results in an average improvement of 4 % .
It is mainly because COCAM yields more intelligent
decision-making that learns the dynamic request
pattern based on the global state. The performance
of the learning-based algorithm can adapt well to the
multicast environment and is not significantly affected

by the variations in the number of edge clouds. With
the cooperation of different agents, COCAM shows
better and more stable performance.

Comparison of algorithms with different multicasting
schemes
Figure 7 shows the performance of multicast trans-
mission and coding transmission during the delivery
phase in the cooperative caching scenario. COCAM-
w/o-MC &XC: We design the COCAM-w/o-MC &XC
by using COCAM without using the part of MC and
XC. COCAM-w/o-XC: We design the COCAM-w/o-
XC by using COCAM without using the part of XC.

The experimental results illustrate that our
proposed COCAM algorithm works better than the
design-altered COCAM algorithms. It shows that
our proposed MC and XC schemes effectively reduce
the transmission number. As shown in the figure, the

Fig. 6  Performance comparison with cooperative caching algorithms

Fig. 7  Performance comparison in different parts

Page 12 of 13Shi et al. Journal of Cloud Computing (2023) 12:123

two altered algorithm curves are closer in results,
indicating MC scheme is less effective on this dataset.
This phenomenon can be attributed to the observation
that users within the same region tend to have similar
request preferences, while their activities of accessing
the same content may vary across different time
slots. It indicates that our XC scheme can effectively
leverage this insight to achieve superior performance
in the integrated caching and multicasting scenario.

Conclusion
In this paper, we have proposed a joint cache replacement
and multicast transmission strategy in the multi-clouds
scenario. This strategy could reduce the transmission
number efficiently for video delivery. We have designed
a multi-agent actor-critic algorithm named COCAM,
enabling multiple edge clouds to cooperate to achieve
intelligent caching decisions. In addition, we have
conducted experiments on a real-world dataset. The
evaluation results have shown that our COCAM
algorithm could reduce the average transmission number
by cooperation between different agents compared
to other baselines. In our future work, we will further
enhance reinforcement learning algorithms to achieve
improved adaptation in resource-constrained and
bandwidth-limited multi-clouds environment at a large
scale.

Abbreviations
IoT	� Internet of Things
QoE	� Quality of experience
UE	� User end
MEC	� Mobile edge computing
NFV	� Network function virtualization
MDP	� Markov decision process
DRL	� Deep reinforcement learning
MIP	� Mixed integer programming
TD	� Temporal difference
PG	� Policy gradient

Acknowledgements
The authors would like to thank to anonymous reviewers for their valuable
comments on the manuscript.

Authors’ contributions
Ruohan Shi carried out the experiment and wrote the manuscript with
support from Qilin Fan, Shu Fu, Xu Zhang, Xiuhua Li and Meng Chen. Qilin
Fan supervised the whole project. All authors have read and agreed to the
published version of the manuscript.

Funding
This work is supported in part by the National NSFC (Grant No. 62102053), the
Natural Science Foundation of Chongqing, China (Grant No. CSTB2022NSC-
QMSX1104), the General Program of Chongqing Science & Technology Com-
mission (Grants No. CSTB2022TIAD-GPX0017 and CSTB2022TIAD-STX0006),
the Science and Technology Plan Project of Chongqing Economic and
Information Commission (Grant No. 2211R49R03), the Key Research Program
of Chongqing Science & Technology Commission (Grant No. cstc2021jscx-
dxwtBX0019), the Regional Innovation Cooperation Project of Sichuan
Province (Grant No. 2023YFQ0028), the Regional Science and Technology

Innovation Cooperation Project of Chengdu City (Grant No. 2023-YF11-
00023-HZ), and the EU Horizon 2020 research and innovation program under
the Marie Skłodowska-Curie grant agreement No. 898588, and the Chong-
qing Key Laboratory of Digital Cinema Art Theory and Technology (Grant No.
2021KF01). This article reflects only the authors’ view. The European Union
Commission is not responsible for any use that may be made of the informa-
tion it contains.

Availability of data and materials
We are actively disclosing data with data providers due to signed
confidentiality agreements. The motion model parameters we used are listed
in the manuscript.

Declarations

Competing interests
The authors declare no competing interests.

Author details
1 School of Big Data and Software Engineering, Chongqing University,
Chongqing 400044, China. 2 College of Microelectronics and Communication
Engineering, Chongqing University, Chongqing 400044, China. 3 Faculty
of Engineering and Physical Sciences, University of Leeds, Leeds LS2 9JT, UK.
4 Haihe Laboratory of Information Technology Application Innovation, Tianjin
University, Tianjin 300072, China.

Received: 30 December 2022 Accepted: 14 August 2023

References
	1.	 Chen Y, Hu J, Zhao J, Min G (2023) QoS-aware computation offloading

in leo satellite edge computing for IoT: a game-theoretical approach.
Chin J Electron. https://​doi.​org/​10.​23919/​cje.​2022.​00.​412

	2.	 Cisco (2022) Cisco Annual Internet Report (2018-2023). https://​www.​
cisco.​com/c/​en/​us/​solut​ions/​colla​teral/​execu​tive-​persp​ectiv​es/​annual-​
inter​net-​report/​white-​paper-​c11-​741490.​html. Accessed 10 Mar 2020

	3.	 Llorca J, Tulino AM, Guan K, Esteban J, Varvello M, Choi N et al (2013)
Dynamic in network caching for energy efficient content delivery. In:
2013 Proceedings IEEE INFOCOM. IEEE, Turin, pp 245–249

	4.	 Huang J, Gao H, Wan S et al (2023) AoI-aware energy control and
computation offloading for industrial IoT. Futur Gener Comput Syst
139:29–37

	5.	 Chen Y, Zhao J, Hu J, et al (2023a) Distributed task offloading and
resource purchasing in NOMA-enabled mobile edge computing:
Hierarchical game theoretical approaches. ACM Trans Embed Comput
Syst. https://​doi.​org/​10.​1145/​35970​23

	6.	 Chen Y, Zhao J, Zhou X, et al (2023b) A distributed game theoretical
approach for credibility-guaranteed multimedia data offloading in
MEC. Inf Sci. https://​doi.​org/​10.​1016/j.​ins.​2023.​119306

	7.	 Pan J, McElhannon J (2017) Future edge cloud and edge computing
for internet of things applications. IEEE Internet Things J 5(1):439–449

	8.	 Chen Y, Zhao J, Wu Y et al (2022) QoE-aware decentralized task offload-
ing and resource allocation for end-edge-cloud systems: a game-
theoretical approach. IEEE Trans Mob Comput. https://​doi.​org/​10.​1109/​
TMC.​2022.​32231​19

	9.	 Huang J, Wan J, Lv B, Ye Q et al (2023) Joint computation offloading
and resource allocation for edge-cloud collaboration in internet of
vehicles via deep reinforcement learning. IEEE Syst J 17(2):2500–2511

	10.	 Zhong C, Gursoy MC, Velipasalar S (2019) Deep multi-agent reinforce-
ment learning based cooperative edge caching in wireless networks.
In: ICC 2019-2019 IEEE International Conference on Communications
(ICC). IEEE, Shanghai, pp 1–6

	11.	 Chen Y, Gu W, Xu J, et al (2022) Dynamic task offloading for digital
twin-empowered mobile edge computing via deep reinforcement
learning. China Commun. https://​doi.​org/​10.​23919/​JCC.​ea.​2022-​0372.​
202302

https://doi.org/10.23919/cje.2022.00.412
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://doi.org/10.1145/3597023
https://doi.org/10.1016/j.ins.2023.119306
https://doi.org/10.1109/TMC.2022.3223119
https://doi.org/10.1109/TMC.2022.3223119
https://doi.org/10.23919/JCC.ea.2022-0372.202302
https://doi.org/10.23919/JCC.ea.2022-0372.202302

Page 13 of 13Shi et al. Journal of Cloud Computing (2023) 12:123 	

	12.	 Fan Q, Li X, Li J, He Q, Wang K, Wen J (2021) PA-Cache: evolving
learning-based popularity-aware content caching in edge networks.
IEEE Trans Netw Serv Manag 18(2):1746–1757

	13.	 Song J, Song Q, Wang Y, Lin P (2021) Energy-delay tradeoff in adaptive
cooperative caching for energy-harvesting ultradense networks. IEEE
Trans Comput Soc Syst 9(1):218–229

	14.	 Zhang S, Sun W, Liu J (2019) Spatially cooperative caching and
optimization for heterogeneous network. IEEE Trans Veh Technol
68(11):11260–11270

	15.	 Ren H, Xu Z, Liang W, Xia Q, Zhou P, Rana OF, Galis A, Wu G (2020) Effi-
cient algorithms for delay-aware NFV-enabled multicasting in mobile
edge clouds with resource sharing. IEEE Trans Parallel Distrib Syst
31(9):2050–2066

	16.	 Araniti G, Rinaldi F, Scopelliti P, Molinaro A, Iera A (2019) A dynamic
MBSFN area formation algorithm for multicast service delivery in 5G NR
networks. IEEE Trans Wirel Commun 19(2):808–821

	17.	 Condoluci M, Araniti G, Molinaro A, Iera A (2015) Multicast resource allo-
cation enhanced by channel state feedbacks for multiple scalable video
coding streams in lte networks. IEEE Trans Veh Technol 65(5):2907–2921

	18.	 Guo C, Cui Y, Ng DWK, Liu Z (2018) Multi-quality multicast beamforming
with scalable video coding. IEEE Trans Commun 66(11):5662–5677

	19.	 Wu F, Yang W, Ren J, Lyu F, Ding X, Zhang Y (2020) Adaptive video stream-
ing using dynamic ndn multicast in wlan. In: IEEE INFOCOM 2020-IEEE
Conference on Computer Communications Workshops (INFOCOM
WKSHPS). IEEE, Toronto, pp 97–102

	20.	 Chen S, Yao Z, Jiang X, Yang J, Hanzo L (2020) Multi-agent deep reinforce-
ment learning-based cooperative edge caching for ultra-dense next-
generation networks. IEEE Trans Commun 69(4):2441–2456

	21.	 Poularakis K, Iosifidis G, Sourlas V, Tassiulas L (2016) Exploiting cach-
ing and multicast for 5G wireless networks. IEEE Trans Wirel Commun
15(4):2995–3007

	22.	 Sun Y, Chen Z, Tao M, Liu H (2020) Bandwidth gain from mobile edge
computing and caching in wireless multicast systems. IEEE Trans Wirel
Commun 19(6):3992–4007

	23.	 Jiang D, Cui Y (2019) Analysis and optimization of caching and multicast-
ing for multi-quality videos in large-scale wireless networks. IEEE Trans
Commun 67(7):4913–4927

	24.	 Huang W, Huang Y, He S, Yang L (2020) Cloud and edge multicast beam-
forming for cache-enabled ultra-dense networks. IEEE Trans Veh Technol
69(3):3481–3485

	25.	 Dani MN, So DK, Tang J, Ding Z (2021) NOMA and coded multicast-
ing in cache-aided wireless networks. IEEE Trans Wirel Commun
21(4):2506–2520

	26.	 Bilal K, Shuja J, Erbad A, Alasmary W, Alanazi E, Alourani A (2022) Address-
ing challenges of distance learning in the pandemic with edge intel-
ligence enabled multicast and caching solution. Sensors 22(3):1092

	27.	 Hassanzadeh P, Tulino A, Llorca J, Erkip E (2016) Cache-aided coded
multicast for correlated sources. In: 2016 9th International Symposium on
Turbo Codes and Iterative Information Processing (ISTC). IEEE, Brest, pp
360–364

	28.	 Li C, Toni L, Zou J, Xiong H, Frossard P (2017) Qoe-driven mobile edge
caching placement for adaptive video streaming. IEEE Trans Multimedia
20(4):965–984

	29.	 Tran TX, Pompili D (2018) Adaptive bitrate video caching and process-
ing in mobile-edge computing networks. IEEE Trans Mob Comput
18(9):1965–1978

	30.	 Wang F, Wang F, Liu J, Shea R, Sun L (2020) Intelligent video caching at
network edge: a multi-agent deep reinforcement learning approach. In:
IEEE INFOCOM 2020-IEEE Conference on Computer Communications.
IEEE, Toronto, pp 2499–2508

	31.	 Singal G, Laxmi V, Gaur MS, Rao DV, Kushwaha R, Garg D, Kumar N (2021)
Qos-aware mesh-based multicast routing protocols in edge ad hoc
networks: Concepts and challenges. ACM Trans Internet Technol (TOIT)
22(1):1–27

	32.	 Damera B, Babu PC (2014) Broadcast the user chosen content over LTE
in a simplified approach using evolved multimedia broadcast multicast
service (eMBMS) with optimized MCE scheduling algorithm. In: 2014
International Conference on Intelligent Computing Applications. IEEE, pp
90–94

	33.	 Zahoor K, Bilal K, Erbad A, Mohamed A (2020) Service-less video multicast
in 5G: Enablers and challenges. IEEE Netw 34(3):270–276

	34.	 Qin Y, Xia Q, Xu Z, Zhou P, Galis A, Rana OF, Ren J, Wu G (2020) Enabling
multicast slices in edge networks. IEEE Internet Things J 7(9):8485–8501

	35.	 Maddah-Ali MA, Niesen U (2014) Fundamental limits of caching. IEEE
Trans Inf Theory 60(5):2856–2867

	36.	 Liao J, Wong KK, Zhang Y, Zheng Z, Yang K (2017) Coding, multicast, and
cooperation for cache-enabled heterogeneous small cell networks. IEEE
Trans Wirel Commun 16(10):6838–6853

	37.	 He S, Ren J, Wang J, Huang Y, Zhang Y, Zhuang W, Shen S (2019) Cloud-
edge coordinated processing: Low-latency multicasting transmission.
IEEE J Sel Areas Commun 37(5):1144–1158

	38.	 Somuyiwa SO, György A, Gündüz D (2019) Multicast-aware proactive
caching in wireless networks with deep reinforcement learning. In: 2019
IEEE 20th International Workshop on Signal Processing Advances in Wire-
less Communications (SPAWC). IEEE, Cannes, pp 1–5

	39.	 Hartigan JA, Wong MA (1979) Algorithm as 136: A k-means clustering
algorithm. J R Stat Soc Ser C (Appl Stat) 28(1):100–108

	40.	 Lee D, Choi J, Kim JH, Noh SH, Min SL, Cho Y et al (1999) On the existence
of a spectrum of policies that subsumes the least recently used (LRU)
and least frequently used (LFU) policies. In: Proceedings of the 1999 ACM
SIGMETRICS international conference on Measurement and modeling of
computer systems. ACM, Atlanta, pp 134–143

	41.	 Bramson M (1994) Instability of FIFO queueing networks. Ann Appl
Probab 4(2):414–431

	42.	 Vietri G, Rodriguez LV, Martinez WA, Lyons S, Liu J, Rangaswami R et al
(2018) Driving cache replacement with ML-based LeCaR. In: 10th USENIX
Workshop on Hot Topics in Storage and File Systems (HotStorage
18). USENIX, Boston, pp 928–936

	43.	 Megiddo N, Modha DS (2003) ARC: A Self-Tuning, low overhead replace-
ment cache. In: 2nd USENIX Conference on File and Storage Technologies
(FAST 03), vol 3. USENIX, San Francisco, pp 115–130

	44.	 Ban TW, Lee W, Ryu J (2020) An efficient coded streaming using clients’
cache. Sensors 20(21):6220

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

	COCAM: a cooperative video edge caching and multicasting approach based on multi-agent deep reinforcement learning in multi-clouds environment
	Abstract
	Introduction
	Related work
	Caching algorithms
	Multicasting algorithms
	Joint caching and multicasting algorithms

	System model and problem formulation
	Network model
	Caching model
	Transmission model

	The COCAM approach
	State
	Action
	Reward
	Network architecture

	Performance evaluation
	Experiment setup
	Comparisons and results
	Comparison with non-cooperative caching algorithms
	Comparison with cooperative caching algorithms
	Comparison of algorithms with different multicasting schemes

	Conclusion
	Acknowledgements
	References

