
Cañizares et al. Journal of Cloud Computing (2023) 12:133
https://doi.org/10.1186/s13677-023-00511-w

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Simcan2Cloud: a discrete-event-based
simulator for modelling and simulating cloud
computing infrastructures
Pablo C. Cañizares1*, Alberto Núñez2, Adrián Bernal3, M. Emilia Cambronero3 and Adam Barker4

Abstract

Cloud computing is an evolving paradigm whose adoption has been increasing over the last few years. This fact
has led to the growth of the cloud computing market, together with fierce competition for the leading market
share, with an increase in the number of cloud service providers. Novel techniques are continuously being proposed
to increase the cloud service provider’s profitability. However, only those techniques that are proven not to hinder
the service agreements are considered for production clouds. Analysing the expected behaviour and performance
of the cloud infrastructure is challenging, as the repeatability and reproducibility of experiments on these systems are
made difficult by the large number of users concurrently accessing the infrastructure. To this, must be added the com-
plications of using different provisioning policies, managing several workloads, and applying different resource con-
figurations. Therefore, in order to alleviate these issues, we present Simcan2Cloud, a discrete-event-based simulator
for modelling and simulating cloud computing environments. Simcan2Cloud focuses on modelling and simulating
the behaviour of the cloud provider with a high level of detail, where both the cloud infrastructure and the interac-
tions of the users with the cloud are integrated in the simulated scenarios. For this purpose, Simcan2Cloud supports
different resource allocation policies, service level agreements (SLAs), and an intuitive and complete API for includ-
ing new management policies. Finally, a thorough experimental study to measure the suitability and applicability
of Simcan2Cloud, using both real-world traces and synthetic workloads, is presented.

Keywords Cloud computing, Simulation, SLAs, Pricing schemes

Introduction
Over the last few years, cloud computing has become a
reference for on-demand computing. The high level of
flexibility, security, and cost savings have led companies

to use this computing paradigm for the provision of the
services they require. According to the Right-Scale 2019
State of the Cloud Report from [1], 94% of enterprises
use at least one cloud service, and spending on such
services reached $227.8 billion. In order to satisfy this
demand, there exist several cloud service providers, such
as Amazon Web Services (AWS), Azure, Google Cloud,
VMWare Cloud, and Oracle Cloud Infrastructure, among
others.

Market competition has led service providers to seek
elements of differentiation, such as performance, qual-
ity of service, and cost. Thus, one of the main goals of
cloud providers is to achieve a good balance between sys-
tem performance and usage of computational resources
while maintaining profits. However, achieving a balanced

*Correspondence:
Pablo C. Cañizares
pablo.cerro@uam.es
1 Computer Science Department, Autonomous University of Madrid,
Madrid, Spain
2 Software Systems and Computation Department, Complutense
University of Madrid, Madrid, Spain
3 Department of Computer Science, Universidad de Castilla-La Mancha,
Albacete, Spain
4 School of Computer Science, University of St. Andrews, St. Andrews,
Scotland

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00511-w&domain=pdf

Page 2 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

architecture that accomplishes this goal is challenging.
Considering an emerging company that provides cloud
services, considerable growth in the number of users
accessing the services may lead to experiencing system
bottlenecks, which may force profit drops due to the loss
of users. The main idea is to provide the data-centre with
adequate computational resources to serve the incoming
users, avoiding overdimensioning, or underdimension-
ing, the system.

In order to obtain a good cost-performance ratio it is
necessary to perform a thorough analysis of the cloud
when processing different workloads, which allows the
provider to properly configure the different cloud param-
eters, such as virtual machines (VMs), resource allo-
cation policies, and the cost of each VM offered [2]. A
misconfigured cloud environment may lead to poor over-
all performance, which will have a significant impact on
the quality of service and, consequently, compromise the
reputation of the company.

Unfortunately, carrying out an experimental analysis
on production-ready environments is complex, expen-
sive and, in some cases, not possible due to the necessity
of having dedicated access to the system. Furthermore,
applying configuration changes in a production system,
such as adding more machines, replacing computational
resources, or setting a new network topology, may affect
the behaviour of the system.

In the last ten years, researchers have tackled these
issues by using simulation techniques [3–6]. The main
features of these techniques allow the creation of simu-
lation tools that are appropriate for modelling, analysing
and studying complex systems. In essence, a simulator
uses an abstraction of the system under study - namely a
model - to imitate its behaviour by representing its most
relevant features. Among the most important advantages
provided by simulation, we can highlight the following
cloud-systems-related ones: (i) The system under study is
not required to execute the simulations. In general, simu-
lators can be run on a regular computer; (ii) Experiments
can be easily reproduced in a simulated environment.
In most cases, there exist a high number of inter-related
parameters and variables that cannot be controlled on a
real-world production system, such as the users accessing
the system concurrently, thus making the repeatability
of the experiments impossible [7]. However, simulation
allows us to reproduce the same experiment in a con-
trollable way; (iii) Experiments can be run in parallel,
improving performance without requiring specific hard-
ware resources [8, 9]. Thus, simulations can be run on a
standard desktop – using the available CPU cores – or,
in order to significantly increase the number of simula-
tions executed in parallel, on a computer cluster; and
(iv) Simulation provides more flexibility when applying

changes to the configuration settings. While modifying
the configuration of a cloud system is a time-consuming
and expensive task, simulation only requires us to mod-
ify the configuration of the model by setting up the cor-
rect parameters, such as the network topology, or the
resource allocation policy.

Currently, there exists a broad spectrum of simula-
tion platforms for modelling cloud computing systems.
However, most of the cloud simulators are focused on
representing the behaviour of the system from the users’
perspective, and do not consider the cloud provider part.
For instance, DISSECT-CF [10] is considered as one of
the most relevant cloud computing simulators. How-
ever, different aspects related to the cloud provider, such
as allocation policies, user management, and costs are
not taken into consideration. Additionally, there exist
several proposals focused on different cloud provider
aspects, such as pricing features [11–13], cloud deploy-
ments [14], modelling resources [15], and services offered
by the cloud provider [16]. Nevertheless, these works are
not targeted at considering the underlying hardware of a
cloud platform.

To the best of our knowledge, there are few simula-
tion platforms aimed at describing the cloud provider,
with a reasonable level of detail, while considering the
infrastructure support. In these terms, CloudSim [8]
offers several policies for the management of the avail-
able cloud resources, supporting different host selection
strategies, service deployment, and VM provisioning.
However, the resources of the cloud infrastructure, and
both the management and the behaviour of the users,
are not particularly detailed. In order to overcome these
issues, we present Simcan2Cloud, a discrete-event-based
framework for modelling and simulating cloud systems.
Simcan2Cloud mainly focuses on the cloud provider,
supporting the modelling of cloud infrastructures and
the interaction of the users with the cloud. In addition,
for analysing how Simcan2Cloud is aligned with the real
world, the platform includes a trace representation mod-
ule that allows to execute real-world traces collected
from production-ready systems. Thus, we can compare
the simulated system with the real – target – system to
find potential inconsistencies. Below, we highlight the
most relevant and novel features of our proposed simula-
tion platform:

1. Flexible SLAs. Simcan2Cloud considers different
SLA definitions in cloud computing environments.
Hence, the requested resources are allocated to the
users according to the different parameters estab-
lished in the SLA: availability of the resources, rental
time, and a configurable cost model that covers sev-
eral aspects, such as discounts for delays, an extra

Page 3 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

cost for additional time, and compensation for una-
vailability.

2. A cloud provider waiting queue. In terms of user
management, the platform provides a queue system
to handle users upon their arrival in the cloud. This
mechanism enables users to wait for the requested
service – by subscribing to the system – instead of
leaving the system immediately.

3. Priority users. In order to enrich the behaviour of the
system, the platform supports the management of
users with different priority levels. Hence, high-pri-
ority users are not required to wait in the cloud pro-
vider queue, since their requested resources are allo-
cated on reserved machines, which are exclusively
dedicated to these users.

4. A renting time extension offer. With respect to the
service rentals, the platform supports extending
the rental time of the VMs when some services are
still running, and the rental time of the requested
resources has expired. This feature is designed to
cover a common behaviour in cloud environments.

5. Resource usage. This platform includes a module for
monitoring the usage of the computational resources
at the data-centre, such as CPUs, RAM memory and
storage. This feature enables users to analyse usage
patterns and detect disruptive behaviours in these
key subsystems.

6. An API to easily include new management policies.
Simcan2Cloud supports different scheduling policies
for resource allocation. The cloud provider can select
the most appropriate algorithms for maximising both
the percentage of resource usage and the cloud pro-
vider profits. In addition, the platform provides tem-
plates to facilitate the creation of custom scheduling
policies and user behaviours.

This paper is organised as follows. Firstly, Sec-
tion “Related work” introduces and analyses the state of
the art of cloud computing simulators. Section “Simcan-
2Cloud” presents the architecture and the implemen-
tation details of Simcan2Cloud. Then, we present an
empirical study in Section “Empirical study”, in which the
performance of Simcan2Cloud is analysed and discussed.
Finally, Section “Conclusions and future work” contains
our conclusions and some lines for future work.

Related work
In the last few decades, simulation techniques have been
adopted by the research community as a valuable way to
study and analyse cloud computing environments. As a
result, a significant number of cloud computing simu-
lators have appeared in the literature [6, 17–21]. The
noticeable growth in the state-of-the-art surveys – from

an average of 10 in 2012 [21] to up to 30 in 2020 [6] –
is a clear indicator of the increasing interest in designing
cloud simulators.

Cloud computing simulators
In the current literature, we found several simulation
platforms focused on the cloud provider. The Cloud-
NetSim++ simulator [22] is a cloud simulator, built on
OMNeT++, that uses the INET Framework to model a
complete network layer. This simulator allows users to
describe SLA policies, scheduling algorithms, and bill-
ing costs, and offers the built-in OMNeT++ user inter-
face. Thus, users must learn the basics of the OMNeT++
environment to create cloud scenarios. Another pro-
posal is the Data Centre Simulator (DCSim), a simula-
tion framework for modelling and simulating data centre
infrastructures [23]. In general terms, DCSim focuses
on the IaaS layer, which is used for providing services to
multiple clients. It is also worth mentioning that DCSim
supports the modelling of cost and SLAs. DISSECT-CF
is a simulation platform focused on modelling resource
sharing and the cloud infrastructure with a high level of
detail [10]. This approach presents quite a detailed IaaS
stack simulation and supports energy-aware techniques
for cloud infrastructures, hence allowing the inclusion
of new metrics for analysing different resources. SCORE
[24] is a simulator based on Google Omega and written
in Scala. SCORE simulates parallel scheduling, energy
consumption, and synthetic workloads, as well as offer-
ing shutting-down and powering-on computational node
mechanisms. In the same line, SCORE-GAME is an
extension of SCORE that includes an energy scheduling
policy based on the Stackelberg game [25]. The model of
this simulator includes two roles, namely the Scheduling
Manager and the Energy-Efficiency Manager. The former
processes the tasks as quickly as possible, while the lat-
ter is targeted at minimising the overall energy consump-
tion. In this way, this proposal is based on a competition
between those roles, where the main goal is to balance
the trade-offs between energy consumption and perfor-
mance. iCanCloud is a simulation platform built on the
OMNeT++ framework [26]. In essence, this simulator
represents the behaviour of cloud systems by modelling
the physical machines supporting the cloud, the configu-
ration of the VMs provided and different resource allo-
cation policies. Additionally, the E-mc2 framework [9]
has been developed to include support for measuring the
energy consumption of the different hardware compo-
nents of the system, such as the memories, the CPUs of
disk drives, etc. Thus, iCanCloud can be used to estimate
the trade-offs between cost and performance in a wide
range of cloud scenarios.

Page 4 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

The surveys of cloud simulation tools found in the
current literature claim that CloudSim [8] is one of
the leading cloud simulators [6]. CloudSim uses Sim-
Java as the simulation core and allows the modelling of
hosts in data centres, virtual machines, user tasks, and
resource provisioning policies. CloudSim focuses on
service broker scheduling algorithms and implements
space-shared and time-shared allocation policies to
manage computing resources. This simulator provides
a limited network model, as it only considers trans-
mission delays and lacks a realistic network topology.
Since several researchers found limitations in carry-
ing out experiments with CloudSim in areas of study,
the research community has extended the capabilities
of the tool by implementing other simulators based on
CloudSim. Among such simulators extending Cloud-
Sim functionalities, we can highlight NetworkCloud-
Sim, CloudAnalyst, CDOSim, WokflowSim, CloudExp,
and UCloud.

NetworkCloudSim [27] improves the network layer of
CloudSim by implementing switches at several aggrega-
tion levels and providing communication models with
different levels of detail. These implementations allow
developers to model parallel applications. CloudAna-
lyst [28] provides a GUI for CloudSim, presenting geo-
graphical factors that allow the configuration of user
and data centre locations. Basically, the location fea-
ture enables the simulator to calculate the response and
processing time of the requests. CDOSim [29] simu-
lates the cost and performance characteristics of cloud
deployment scenarios, and allows developers to model
delays and SLA violations, helping them to choose a
deployment strategy. Although this simulator imple-
ments VM migration, it still inherits a limited network
model from CloudSim.

WokflowSim [30] introduces the modelling of scien-
tific workflows in a cloud environment and job cluster-
ing, which allows researchers to study the impact of job
failures on workflows. This simulator is not suitable for
data-intensive applications, since it does not model the
performance of the storage system. The simulator Clou-
dExp [31] improves CloudSim by including complex
network models and a Map-Reduce processing model.
CloudExp offers SLA definition based on measurable
terms, and also supports a workload generator toolkit
to model real workloads. One of the main weaknesses
of CloudExp is the static model for measuring the per-
formance of the VMs. UCloud [32] is a hybrid cloud
simulator – for university environments – focusing
on scenarios that require the services of public clouds
when the private cloud is full. In addition, UCloud
implements performance monitoring, university activi-
ties, and security management, as well as considering

the cost of using the public cloud, but not the cost of
the data centre communications.

Comparison of Simcan2Cloud and SoTA solutions
In this section, we present a comprehensive comparison
between Simcan2Cloud and some of the well-known
cloud simulators. It is important to highlight the effort
and time invested by the research community to create
and maintain a broad spectrum of simulation tools, a
fact that has led to the existence of a wide range of cloud
simulators. In order to choose those simulators that
have been widely adopted by the community, we have
carefully analysed papers available in the current litera-
ture, surveys – such as those of [6] and [17] – and public
repositories.

Table 1 analyses the main differences between the exist-
ing cloud simulators and the approach presented in this
work, namely Simcan2Cloud, by highlighting the main
contribution of our proposal. The table consists of five
sections aggregating several aspects of the cloud simula-
tion platforms. The first section (labelled Main features)
provides basic information about each platform, such as
the name of the tool, creation date (Year), programming
language (Lang.), availability of the tool (Avail.) and the
framework used as a basis for creating the simulator
(Platform). The second block, labelled General aspects,
shows general features of the simulation platform, that is,
the possibility of using a graphical user interface (GUI),
the level of detail to represent the communication net-
work (Comm. model), and the capabilities of the platform
for designing the network topology (Network topology).
The third block, called Cloud provider, shows features
for modelling the behaviour of the cloud provider. In
this case, we analyse the service level agreement (SLA),
the cost model (Cost), and the renting time extension
offer (Rent ext.), which refers to those scenarios in which
some services are still running when the renting time of
the requested resources ends. In this particular case, the
users have the possibility of extending the renting time of
the resources by paying an extra charge on top of the ini-
tial cost. Additionally, this block covers scheduling poli-
cies (Sched. policies), and the management of user queues
(Waiting queue), which refers to the mechanism that
allows users to wait if the requested resources are not
available. The fourth block (Users/workload) presents the
features for modelling a cloud environment from the per-
spective of the user that accesses the cloud to request ser-
vices. In this case, we consider the facilities for managing
new workloads (API), support for representing the exe-
cution of traces extracted from real-world clouds (Real
traces), the capability to use different statistical distribu-
tions to create workloads (Traffic dist.). This feature rep-
resent the resources requested by the users by indicating

Page 5 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

Ta
bl

e
1

Co
m

pa
ris

on
 o

f t
he

 m
ai

n
cl

ou
d

co
m

pu
tin

g
si

m
ul

at
or

s
ex

is
tin

g
in

 th
e

lit
er

at
ur

e

*C
lo

ud
Si

m
N

et
+
+

 a
llo

w
s

th
e

cr
ea

tio
n

of
 p

rio
rit

y
VM

s,
bu

t n
ot

 th
e

m
an

ag
em

en
t o

f m
ul

tip
le

 p
ro

fil
e

us
er

s
w

ith
 d

iff
er

en
t p

rio
rit

ie
s

M
ai

n
fe

at
ur

es
G

en
er

al
 a

sp
ec

ts
Cl

ou
d

pr
ov

id
er

U
se

rs
 (w

or
kl

oa
d)

D
C

To
ol

Ye
ar

La
ng

.
Av

ai
l.

Pl
at

fo
rm

G
U

I
Co

m
m

.
m

od
el

N
et

w
or

k
to

po
lo

gy
SL

A
Co

st
Re

nt
 e

xt
.

Sc
he

d.

po
lic

ie
s

W
ai

tin
g

qu
eu

e
A

PI
Re

al

tr
ac

es
Tr

affi
c

di
st

.
Pr

io
r

us
er

s
H

W

us
ag

e
H

W
 d

et
ai

l

C
lo

ud
Si

m
20

09
Ja

va
O

pe
n

So
ur

ce
Si

m
Ja

va
✗

Li
m

ite
d

Li
m

ite
d

✗
�

✗
�

✗
✗

�
�

✗
✗

✗

N
et

w
or

kC
lo

ud
-

Si
m

20
09

Ja
va

O
pe

n
So

ur
ce

C
lo

ud
Si

m
✗

Li
m

ite
d

Li
m

ite
d

✗
�

✗
�

✗
✗

�
�

✗
✗

Li
m

ite
d

C
lo

ud
A

na
ly

st
20

10
Ja

va
O

pe
n

So
ur

ce
C

lo
ud

Si
m

�
Li

m
ite

d
Li

m
ite

d
Li

m
ite

d
�

✗
�

✗
✗

�
�

✗
✗

Li
m

ite
d

iC
an

C
lo

ud
20

11
C

+
+

O
pe

n
So

ur
ce

O
M

N
eT

+
+

�
Li

m
ite

d
�

✗
�

✗
✗

✗
✗

✗
✗

✗
✗

�

D
C

Si
m

20
11

Ja
va

O
pe

n
So

ur
ce

-
✗

✗
✗

Li
m

ite
d

�
✗

✗
✗

✗
✗

✗
✗

✗
✗

G
re

en
C

lo
ud

20
12

C
+

+

O
tc

l
O

pe
n

So
ur

ce
N

S2
Li

m
ite

d
Fu

ll
�

✗
�

✗
�

✗
✗

✗
�

✗
�

✗

W
ok

flo
w

Si
m

20
12

Ja
va

O
pe

n
So

ur
ce

C
lo

ud
Si

m
✗

Li
m

ite
d

Li
m

ite
d

✗
�

✗
�

✗
✗

�
�

✗
✗

Li
m

ite
d

C
lo

ud
N

et
Si

m
+

+
20

14
C

+
+

O
pe

n
So

ur
ce

O
M

N
eT

+
+

�
Li

m
ite

d
�

�
�

✗
�

✗
✗

✗
�

✗
*

(V
M

)
�

✗

C
lo

ud
Ex

p
20

14
Ja

va
N

.A
C

lo
ud

Si
m

�
Fu

ll
Li

m
ite

d
�

�
✗

�
✗

✗
�

�
✗

✗
Li

m
ite

d

U
C

lo
ud

20
14

Ja
va

O
pe

n
So

ur
ce

C
lo

ud
Si

m
✗

Li
m

ite
d

Li
m

ite
d

✗
�

✗
�

✗
✗

�
�

✗
✗

Li
m

ite
d

D
IS

SE
C

T-
C

F
20

14
Ja

va
O

pe
n

So
ur

ce
-

✗
Fu

ll
✗

✗
✗

✗
✗

✗
✗

�
✗

✗
�

�

SC
O

RE
20

18
Sc

al
a

O
pe

n
So

ur
ce

G
oo

gl
e

O
m

eg
a

✗
✗

✗
�

✗
✗

�
✗

✗
✗

✗
✗

✗
✗

SC
O

RE
-G

A
M

E
20

18
Sc

al
a

O
pe

n
So

ur
ce

G
oo

gl
e

O
m

eg
a

✗
✗

✗
�

✗
✗

�
✗

✗
✗

✗
✗

✗
✗

C
D

O
Si

m
20

21
Ja

va
O

pe
n

So
ur

ce
C

lo
ud

Si
m

�
Li

m
ite

d
Li

m
ite

d
�

�
✗

�
✗

✗
�

�
✗

✗
Li

m
ite

d

Si
m

ca
n2

C
lo

ud
20

22
C

+
+

O
pe

n
So

ur
ce

O
M

N
eT

+
+

�
Li

m
ite

d
Li

m
ite

d
�

�
�

�
�

�
�

�
�

�
�

Page 6 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

the exact time when each user sends the request and the
specific configuration of the resources required. The last
feature denotes the support for including priority users
on the simulation platform (Prior. users). The last block,
labelled DC, is focused on the data centre aspects, which
include the percentage of hardware used in the DC (HW
usage), and the support to model – with a high level of
detail – the different hardware components of the plat-
form (HW detail).

This comparison covers 15 simulation platforms,
including Simcan2Cloud. The year of creation of the plat-
forms ranges from 2009 to 2022. Regarding the program-
ming language, Java is the predominant one, as it has
been used to code 60% of the simulators studied in this
comparison. In contrast, C++ and Scala have been used
to write 26% and 13% of the simulation tools, respec-
tively. All the simulation tools – with the exception of
CloudExp – have an open-source licence. Most of the
simulation platforms are built upon a base platform, and
only DCSim and DISSECT-CF are built as independent
tools. Among them, CloudSim is the preferred platform
for creating new simulators, being used by 40% of them,
followed by OMNeT++, which is used by 20% of the sim-
ulation tools. The other solutions are based on Google
Omega, NS2 and SimJava. On analysing the general
aspects of the platforms, we can see that only 40% pro-
vide a complete GUI via which the cloud scenario can be
fully modelled and customised, while 13% offer a limited
GUI that facilitates the configuration of simulated sce-
narios with significant restrictions. Regarding communi-
cations, only 20% implement a full communication model
(i.e. communication protocols, such as TCP and UDP),
whilst 60% provide a limited model. Finally, full support
for designing network topologies is only included in 20%
of the proposals.

With regards to the cloud provider’s details, we can
find two features that are implemented by most of the
platforms under study, namely the cost model and sched-
uling policies, which are supported by 80% of the solu-
tions. Nevertheless, some features are only fully covered

by a relatively small percentage of the simulators, such
as SLAs, which are only supported by 40%. Furthermore,
other features, such as rental extension and the manage-
ment of queues for handling user requests, are not imple-
mented by any of the proposals, with the exception of
Simcan2Cloud.

However, other characteristics, such as providing a
flexible and open API for creating workloads and man-
aging different types of users are not supported by the
solutions analysed (again excluding our own proposal).
It is worth mentioning that only CloudSimNet++ allows
the creation of priority VMs, but not the management
of multiple profile users with different priorities. Model-
ling the underlying cloud infrastructure is an important
aspect of the simulation platforms since it affects the reli-
ability of the results obtained. In this case, only 20% of
the simulators include a highly-detailed infrastructure,
allowing the design of heterogeneous systems. In the
same line, the monitoring of the percentage of resource
usage is only possible in 26% of the systems.

As is shown by the comparison, there are few simula-
tion platforms aimed at describing the cloud provider
– with a reasonable level of detail – while maintaining
infrastructure support. In general, the simulation plat-
form that shares most features with Simcan2Cloud is
CloudNetSim++. However, CloudNetSim++ does not
consider certain important aspects of the cloud, such as
the extension time for renting VMs, the implementation
of user queues to manage different types of user access-
ing the cloud, priority resources, support for real traces,
and a highly-detailed infrastructure.

Simcan2Cloud
This section presents a detailed description of the Sim-
can2Cloud simulator. The meta-data is presented in
Table 2, in which the current version of the simulator,
the link to the repository containing the source code, the
legal code licence, and the code versioning system used
are shown in the rows labelled C1-C4, respectively. The
programming language used to write Simcan2Cloud, the

Table 2 Meta-data of Simcan2Cloud

Id Code Metadata Description

C1 Current code version 0.1

C2 Permanent link to code/repository used for this code version https:// github. com/ pablo ccani zares/ Simca n2Clo ud

C3 Legal Code Licence GPL

C4 Code versioning system used git

C5 Software code languages, tools, and services used C++, OMNeT++, Java

C6 Compilation requirements, operating environments & dependencies OMNeT++ 5.0, Java 8, TCL/TK 8.4, Bison, Flex, Net-
Beans 7 or above

C7 If available, link to developer manual/documentation

C8 Support email for queries pablo.cerro@uam.es

https://www.github.com/pabloccanizares/Simcan2Cloud

Page 7 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

dependencies, the compilation requirements, and the
documentation are shown in the rows labelled C5-C7,
respectively. The support e-mail address is shown in the
last row (labelled C8).

This section has been divided into five different parts.
An overview of Simcan2Cloud is presented in Sec-
tion “Software description”. Section “Service level agree-
ments” shows how the SLAs are modelled using different
configuration parameters, and the main architecture and
the simulation core of the simulator are presented in Sec-
tion “Architecture”. Next, Section “API” presents the API,
which provides the facilities to manage cloud environ-
ments. Finally, Section 3.5 introduces the GUI, a compo-
nent that has been designed for easily creating simulated
scenarios.

Software description
Simcan2Cloud is a modular and flexible discrete-event
simulation platform that allows users to model and simu-
late cloud computing infrastructures. Simcan2Cloud has
been coded using C++ on top of OMNeT++, an open-
source simulation framework [33]. It is worth mentioning
that OMNeT++ is considered as a de facto standard in
the simulation of distributed systems. In particular, dur-
ing the last decade, OMNeT++ has been widely adopted
by the research community and industry to simulate a
broad spectrum of complex systems [34–36]. Among the
main features of OMNeT++, we can highlight the struc-
tured programming and event-oriented model, which
establish the foundations for a high degree of flexibility
in the design of distributed systems. However, simula-
tors built using OMNeT++ require the use of the NED
language to configure the simulated environments. This
fact, in most cases, is a tedious and error-prone task due
to the large number of parameters that must be config-
ured in a plain text file. In order to alleviate this task,
Simcan2Cloud provides an easy-to-use GUI that allows
the modelling of complex infrastructures without the
need for an in-depth knowledge of these systems. Fur-
thermore, the modelling process is enhanced with the
inclusion of a component repository. The main idea is to
enable the reuse of the components required to build a
cloud environment, making it possible to model and con-
figure large complex systems within minutes.

The cloud provider is one of the most important parts
in a cloud system and, thus, Simcan2Cloud includes a
modular and fully customisable cloud provider mod-
ule. This module is mainly focused on the manage-
ment of users, scheduling and allocation policies,
financial costs, and SLAs. In addition, the cloud pro-
vider module allows the inclusion of both customised
and well-known virtual machines. The current version
of Simcan2Cloud provides a large collection of VM

instances inspired by Amazon EC2 [37]. Regarding
the physical resources, Simcan2Cloud provides several
mechanisms for modelling the four basic subsystems,
namely storage, computing, memory and network.
Basically, combining the components of these subsys-
tems (i.e. disk drives, communication networks, CPUs,
and memories) allows users to build a wide variety of
cloud scenarios. These may range from a small number
of physical machines to complex and heterogeneous
data-centres.

In order to accurately represent the behaviour of cloud
systems, Simcan2Cloud is able to generate and process
realistic workloads. These are created by using a large
number of users, ranging from just a few to thousands.
The arrival of these users at the platform can be deter-
mined by using different distribution functions. The
behaviour of users interacting with the cloud can be eas-
ily modelled by determining, in essence, the requested
VMs and the applications executed on these VMs. The
users that request resources from the cloud provider
are managed by using a fully-customisable queue sys-
tem. The current version of Simcan2Cloud immediately
attends to the user requests if the required resources
are available. On the contrary, if the system is not able
to provide the requested resources, the user has two
possibilities. The first option consists of waiting for a
pre-defined period of time, with the expectation that
the requested resources will – in due course – become
available. The second one, is to leave the system without
having used any services. Let us remark that this queue
system has been specially designed to provide flexibility
for including new scheduling policies. Hence, this feature
allows to increase the functionality of the Simcan2Cloud
simulator. It is worth mentioning that different priori-
ties for users have been also considered, in such a way
that the priority criteria employed by the most common
service providers can be replicated. Thus, different poli-
cies can be applied to allocate the resources requested
by the users. To this end, Simcan2Cloud provides a high
level of flexibility, making it possible to balance the user
requests between different data-centres. This fact is pos-
sible by selecting policies based on the occupancy of
the physical machines (i.e. avoiding fragmentation), and
allowing developers to implement new and customised
policies. Similarly, the number of scheduling policies, in
the hypervisor module, can be easily extended and cus-
tomised. One of the key aspects of the cloud provider
module is the capability to define and include new SLAs
based on both functional and non-functional aspects.
Among them, it is worth mentioning cost-based features
and provisioning (i.e. abandon rate and waiting time).
The definition of the SLAs is described in detail in Sec-
tion “Service Level Agreements”.

Page 8 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

Service level agreements
In this section, we define how Simcan2Cloud implements
the service level agreements (SLAs) that are used in sim-
ulated cloud scenarios. It is a requirement that cloud ser-
vice providers should always sign an SLA with the cloud
users who wish to use the cloud services. Hence, a user
cannot request a virtual machine (VM) in the cloud if it
is not included in the signed SLA. Simcan2Cloud defines
SLAs based on the way users interact with the cloud and
how they are attended to.

More specifically, the architectural level defines sev-
eral SLA parameters related to the costs of different
VMs depending on user types. The current version of
Simcan2Cloud allows distinction between two types of
users, namely regular and high-priority users. The former
requests VMs from the cloud provider but can wait until
resources become available when these requests cannot be
met immediately. If the user decides to wait, then they sub-
scribe to the VM characteristics for a specific period, wait-
ing to be notified when a VM with these features becomes
available. Once the notification message is received, the
user starts executing their applications. If the subscrip-
tion period expires without the VM becoming available,
the user leaves without being able to run their applications.
High-priority users should receive the resources they
request immediately, but they pay a higher price and must
be compensated when the resources are not provided.

The parameters used to define an SLA in Simcan-
2Cloud include:

1. The base VM cost (Base). This is the cost for one
hour of VM services under normal circumstances
when a request can be dealt with immediately. If no
VM is available (with the requested features), the
user will be notified and receive a discount.

2. The discounts on the base VM price for delays (Dis-
count). If there are no available resources to attend
to the regular user demands immediately, they can
subscribe and wait for the requested resources to
become available. In this case, the price will be lower,
so the VM renting price will have a discount applied
to the normal cost. The user can decide to wait until
the required VM is available or leave.

3. An increase in the base VM cost for high-priority
users (Inc_priority). If a user decides to have prior-
ity behaviour in the cloud, they must pay a price
above the base price. This increment ensures that the
cloud provider reserves some machines to be used
when the normal (non-reserved and always run-
ning) machines cannot meet the user’s requirements.
Hence, when the normal machines are unavailable,
the cloud provider should start up a reserve VM to
serve high-priority users.

4. Cost for extra execution time (Offer). If the execu-
tion of the applications deployed by the user does not
finish within the estimated renting time, the cloud
provider can make an offer to the user to continue
execution. Cloud providers offer users an extension
to the rental period at a base price per hour plus a
surcharge. Thus, the user can either pay for this extra
execution time or decline it and stop interacting with
the system.

5. Compensation cost due to resource unavailability
(Compensation). The high-priority users pay an addi-
tional price to guarantee service. Thus, they must
be compensated for damages caused in the unlikely
event that the cloud provider has no available VMs.
This situation is very unlikely, but it would only occur
in cases in which there is no available VM with these
requested features in the pool of reserved machines.
Essentially, this scenario occurs due to an unexpected
number of high-priority user requests, or as a conse-
quence of a misconfiguration in the cloud. A solution
to this would probably focus on the addition of more
racks. Thus, additional VMs may be deployed while
maintaining a balanced system.

Some parameters are exclusive to regular users, such
as the discount for waiting for resources. Other param-
eters are only defined for high-priority users, such as the
increased cost to receive immediate attention and com-
pensation if no resources are available. These parameters
allow us to perform a cost analysis in the tool. One of the
most noteworthy characteristics of Simcan2Cloud is its
flexibility. Thus, we intend to enrich the SLAs with new
parameters and behaviours, for instance, by studying the
procurement schemes of Amazon Web Services and their
combinations.

Table 3 illustrates three examples of different possible
scenarios in the cloud. These scenarios are achieved by
varying the cost parameters defined in an SLA signed
between the users and the cloud provider. Based on
AWS EC2 on-demand instances of VM [37], a cost of
0.012 USD is established for base. The three SLA sce-
narios directly impact cloud users and providers income.
In SLA1 , users receive excellent offers, including a 60%

Table 3 SLAs configurations for several cloud scenarios

Type Base
(per
hour)

Discount
(% of the
cost)

Inc-
priority
(% of the
cost)

Offer
(% of the
cost)

Compensation
(% of the cost)

SLA1 0.012 60 10 5 80

SLA2 0.012 20 50 30 10

SLA3 0.012 10 70 70 5

Page 9 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

discount for initially unavailable resources, a 10% pre-
mium for priority behavior, and a 5% cost increase for
extending application execution. High-priority users
also get 80% compensation for unavailability. SLA2 offers
moderate benefits, with a 20% discount, a 50% premium
for priority, a 30% cost increase for application continu-
ation, and 10% compensation. In contrast, SLA3 heavily
favors the provider with high prices, offering only a 10%
discount, 70% premium for priority, 70% cost increase
for application continuation, and 5% compensation. The
cloud provider income depends on these parameters,
striking a balance between user attractiveness and profit
maximisation.

Architecture
In cloud computing, users have access to a delocalised
computing infrastructure through the Internet. The sim-
plicity in accessing these platforms and the wide offer of
computing configurations encourage the massive use of
cloud computing systems. However, the significant incre-
ment in the number of users concurrently accessing the
system, without considering an appropriate re-scaling of
the infrastructure, can lead to the appearance of bottle-
necks. The design of the cloud infrastructure plays a key
role in avoiding this scenario, but this task is challenging
since it is necessary to consider other important factors.
Among them, let us mention, just to name a few, obtain-
ing a good cost-performance ratio, analysing the behav-
iour of the users, and their management when accessing
the platform.

Figure 1 depicts the main architecture of Simcan-
2Cloud. In essence, a cloud scenario modelled in Simcan-
2Cloud consists of three main modules: a User generator,

a Cloud provider, and a Data centre. The behaviour of
each one of these modules is coded into a Manager sub-
module. Thus, in order to fully customise the behaviour
of the cloud, new managers can be coded using the API
showed in Table 4.

The User generator module (see left-most module in
Fig. 1) generates realistic workloads to be processed by
the simulated cloud scenarios. Firstly, the configuration
parameters that allow the customisation how the users
are created to represent the workload must be provided
(label 1). These parameters are processed by the User
Manager submodule to create the workload, which can
be represented by a real-world trace, or by different sta-
tistical distributions (label 2). Next, the workload is cre-
ated at run-time (label 3). It is important to remark that
Simcan2Cloud is a discrete-event-based simulator and,
consequently, the computation required to create the
workload does not affect the operations performed to
represent the behaviour of the target system.

The module in the centre of Fig. 1 represents the Cloud
provider. In general terms, the main tasks of a cloud pro-
vider consist in attending to user requests and returning
the answers generated by the data-centres to the users.
More specifically, the cloud provider is in charge of four
main tasks: i) Handling the VM requests from the users;
ii) Forwarding the jobs requested by the users to a suit-
able data-centre, in such a way that the requested VMs
are executed on the available physical resources; iii)
Managing the subscriptions of the users to the requested
resources; and iv) Defining cost policies for each VM
instance type. Note that this behaviour can be modified
by including a new CP Manager submodule, which can
be coded using the API provided by Simcan2Cloud. Once

Fig. 1 Main architecture of Simcan2Cloud

Page 10 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

a user arrives at the cloud (label 4), the cloud provider
manager checks whether this user has previously signed
an SLA. Thus, their requests are processed accordingly
using the corresponding scheduling policy (label 5).

When the resources can be accessed by the user that
requested them, the CP Manager submodule (label 6)
creates the VMs containing the applications to be exe-
cuted. The VMs are deployed using the features reflected
in the signed SLA. Next, the requested VMs are sent to
the Data centre module to be deployed on the available
physical resources (label 7).

Once a VM arrives in the Data centre module, the DC
Manager locates potential physical machines to deploy
the VM, which must satisfy the hardware requirements
indicated in the VM settings (label 8). Next, once the

hardware to deploy the VM has been located, the VM
is set up on the corresponding physical machine and its
execution starts (label 9). Finally, the DC Manager sends
a message to the CP Manager to update the list of avail-
able resources in the Data centre.

Figure 2 shows a class diagram containing the main
classes of the Simcan2Cloud simulator and how these
classes are related. Further details can be found at the
Appendix B. The main classes of the User generator mod-
ule are shown with a green background. UserBase is the
main entity and provides the basic functionality, in terms of
data management and structures, of the user modules. The
UserGenerator class provides different methods for creat-
ing workloads by specifying the exact moment when the
users arrive in the cloud, either randomly, or according to

Table 4 Excerpt from the Simcan2Cloud API

Component Id Method Description

UserGeneration 1 initialise Initialises the user generation module.

UserGeneration 2 generateShuffledUsers Generates a users workload with a random order.

UserGeneration 3 getNextUser Obtains the next user to be processed.

UserGeneration 4 sendRequest Sends a VM request to the cloud provider.

UserGeneration 5 subscribe Sends a subscription request to the cloud provider.

UserGeneration 6 createVmRequest Creates a VM request for a specific user.

UserGeneration 7 handleResponseVmAccept Handles the accept response of the cloud provider to a specific VM request.

UserGeneration 8 handleResponseVmReject Handles the reject response of the cloud provider to a specific VM request.

UserGeneration 9 updateVmUserStatus Updates the status of a specific VM.

UserGeneration 10 submitService Submits a service to be executed in the cloud.

UserGeneration 11 createAppRequest Generates a request for the execution of an application.

UserGeneration 12 handleResponseAppAccept Handles an accept response sent by the cloud provider for the execution of a specific
application.

UserGeneration 13 handleResponseAppReject Handles a reject response sent by the cloud provider for the execution of a specific applica-
tion.

UserGeneration 14 handleResponseAppTimeout Handles a timeout response sent by the cloud provider for the execution of a specific
application.

UserGeneration 15 calculateStatistics Generates a report with the statistics obtained during the simulation.

CloudProvider 16 initialise Initialises the cloud provider module.

CloudProvider 17 checkVmUserFit Checks whether the VMs requested by a user fits in a data-centre and sends the request to it.

CloudProvider 18 updateSubsQueue Updates the subscription queue.

CloudProvider 19 notifySubscription Notifies users that the system is ready to receive their service submissions.

CloudProvider 20 timeoutSubscription Notifies users that their subscription time has expired.

CloudProvider 21 handleUserAppRequest Forwards the request for the execution of an application to the data-centre.

DataCentreManager 22 initialise Initialises the data-centre manager module.

DataCentreManager 23 checkVmUserFit Checks whether the VMs requested by a user fits in the system.

DataCentreManager 24 getTotalCoresByVmType Returns all the computational cores required by a VM type.

DataCentreManager 25 acceptVmRequest Accepts a VM request.

DataCentreManager 26 rejectVmRequest Rejects a request for the execution of an application.

DataCentreManager 27 allocateVM Allocates a VM in the cloud.

DataCentreManager 28 handleUserAppRequest Handles the request for the execution of an application sent by a specific user.

DataCentreManager 29 acceptAppRequest Accepts a request for the execution of an application.

DataCentreManager 30 rejectAppRequest Rejects a request for the execution of an application.

DataCentreManager 31 timeoutAppRequest Notifies the user that the time for the execution of an application has expired.

Page 11 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

a specific distribution by using the UserDistribution class.
The generated workloads may consist of different types
of user, such as PriorityUsers and RegularUsers. However,
the integration of new user generators and user instances
can be performed by creating new classes that inherit from
UserGeneratorBase and UserBase, respectively.

The most important classes that the Cloud provider
module implements are shown with an orange back-
ground in the class diagram (see Fig. 2). CloudProvider-
Base is the main entity of the cloud provider. Some of its
most important features are creating the structure and the
hierarchy of objects relating to the data-centres, and find-
ing information about a specific data-centre component.
The integration of new cloud providers can be performed
by creating a new class that inherits from CloudPro-
viderBase. The new class must contain a new policy for
selecting the data-centres where the VMs requested by
the users are deployed. Currently, CloudProviderFirstFit
inherits from this class and implements an algorithm that
selects the first data-centre where the request fits.

In essence, the Data centre module contains the physi-
cal resources supporting the cloud, which are catego-
rised into storage nodes and computing nodes. A physical
machine is defined by setting up the basic sub-systems,
that is, CPU, storage, memory, and network. These nodes
are interconnected through a communication network
and can be modelled independently from each other, thus
allowing the composition of heterogeneous data-centres.
All the data-centre infrastructure is managed by a com-
ponent called data-centre manager. The main classes
of the Simcan2Cloud infrastructure are shown with a
blue background in the class diagram depicted in Fig. 2.

DataCentreManagerBase is the main entity of the data-
centre, and its most important features are, among others,
allocating the VMs on the physical machines, and schedul-
ing the jobs to be executed on the VM instances. The inte-
gration of new data-centre managers can be performed
by creating a new class that inherits from DataCentreM-
anagerBase. Currently, Simcan2Cloud incorporates two
different data-centre managers, namely DataCentreMan-
agerFirstFit and DataCentreManagerBestFit. The former
allocates the VMs requested by the user in the first avail-
able slot of the list that contains the available resources.
This slot can be a node or a rack, depending on the compu-
tational resources required to allocate the requested VMs.
The latter is focused on avoiding fragmentation and, there-
fore, this policy deals with allocating the user requests in
the slot that has the smallest quantity of resources avail-
able and into which the request fits. Additionally, this class
provides different methods for obtaining information
from the resources of a data-centre, such as the number of
available CPU cores and the total number of CPU cores.
The DataCentre entity consists of a collection of physical
resources required for the proper functioning of the sys-
tem, such as lists of computational and storage resources
instantiated by the Nodes class.

API
For this purpose, it implements the main functionality
of the simulation platform, that is, the user generation
engine and the cloud provider functionality. Through
the use of this API, it is possible to include in the plat-
form new user and cloud provider instances with cus-
tomized behaviour.

Fig. 2 Class diagram that represents the main classes of the Simcan2Cloud simulation core

Page 12 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

This section describes the API of Simcan2Cloud. The
main methods of this API are summarised in Table 4.
For the sake of clarity, only the methods belonging to the
main modules – user generation, cloud provider and data
centre manager – are shown. The first column shows the
cloud component that contains the method, and the fol-
lowing columns refer to the ID, name, and description of
the method. It is important to point out that these meth-
ods are implemented in the current version of Simcan-
2Cloud and can be overwritten, if necessary, to provide
specific functionalities. The idea is that new modules,
such as resource allocation policies and user behaviours,
can be easily included in the simulator by using this API.

The user generation core is detailed in methods 1-15.
Method 1 initialises the data structures required to start
the simulation, while methods 2-3 manage the users
arriving in the cloud. More specifically, generateShuf-
fledUsers generates a workload by randomly establish-
ing the moment when the users arrive in the cloud. This
method is particularly useful for reproducing the ran-
domness of user access to the cloud in real environments.
Once generated, the workload can be iterated by using
the getNextUser method, which provides the next user to
be processed by the cloud.

The creation and management of the VMs are handled by
methods 4-9. The VMs requested by the users are created
and sent to the cloud provider with the createVmRequest
and sendRequest methods, respectively. Depending on the
resources available in the cloud, the cloud provider sends
a notification message that is handled and updated by the
user through the handleResponseVmAccept, handleRespon-
seVmReject and updateVmUserStatus methods. If the cloud
provider sends a rejection message, which means that the
VMs requested by the user do not fit in the data-centre,
the user may send a subscription request to the cloud by
using the subscribe method. At this point, several options
exist for the developers to create new user behaviours, such
as choosing between subscribing to the cloud provider or
leaving the cloud with their request unattended to.

The services required by the users are handled by
methods 10-14. The applications to be executed on the
VMs are created and sent to the cloud provider by using
the createAppRequest and submitService methods. The
response of the cloud provider is managed by the han-
dleResponseAppAccept, handleResponseAppReject, and
handleResponseAppTimeout methods. Similarly to the
case of the VM requests, it is possible to create new user
behaviours by considering the user’s decisions depend-
ing on whether the cloud provider rejects the request.
For example, the user can select another application or
reduce the number of applications executed on a VM.
Finally, method 15 generates a report containing the sta-
tistics obtained during the simulation.

The functionality of the cloud provider is managed
by methods 16-21. The creation, initialisation, and con-
figuration of both the data-centre infrastructure and
the cloud provider are carried out via method 16, while
methods 17-18 manage the VMs requested by the user.
Method checkVmUserFit analyses whether the available
resources of one of the data-centres meet the request
requirements. Then, if the request fits in the data-centre,
that is, the requested VMs can be executed on the avail-
able resources, the cloud provider forwards the request
to the selected data-centre.

The subscription of the users to the cloud is managed by
methods 18 and 20. The updateSubsQueue method analy-
ses the subscription queue to find timeouts that reach the
maximum waiting time for users to obtain the requested
resources and selects the next requests to be processed.
It is worth mentioning that new queue systems for man-
aging users can be coded by overwriting the updateSub-
sQueue method. The notifySubscription method notifies
the user that the requested resources are available. The
timeoutSubscription method manages the waiting time
for users when the subscription timeout expires and the
requested resources remain unavailable. The method 21,
namely handleUserAppRequest, manages the services sub-
mitted by the users and forwards the request to the data-
centre where the VMs have previously been allocated.

The functionality of the data-centre manager is reflected
in methods 22-31. The creation, initialisation, and con-
figuration of the data-centre infrastructure are carried out
by method 22. Let us suppose that a new resource alloca-
tion policy, containing new and complex data structures,
is included in the simulator. In this case, methods 16 and
22, both named initialise, must be overwritten in order to
handle the new data structures. Methods 23-27 manage
the VMs requested by the user. Method 23, namely check-
VmUserFit, analyses whether the available resources of
the data-centre meet the request requirements, and if the
request fits in the data-centre. This check focuses in cal-
culating if the data-centre contains enough machines with
free resources to run the requested VMs. In such a case,
the data-centre manager allocates the requested VMs and
sends the user an acceptance message using the accept-
VmRequest and allocateVM methods, with ID 25 and 27,
respectively. Otherwise, if the request does not fit in the
system, the data-centre manager sends a rejection mes-
sage using method 26, namely rejectVmRequest. In the
current version of Simcan2Cloud, as mentioned in Sec-
tion “Architecture”, two different allocation policies are
included, namely best-fit and first-fit. However, the inte-
gration of new policies can be easily performed by imple-
menting new cloud providers with different policies in the
checkVmUserfit and allocateVM methods. Methods 28-31
handle the services requested by the users. Similarly to

Page 13 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

method 21, handleUserAppRequest manages the services
submitted by the users and allows request acceptance – or
rejection – via methods 29 and 30, respectively. Finally, if
the execution of the application exceeds the renting time,
a timeout notification is sent to the user via method 31,
namely timeoutAppRequest.

GUI
Simcan2Cloud allows the modelling and design of cloud
infrastructures with a high level of flexibility by configur-
ing, among other modules, resource allocation policies,
data-centres, and workloads. In essence, the configuration
of a cloud to be simulated in Simcan2Cloud consists of two
plain text files, where one defines the general architecture
of the cloud (data-centre, cloud provider, and generation of
users) and the other contains all the parameters required to
configure each module in the cloud environment (features
of each physical machine, configuration of VMs, and dis-
tribution of users in the workload, among others). Hence,
manually setting all the required parameters to configure
the simulated cloud is an error-prone and tedious task.

In order to facilitate both the configuration and the inter-
action with the simulation engine, Simcan2Cloud provides
a graphical user interface (GUI) (see Fig. 3) and consists of
three main parts: a tabbed panel, a tree panel and a menu.

The tree panel, which is located to the left of the tabbed
panel, shows the repository of the Simcan2Cloud simula-
tor, which consists of all the elements that have been pre-
viously modelled with the tabbed panel. This tree panel
also makes it possible to reuse, edit, and remove the com-
ponents from the repository.

The tabbed panel consists of 10 different editors that
allow users to model and configure the different parts
of the cloud, that is, CPUs, disks, memories, applica-
tions, VMs, SLAs, users, nodes, racks, data-centres,
and scenarios. The first three tabs, namely CPUs, Disks
and Memories, show the ways of configuring the com-
putational resources of a physical machine. These com-
ponents are used to customise both the computing and
storage nodes.

The applications submitted by the users for execu-
tion on the VM can be modelled – in the Applications
panel – by configuring the total number of CPU and I/O
operations to be processed. In this way, it is possible to
create different application types, such as data-intensive
and CPU-intensive applications, which are focused on
processing a large number of I/O and CPU operations,
respectively. Alternatively, the number of iterations can
be also configured. Thus, the final user is able to model
the length of the execution when the application mixes
CPU and I/O operations.

The VMs panel configures the number of cores, the
storage capacity (measured in GB), the cost per hour, the
number of cores, and the memory (measured in GB) of
each VM.

SLAs are configured in the SLAs panel. Thus, when a
new SLA is created, the configuration parameters for the
existing VMs in the repository are displayed in a table.
Figure 4 shows the configuration of Sla_1. In this case,
the three VMs that are stored in the repository (see left
frame in the figure), that is, VM_large, VM_medium,
and VM_small, can be configured for the current SLA.

Fig. 3 Screenshot of the Simcan2Cloud GUI

Page 14 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

In the table, the cost and other parameters, like offer
and compensation, can be set. Once these parameters
are assigned, the user can save the SLA in the repository,
which will be displayed in the components tree.

The Users tab allows the modelling of the behaviour of
users interacting with the cloud. To that end, the number
and type of the requested virtual machines, and the appli-
cation to be executed on these VMs, must be configured.

The Data-Centre tab enables the configuration of the
data-centre supporting the cloud, which is modelled by
configuring the computing and storage racks. In essence,
a rack is a collection of nodes interconnected through a
communication network. In order to model a rack, the
user must choose a node configuration – from the Nodes
tab – and the number of nodes provided. Let us mention
that the modular design of Simcan2Cloud makes it possi-
ble to easily model different cloud infrastructures by using
the components in the repository (see the left frame of the
GUI). Finally, the user must configure a communication
network to connect the racks of the data-centre.

The simulation scenario can be modelled in the Sce-
nario panel. For this, it is necessary to select the under-
lying infrastructure of the cloud (data-centres), the
workload to be processed, the distribution of the users
arriving in the cloud, and several parameters related to
the subscription time and costs.

Finally, the menu, which is at the top of the GUI, con-
sists of the management options. This menu creates con-
figuration files, and shows the Simcan2Cloud help and
other auxiliary operations.

Empirical study
This section presents a thorough empirical study in which
different cloud configurations are modelled to check the
applicability and usability of Simcan2Cloud. Each cloud
configuration has a homogeneous data-centre, that is, all
the physical machines contain the same features: a quad-
core CPU, 64 GB of RAM memory, and a storage device
of 500 GB with a read/write bandwidth of 500 Mbps.
These physical machines – hosting the VMs requested by
the users – are interconnected through a Gigabit Ether-
net communication network, and the cloud manager is
connected to the cloud through a 40 Gbps Ethernet net-
work. In this study, we use four different configurations
for the data-centre supporting the cloud, consisting of
128, 256, 512, and 1024 physical machines.

In order to analyse the different features of the platform,
we have divided the empirical study into two parts. The first
one focuses on studying the behaviour of cloud systems
considering synthetic workloads, while the second one con-
sists in analysing traces extracted from a real-world system.

Experiment 1: Synthetic workloads and multiple CPU
configurations
In this part, we use two different CPU configurations
– with different computing power for the CPU cores –
to analyse how the computing power affects the over-
all system performance. In addition, we have created a
synthetic workload – based on an exponential distribu-
tion – for conducting the experiments. In this way, each

Fig. 4 Screenshot of the SLAs configuration in Simcan2Cloud GUI

Page 15 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

cloud processes a workload consisting of 10,000 users
requesting resources. This workload has been generated
using four different user roles and three different con-
figurations for the virtual machines. All users with the
same role exhibit identical behaviour. Table 5 shows the
configuration of the VMs, where the first column refers
to the name of the VM, and the next columns represent
– respectively – the CPU, the memory, and the storage
used by the virtual machine. A detailed description of the
workload is given in Table 6, in which the first column
shows the name of the user role, the second column gives
the number of instances created for this user role, and
the last column contains the number of VMs requested
for a specific time frame. Particularly, this workload con-
tains – among other user instances – 3725 instances of
LemmingUser users, each one requesting 2 vmMedium
VMs for two hours. The timestamp indicating when
users arrive to the system has been calculated using an
exponential distribution with mean=60.5 seconds. On
each requested VM, the users deploy a CPU-intensive
appplication that executes five iterations of the follow-
ing actions: read 10MB of data from disk → execute
79,200,000 MIs → write 5 MB of data to disk. The maxi-
mum subscription time is 10 hours, which means that
those users that were not able to access the requested
resources in this time, left the system unattended. Finally,
90% of those users that needed more time to execute the
submitted applications – once the renting time expires –
requested an extension to allow the successful execution
of the applications.

Figure 5 shows the overall system performance when
processing the workload. The y-axis shows the waiting
time for each user, that is, the time elapsed from when
the user requests resources to the cloud provider, until
the moment when the user gains access to them. This
waiting time is computed by considering all users that
have waited for resources in the system. The x-axis dis-
plays the four configurations for the data-centre sup-
porting the cloud, consisting of 128, 256, 512, and 1024
physical machines, which are shown in blue, orange,
green, and red, respectively. Each dot represents a user
that was attended to, that is, the cloud was able to provide
the requested resources. Note that unattended users are
not shown in these charts. This experiment was carried

out using two different CPU configurations. Thus, Fig. 5a
and b show the results for the physical machines contain-
ing a CPU with a computing power of 40k MIPS and 70k
MIPS, respectively.

Figure 5a shows that when the cloud is supported
by 128 physical machines, the dots in the chart are dis-
persed, which clearly reflects that the system reaches
the saturation point and, consequently, few users access
the requested resources (blue column). When the num-
ber of physical machines increases up to 256 and 512
(orange and green columns), the chart renders a different
scenario in which the dots are more condensed, mean-
ing that a greater number of users access the resources,
hence reducing the saturation in the system. However,
when the cloud contains 512 nodes, there were few
users waiting nearly ten hours to access the requested
resources. Finally, when the cloud is configured with
1024 physical machines, the stress of the system is sig-
nificantly reduced, which allows the cloud to provide the
resources to all the users in the workload.

Chart Fig. 5b shows the results for processing the work-
load when the CPU power of the physical machines is
increased up to 70k MIPS. In this case, we observe a simi-
lar tendency to the one shown in the previous chart, that
is, increasing the number of physical resources improves
the overall system performance by reducing the waiting
time. However, it is worth noting that although the cloud
is also saturated when the number of physical machines
is equal to or below 512, the waiting time is shorter.
The main difference between these scenarios – using a
CPU@40k MIPS and a CPU@70k MIPS – lies in the num-
ber of applications that were successfully executed before
the renting time of the VMs expires. Thus, in those cases
in which all the applications submitted by the user are
completely executed, the requested VMs are liberated,
the user leaves the system, and the requests of new users
are processed. On the contrary, when the applications are
not completely executed, the user can request an exten-
sion and, consequently, these resources are not provided
to new users. In this case, the system might become com-
pletely saturated if the available resources are not enough
to process the workload. When the cloud contains 1024
physical machines, all the users are immediately attended
to, which is shown in the red column.

Table 5 Configuration of virtual machines for generating the
workload

VM Name CPU cores /
SCU

RAM Memory Storage

vmSmall 1 2 GB 250 GB

vmMedium 2 4 GB 500 GB

vmLarge 4 8 GB 1 TB

Table 6 Configuration of user roles for generating the workload

User role # User instances Requested resources

MinionUser 5000 5xvmSmall 2h

LemmingUser 3725 2xvmMedium 2h

SmurfUser 125 50xvmMedium 2h

FraggleRock 1150 5xvmLarge 3h, 5xvmMedium 2h

Page 16 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

Tables 7 and 8 show detailed information of this experi-
ment. The first column – labelled as Machines – shows
the number of physical machines supporting the cloud.
The following columns, labelled as U. Attended, Aver-
age, Std, and Min, show – in hours – the number of users
attended to, the average waiting time, the standard devia-
tion, and the minimum waiting time for all the users in
the workload that were successfully attended to, respec-
tively. The next three columns display the 25th , 50th and
75th percentile, that is, once the data are sorted – from
lowest to highest – the waiting time below which the
25%, 50% and 75% of the users are found, respectively.

In this experiment, two simulation parameters have a
direct impact on the overall system performance. First, the
CPU power provided by the physical machines. When the
CPU is improved, we observe an increment in the number
of users attended to (see the column labelled U. Attended).
When the cloud provides 128 physical machines, we
observe that using a CPU@70k MIPS allows the cloud
to successfully attend to 4399 users (see Table 8). How-
ever, when a CPU@40k MIPS is used, only 2163 users are
attended to (see Table 7). It is important to point out that
this improvement is more noticeable when the cloud uses
a small number of physical machines (128 and 256). Using
a higher number of physical machines leads to a similar
result for both CPUs. In fact, those clouds providing 1024
physical machines, successfully attended to all the users in
the workload with both CPUs. Additionally, the average
waiting time is only reduced when the cloud provides 512
physical machines, from 0.771 hours using the CPU@70k
MIPS to 0.634 hours using the CPU@40k MIPS. In the
rest of the cases, using the most powerful CPU led to
longer waiting times since the number of users attended

to is significantly greater. The second parameter is the
size of the cloud – represented by the number of physi-
cal machines – which has a direct impact on the number
of users that are successfully attended to. In particular,
this parameter is directly related to the saturation of the
system, especially when the number of physical machines
supporting the cloud is small, hence not allowing the sys-
tem to fully process the workload. Consequently, as the
number of physical machines increases, a higher num-
ber of VMs are deployed in the system and, therefore, a
greater number of users are attended to. We observe that
this difference is more noticeable when a small number of
physical machines is used. Both tables show that the satu-
ration of the cloud is clearly alleviated when the system
contains more than 512 physical machines.

Figure 6 shows the time usage for each CPU core when
processing the workload. The x-axis shows the core ID,
and the y-axis represents the percentage of time usage
for each CPU core, where 100% represents the total time
required to fully process the workload. These charts
show that when the cloud provides up to 512 physical
machines, the time usage for each CPU is nearly 100%.
These cases clearly reflect the saturation of the system.
However, when the cloud uses 1024 physical machines,
we notice that there is a significant number of CPU cores
with a low percentage of time usage. In particular, this
can be observed in the CPU cores ranging from 3300 to
4096 – in Fig. 6d – and in the CPU cores ranging from
2500 to 4096 in Fig. 6h.

Figure 7 shows the percentage of CPU cores in use
when processing the workload. The x-axis shows the
timeline and the y-axis represents the percentage of CPU
cores in use.

Fig. 5 Performance evaluation using different CPUs in the physical machines

Page 17 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

Similarly to the previous experiment, in this case we
can also observe a saturated system when the number
of physical machines supporting the cloud is equal to, or
below, 512. In particular, almost 100% of the CPU cores
were used during the total time required to process the
workload. However, increasing the number of physi-
cal machines up to 1024 renders a completely different
scenario, which provides different results depending on
the CPU used. Thus, using CPUs@40k MIPs, the per-
centage of CPU cores used during the simulation ranged
from 75% to 100%. However, using the fastest CPU

significantly improves the overall system performance, in
such a way that the percentage of CPUs required ranges
from 57% to 83%, which allows the cloud to immediately
process new user requests, that is, the users are attended
to as the resources are requested.

Experiment 2: Real world traces and SLAs
The main objective of this experiment is to analyse the
behaviour of the cloud taking into consideration SLA2 ,
described in Table 3. Specifically, we have modelled
four different scenarios, where a different percentage of

Table 7 Results obtained when processing the workload using CPUs@40k MIPS

Machines U. Attended Average Std Min 25% 50% 75% Max

128 2163 8.692 2.765 0.0 9.91 9.985 9.995 9.999

256 5089 7.791 3.212 0.0 5.39 9.963 9.990 10.0

512 9183 0.634 1.874 0.0 0.02 0.111 0.527 9.999

1024 10000 0.004 0.030 0.0 0.0 0.0 0.0 0.770

Table 8 Results obtained when processing the workload using CPUs@70k MIPS

Machines U. Attended Average Std Min 25% 50% 75% Max

128 4399 8.908 2.350 0.0 9.81 9.898 9.953 9.999

256 8689 5.366 2.702 0.0 3.12 5.210 7.637 9.999

512 9638 0.771 2.518 0.0 0.0 0.0 0.003 9.998

1024 10000 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Fig. 6 Time usage (as %) of each CPU core to process the workload

Page 18 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

priority users (PU) and reserved machines (RM) have
been selected:

• 0% of priority users and 0% of reserved machines.
• 10% of priority users and 10% of reserved machines.
• 30% of priority users and 10% of reserved machines.
• 30% of priority users and 30% of reserved machines.

In this experiment, in contrast to the previous one where a
synthetic workload is used to represent the users attended
by the cloud, we use a trace – written in SWF format
– obtained from a real-world system1. Particularly, this
trace consists of 51987 jobs, launched from May 2014 to
August 2014, and has been extracted from the GAIA clus-
ter, which is located in the University of Luxemburg. This
trace has been pre-processed to remove jobs with non-
valid parameters, such as runtime = 0. As a result, 130 jobs
were removed, leaving a total of 51857 jobs executed in the
simulator. Regarding the data-centre supporting the cloud
for processing this trace, we have modelled four different
configurations consisting of 256, 512, 768 and 1024 physi-
cal machines. Since the trace does not specify the virtual
resources requested to execute each job, we use the vmS-
mall instance (described in Table 5) for all users in the sim-
ulated environment. This experiment has been conducted
on the basis of that each VM must be rented by a minimum
of 1 hour. In order to compare the results obtained by using
Simcan2Cloud, and those generated in the experiment

executed over the GAIA cluster, we have extended the
experiments by removing this time limitation.

Figure 8 shows the overall system performance for pro-
cessing the previously described trace. The y-axis repre-
sents the waiting time, while the x-axis shows the number
of physical machines supporting the cloud. In addition, we
have carried out the experiment varying the percentage of
priority users and reserved machines. As we observed in
the previous experiments, increasing the number of nodes
decreases the waiting time of the users. In particular, this
experiment shows that increasing the number of both pri-
ority users and reserved machines – in a proportional way
– also decreases the waiting time. Specifically, this can be
seen in the Fig. 8a and b, where the percentage of priority
users (PU) and reserved machines (RM) variates from 0%
to 10%, respectively. It is worth mentioning that priority
users do not wait in the cloud provider queue.

The details of these experiments are shown in Table 9,
where the first column, labelled as Configuration, rep-
resents the percentage of priority users and reserved
machines. The second column denotes the number of
machines that compose the cloud. The next three columns
refer to the number of users that have been attended to,
that is, the number of attended priority users (Pri. Att.),
the number of priority users that have been attended
as regular users (Pri. Reg. Att.), and the number of regu-
lar users attended (Reg. Att.). Next, the following three
columns show the number of users that have not been
attended, that is, the total number of unattended users
(Total Unatt.), the unattended regular users (Reg. Unatt.)

Fig. 7 Percentage of CPU cores used to process the workload

1 https://www.cs.huji.ac.il/labs/parallel/workload/l_unilu_gaia/index.html

Page 19 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

and the unattended priority users (Pri. Unatt.). Finally, the
last column shows the total income generated by the cloud
provider for each cloud configuration (Total Income).

After a careful analysis of these results, we observe that
– considering the SLAs features – increasing the percent-
age of reserved machines of the data-centre, has a direct
impact on the overall system performance, causing a dec-
rement in the number of unattended priority users and, at
the same time, increasing the number of unattended regu-
lar users (see first and second row in Table 9). This situa-
tion occurs due to the regular users do not have access to
the reserved machines and, therefore, the number of avail-
able nodes for this type of users is reduced in this configu-
ration. Similarly, increasing the number of priority users in
proportion to the number of reserved machines, positively
affects the overall performance, which is reflected in a high

number of attended priority users and unattended regular
users (see first, second and fourth row in Table 9). In this
particular case, priority users can be attended as regular
users, hence reducing the available nodes for the remain-
ing regular users. However, increasing the number of pri-
ority users without considering the reserved machines
leads to increasing the number of unattended priority
users (see third and fourth row in Table 9).

Regarding the total income, Fig. 9 depicts a summary of
the cloud provider profit, which can be calculated using
different configurations of physical machines, and percent-
ages of priority users and reserved machines for processing
the real-world trace. In this case we observe that using a
reduced number of physical machines, the best income is
achieved by not using priority users nor reserved machines.
On the contrary, when the number of physical machines

Fig. 8 Performance evaluation using different percentages of priority users and reserved machines

Table 9 Summary of the results obtained in Experiment 2

Configuration # Machines. Pri. Att. Pri. Reg. Att. Reg. Att. Total Unatt. Reg. Unatt. Pri. Unatt. Total Income

NP:0, NR:0 256 0 0 40450 11407 11407 0 44373.3

512 0 0 51673 184 184 0 62266.6

768 0 0 51857 0 0 0 65282.7

1024 0 0 51857 0 0 0 65998.6

NP:10, NR:10 256 3328 54 35887 12588 10690 1898 44282.0

512 4302 168 46406 981 171 810 65201.3

768 5040 126 46577 114 0 114 68773.2

1024 5233 27 46577 20 0 20 69589.6

NP:30, NR:10 256 5335 1260 30693 14569 5467 9102 44868.9

512 7728 3141 36156 4832 4 4828 68527.2

768 9835 5418 36160 444 0 444 74518.8

1024 11176 4433 36160 88 0 88 75875.9

NP:30, NR:30 256 10039 53 28072 13693 8088 5605 46827.3

512 13299 272 36026 2260 134 2126 70135.4

768 15227 237 36160 233 0 233 74933.6

1024 15647 11 36160 39 0 39 75762.0

Page 20 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

is increased, and the number of priority users increases in
proportion to the number of reserved machines, the results
show otherwise, hence achieving higher incomes.

As performed in Experiment 1, we have analysed the time
usage of each CPU of the data-centre while processing the
real trace. Figure 10 shows the CPU usage taking into con-
sideration the four configurations – with different percent-
ages of priority users and reserved machines – designed
in this experiment. As expected, increasing the number of
physical machines positively impacts on the overall usage
of the cloud. Regarding the reserved machines, the greater
the ratio between reserved machines and priority users, the
lower the percentage of usage of the reserved machines.
This fact can be seen in the low peak located in Fig. 10e
from CPU 200 to 256. However, when this ratio decreases
(increasing the PU and keeping the same number of RM),
the usage percentage of reserved machines is increased.
In this case, the low peak detected in the previous graph is
attenuated, as it can be seen in Fig. 10i.

Fig. 9 Cloud provider income for processing a real-word workload

Fig. 10 Time usage (as %) of each CPU core to process the real-world workload

Page 21 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

Finally, the percentage of CPU cores used in the data-
centre is shown in Fig. 11. As in the previous experiments,
increasing the number of nodes causes a decrement in
the usage percentage of the cluster. Specifically, we notice
that increasing the number of priority users and reserved
machines slightly reduces the usage percentage of the
platform. This fact can be observed in the first 500 hours,
where we can see more prominent saw teeth in the case
of priority users. Moreover, this fact is appreciated in the
low peaks – among the first 500 hours – of the Fig. 11a,
which achieves 35% of usage, while in Fig. 11i the CPU
usage is reduced to 25%.

Figure 12 shows a comparison between the CPU usage
of Simcan2Cloud (see Fig. 12a), and the one obtained from
the GAIA cluster (see Fig. 12b), for processing the trace.
In this experiment, we use a data-centre with 640 physical
machines, each equipped with a quad-core CPU. The x-axis
of these charts show the elapsed time from when the sys-
tem starts its execution until the trace is fully processed. In
general, we appreciate a similar shape in the peaks shown

in both charts. For instance, Simcan2Cloud represents the
same low peaks that are shown in the behaviour obtained
from the real cluster (see low peaks in hours 535, 1036, and
1470). Similarly, high peaks are also represented in the simu-
lated scenario (see high peaks in hours 307, 1256, and 1850).

For the sake of comprehension, we have included addi-
tional charts in Section Appendix, which show the results
of analysing the behaviour of additional cloud configura-
tions. Nevertheless, we think that the results included in
Section “Empirical study” are representative enough to
gather sound conclusions.

Conclusions and future work
In this paper, we have presented Simcan2Cloud, a dis-
crete-event-based framework for modelling and simulat-
ing cloud systems. Simcan2Cloud is mainly focused on
the cloud provider, supporting the modelling of cloud
infrastructures and the interaction of the users with the
cloud. Our simulator tool considers monetary costs,

Fig. 11 Percentage of CPU cores used to process the real-world workload

Page 22 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

cloud deployments, a flexible configuration for the VMs
offered, and mechanisms for analysing the simulated
environments. Furthermore, Simcan2Cloud includes
SLAs for modelling two types of users, namely regular
and high-priority users, depending on whether they are
willing to wait for the resources they need or not.

A complete case study showing the modelling and evalu-
ation of different cloud scenarios has been presented, and
the impact of the parameters considered has been ana-
lysed. The main parameters considered were the CPU
power provided by the physical machines and the cloud
size, that is, the number of physical machines. In this study,
several variables, such as the number of users attended to,
the average waiting time, the standard deviation, and the
minimum waiting time for all the users, were analysed.

The main objective of the empirical study is to assess
the suitability of data-centres supporting the cloud for
processing a workload, with a strong focus on system
performance and scalability. After a thorough analysis
of the obtained results, we conclude that the number of
machines and the CPU used in the data-centre directly
impact the overall system performance. The results
clearly demonstrate situations where the data-centre
becomes saturated, leading to a significant percentage of
users being unable to be attended to. Another interesting
parameter is the number of reserved machines (RM). The
results clearly indicate that this parameter must be prop-
erly configured according to the size of the data-centre to
achieve the best results. In addition, we have replicated a
trace extracted from the GAIA cluster, a real-world pro-
duction-ready cluster located at the University of Luxem-
bourg. The results show a similar trend in performance
compared to the ones produced by the simulator.

To address the challenge of validating a new simulation
platform, we have meticulously designed experiments to
explore a wide spectrum of cloud configurations. By var-
ying parameters related to the data-centre, virtualised
resources, and user heterogeneity, our experiments pro-
vide valuable insights into the system’s behaviour across

various scenarios. Furthermore, we have successfully
conducted an experiment where Simcan2Cloud accu-
rately reproduces a trace from the GAIA cluster, show-
casing similar performance trends. In our pursuit of an
effective validation approach we plan, as future work, to
explore the integration of statistical methods and meta-
morphic testing (MT) techniques. This involves design-
ing metamorphic relations (MRs) for crucial modules
like the user generator, cloud provider, and data-centre,
among others. These MRs reflect the underlying prop-
erties of the system under test, enabling us to identify
scenarios that deviate from expected behaviour due to
unfulfilled MRs. Such an approach holds great promise
for ensuring the reliability and accuracy of our simula-
tion platform.

For future work, we are planning an extension of Sim-
can2Cloud to support one of the latest hot topics in com-
puting: Fog Computing. To that end, we plan to include
new modules for supporting a layered distribution of com-
ponents, such as IoT devices, fog devices, infrastructure
monitoring, and IoT applications. Regarding IoT devices,
we plan to include sensors and actuators. These devices
allows designing a wide variety of things, such as hearth
monitors, wearables, environmental sensors, and cameras,
among others. Fog devices are focused on bridging the gap
between the IoT devices and the cloud provider. In this
way, the delay in communications will be strongly reduced,
which is one of our topics of interests. Moreover, we plan
to monitor, in a highly detailed way, the underlying system
infrastructure to analyse its scalability. Additionally, IoT
application models will be provided to allow the execution
of application in the IoT devices.

In addition, we plan to extend the spectrum of pos-
sible cloud configurations, increasing the number
and CPU power of the physical machines, and also
the range of configurations for the hardware, such as
the disk space of the hosts. We also intend to analyse
the impact of resource costs on the cloud provider’s
income.

Fig. 12 Comparison (Simcan2Cloud vs GAIA cluster) focusing on the CPU usage percentage

Page 23 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

Appendix

Appendix A: Graph Appendix
In this appendix, we include an extended set of graphs
extracted from the experimental study.

Fig. 13 Performance evaluation using CPUs@40k MIPS, and different percentages of priority users and reserved machines

Page 24 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

Fig. 14 Performance evaluation using CPUs@40k MIPS, and different percentages of priority users and reserved machines

Page 25 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

Fig. 15 Time usage (as %) of each CPU core to process the real-world workload

Page 26 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

Fig. 16 Percentage of CPU cores used to process the real-world workload

Page 27 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

Table 10 Results obtained when processing the real-world
workload using PU:0% and RM:0%

Machines Pri.
Att.

Pri.
as
Reg.
Att.

Reg.
Att.

Total
Unatt.

Reg.
Unatt.

Pri.
Unatt.

Total
Income

256 0 0 51322 535 535 0 41673.6

512 0 0 51857 0 0 0 55496.6

768 0 0 51857 0 0 0 56299.3

1024 0 0 51857 0 0 0 56382.8

Table 11 Results obtained when processing the real-world
workload using PU:10% and RM:10%

Machines Pri.
Att.

Pri.
as
Reg.
Att.

Reg.
Att.

Total
Unatt.

Reg.
Unatt.

Pri.
Unatt.

Total
Income

256 4519 167 46094 1077 483 594 41818.5

512 5013 180 46577 87 0 87 58318.4

768 5241 39 46577 0 0 0 59429.6

1024 5277 3 46577 0 0 0 59561.4

Table 12 Results obtained when processing the real-world
workload using PU:20% and RM:10%

Machines Pri.
Att.

Pri.
as
Reg.
Att.

Reg.
Att.

Total
Unatt.

Reg.
Unatt.

Pri.
Unatt.

Total
Income

256 7260 1615 41037 1945 321 1624 42833.2

512 9084 1217 41358 198 0 198 60428.6

768 9828 669 41358 2 0 2 61858.0

1024 10223 276 41358 0 0 0 61993.7

Table 13 Results obtained when processing the real-world
workload using PU:30% and RM:10%

Machines Pri.
Att.

Pri.
as
Reg.
Att.

Reg.
Att.

Total
Unatt.

Reg.
Unatt.

Pri.
Unatt.

Total
Income

256 5335 1260 30693 14569 5467 9102 44868.9

512 7728 3141 36156 4832 4 4828 68527.2

768 9835 5418 36160 444 0 444 74518.8

1024 11176 4433 36160 88 0 88 75875.9

Table 14 Results obtained when processing the real-world
workload using PU:20% and RM:20%

Machines Pri.
Att.

Pri.
as
Reg.
Att.

Reg.
Att.

Total
Unatt.

Reg.
Unatt.

Pri.
Unatt.

Total
Income

256 9284 230 40847 1496 511 985 43462.7

512 10221 179 41358 99 0 99 60301.8

768 10480 19 41358 0 0 0 61761.9

1024 10499 0 41358 0 0 0 61993.7

Table 15 Results obtained when processing the real-world
workload using PU:30% and RM:30%

Machines Pri.
Att.

Pri.
as
Reg.
Att.

Reg.
Att.

Total
Unatt.

Reg.
Unatt.

Pri.
Unatt.

Total
Income

256 10039 53 28072 13693 8088 5605 46827.3

512 13299 272 36026 2260 134 2126 70135.4

768 15227 237 36160 233 0 233 74933.6

1024 15647 11 36160 39 0 39 75762.0

Page 28 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

Fig. 17 Cloud provider income for processing a real-word workload

Appendix B: Implementation details
This Appendix includes additional information related
to the most important components of the Simcan2Cloud
architecture: user generator, cloud provider and data-
centre. The main classes and features of these compo-
nents are presented during this section.

Listing 1 shows an excerpt from the UserGenerator-
Base class. The user instances are parsed from the con-
figuration files and stored in the data structures of the

user generation module (see lines 3-4). In addition,
there exist other features of the user generation engine
that can be configured, such as allUserArrivesAtOnce,
startDelay and intervalBetweenUsers (see lines 5-7).
These parameters denote the possibility that all the
users arrive in the cloud at the beginning of the simula-
tion, the delay time prior to the first user arriving in the
cloud, and the time interval between users arriving in
the cloud, respectively.

Listing 1 Excerpt from the UserGeneratorBase class

Page 29 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

Listing 2 shows the main elements of the base class that
represents the cloud provider, namely CloudProvider-
Base. This class contains meta-data for monitoring and
managing the resources of the data-centres (see line 4).
This meta-data – parsed from the configuration file – is

used to locate the most suitable data-centre to allocate
the VMs requested by the users (see line 6). The main
objective of this class is to process the requests from the
users – forwarding them to the data-centres – and man-
age the user subscriptions.

Listing 2 Excerpt from the CloudProviderBase class

Listing 3 Excerpt from the DataCentreManager class

Listing 4 Excerpt from the DataCentre class

Listing 3 shows the main elements of the data-centre
manager, which represent the data-centre meta-data (see
line 3), the method for choosing the machines on which
to allocate the requests (see line 6), as well as the methods
for obtaining information (see lines 7 and 8). The inte-
gration of new data-centre managers can be performed

by creating a new class that inherits from DataCentre-
ManagerBase, which must overwrite the method select-
Node (see line 6) containing the new resource scheduling
policy. Currently, Simcan2Cloud incorporates two differ-
ent data-centre managers, namely DataCentreManager-
FirstFit and DataCentreManagerBestFit.

Page 30 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

Abbreviations
API Application Programming Interface
AWS Amazon Web Services
CPU Central Processing Unit
EC2 Elastic Compute Cloud
GB Gigabyte
Gbps Gigabits per second
GUI Graphical User Interface
I/O Input/Output
MB Megabyte
Mbps Megabits per second
MIPS Millions Instructions per second
MIs Millions Instructions
PU Priority users
RAM Random Access Memory
RM Reserved machines
SLAs Service Level Agreement
SoTA State of The Art
TCP Transmission Control Protocol
UDP User Datagram Protocol
VM Virtual Machine

Acknowledgements
Not applicable.

Authors’ contributions
Pablo C. Cañizares authored, reviewed drafts of the paper, prepared figures
and tables, and approved the final draft. Alberto Núñez conceived and
designed the experiments, authored and reviewed drafts of the paper, and
approved the final draft. Adrián Bernal performed the experiments, prepared
figures and tables, and approved the final draft. María-Emilia Cambronero
analysed the data, authored and reviewed drafts of the paper, and approved
the final draft. Adam barker analysed the data, reviewed drafts of the paper,
and approved the final draft.

Authors’ information
Not applicable.

Funding
This work was supported by the Spanish MINECO/FEDER project under
grants PID2021-122270OB-I00, TED2021-129381B-C21 and PID2019-
108528RB-C22, the Comunidad de Madrid project FORTE-CM under grant
S2018/TCS-4314, project S2018/TCS- 4339 (BLOQUES-CM) co-funded by
EIE Funds of the European Union and Comunidad de Madrid, Madrid
Government (Comunidad de Madrid-Spain) under the Multiannual
Agreement with the Complutense University as part of the Program
to Stimulate Research for Young Doctors in the context of the V PRICIT
(Regional Programme of Research and Technological Innovation) under
grant PR65/19-22452, and the University of Castilla-La Mancha (cofunded
with FSE funds, EU) under the announcement 2018/12504 published in
the DOCM.

Availability of data and materials
The data and materials are available from the corresponding author on rea-
sonable request. The source code is available at GitHub: https:// github. com/
Pablo CCani zares/ Simca n2Clo ud.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 16 January 2023 Accepted: 14 August 2023

References
 1. Flexera (2019) RightScale 2019 State of the Cloud Report. Tech. rep
 2. Perumal K, Mohan S, Frnda J, Divakarachari PB (2022) Dynamic resource

provisioning and secured file sharing using virtualization in cloud
azure. J Cloud Comput Adv Syst Appl 11(46):1–12

 3. Oren T, Yilmaz L (2012) Synergies of simulation, agents, and systems
engineering. Expert Syst Appl 39(1):81–88

 4. Khani H, Khanmirza H (2019) Randomized routing of virtual machines
in IaaS data centers. PeerJ Comput Sci 5:211

 5. Arzymatov K, Sapronov A, Belavin V, Gremyachikh L, Karpov M, Ustyu-
zhanin A, Tchoub I, Ikoev A (2020) SANgo: A storage infrastructure
simulator with reinforcement learning support. PeerJ Comput Sci 6:271

 6. Mansouri N, Ghafari R, Zade B (2020) Cloud computing simulators: A
comprehensive review. Simul Model Pract Theory 104(102):144

 7. Schad J, Dittrich J, Quiané-Ruiz JA (2010) Runtime measurements in
the cloud: observing, analyzing, and reducing variance. VLDB Endow-
ment 3:460–471

 8. Calheiros RN, Ranjan R, Beloglazov A, Rose CAFD, Buyya R (2011)
Cloudsim: A toolkit for modeling and simulation of cloud computing
environments and evaluation of resource provisioning algorithms.
Softw Pract Experience 41(1):23–50

 9. Castañé G, Núñez A, Llopis P, Carretero J (2013) E-mc: A formal frame-
work for energy modelling in cloud computing. Simul Model Pract
Theory 39:56–75

 10. Kecskemeti G (2015) DISSECT-CF: A simulator to foster energy-
aware scheduling in infrastructure clouds. Simul Model Pract Theory
58:188–218

 11. Rossini A, Kritikos K, Nikolov N, Domaschka J, Griesinger F, Seybold D,
Romero D, Orzechowski M, Kapitsaki G, Achilleos A (2017) The cloud
application modelling and execution language (CAMEL). Ulm University,
Tech. rep

 12. Dimitri N (2020) Pricing cloud IaaS computing services. J Cloud Comput
Adv Syst Appl 9(14):1–11

 13. Sun X, Wang Z, Wu Y, Che H, Jiang H (2021) A price-aware congestion
control protocol for cloud services. J Cloud Comput Adv Syst Appl
10(55):1–15

 14. Binz T, Breitenbücher U, Kopp O, Leymann F (2014) TOSCA: Portable auto-
mated deployment and management of cloud applications. Advanced
Web Services. Springer, New York, pp 527–549

 15. Silva G, Rose L, Calinescu R (2014) Cloud DSL: A Language for Support-
ing Cloud Portability by Describing Cloud Entities. In: 2nd International
Workshop on Model-Driven Engineering on and for the Cloud, Cloud-
MDE’14. Valencia, Spain, CEUR Workshop Proceedings, 1242;36–45.

 16. Guillén J, Miranda J, Murillo J, Canal C (2013) A UML Profile for modeling
multicloud applications. In: 2nd European Conference on Service-Ori-
ented and Cloud Computing, Springer, ESOCC’13, pp 180–187

 17. Fakhfakh F, Kacem HH, Kacem AH (2017) Simulation tools for cloud
computing: A survey and comparative study. In: 16th International
Conference on Computer and Information Science, ICIS’17. IEEE Wuhan,
China, pp 221–226

 18. Byrne J, Svorobej S, Giannoutakis K, Tzovaras D, Byrne P, Östberg PO,
Gourinovitch A, Lynn T (2017) A review of cloud computing simulation
platforms & related environments. In: 7th International Conference on
Cloud Computing and Services Science, CLOSER’17. ACM, Porto Portugal,
pp 651–663

 19. Bhatia M, Sharma M (2016) A critical review & analysis of cloud comput-
ing simulators. Int J Latest Trends Eng Technol 1:29–36

 20. Singh R, Patel P, Singh P (2015) Cloud simulators: A review. Int J Adv
Comput Electron Technol 2(2):62–67

 21. Zhao W, Peng Y, Xie F, Dai Z (2012) Modeling and simulation of cloud
computing: A review. In: 2012 IEEE Asia Pacific Cloud Computing Con-
gress (APCloudCC). IEEE, Shenzhen, China, pp 20–24

 22. Malik AW, Bilal K, Aziz K, Kliazovich D, Ghani N, Khan SU, Buyya R (2014)
CloudNetSim++: A toolkit for data center simulations in OMNeT++. In:
11th Annual High Capacity Optical Networks and Emerging/Enabling
Technologies (Photonics for Energy). IEEE, Charlotte, NC, USA, pp 104–108

 23. Keller G, Tighe M, Lutfiyya H, Bauer M (2013) DCSim: A data centre
simulation tool. In: 2013 IFIP/IEEE International Symposium on Integrated
Network Management, IEEE, IM’13, pp 1090–1091

https://github.com/PabloCCanizares/Simcan2Cloud
https://github.com/PabloCCanizares/Simcan2Cloud

Page 31 of 31Cañizares et al. Journal of Cloud Computing (2023) 12:133

 24. Fernández-Cerero D, Fernández-Montes A, Jakóbik A, Kołodziej J, Toro M,
(2018) Score: Simulator for cloud optimization of resources and energy
consumption. Simul Model Pract Theory 82:160–173. https:// doi. org/ 10.
1016/j. simpat. 2018. 01. 004, https:// www. scien cedir ect. com/ scien ce/ artic
le/ pii/ S1569 190X1 83000 30

 25. Fernández-Cerero D, Jakóbik A, Fernández-Montes A, Kołodziej J (2019)
GAME-SCORE: Game-based energy-aware cloud scheduler and simulator
for computational clouds. Simul Model Pract Theory 93:3–20

 26. Núñez A, Vázquez-Poletti JL, Caminero AC, Castañé GG, Carretero J,
Llorente IM (2012) iCanCloud: A flexible and scalable cloud infrastructure
simulator. J Grid Comput 10(1):185–209

 27. Garg SK, Buyya R (2011) Networkcloudsim: Modelling parallel applica-
tions in cloud simulations. In: 2011 Fourth IEEE International Conference
on Utility and Cloud Computing. IEEE, Melbourne, VIC, Australia, pp
105–113

 28. Wickremasinghe B, Calheiros RN, Buyya R (2010) Cloudanalyst: A
cloudsim-based visual modeller for analysing cloud computing environ-
ments and applications. In: 2010 24th IEEE International Conference on
Advanced Information Networking and Applications. IEEE, Perth, WA,
Australia, pp 446–452

 29. Fittkau F, Frey S, Hasselbring W (2012) Cdosim: Simulating cloud deploy-
ment options for software migration support. In: 6th International
Workshop on the Maintenance and Evolution of Service-Oriented and
Cloud-Based Systems, MESOCA’12. IEEE Computer Society, Trento, Italy,
pp 37–46

 30. Chen W, Deelman E (2012) Workflowsim: A toolkit for simulating scientific
workflows in distributed environments. In: 8th International Conference
on E-Science, eScience’12. IEEE, Chicago, IL, USA, pp 1–8

 31. Jararweh Y, Jarrah M, kharbutli M, Alshara Z, Alsaleh MN, Al-Ayyoub M,
(2014) Cloudexp: A comprehensive cloud computing experimental
framework. Simul Model Pract Theory 49:180–192. https:// doi. org/ 10.
1016/j. simpat. 2014. 09. 003, https:// www. scien cedir ect. com/ scien ce/ artic
le/ pii/ S1569 190X1 40014 64

 32. Sqalli MH, Al-saeedi M, Binbeshr F, Siddiqui M (2012) Ucloud: A simu-
lated hybrid cloud for a university environment. In: 1st International
Conference on Cloud Networking, CLOUDNET’12. IEEE, Paris, France, pp
170–172

 33. Varga A (2010) OMNeT++. Modeling and Tools for Network Simulation.
Springer, Berlin, Heidelberg, pp 35–59

 34. Baumgart I, Heep B, Krause S (2009) OverSim: A scalable and flexible
overlay framework for simulation and real network applications. In: 9th
International Conference on Peer-to-Peer Computing, IEEE, P2P’09, pp
87–88

 35. TD Nguyen, EN Huh (2018) ECSim++: An INET-Based Simulation Tool for
Modeling and Control in Edge Cloud Computing. In: IEEE International
Conference on Edge Computing, EDGE’18. IEEE, San Francisco, California,
USA, pp 36–45

 36. Qayyum T, Malik A, Khattak MK, Khalid O, Khan S (2018) FogNetSim++: A
toolkit for modeling and simulation of distributed fog environment. IEEE
Access 6:63,570–63,583

 37. Amazon (2021) Amazon Elastic Compute Cloud. Web page at http:// aws.
amazon. com/ ec2/. Accessed Mar 26 2021

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.simpat.2018.01.004
https://doi.org/10.1016/j.simpat.2018.01.004
https://www.sciencedirect.com/science/article/pii/S1569190X18300030
https://www.sciencedirect.com/science/article/pii/S1569190X18300030
https://doi.org/10.1016/j.simpat.2014.09.003
https://doi.org/10.1016/j.simpat.2014.09.003
https://www.sciencedirect.com/science/article/pii/S1569190X14001464
https://www.sciencedirect.com/science/article/pii/S1569190X14001464
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/

	Simcan2Cloud: a discrete-event-based simulator for modelling and simulating cloud computing infrastructures
	Abstract
	Introduction
	Related work
	Cloud computing simulators
	Comparison of Simcan2Cloud and SoTA solutions

	Simcan2Cloud
	Software description
	Service level agreements
	Architecture
	API
	GUI

	Empirical study
	Experiment 1: Synthetic workloads and multiple CPU configurations
	Experiment 2: Real world traces and SLAs

	Conclusions and future work
	Appendix
	Appendix A: Graph Appendix
	Appendix B: Implementation details
	Acknowledgements
	References

