
Zhang et al. Journal of Cloud Computing          (2023) 12:153  
https://doi.org/10.1186/s13677-023-00515-6

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Adaptive device sampling and deadline 
determination for cloud-based heterogeneous 
federated learning
Deyu Zhang1, Wang Sun1, Zi‑Ang Zheng1, Wenxin Chen1 and Shiwen He1* 

Abstract 

As a new approach to machine learning, Federated learning enables distributned traiing on edge devices and aggre‑
gates local models into a global model. The edge devices that participate in federated learning are highly heteroge‑
neous in terms of computing power, device state, and data distribution, making it challenging to converge models 
efficiently. In this paper, we propose FedState, which is an adaptive device sampling and deadline determination 
technique for cloud‑based heterogeneous federated learning. Specifically, we consider the cloud as a central server 
that orchestrates federated learning on a large pool of edge devices. To improve the efficiency of model conver‑
gence in heterogeneous federated learning, our approach adaptively samples devices to join each round of training 
and determines the deadline for result submission based on device state. We analyze existing device usage traces 
to build device state models in different scenarios and design a dynamic importance measurement mechanism 
based on device availability, data utility, and computing power. We also propose a deadline determination module 
that dynamically sets the deadline according to the availability of all sampled devices, local training time, and com‑
munication time, enabling more clients to submit local models more efficiently. Due to the variability of device state, 
we design an experience‑driven algorithm based on Deep Reinforcement Learning (DRL) that can dynamically adjust 
our sampling and deadline policies according to the current environment state. We demonstrate the effectiveness 
of our approach through a series of experiments with the FMNIST dataset and show that our method outperforms 
current state‑of‑the‑art approaches in terms of model accuracy and convergence speed.

Keywords Federated learning, Deep reinforcement learning, State heterogeneity

Introduction
With the increase of computing power and memory size 
of mobile devices, more and more machine learning tasks 
are deployed on end devices [1–3]. However, due to the 
problem of bandwidth cost [4–6] and data privacy con-
cerns, It is improper to collect data from clients and 
conduct centralized training with traditional machine 
learning paradigms [7–9] in cloud server. To solve these 

problems, federated learning (FL) [10] is proposed as a 
new distributed machine learning paradigm. A central 
cloud server can train a global model in federated learn-
ing without collecting private data on edge devices. Cli-
ents train a local model with their private data in each 
iteration and then upload local models instead of raw 
data to the central cloud server. Finally, the central cloud 
server will aggregate these local models into a global 
model according to a specific aggregation algorithm.

Using cloud computing technology, we can leverage 
cloud resources to facilitate distributed training and fed-
erated learning [11–13]. This approach entails training 
a global model on a central cloud server, without col-
lecting private data on edge device. Federated learning 

*Correspondence:
Shiwen He
shiwen.he.hn@csu.edu.cn
1 School of Computer Science and Engineering, Central South University, 
Changsha, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00515-6&domain=pdf


Page 2 of 15Zhang et al. Journal of Cloud Computing          (2023) 12:153 

is becoming a popular and effective method of address-
ing the challenges of bandwidth cost and data privacy in 
machine learning. With cloud computing, we can more 
efficiently deploy and utilize federated learning algo-
rithms. Federated learning still faces many challenges, 
the biggest of which is the problem of heterogeneity [14]. 
And heterogeneity can be subdivided into data, device, 
and state. Data heterogeneity refers to the difference in 
data distribution and data size on different devices. This 
will impact the direction of convergence and thus the 
aggregation of the global model [15]. Device heterogene-
ity means that mobile devices have different computing 
power and memory sizes. It takes shorter for devices with 
strong computing power and larger memory to complete 
the same local iteration round. In synchronous aggrega-
tion scenarios, this may cause waiting problems, affecting 
the time consumed by the aggregation model [16]. State 
heterogeneity means that the state of mobile devices is 
extremely variable. For example, the CPU may be busy 
or idle, the network status may also be unstable, and the 
battery power is variable. The criteria [17] points out that 
only devices that meet certain specific conditions can 
participate in the aggregation process of federated learn-
ing. Therefore, once the state of some sampled clients 
changes during the local training process, these clients 
cannot upload the local model, thus affecting the accu-
racy of the global model.

Recently, a lot of work has focused on the impact of 
heterogeneity on federated learning. Still, most works are 
based on simulated datasets and ignore the critical prob-
lem of state heterogeneity [7, 18–20]. However, state het-
erogeneity will not only greatly slow down the FL process 
but also more easily lead to a decline in accuracy. In a real 
environment, clients may not be able to complete local 
training for various reasons or upload models after the 
deadline. For example, the network connection is inter-
rupted, or the CPU changes from idle to busy. Once the 
client’s state changes, the local training cannot be com-
pleted, and the model cannot be uploaded in time. More 
than 11.6% of the devices in the real state dataset cannot 
upload their model in each round [21], and this propor-
tion will increase with the difficulty of training tasks.

In this article, we consider the federated learning 
problem in heterogeneous scenarios, and we want to 
minimize the impact of heterogeneity by designing an 
efficient client sample strategy and dynamic deadline 
method. However, we are faced with many challenges. 
First, to protect the privacy of data on clients, we need 
to obtain the importance of data on different clients 
indirectly. Second, because of the heterogeneity of the 
state, the sampled device may be disconnected for vari-
ous reasons. When designing the sampling strategy, we 

should consider this factor to sample devices that are 
unlikely to be disconnected in the future. Finally, due 
to the different data sample sizes and computing power 
of different clients, the time required to complete local 
training is also different. This will lead to the problem 
of fast devices waiting for slow devices. If the deadline 
is too loose, the number of clients that can successfully 
upload models may increase, but this will also lead to 
the risk that more users will be disconnected, and the 
training progress is also slowed down. If the deadline 
is too tight, the local model may not have learned the 
characteristics of the data, or many clients may not 
upload their model in time. Therefore, we need to 
dynamically adjust the deadline according to data dis-
tribution, device computing power and device state.

To this end, we propose FedState, a federated learn-
ing framework that can dynamically select clients and 
set deadlines according to the current environment. 
Especially in the framework, we get the importance of 
the devices through the data quality, device status, and 
device computing power. And utilize deep reinforce-
ment learning to adjust our importance measurement 
standards according to different stages of training. 
According to the historical communication time and 
local training time, we can dynamically adjust the pro-
portion of training samples on each device and the 
deadline for uploading the model so as to improve the 
time-to-accuracy of the global model.

The main contributions of this paper are summarized 
as follows:

• By analyzing the user state dataset, we build the 
state model for different users. Through a large 
number of experiments, we quantify the influence 
of state heterogeneity on the accuracy of FL model.

• We propose a DRL-based sampling strategy and 
dynamic deadline algorithm in heterogeneous envi-
ronments.

• We performed experiments on real datasets to 
evaluate the performance of the proposed algo-
rithm. We compare our method with other meth-
ods, and the results further prove the effectiveness 
of our method.

The rest parts of this paper are organized as fol-
lows. The second section introduces the related work. 
The motivation for this paper is given in  Motivation 
section.  System design  section presents the system 
design of our framework. Performance evaluation sec-
tion comprehensively evaluates the performance of our 
method with the state-of-art method. And we conclude 
the paper in Conclusion section.



Page 3 of 15Zhang et al. Journal of Cloud Computing          (2023) 12:153  

Related work
As a new distributed machine learning paradigm, Fed-
erated learning has attracted extensive research in 
recent years. The existing work mainly focuses on pri-
vacy protection [22, 23], communication efficiency 
improvement [20, 24], model aggregation [25, 26], 
Incentive mechanism [27, 28], and application in actual 
scenarios [28, 29]. In this section, we focus on the sam-
pling strategy and deadline control, which are of great 
relevance to our work.

Sampling strategy
Which clients should be sampled is a basic problem in 
federated learning. Now, much work focuses on how to 
optimize the entire FL process through sampling strat-
egy. For example, Wang et al. proposed a control frame-
work based on reinforcement learning that intelligently 
chooses clients to maximize a cumulative reward dur-
ing the training process [20]. Xu et al. designed a new 
device importance measurement mechanism based 
on data distribution and device computing power and 
designed an aggregation algorithm in a heterogeneous 
environment to reduce the deviation caused by hetero-
geneity [7]. Wang et al. considered the federated learn-
ing in the D2D scenario, proposed a data diversion 
scheme, provided g rigorous theoretical analysis of data 
diversion, and used theory to obtain the optimal diver-
sion solution and used GCN to optimize the equipment 
sampling scheme [30]. Balakrishnan et  al. considered 
the diversity of clients when sampling, which is used 
to measure how the selected subset of clients repre-
sents the whole when aggregated on the server [31]. 
Zhang et  al. uses multi-agent reinforcement learning 
and adjusts the sampling strategy according to differ-
ent optimization objectives by using the computing 
power and training behaviour of the device [32]. Cho 
et al. observed that selecting clients with high local loss 
will speed up the convergence. Based on this feature, a 
Power of Choice client selection strategy is proposed 
[33]. Wang et  al. designed a sampling strategy based 
on deep reinforcement learning, which maximized the 
reward by selecting a subset of devices in each com-
munication round. Because the agent needs to select 
K devices from N devices to participate in FL. But too 
large action space makes it difficult to train actor net-
work. So the author only samples one device in each 
round when training and samples the devices with the 
largest Q value before testing. However, this also leads 
to different environments during network training 
and testing, and it may be difficult to sample the best 
subset of devices [20]. Oort is the most effective cli-
ent selection scheme in heterogeneous environments. 

It considers both data and device utility and dynami-
cally adjusts the sampling standard in different training 
stages [34].

Deadline control
Only a little work has been considered on the dynamic 
adjustment of the deadline. SmartPC [35] consists of 
two layers of speed control modules. The global control 
module sets the deadline by monitoring the status of 
each device so that more than 60% of devices can upload 
local models. The local control module adjusts the fre-
quency of each device so that the device can complete 
the training task with the minimum energy consump-
tion. Fedbalancer [19] defines an indicator called dead-
line efficiency(DDL-E). The higher deadline of the DDL-E 
indicator not only allows clients to complete as many 
tasks as possible but also has higher efficiency. And it 
selects training samples according to the statistical utility. 
By adjusting the total number of samples to be trained, 
the client can upload the local model before the deadline.

Nevertheless, no existing work focuses on state het-
erogeneity and optimizing time-to-accuracy. The exist-
ing methods do not perform well when the client state is 
heterogeneous. Most of the work assumes that the client 
state is stable and unchanged, which limits the applica-
tion of these methods in the real world. In contrast, we 
quantify the impact of state heterogeneity on FL, design 
a sampling strategy in a heterogeneous environment, and 
propose an algorithm to dynamically adjust the deadline 
to reduce the impact of heterogeneity to a certain extent. 
In addition, the FedState we propose can automatically 
learn and apply it to real environments with variable 
scales and different levels of heterogeneity.

Motivation
Figure 1 shows the performance comparison of FL under 
the condition of whether state heterogeneity is con-
sidered. We can see that state heterogeneity has a great 
impact on time-to-accuracy.

If the local training time is less than or greater than 
this period, the time-to-accuracy will certainly be greatly 
reduced. In order to quantify the impact of device het-
erogeneity on FL, we conducted a control experiment, 
as shown in Figure A. The red line refers to the result 
without considering the state heterogeneity, and the blue 
line refers to the result under the heterogeneous envi-
ronment. We adopt the random sampling algorithm and 
Fedavg aggregation strategy in both scenarios. We can 
see that state heterogeneity has a great impact on FL. 
On average, some devices will be disconnected in each 
round. If a mechanism can be set to reduce the probabil-
ity of device failure, the time-to-accuracy will be greatly 
improved. Yang et  al. first mentioned the problem of 



Page 4 of 15Zhang et al. Journal of Cloud Computing          (2023) 12:153 

state heterogeneity in his paper and verified the influ-
ence of state heterogeneity on FL through a large number 
of experiments [21]. However, the author does not give 
a definition of the degree of state heterogeneity, so it is 
difficult for us to quantify its impact and give a general 
solution.

We analyzed a large-scale user behaviour dataset [21] 
with more than 136K users to obtain the real user behav-
iour state. According to FL settings, we define the devices 
with idle CPU and WIFI connected and charging as avail-
able. We counted the rate of available devices within 120 
hours. We find that the ratio of available devices changes 
regularly over time. For example, the ratio of available 
devices is the highest in the early morning and the low-
est in the evening. This observation is consistent with 
our common sense because most users will put down 
their mobile phones and charge them in the early morn-
ing, while the evening is the golden time to stay up late 
surfing.

We also visualized the proportion of available users in 
different periods in the behaviour trace. Users with more 
than 80% available time are defined as high-quality users, 
those with less than 20% are low-quality users, and those 
in between are ordinary users. Figure  3 consists of four 
pie charts, representing four parts of a 24-hour day, with 
each period covering a 6-hour time span, and showing 
he proportion of available users over that time period. 
The size of each slice in the pie chart corresponds to the 
proportion of users in different state during that time 

period. We can draw a conclusion from the figure that 
in different periods, different types of users account for 
different proportions. In the early morning, high-quality 
users account for a large proportion, and there is only a 
small probability that users will be disconnected during 
this time period. In the afternoon, ordinary users account 
for a large proportion. Most users have extremely vari-
able statuses, and there is a high probability that the 
model cannot be uploaded normally. So we can define 
the degree of state heterogeneity in the system according 
to the proportion of different types of users.

After classifying the users, we counted the probability 
of available time slots for different types of users in differ-
ent time periods. From Figs. 2 and 3, we can find that the 
probability density curves of the three types of users are 
highly similar in heterogeneous environments with dif-
ferent proportions, so we can fit their probability density 
cures, and thus construct different degrees of heteroge-
neous environment.

System design
In this section, we will discuss the system design of Fed-
State. The system is divided into two modules: the first 
module is responsible for sampling the client, and the 
second is responsible for setting a specific deadline. Fed-
State balances model accuracy and training time through 
these two modules. Specially, we first briefly introduce 
the system overview and then introduce the specific 
design of the two modules in detail.

Fig. 1 The effect of state heterogeneity on federated learning algorithms



Page 5 of 15Zhang et al. Journal of Cloud Computing          (2023) 12:153  

System overview
Figure  4 shows workflow and overall architecture of the 
framework, which follows the synchronization strategy in 
[36]. The Fl server mainly includes two sub-modules. The 

client sampling module collects environment information 
to sample the client with the greatest gain for the current 
round of the model aggregation algorithm. After deter-
mining the sampling client, the dynamic deadline module 

Fig. 2 Probability density plot of available slots

Fig. 3 Proportion of available device in different time slot



Page 6 of 15Zhang et al. Journal of Cloud Computing          (2023) 12:153 

sets the most appropriate deadline according to the heter-
ogeneity information and historical training information 
of different clients so that each client can upload the local 
model before the deadline with the maximum probability.

The system workflow of FedState can be expressed as 
the following main steps. 

(1) Task definition: After receiving the task, the server 
confirms all registered clients in the current system 
and initializes the device information(e.g., phone 
model, computing power, availability...) and data 
information(e.g., data size) of all clients.

(2) Client sampling: After collecting the environment 
information returned by the clients, the client sam-
pling module will select several qualified clients 
from the available clients according to our impor-

tance measurement algorithm and distribute the 
global model to the mobile device.

(3) deadline controlling: After determining the 
subset of sampling devices, the deadline con-
trol module will collect the historical training 
information(e.g., training time, model upload 
and download time, state heterogeneity) of these 
devices and determine the final deadline based 
on these information.

(4) Local training: The client will get the available train-
ing time for the current round according to the his-
torical information. We adopt the data importance 
sorting algorithm in Fedbalancer [19] to dynami-
cally adjust the trainable data subset on the mobile 
device. If the current device terminates the local 
training or delays uploading the model due to the 

Fig. 4 The federated learning with our strategy



Page 7 of 15Zhang et al. Journal of Cloud Computing          (2023) 12:153  

state change, it will be deemed as the local training 
failure.

(5) Global aggregation: Fl server will aggregate the 
models uploaded by clients. The commonly used 
aggregation algorithms are Fedavg [10], FedProx 
[37], etc. After aggregation, the server will send the 
global model parameters back to all participants for 
the next iteration(return to step2).

(6) Finish task: Once the global model reaches the 
target accuracy on the testset, our training task is 
deemed to be completed.

Client sampling module
Heterogeneity mainly includes state heterogeneity, device 
heterogeneity and data heterogeneity, and these three 
types of heterogeneity affect the time-to-accuracy of FL 
in different aspects. We need to design a mechanism that 
can measure the three kinds of heterogeneity and sample 
the best client based on this information.

The data size and distribution on each client are dif-
ferent on the data heterogeneity level, so the models 
uploaded by different clients have different gains for the 
global model. To measure the data utility, we refer to the 
importance sampling method in machine learning and 
the calculation method in oort [34]. We define the data 
utility of client i as:

Di refers to the data on the ith client, Loss(k) refers 
to the loss value of the kth sample. The higher the loss 
of the sample k, the worse the performance of the cur-
rent model in it. In the next round of sampling clients, 
more clients containing this sample should be sampled. 
On the device heterogeneity level, due to the existence 
of mobile devices with various computing capabilities in 
the FL platform and the difference in the amount of data 
on different devices, the local training time of the client is 
also different. In synchronous mode, the training time of 
each round depends on the device with the longest train-
ing time among the sampled clients. Therefore, mobile 
devices with strong computing power should have higher 
device utility. When other states are the same, we should 
give priority to the clients with more effective devices.

For the estimation of computing power of mobile 
devices, we refer to AI Benchmark [38] and FedScale 
[39], and get a mapping model that maps the models of 
mainstream mobile phones to computing power. Accord-
ing to the mapping model, the device utility(CU) of each 
client is obtained.

In terms of state heterogeneity, due to the different 
behavior habits of each client, their availability with you 

(1)DU(i) = |Di|
1

|Di|
k∈Di

Loss(k)2

varies greatly at different times. For devices that have 
been registered in the system for a period of time, we 
can obtain the availability of the user in the future period 
according to the historical status information of the 
device. The greater the probability value, the greater the 
availability. As illustrated in motivation, we have obtained 
the probability density curves of high-quality users, ordi-
nary users and low-quality users. Therefore, we can get 
the available probability values of different users at the 
current time according to the probability density func-
tion, which is its state utility(SU).

When designing the sampling algorithm, we should not 
only consider a certain utility. If only clients with greater 
data utility are selected, although the model will reach 
the target accuracy in fewer rounds, each round may 
take longer. If only clients with higher device utility are 
selected, the data on the same batch of devices may be 
sampled all the time, thus affecting round-to-accuracy. 
If only the state utility is considered, the sampling algo-
rithm may only tend to sample devices with stable state, 
and the probability of devices with large state changes 
being sampled is extremely low, which will also have a 
great impact on the data distribution of the model. There-
fore, we need to consider these three influencing factors 
comprehensively. To sample the best subset of devices, 
we have designed the utility formula below, sorted the 
clients according to the utility value, and finally sampled 
the k clients with the largest utility value.

Inspired by the use of reinforcement learning to solve 
the optimization problem in [18, 20, 40–43], we want to 
use RL to solve the problem of device sampling and dead-
line selection.

Favor [20] selects a client with the largest Q value 
in the training process and the first K devices with 
the largest Q value in the testing process to avoid the 
problem of too much action space. But there is a big 
problem. The training and testing environments are dif-
ferent. During training, the agent will always select a 
single optimal client, but combining the top k optimal 
clients is not necessarily optimal. Auction [40] indi-
rectly reduces the complexity of the problem by turning 
the sampling client into a continuous action. However, 
the action space is still large, which makes it challeng-
ing to train the agent network.

We turn the device sampling in federated learning 
into deep reinforcement learning(DRL) problems. The 
DRL agent is trained by the double Deep Q-learning 

(2)

U(i) = SU(i)(µ1DU(i)+ µ2CU(i))

0 <= µ1 =< 1

0 <= µ2 =< 1

µ1 + µ2 = 1



Page 8 of 15Zhang et al. Journal of Cloud Computing          (2023) 12:153 

Network(DDQN) [44]. We introduce the design detail as 
follows.

Sampling agent

(1) State: We mentioned in the previous chapter that 
three different Heterogeneity will have a great 
impact on the sampling strategy. So our state space 
is composed of the data utility, device utility and 
state utility of these clients, which can be defined as 
s = {s1, s2, . . . , sn} . s is a three-dimensional vector 
expressed as si = {di, ei, fi} , where di is the data util-
ity of client i, ei is the device utility and fi is the state 
utility.

(2) Action: If the agent directly selects k clients from N 
candidate clients, the action space of the sampling 
algorithm will grow to O(2N ) , and as the num-
ber of candidate clients increases, the action space 
will also grow exponentially. In order to avoid this 
problem, we have designed a criterion to measure 
the importance of clients in formula 2. We can use 
this formula to sample the most appropriate clients. 
Since the sampling algorithm has a different ten-
dency towards data utility and device utility at dif-

ferent training stages, we can adjust the weight of 
these two factors in the action. And we can define 
action as the value of µ1 and µ2 , where µ1 increases 
from 0 to 1 with a step size of 0.1. And µ2 can be 
obtained by subtracting µ1 from 1.

(3) Reward: When the global model accuracy of round 
t is greater than that of round t-1, we set the reward 
value of the round to rt = c(acct−acct−1) . On the con-
trary, we set it to rt = −c(acct−1−acct ) . Where c is 
a normal number to ensure that the reward value 
increases with the improvement of the accuracy 
of the global model. The cumulative discounted 
reward is defined as follows: 

 

In summary, as shown in the Fig. 5, our DRL agent sys-
tem observe the utilities as the states and allocate param-
eter to our central server to select agents.

(3)rt =

{

c(acct−acct−1) acct > acct−1

−c(acct−1−acct) acct < acct−1

(4)R =

T
∑

t=1

γ t−1rt

Fig. 5 DRL agent overview



Page 9 of 15Zhang et al. Journal of Cloud Computing          (2023) 12:153  

Dynamic deadline module
As shown in Fig.  6, the time of training round i consists of 
the upload time, download time, and local training time of 
the model. The upload and download time of the model is 
affected by the network bandwidth, and the network quality 
of most mobile devices is always changing. Therefore, we refer 
to the real-time mobile phone bandwidth measured by Hofft 
et al. from December 16, 2015, to February 4, 2016, in Ghent, 
Belgium, and surrounding areas [4]. When our framework 
simulates the network situation of the client, we will randomly 
select a curve in the dataset as the user’s network bandwidth. 
So the communication time can be calculated as follows:

Where ξupload is the size of the upload model, ξdownload 
is the size of the download model, and s is the bandwidth 
of user k.

The local training time of the model is affected by the 
computing power of the device and the number of client 
samples. So the training time of user k is defined as:

(5)tcom,k =
ξupload + ξdownload

sk
∀k ∈ {1, ...N }

(6)tcomp, k =
nke

ck

where nk is the sample size of user k, e is the local train-
ing epoch, ck is the computation power of device k. And 
we can calculate the total time required for each round of 
local training.

Through the above three formulas, we can calculate the 
total time required for the local training of each client. 
However, due to state heterogeneity and device hetero-
geneity, each device has different computing power, sam-
ple size, and availability probability. Therefore, the local 
training time of different clients varies greatly. Without 
considering the state heterogeneity, we can set the dead-
line according to the suggestion of SmartPC [35] so that 
80% of devices can upload their models. However, in a 
heterogeneous state environment, the length of training 
time will affect the probability that the client is available. 
A shorter deadline can prevent most clients from being 
disconnected due to state changes, but it will also pre-
vent them from having enough time to finish training the 
local data. Although a more extended deadline can allow 
most clients to submit the local model, the longer the 
duration, the greater the probability of the client being 
disconnected.

(7)ttrain = max (tcomp, k + tcom, k)k ∈ {1 . . .N }

Fig. 6 Local training process



Page 10 of 15Zhang et al. Journal of Cloud Computing          (2023) 12:153 

For the deadline setting, due to the variability of user 
status in the system, we also use agents to adjust the 
deadline of the current round according to the environ-
ment status information. The detailed design of the dead-
line agent is as follows.

Deadline agent

(1) State: In a heterogeneous environment, there are 
three factors that affect the deadline: communication 
time, training time, and state utility. The communica-
tion time can be obtained indirectly according to the 
historical bandwidth information. So our state space 
can be defined as s = {s1, s2, . . . , sk} , where k repre-
sents all clients sampled. S is a three-dimensional vec-
tor expressed as si = {bi, ti,ui} , the first dimension 
is the historical bandwidth information of the client, 
and the second dimension is its training time. And 
the third dimension is the state utility of the client.

(2) Action: We counted the time consumed by each 
round of local training and communication of all 
clients in the current system. After removing the 
outlier, we obtained the upper and lower limits of 
the deadline. Finally, we select some column values 
from 80 to 200 with a step size of 10 as action.

(3) Reward: We adjust the deadline to enable more 
devices to successfully submit the model within 
the specified time, so as to improve the time-to-
accuracy of the global model. The design of reward 
mechanism refer to the sampling module.

DRL training methodology
Current deep reinforcement learning methods are gen-
erally divided into two types: value learning and strategy 
learning. We train the DRL agent by using the DDQN 
method(Double Deep Q Network), which well matches 
our federal learning context, and has been success-
fully applied in our experiment. The Q-learning algo-
rithm uses maxaq(st+1, a) to update the action value, 
which leads to “maximization bias” and makes the esti-
mated action value large. The DDQN algorithm is iden-
tical to the DQN algorithm in all other aspects. Double 
Q-learning requires the construction of two action value 
functions, one for estimating the action and the other for 
estimating the value of that action. However, considering 
that two networks, the evaluation network, and the target 
network, are already available in the DQN algorithm, the 
DDQN algorithm only needs to use the evaluation net-
work to determine the action and the target network to 
determine the action value when estimating the return, 
without constructing a new network separately. The DRL 
agent training procedure starts with randomly initializing 
the parameters of the qeval network and qnext network, 

and using the MSELoss as the loss function. Before the 
DRL agent training of each episode, we load the real-
world dataset and mobile devices’ information, this will 
construct a simulated FL training environment, and each 
training episode is a simulation independent of the other. 
the FL system starts to train the model round by round. 
At the start of each round, the DRL collect system pro-
file states such as the reward, bandwidth, and state util-
ity of each client, into a vector vstates . Then we use the 
vstates−t as the input of qeval network, and then get the 
output qpred (used to sample the clients) . The qpred is a 
one dimension vector, which contains the q value of each 
action. Then we select the action which has the max 
q value. At the end of each round, after clients finished 
training, the aggregator calls an evaluation event and cal-
culates the accuracy of the current model after this round 
of training. In the meantime, we get the system profile 
after training as the vstates−t+1 , and use it as the input 
of qnext, and get the output qnext . And then we use the 
reward Rt to calculate the q of this round:

With qtarget and qpred , we can use the MSELoss to 
calculate the loss, and update the qeval. Every Creplace 
round, the DRL agent will update the qnext network 
using the current qeval network.

Algorithm 1 FedState online training methodology

(8)qtarget = Rt + γ ∗ qnext



Page 11 of 15Zhang et al. Journal of Cloud Computing          (2023) 12:153  

Algorithm 2 DDQN Network Update

Performance evaluation
In this section, we compare our method with other 
state-of-art methods. First, we will describe the experi-
mental settings and then analyze the experimental 
results.

Experimental setting
We use FedScale [39] as our experimental platform and 
use the probability density functions of different types of 
users obtained in the previous chapter to construct user 
trajectories of different proportions as the real-time sta-
tus of all users. We use a real-world 4G/LTE network [4] 
to build our simulation environment for the simulation 
of network bandwidth. This dataset is collected through 

Huawei P8 lite, and the scenarios cover walking, bicycles, 
buses, trams, trains and cars. We selected the bandwidth 
trace for three scenarios as shown in Fig. 7. We will ran-
domly initialize a bandwidth trace for each simulated 
client in the experiment. In addition, to select a more 
accurate network traffic prediction model, we conducted 
experiments to evaluate machine learning models includ-
ing LSTM, SVM, RandomForest and Autoencoder for 
network traffic prediction.To evaluate the performance 
of each model. We summarized the performance of each 
model in Table  1. This indicates that LSTM performed 
better than the other models in predicting network traf-
fic. So we decided to use lstm as our network traffic pre-
diction model.

Datasets and models: We tested our algorithm and 
other algorithms on several different datasets using dif-
ferent CNN models.

• FMNIST. We use the resnet18 model. The total num-
ber of samples on each client is 300, and the local 
training round is 5.

Performance metrics: Fewer communication rounds 
and shorter local training time are our optimization 
goals, so in the experiment, we use time-to-accuracy to 
measure the effectiveness of different algorithms.

Fig. 7 Network bandwidth of different user



Page 12 of 15Zhang et al. Journal of Cloud Computing          (2023) 12:153 

Evaluation results
As shown in the method, we have designed sampling and 
dynamic deadline strategies. We have conducted com-
parative experiments between these two methods and 
the current state-of-art method, and the results are as 
follows.

The agent training process
Figure 8 shows the training process of the client selection 
agent and dynamic deadline agent on fmnist, where the 
number of candidate clients is fixed at 200, and the num-
ber of clients sampled in each round is fixed at 20. The 
experimental setup follows the description in the previ-
ous section. The reward refers to the cumulative discount 
reward of an entire episode. We can observe that after 
training 200 episodes, our reward can be stabilized at a 
relatively high value, which indicates that our agents can 
learn how to sample the best devices and set an appropri-
ate deadline.

Performance comparison
We compare our sampling and dynamic deadline algo-
rithms with the current state-of-art method. For user 
status, we simulated three scenarios with different ratios, 
in which the ratios of the high, medium and low-quality 
users are 1:7:2, 3:4:3, and 1:5:4, respectively.

Figure 9 shows the performance of our sampling algo-
rithm and oort in fmnist. We can observe that our sam-
pling algorithm is superior to other benchmarks for the 
three scenarios. In Fig. 9a, we can find that in this case, 
our sampling algorithm is obviously superior to oort. The 
larger the proportion of ordinary users, the greater the 
heterogeneity of the current system state. It can be seen 
that our sampling algorithm performs better when the 
state heterogeneity is greater. In the other two scenarios, 
due to the large proportion of high-quality users and low-
quality users, and the small change in the state of these 
two users, the gain of our method relative to oort is not 
particularly high. Other algorithms only consider the 
device utility and data utility when sampling devices. If 
a device often fails to submit the model successfully, the 
probability of sampling the device will be reduced sub-
sequently. This also leads to that the existing sampling 
algorithm may always sample the same batch of devices 
with stable state in the environment with heterogeneous 
states, this also affects the time-to-accuracy of the global 
model.

Figure 10 shows the comparison between our dynamic 
deadline algorithm and FedBalancer. From the figure, 
we can see that our algorithm has improved to a certain 

Fig. 8 The training process of the agents

Table 1 Performance Comparison of Network Traffic Prediction 
Models

Model MAE MSE MAPE

LSTM 0.5837 0.0032 0.0032

SVM 1.9859 7.2680 0.7444

RandomForest 1.6372 4.6821 0.6720

Autoencoder 3.0674 13.7687 0.704



Page 13 of 15Zhang et al. Journal of Cloud Computing          (2023) 12:153  

Fig. 9 Performance comparison of sampling algorithm

Fig. 10 Performance comparison of dynamic deadline algorithm

Fig. 11 Comparison of the number of local clients that successfully submitted models during training



Page 14 of 15Zhang et al. Journal of Cloud Computing          (2023) 12:153 

extent compared with FedBalancer in different scenarios. 
The proportion of different types of users has no great 
impact on the effect of our algorithm. We can achieve 
higher accuracy at the same time. Fedbalancer does not 
consider the user’s state heterogeneity when adjusting the 
deadline, so its adjustment strategy will affect the real-
time state of users in the system, thus affecting the total 
number of devices that successfully uploaded the model.

Figure  11 shows the number of models successfully 
submitted by our algorithm and other algorithms in 
each round in a heterogeneous environment. From the 
figure, we can see that our two algorithms can increase 
the probability that clients can successfully upload the 
model. However, in different training stages, a large part 
of the clients of oort and FedBalancer cannot successfully 
upload the local model, which affects the accuracy of the 
global model.

Conclusion
Due to the influence of state heterogeneity, traditional 
algorithms can not run efficiently in heterogeneous envi-
ronments. In this paper, we propose a federated learning 
framework that considers time-to-accuracy in heteroge-
neous environments. We designed an experience-driven 
method based on DRL to dynamically sample devices 
according to the current system state information and 
adjust the deadline. The final control experiment further 
proves the superiority of our method compared with the 
most advanced solution.

Authors’ contributions
Deyu Zhang and Shiwen He wrote the main manuscript test. Wang Sun and 
Zi‑Ang Zheng set up the evaluation and run the experiments. Wenxin Chen 
prepared the figures. All authors reviewed the manuscript.

Funding
This work was supported in part by the National Key R &D Program of 
China (2022YFF0604504), National Science Foundation of China (62172439, 
62171474, 62177047), Major Project of Natural Science Foundation of Hunan 
Province (2021JC0004), National Natural Science Foundation of Hunan 
Province (2023JJ20076), Central South University Research Programme of 
Advanced Interdisciplinary Studies (No.2023QYJC020), and Central South 
University InnovationDriven Research Programme (2023CXQD061).

Availability of data and materials
Some or all data, models, or codes that support the findings of this study are 
available from the corresponding author upon resonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 30 December 2022   Accepted: 4 September 2023

References
 1. Chen Z, Cao Y, Liu Y, Wang H, Xie T, Liu X (2020) A comprehensive 

study on challenges in deploying deep learning based software. ESEC/
FSE 2020. Association for Computing Machinery, New York, p 750–
762. https:// doi. org/ 10. 1145/ 33680 89. 34097 59

 2. Chen Y, Xing H, Ma Z, Chen X, Huang J (2022) Cost‑efficient edge caching 
for noma‑enabled IoT services. Chin Commun. https:// doi. org/ 10. 1155/ 
2022/ 80724 93

 3. Huang J, Gao H, Wan S et al (2023) Aoi‑aware energy control and compu‑
tation offloading for industrial IoT. Futur Gener Comput Syst 139:29–37

 4. Van Der Hooft J, Petrangeli S, Wauters T, Huysegems R, Alface PR, Bostoen 
T, De Turck F (2016) Http/2‑based adaptive streaming of HEVC video over 
4g/LTE networks. IEEE Commun Lett 20(11):2177–2180

 5. Shen X, Gao J, Wu W, Li M, Zhou C, Zhuang W, (1st. Quart. (2022) Holistic 
network virtualization and pervasive network intelligence for 6G. IEEE 
Commun Surv Tuts 24(1):1–30

 6. Wu W, Zhou C, Li M, Wu H, Zhou H, Zhang N, Xuemin S, Zhuang W (Feb. 
2022,) AI‑native network slicing for 6G networks. IEEE Wirel Commun 
29(1):96–103

 7. Xu X, Duan S, Zhang J, Luo Y, Zhang D (2021) Optimizing federated learning 
on device heterogeneity with a sampling strategy. In: 2021 IEEE/ACM 29th 
International Symposium on Quality of Service (IWQOS), IEEE, pp 1–10

 8. CHEN Y, HU J, ZHAO J, MIN G (2023) Qos‑aware computation offloading 
in leo satellite edge computing for iot: A game‑theoretical approach. 
Chin J Electron 33:1–12 

 9. Chen Y, Zhao J, Zhou X, Qi L, Xu X, Huang J (2023) A distributed game 
theoretical approach for credibility‑guaranteed multimedia data offload‑
ing in mec. Inf Sci 119306 

 10. McMahan B, Moore E, Ramage D, Hampson S, y Arcas BA (2017) Commu‑
nication‑efficient learning of deep networks from decentralized data. In: 
Artificial intelligence and statistics, PMLR, pp 1273–1282

 11. Chen Y, Zhao J, Hu J, Wan S, Huang J (2023) Distributed task offloading 
and resource purchasing in noma‑enabled mobile edge computing: 
Hierarchical game theoretical approaches. ACM Trans Embed Comput 
Syst. https:// doi. org/ 10. 1145/ 35970 23. Just Accepted

 12. Chen Y, Zhao J, Wu Y et al (2022) Qoe‑aware decentralized task offloading 
and resource allocation for end‑edge‑cloud systems: A game‑theoretical 
approach. IEEE Trans Mob Comput. https:// doi. org/ 10. 1109/ TMC. 2022. 
32231 19

 13. Mell P, Grance T et al (2011) The nist definition of cloud computing
 14. Li T, Sahu AK, Talwalkar A, Smith V (2020) Federated learning: Challenges, 

methods, and future directions. IEEE Signal Proc Mag 37(3):50–60
 15. Wang J, Liu Q, Liang H, Joshi G, Poor HV (2020) Tackling the objective 

inconsistency problem in heterogeneous federated optimization. Adv 
Neural Inf Process Syst 33:7611–7623

 16. Luo B, Li X, Wang S, Huang J, Tassiulas L (2021) Cost‑effective federated 
learning design. In: IEEE INFOCOM 2021‑IEEE Conference on Computer 
Communications, IEEE, pp 1–10

 17. Bonawitz K, Eichner H, Grieskamp W, Huba D, Ingerman A, Ivanov V, 
Kiddon C, Konečnỳ J, Mazzocchi S, McMahan B et al (2019) Towards 
federated learning at scale: System design. Proc Mach Learn Syst 
1:374–388

 18. Zhan Y, Li P, Guo S (2020) Experience‑driven computational resource 
allocation of federated learning by deep reinforcement learning. In: 2020 
IEEE International Parallel and Distributed Processing Symposium (IPDPS), 
IEEE, pp 234–243

 19. Shin J, Li Y, Liu Y, Lee SJ (2022) Fedbalancer: Data and pace control for effi‑
cient federated learning on heterogeneous clients. In: Proceedings of the 
20th Annual International Conference on Mobile Systems, Applications 
and Services. MobiSys ’22,  Association for Computing Machinery, New 
York, p 436–449. https:// doi. org/ 10. 1145/ 34983 61. 35389 17

 20. Wang H, Kaplan Z, Niu D, Li B (2020) Optimizing federated learning on 
non‑iid data with reinforcement learning. In: IEEE INFOCOM 2020‑IEEE 
Conference on Computer Communications, IEEE, pp 1698–1707

 21. Yang C, Wang Q, Xu M, Chen Z, Bian K, Liu Y, Liu X (2021) Characterizing 
impacts of heterogeneity in federated learning upon large‑scale smart‑
phone data. Proceedings of the Web Conference 2021:935–946

 22. Li Z, Zhang J, Liu L, Liu J (2022) Auditing privacy defenses in feder‑
ated learning via generative gradient leakage. In: Proceedings of the 
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 
p 10132–10142

https://doi.org/10.1145/3368089.3409759
https://doi.org/10.1155/2022/8072493
https://doi.org/10.1155/2022/8072493
https://doi.org/10.1145/3597023
https://doi.org/10.1109/TMC.2022.3223119
https://doi.org/10.1109/TMC.2022.3223119
https://doi.org/10.1145/3498361.3538917


Page 15 of 15Zhang et al. Journal of Cloud Computing          (2023) 12:153  

 23. Gong X, Sharma A, Karanam S, Wu Z, Chen T, Doermann D, Innanje A 
(2021) Ensemble attention distillation for privacy‑preserving federated 
learning. In: Proceedings of the IEEE/CVF International Conference on 
Computer Vision, p 15076–15086

 24. Wang J, Liu Q, Liang H, Joshi G, Poor HV (2021) A novel framework for 
the analysis and design of heterogeneous federated learning. IEEE Trans 
Signal Process 69:5234–5249

 25. Palihawadana C, Wiratunga N, Wijekoon A, Kalutarage H (2022) Fedsim: 
Similarity guided model aggregation for federated learning. Neurocom‑
puting 483:432–445

 26. Chen HY, Chao WL (2020) Fedbe: Making bayesian model ensemble 
applicable to federated learning. arXiv preprint arXiv: 2009. 01974

 27. Liu Z, Chen Y, Yu H, Liu Y, Cui L (2022) Gtg‑shapley: Efficient and accurate 
participant contribution evaluation in federated learning. ACM Trans 
Intell Syst Technol (TIST) 13(4):1–21

 28. Wang T, Rausch J, Zhang C, Jia R, Song D (2020) A principled approach to data 
valuation for federated learning. In: Federated Learning, Springer, pp 153–167

 29. Paulik M, Seigel M, Mason H, Telaar D, Kluivers J, van Dalen R, Lau CW, 
Carlson L, Granqvist F, Vandevelde C, et al (2021) Federated evaluation 
and tuning for on‑device personalization: System design & applications. 
arXiv preprint arXiv: 2102. 08503

 30. Wang S, Lee M, Hosseinalipour S, Morabito R, Chiang M, Brinton CG 
(2021) Device sampling for heterogeneous federated learning: Theory, 
algorithms, and implementation. In: IEEE INFOCOM 2021‑IEEE Conference 
on Computer Communications, IEEE, pp 1–10

 31. Balakrishnan R, Li T, Zhou T, Himayat N, Smith V, Bilmes J (2022) Diverse 
client selection for federated learning via submodular maximization. In: 
International Conference on Learning Representations. https:// openr 
eview. net/ forum? id= nwKXy FvaUm

 32. Zhang SQ, Lin J, Zhang Q (2022) A multi‑agent reinforcement learning 
approach for efficient client selection in federated learning. arXiv preprint 
arXiv: 2201. 02932

 33. Cho YJ, Wang J, Joshi G (2022) Towards understanding biased client 
selection in federated learning. In: International Conference on Artificial 
Intelligence and Statistics, PMLR, pp 10351–10375

 34. Lai F, Zhu X, Madhyastha H, Chowdhury M (2021) Oort: Efficient federated 
learning via guided participant selection. In: Proceedings of the 15th 
USENIX Symposium on Operating Systems Design and Implementation, 
OSDI 2021, p 19–35

 35. Li L, Xiong H, Guo Z, Wang J, Xu CZ (2019) Smartpc: Hierarchical pace 
control in real‑time federated learning system. In: 2019 IEEE Real‑Time 
Systems Symposium (RTSS), IEEE, pp 406–418

 36. Konečnỳ J, McMahan HB, Yu FX, Richtárik P, Suresh AT, Bacon D (2016) 
Federated learning: Strategies for improving communication efficiency. 
arXiv preprint arXiv: 1610. 05492

 37. Li T, Sahu AK, Zaheer M, Sanjabi M, Talwalkar A, Smith V (2020) Federated 
optimization in heterogeneous networks. Proc Mach Learn Syst 2:429–450

 38. Ignatov A, Timofte R, Chou W, Wang K, Wu M, Hartley T, Van Gool L (2018) 
Ai benchmark: Running deep neural networks on android smartphones. 
In: Proceedings of the European Conference on Computer Vision (ECCV) 
Workshops

 39. Lai F, Dai Y, Singapuram S, Liu J, Zhu X, Madhyastha H, Chowdhury 
M (2022) FedScale: Benchmarking model and system performance of 
federated learning at scale. In: Chaudhuri K, Jegelka S, Song L, Szepesvari 
C, Niu G, Sabato S (eds.) Proceedings of the 39th International Confer‑
ence on Machine Learning, vol. 162. Proceedings of Machine Learning 
Research, p 11814–11827

 40. Deng Y, Lyu F, Ren J, Wu H, Zhou Y, Zhang Y, Shen X (2021) Auction: 
Automated and quality‑aware client selection framework for efficient 
federated learning. IEEE Trans Parallel Distrib Syst 33(8):1996–2009

 41. Chen Y, Gu W, Xu J, Zhang Y, Min G (2023) Dynamic task offloading for 
digital twin‑empowered mobile edge computing via deep reinforcement 
learning. Chin Commun 1–12 https:// doi. org/ 10. 23919/ JCC. ea. 2022‑ 0372. 
202302

 42. Huang J, Wan J, Lv B, Ye Q et al (2023) Joint computation offloading and 
resource allocation for edge‑cloud collaboration in internet of vehicles 
via deep reinforcement learning. IEEE Syst J. https:// doi. org/ 10. 1109/ 
JSYST. 2023. 32492 17

 43. Wu W, Chen N, Zhou C, Li M, Shen X, Zhuang W, Li X (2021) Dynamic RAN 
slicing for service‑oriented vehicular networks via constrained learning. 
IEEE J Sel Areas Commun 39(7):2076–2089

 44. Van Hasselt H, Guez A, Silver D (2016) Deep reinforcement learning with 
double q‑learning. In: Proceedings of the AAAI conference on artificial 
intelligence, vol 30. https:// doi. org/ 10. 1609/ aaai. v30i1. 10295. https:// ojs. 
aaai. org/ index. php/ AAAI/ artic le/ view/ 1029

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

http://arxiv.org/abs/2009.01974
http://arxiv.org/abs/2102.08503
https://openreview.net/forum?id=nwKXyFvaUm
https://openreview.net/forum?id=nwKXyFvaUm
http://arxiv.org/abs/2201.02932
http://arxiv.org/abs/1610.05492
https://doi.org/10.23919/JCC.ea.2022-0372.202302
https://doi.org/10.23919/JCC.ea.2022-0372.202302
https://doi.org/10.1109/JSYST.2023.3249217
https://doi.org/10.1109/JSYST.2023.3249217
https://doi.org/10.1609/aaai.v30i1.10295
https://ojs.aaai.org/index.php/AAAI/article/view/1029
https://ojs.aaai.org/index.php/AAAI/article/view/1029

	Adaptive device sampling and deadline determination for cloud-based heterogeneous federated learning
	Abstract 
	Introduction
	Related work
	Sampling strategy
	Deadline control

	Motivation
	System design
	System overview
	Client sampling module
	Sampling agent

	Dynamic deadline module
	Deadline agent

	DRL training methodology

	Performance evaluation
	Experimental setting
	Evaluation results
	The agent training process
	Performance comparison


	Conclusion
	References


