
Ullah et al. Journal of Cloud Computing (2023) 12:135
https://doi.org/10.1186/s13677-023-00516-5

REVIEW Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Orchestration in the Cloud-to-Things
compute continuum: taxonomy, survey
and future directions
Amjad Ullah1,2*, Tamas Kiss2, József Kovács2,3, Francesco Tusa2,4, James Deslauriers2, Huseyin Dagdeviren2,
Resmi Arjun2 and Hamed Hamzeh2

Abstract

IoT systems are becoming an essential part of our environment. Smart cities, smart manufacturing, augmented reality,
and self-driving cars are just some examples of the wide range of domains, where the applicability of such systems
have been increasing rapidly. These IoT use cases often require simultaneous access to geographically distributed
arrays of sensors, heterogeneous remote, local as well as multi-cloud computational resources. This gives birth
to the extended Cloud-to-Things computing paradigm. The emergence of this new paradigm raised the quintes-
sential need to extend the orchestration requirements (i.e., the automated deployment and run-time management)
of applications from the centralised cloud-only environment to the entire spectrum of resources in the Cloud-to-
Things continuum. In order to cope with this requirement, in the last few years, there has been a lot of attention
to the development of orchestration systems in both industry and academic environments. This paper is an attempt
to gather the research conducted in the orchestration for the Cloud-to-Things continuum landscape and to propose
a detailed taxonomy, which is then used to critically review the landscape of existing research work. We finally discuss
the key challenges that require further attention and also present a conceptual framework based on the conducted
analysis.

Keywords Cloud-to-Edge continuum, Cloud-to-Things continuum, Fog computing, Edge computing, IoT application,
Microservices, Application orchestration, Orchestration, Resource management

Introduction
The advent of cloud computing has reshaped the way in
which software is developed, deployed and used. Since its
inception, the adoption of cloud services has continually

increased. This is evident from the worldwide public
cloud service revenue growth of 33 %, from 266.4 billion
dollars in 2020 to 354.6 billion dollars in 2022 [1]. This
increased shift towards cloud computing is due to its
inherent characteristics, such as on-demand provision-
ing, pay-as-you-go utility model and elasticity, which
offer economic benefits as well as operational efficiencies
to enterprises [2].

In order to fully exploit the strength of cloud comput-
ing, effective and optimised usage of the associated com-
puting resources is important. This is the responsibility of
an orchestration system. More formally, an orchestration
system automates the seamless delivery of applications
over clouds, and guarantees various Quality of Service
(QoS) goals, by handling the required complex tasks of

*Correspondence:
Amjad Ullah
a.ullah@napier.ac.uk
1 School of Computing, Engineering & the Built Environment, Edinburgh
Napier University, Edinburgh, UK
2 School of Computer Science & Engineering, University of Westminster,
London, UK
3 Institute for Computer Science and Control (SZTAKI), Eötvös Loránd
Research Network (ELKH), Budapest, Hungary
4 Department of Electronic and Electrical Engineering, University College
London, London, UK

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00516-5&domain=pdf

Page 2 of 29Ullah et al. Journal of Cloud Computing (2023) 12:135

resource selection, deployment, monitoring, and run-
time control of the resources and applications [3].

In the last decade, cloud orchestration has become a
mature research area and there emerged a large number
of orchestration solutions. These include vendor-specific
solutions, such as Amazon’s AWS Cloud-Formation [4],
OpenStack HEAT [5], Microsoft Azure’s Resource Man-
ager (ARM) templates [6], and Google’s Deployment
Manager [7]; some Open-source cloud agnostic initia-
tives, such as Kubernetes [8], Docker Swarm [9], Apache
Brooklyn [10], Cloudify [11], Cloudiator [12], Alien-
4Cloud [13], MODAClouds [14] and MiCADO [15].
The key purpose of all such tools is to improve resource
utilisation and introduce a great deal of agility by mak-
ing application development, deployment, execution and
maintenance easier for cloud applications.

In recent years, the introduction of IoT has fuelled
a new breed of applications, which in addition to cloud
resources, also require IoT devices to capture and pos-
sibly process data from local environments. Such sys-
tems have a wide range of requirements in terms of
low-latency analytics, data privacy and sensitivity, con-
text awareness, time- and location- awareness, and
simultaneous access to geographically distributed arrays
of sensors, remote localised heterogeneous computa-
tional resources and to large-scale on-the-fly multi-cloud
computational resources. A traditional cloud computing
architecture is impractical, if not inadequate, to handle
the aforementioned requirements. This gives rise to new
computational paradigms such as fog computing, edge
computing, and compute continuum.

The terms fog computing and edge computing are often
used interchangeably to loosely refer to moving process-
ing or computation away from the central cloud to nodes
that are closer to endpoints at the network edge. Though
they both aim to reduce the amount of data sent to the
cloud in data-dense applications, there are subtle differ-
ences between the two. Fog computing is an intermedi-
ate layer between the cloud and edge that represents the
nodes between the cloud to the IoT sensors and actua-
tors, possibly spanning across multiple layers of the net-
work topology. In contrast, in edge computing, the nodes
where the computation takes place are normally very
close to the IoT devices in terms of network proximity,
often only one or a few hops away from the IoT devices,
or even embedded within the connected device [16].

The compute continuum—also known by other
names such as cloud continuum, cloud-edge contin-
uum, cloud-to-edge continuum, or cloud-to-things
continuum—on the other hand, refers to the extension
of cloud with energy-efficient and low-latency devices
closer to the data sources located at the network
edge [17]. More specifically, it extends the traditional

Cloud towards multiple entities such as Fog, Edge, and
IoT to provide different capabilities including analy-
sis, processing, storage, and data generation [18]. Our
adoption of the term Cloud-to-Things is to indicate the
notion that the continuum connects cloud(s) and the
IoT-connected devices (i.e., things) [18], where we con-
sider the ‘things’ mainly as a source of data that need
to be processed in real-time using various layers of
resources scattered across the continuum.

The emergence of these new paradigms raised the
quintessential need to extend the orchestration require-
ments of applications from the centralised cloud-only
environment to the entire spectrum of resources in
the Cloud-to-Things continuum, as the existing cloud
orchestration solutions are unable to address them.
This mainly includes the application deployment and
management to be performed in a more complex, het-
erogeneous and geographically distributed infrastruc-
ture, where resources are located across different layers
of the continuum. More specifically, the following are
some of the key challenges of orchestration in the
Cloud-to-Things compute continuum [19–22]:

1 The Cloud-to-Things compute continuum is highly
diverse, where resources are not only distributed
across different layers of the spectrum but also het-
erogeneous having different architecture, operating
systems, and computational capabilities. An orches-
tration system needs to provide seamless and simul-
taneous access to such a heterogeneous and decen-
tralised resource landscape.

2 The federated coordination across different admin-
istrative domains to facilitate end-to-end services
across different cloud, fog and edge providers is chal-
lenging. An orchestration system needs standardised
APIs and interfaces to achieve such coordination.

3 A specific challenge to address in the case of edge
nodes is to deal with volatility and mobility i.e., the
nodes may shut down or lose connectivity or their
locations may change. In such scenarios, the orches-
tration system needs to deal with resource fluctua-
tion and changing environmental conditions.

4 Efficient monitoring mechanisms are required to col-
lect the statuses of the workload and resource usage
statistics across the entire spectrum of the contin-
uum.

5 The implementation of efficient run-time mecha-
nisms that enforce policy-based deployment and
run-time reconfiguration of target applications to
ensure that the system meets the SLA goals speci-
fied in the form of contextual configurations in terms
of resource discovery, optimal placement, optimise

Page 3 of 29Ullah et al. Journal of Cloud Computing (2023) 12:135

resource usage, efficient processing of data, and secu-
rity aspects.

6 The scale of the compute continuum can be massive,
where resources can be gathered from different cloud
and edge providers to fulfil the needs of target appli-
cations. An orchestration system needs to deal with
the required level of scalability across the different
administrative domains.

7 Lastly, an orchestration system is required to guaran-
tee the security of the overall system against different
attack scenarios while minimising the need for user-
supplied configurations. This is particularly challeng-
ing in the Cloud-to-Things continuum due to the
heterogeneity of the resources involved and the pos-
sibility of their belonging to different administrative
domains.

To deal with the above-mentioned challenges, there has
recently been a lot of attention, both in industry and aca-
demia, to the development of Cloud-to-Things Orches-
tration Solutions (CoTOS). This paper is an attempt
to gather, analyse and synthesis the research work con-
ducted in the field of orchestration systems for the
Cloud-to-Things continuum. The key contributions of
this paper are as follows:

1 We identified a wide range of key characteristics in
relation to the orchestration of IoT applications in the
Cloud-to-Things computing continuum. These char-
acteristics are the essential ingredients of, and there-
fore, important for the evaluation of CoTOS. Using
these characteristics, a novel taxonomy of CoTOS is
proposed, which is vital for the understanding and
analysis of existing solutions.

2 We performed a thorough review covering a
wide range of existing orchestration solutions from
industry and academia that target the Cloud-to-
Things continuum. The entire landscape of existing
CoTOS is classified into different logical groups,
and a detailed consolidated review and analysis of
each group is performed in light of the proposed
taxonomy.

3 Based on the results obtained from the review, we
identified and discussed the key issues and gaps in
the existing landscape of orchestration solutions to
highlight future research directions.

4 Lastly, we proposed a conceptual architecture of a
novel and comprehensive orchestration framework
as a reference to alleviate the identified gaps.

The rest of this paper is structured as follows. Sec-
tion “Related work” discusses the existing related review
papers to highlight the gaps and motivations in order to

justify the need for conducting yet another review. Sec-
tion “Taxonomy” presents our proposed taxonomy and
explains each of the included characteristics. A thorough
review of existing orchestration solutions, using the pro-
posed taxonomy, is carried out in Section “Review of
existing CoTOS”. Section “Discussion, Issues, and Future
directions” further reflects on the summarised results
to identify key issues and gaps from the review and to
highlight research directions for the future. Section “A
conceptual framework of orchestration in the Cloud-to-
Things compute continuum”, presents and discusses a
conceptual framework that can be used as a reference for
future implementations of orchestration solutions. Lastly,
Section “Conclusion” concludes this paper.

Related work
This section discusses the most relevant review papers
from the Cloud-to-Things orchestration domain, with a
view to analyse their strengths and weaknesses and high-
light how they differ from the review carried out in this
work.

The most relevant studies related to the Cloud-to-
Things orchestration include [19, 23, 24]. The authors
in these papers have identified and discussed the target
application scenarios and key challenges, in order to
derive requirements that can be used for the design of a
Cloud-to-Things orchestration solution. Based on these
requirements, a detailed evaluation and analysis of some
of the existing reference architectures and fog orchestra-
tion solutions have been provided. However, the list is
not exhaustive and the authors, except in [19], have only
covered a very small number of solutions. Furthermore,
all these studies lack a detailed taxonomy.

Similarly, papers [25–28] also identified and discussed
the core issues and challenges related to the orchestra-
tion of IoT applications. The focus though in Karima,
et al. [28] is in the context of 5G (and beyond) networks.
However, none of these papers provided a detailed taxon-
omy nor carried out a detailed review of existing orches-
tration solutions.

The authors in [29] produced a systematic review of
the deployment and orchestration approaches for the
IoT. Their proposed taxonomy consists of the follow-
ing three categories: (1) deployment and orchestration
support, (2) specification, and (3) advance prospects (as
defined by authors), i.e., monitoring, parameter adapta-
tion, and trustworthiness features. As such, the authors
used these very high-level characteristics only to clas-
sify the available solutions. In contrast, in this paper, we
consider deployment and run-time management of IoT
applications as the two essential key ingredients of an
orchestration solution. Based on this notion, we used
them as fundamental categories in our taxonomy. We

Page 4 of 29Ullah et al. Journal of Cloud Computing (2023) 12:135

further identified a large number of detailed, lower-level
characteristics associated with these key ingredients to
be part of the taxonomy. As a result, we review the exist-
ing approaches in light of these essential characteristics
rather than the aforementioned high-level categories.
Lastly, we also used additional aspects to classify the
available approaches into different categories to provide
a detailed comparative analysis and review of the overall
spectrum of existing orchestration solutions.

The review by Wu in [30] is mainly focused on the
aspects related to architecture and AI-powered data pro-
cessing techniques. The architecture was discussed in the
context of an underlying communication infrastructure,
such as the industrial network, mobile and vehicular net-
works; whereas, the data processing techniques are cat-
egorised and discussed based on the various functions
from the orchestration viewpoint, such as Offloading,
Placement, and Resource management. The scope of [30]
is on the different possible underlying architectures for
the IoT ecosystem and the data processing techniques
used by the applications. This paper, in contrast to [30],
aims to perform a critical review of existing orchestration
solutions.

Vaquero et al. [31] carried out an interesting and com-
prehensive review related to the challenges of next-gen-
eration service orchestration, where they focused on how
the emergence of new technology trends such as Net-
work Function Virtualisation (NFV), Software Defined
Networking (SDN), Fog/Edge computing, and Serverless
computing have changed requirements for the orchestra-
tion of microservices. Using the identified requirements,
the authors further reviewed and discussed the state-
of-the-art techniques by classifying them based on the
implementation aspects, such as Machine learning tech-
niques, P2P/Agent-based, Hierarchical and no orches-
tration. In contrast, our paper focused on the review of
existing solutions with respect to the key functions of
orchestration rather than their underlying implementa-
tion techniques.

The review in [32, 33] mainly focused on Kubernetes-
based orchestration architectures that have been used
within the context of the smart-city domain. Their key
focus is on identifying the fundamental requirements
for edge orchestration, analysis of existing kubernetes-
based architectures and in general the evaluation of
Kuberentes as the suitable candidate for cloud-edge
orchestration. The authors further reviewed and dis-
cussed the state-of-the-art Kubernetes architectures by
classifying them mainly into three categories including
frameworks that realise edge orchestration, solutions
that implement custom modifications and extensions
to Kubernetes, and solutions that only deal with edge
layer using customised Kubernetes. All these categories

in our paper are captured through only one category,
titled Lower level (Please see Section “Review of exist-
ing CoTOS” for further details). Furthermore, we also
include a range of other categories to cover the entire
spectrum of cloud-to-edge orchestration solutions.
Lastly, our paper provides a detailed taxonomy for
cloud-to-edge orchestration, where the scope is also
not limited to the smart city domain.

Fakude et al. [34] and Šatkauskas et al. [35] have dis-
cussed fog/edge orchestration from the viewpoint of
security in fog-enabled IoT-based computing environ-
ments. However, neither of these studies are detailed and
only discusses a small number of existing works from the
perspective of various security challenges. The focus in
both studies is on the identification of security-oriented
challenges related to fog orchestration. In the same realm,
Al-Doghman [36] focused on highlighting the challenges
of IoT management and secure decision-making at the
edge for AI-based Microservices. All these studies, in
comparison to our paper, do not provide a detailed taxon-
omy, formal classification and detailed analysis of existing
orchestration solutions. Lastly, there is no discussion on
identifying research gaps and future research directions.

Besides the above-mentioned studies, there are a
number of considerably extensive review papers such
as [37–42] that have discussed the resource management
related research works. The focus of these papers is on
the classification of approaches that relate to resource
management using different viewpoints. For example,
the taxonomy proposed in [40] relies on the classifica-
tion based on the core functions such as application
placement, resource scheduling, offloading. Similarly,
Luo et al. [41] focused on the core issues of computa-
tion offloading, resource allocation, and resource pro-
visioning. On the other hand, the authors in [39] use a
set of criteria consisting of four points (type of resource,
objective, resource location, and usage) to classify the
available research work, where Duc et al. [42] reviewed
machine learning techniques for resource provisioning in
Edge-Cloud environment. All these papers provide a con-
solidated view of the available literature in the fog/edge
computing area from a resource management point of
view. In all these papers, there are either no or very lim-
ited attention provided to the automated orchestration of
applications and resources.

In contrast to the above-mentioned related works, the
research works in [3, 43–46] focus specifically on orches-
tration. However, their scope is only limited to the cloud
environment and does not cover the Cloud-to-Things
ecosystem, as it is done in this paper. In terms of struc-
ture, our work extends and complements the taxonomies
proposed in the aforementioned cloud orchestration
review papers.

Page 5 of 29Ullah et al. Journal of Cloud Computing (2023) 12:135

To summarise, in contrast to the related works, our
scope is on the overall key functions of orchestration
rather than the underlying implementation techniques.
As a result, this paper presents a detailed taxonomy of
relevant characteristics, features, and dimensions related
to the Cloud-to-Things orchestration. This taxonomy
is further used as a unified framework to evaluate and
perform a thorough analysis of existing orchestration
solutions.

Taxonomy
We identified a widerange of characteristics in relation
to the orchestration of IoT applications in the Cloud-to-
Things computing continuum using the various studies
discussed in Section “Related work”, literature review of
target orchestration solutions, as well as our own experi-
ence of implementing an application-level cloud orches-
tration solution called MiCADO [15] and a CoTOS called
MiCADO-Edge [22]. The identified characteristics of the
taxonomy represent the essential ingredients of a CoTOS
and therefore are important to be considered from an
implementation viewpoint. Figure 1 presents the pro-
posed taxonomy, where the identified characteristics are
structured and summarised under five main categories.

The categorisation of attributes enabled us to demys-
tify the concept and scope of orchestration for the

continuum. However, all attributes are relevant to the
entire orchestration solution and are not part of a spe-
cific type of resource environment, i.e., cloud or edge.
The overall purpose of this taxonomy is to provide a uni-
fied framework whereby all candidate solutions can be
objectively compared and evaluated. A brief description
of each category and of their associated characteristics is
provided in the following subsections.

Cloud resource handling
This category groups together the characteristics related
to the cloud infrastructure part of the orchestration sys-
tem and includes the three aspects described below.

Environment This attribute refers to the underlying
support of a CoTOS for cloud environment(s) in terms
of the ability to use or combine resources from different
cloud providers. The possibilities include Single cloud,
where a CoTOS only supports a single specific cloud
environment; Multi-cloud, where a CoTOS facilitates
the selection of suitable resources from multiple cloud
environments, however, only one is utilised at a time;
and Cross-cloud, where multiple cloud environments
are exploited simultaneously to allow the distribution of
components belonging to the same application across

Fig. 1 Taxonomy of Cloud-to-Things orchestration

Page 6 of 29Ullah et al. Journal of Cloud Computing (2023) 12:135

different cloud providers. The use of multi and cross-
cloud features is of particular importance as they help in
optimising cost and performance by allowing the selec-
tion of suitable offers. This is also important to avoid ven-
dor lock-in. Furthermore, it also helps in addressing pri-
vacy issues by allowing the use of specific cloud providers
or private clouds for certain application components [3].

Resource types The support of a CoTOS in relation to
the different types of resources that can be dynamically
controlled by the orchestration solution. The choices
include the three common utility services provided by
cloud providers, i.e., compute, storage, and network.

Resource selection The support of a CoTOS that deter-
mines how the resources are selected during the deploy-
ment process. The available choices include Statically
defined, where specific instances of resources are stati-
cally assigned by the application owner at the time of
deployment; Automatic selection, where the application
owner specifies the general resource characteristics and
the CoTOS automatically selects the suitable instances at
run-time, however, the selection does not change at run-
time; Runtime optimised, where the CoTOS automati-
cally chooses the suitable resources from a diverse range
of cloud vendors based on certain specific optimisation
criteria, e.g., cost, locality.

Fog/Edge resource handling
This category groups together the characteristics related
to the handling of resources from fog and edge (referred
to as “non-cloud” collectively hereafter). More par-
ticularly, this covers the key aspects described in the
following.

Heterogeneity The Cloud-to-Things compute con-
tinuum is highly heterogeneous, namely computa-
tional devices of different natures are usually required
to support the requirements of an IoT application. This
attribute will measure the support of CoTOS for device
heterogeneity.

Connectivity In the Cloud-to-Things scenario, both
dynamically created cloud resources (e.g., VMs) and
non-cloud physical ones are available. Therefore, the
CoTOS has to provide a mechanism that enables the
connectivity/registration of these non-cloud resources
to a resource pool, such that they can be utilised for the
deployment as per the requirements of the IoT applica-
tion. In this regard, the Connectivity attribute analyses

the underlying support of a CoTOS that enables the con-
nection of non-cloud resource elements to the pool of
resources. This support can be further classified into two
categories: i.e., Manual registration, where the CoTOS
facilitates users through some manual pre-defined proce-
dure that allows the registration of non-cloud resources
with the CoTOS prior to the deployment process; or
Automatic registration, where the CoTOS provides auto-
matic procedure that allows the registration of non-cloud
resources at run-time, even after the deployment process.

Automatic re-connectivity Non-cloud resources can be
volatile in nature due to a number of reasons (e.g., low-
powered computational devices, mobility, network con-
nection), where they may lose connectivity to the rest of
the system at different points in time. In this regard, the
attribute refers to the ability (or not) of a CoTOS to sup-
port automatic re-connectivity of a non-cloud resource.

Resource discovery As resources in the Cloud-to-
Things continuum are geographically distributed, it can
be important for a CoTOS to support discovering all the
available resources. Resource discovery refers to the abil-
ity of a CoTOS to support optimal re-configuration deci-
sions by finding the most suitable resources based on cer-
tain contextual requirements.

Orchestration functionalities
This category groups together the essential functions of
a CoTOS.

Service/Job handling This attribute determines the
mechanism related to the deployment and management
of services (or jobs in the case of batch-based appli-
cations). This can be further subdivided into the two
aspects reported next.

1 Virtualisation support: this attribute can either
refer to Virtual Machines (VMs) to indicate that the
CoTOS features the dynamic provision of VMs and
the ability of direct deployment and management of
application components on VMs without the use of
containers; and Containerisation to indicate that the
CoTOS provides support for the deployment and
management of application components through
containers.

2 Mapping: The mapping mechanism of applica-
tion components to Cloud-to-Things resources can
either be Static, where the application owner stati-
cally configures application components to the avail-

Page 7 of 29Ullah et al. Journal of Cloud Computing (2023) 12:135

able resources (or resource types); or Context-aware
dynamic, where the mapping is dynamically deter-
mined based on various user-defined contextual con-
ditions associated with the application components
and/or resources.

Run-time reconfiguration One of the key functions of
any orchestration solution is its adaptability at run-time
using reconfiguration of application components and
associated resources according to the changing work-
ing conditions. We classify the Run-time reconfiguration
based on the list of attributes reported below.

1 Definition type: This represents the nature of the
available reconfiguration functions. It can be one of
the following two types: Statically pre-defined, where
a set of reconfiguration policies already exists and the
application owners are restricted to provide thresh-
old values based on some already established crite-
ria; or User-defined dynamic, where the application
owners have the freedom to write their own policies
based on available system and/or application-level
metrics.

2 Operating type: This represents the triggering behav-
iour of the reconfiguration operation. There are three
possible types: Reactive, where the reconfiguration
is performed as a response to some changes; Proac-
tive, where changes are anticipated and reconfigura-
tion decisions are performed in advance; or Hybrid,
meaning that the same solution consist of both reac-
tive and proactive reconfiguration mechanisms.

3 Scaling: This attribute represents the automated
scaling ability of a CoTOS. It can be of the following
three types: Horizontal, where the number of addi-
tional resources is increased or decreased depending
on the needs; Vertical, where the capacity of existing
computational resources is increased or decreased;
or Hybrid, where the system supports both Horizon-
tal and Vertical scaling.

4 Offloading: This refers to the transfer of computa-
tional tasks from one execution device to another. For
example, within the context of Cloud-to-Things com-
pute continuum, services are offloaded from cloud to
edge devices due to latency sensitivity and/or geo-
distributed requirements. Similarly, a service request
can be offloaded from edge to cloud or another edge
device if the existing device can not fulfil the required
computational capacity. Consequently, three types of
offloading generally occur. These are Cloud-to-Edge,
Edge-to-Cloud, and Edge-to-Edge.

Monitoring An orchestration system hugely relies on
run-time monitoring through which information on the
status of the system and of the application is gathered.
The collected information is used to trigger run-time
reconfiguration decisions in order to comply with sys-
tem-stated objectives. Using this attribute, the monitor-
ing support of a CoTOS can be evaluated in the following
two aspects.

1 Level of support: To identify whether monitoring of
application components and resources is possible at
each layer of the continuum or not.

2 Metrics support: The provided support of a CoTOS
in gathering different types of metrics. The different
types include system-level (e.g., CPU/memory utilisa-
tion), application-level (e.g., number of active HTTP
requests), as well as the ability to define custom met-
rics for collection (e.g., number of running jobs in a
batch processing application).

Security handling A CoTOS is required to guarantee
the security of the overall system against different attack
scenarios while minimising the need for user-supplied
configurations. Security handling in a CoTOS is a chal-
lenging task because an application in a Cloud-to-Things
ecosystem typically runs on heterogeneous resources.
Furthermore, these resources can contain low-powered
devices that also operate in different administrative
domains. Using this attribute, the support of CoTOS
security handling will be evaluated according to the
aspects reported below.

1 Configurable application level security settings: The
support of a CoTOS that gives application owners
the ability to define application level security settings
(e.g., firewall setting, TLS/SSL certificate, ports con-
figuration) in a configurable way.

2 System-wide inter-component communication: The
internal function of a CoTOS that enables secure
communication amongst the different parts of a sys-
tem, i.e., between system components that may oper-
ate in different VMs (and/or different layers).

3 Edge resource authentication: An important func-
tion of a CoTOS is to facilitate the registration of
non-cloud resources to the pool of resources that are
then used for the deployment of application compo-
nents. Such a registration process should be secure,
where only authenticated non-cloud resources will
be allowed to become part of the resources pool.

Page 8 of 29Ullah et al. Journal of Cloud Computing (2023) 12:135

4 Access control: This attribute will evaluate the sup-
port of CoTOS functionality in relation to the access
control that includes aspects like secure access to the
system resources.

Fault diagnosis The support for the detection of system
and/or application level faults at run-time, e.g., a fault in
the cloud provider’s system causing an unexpected ter-
mination of a VM, an unhandled run-time exception at
application level forcing to stop a container, or a volatile
edge node losing connection with the cluster.

Service Level Agreement (SLA) handling This attribute
will evaluate the support of a CoTOS in relation to the
handling of SLA-related functionalities, such as specifica-
tion, enforcement, and negotiation.

Design
This category grouped together the design aspects of the
orchestration solution. The following attributes are iden-
tified in what follows.

Architecture The employed architecture of a CoTOS
influences how the overall system operates to perform
the key orchestration functions, such as resource han-
dling, application management, deployment and run-
time reconfiguration decisions. This can be one of the
following three types: Centralised, where a central entity,
usually operating at the cloud layer, is responsible for all
functions; Decentralised, where multiple system entities
are running at different Cloud-to-Things continuum lay-
ers and handle various orchestration functions accord-
ingly. Hybrid, where a combination of the centralised and
decentralised approaches are employed by the CoTOS.

Extensibility The support provided by the design of a
CoTOS for facilitating extension in terms of the addition
of new resource providers, and the implementation of
additional orchestration functions.

User interface The ways users can interact with the
CoTOS. The possible types include Graphical User Inter-
face (GUI), Command Line Interface (CLI), and API-
based Interfaces.

Application description The orchestration solution
usually provides application owners with a mechanism
to provide the description of an application by express-
ing the specification of resources and components, the
application topology, and any associated scaling and
security policies. A number of well-known high-level

description standards are available for this purpose, e.g.,
TOSCA [47]—an OASIS [48] standard for describing
complex application topologies in the cloud. A standard
TOSCA template in YAML defines the various compo-
nents of a cloud application (software, storage, networks,
virtual machines) as nodes, which may have requirements
for, or share relationships with, other nodes in the tem-
plate. TOSCA also supports policies for defining rules for
scalability, monitoring, placement or security that will
govern application behaviour at run-time.

The possible values are labelled as Solution independent
to represent that the provided mechanism is based on
some standard and is independent of the underlying solu-
tion; or Solution specific to represent that the provided
mechanism is specifically designed for a given solution.

Supported application types
A CoTOS can be developed to target a specific applica-
tion area. This attribute will evaluate a CoTOS in relation
to its suitability with respect to particular application
area/s. We treat this as an open-ended attribute, where
specific application areas, such as Data streaming, Com-
puter vision, or Generic, will be listed.

Review of existing CoTOS
This section presents a comprehensive review of exist-
ing CoTOS in light of the proposed taxonomy. The avail-
able landscape of orchestration solutions is very diverse,
as subsets of solutions are quite different in nature from
each other. Therefore, we first classified the landscape
of existing solutions into different categories in order to
reduce the overall complexity. The classification, on the
one hand, allowed us to cover representative solutions
from each category. On the other hand, this enabled us to
perform a detailed comparative analysis of solutions that
are closely related to each other and to cluster the results
of each category. The overall hierarchy of these catego-
ries can be seen in Figure 2 and their brief description is
reported below.

1 Lower level: This category represents those solu-
tions that act as middleware, lacking a high-level
abstraction layer, and often requiring the knowledge
and configuration of underlying low-level techni-
cal details in relation to setting up the infrastructure
resources to be used for the application deployment.
Furthermore, these solutions, also do not provide
core orchestration functions such as deployment and
reconfiguration based on user-provided dynamic cri-
teria. Hence, these solutions cannot be directly con-
sidered as cloud-to-things orchestrators. However,
they are essential for higher-level application orches-

Page 9 of 29Ullah et al. Journal of Cloud Computing (2023) 12:135

trators to rely on as a middleware for the extension of
orchestration capabilities to the edge.

2 Higher level: This category represents a subset of
solutions that hides the underlying complexity of
resource settings and management using a high-
level abstraction layer. Such an abstraction layer can
be provided using a GUI and/or some standardised
specification language, e.g., TOSCA. Such solutions
may rely on the use of some lower-level solution (fur-
ther discussed in Section “Lower level solutions”).
From the application owners’ viewpoint, the higher-
level solutions are of particular interest. However,
from the viewpoint of orchestration solution devel-
opers, the lower-level solutions are also relevant
when analysing and selecting technologies that can
support their higher-level orchestrator. Therefore,
both are included in our analysis for completeness,
and as a way to equally support application owners
and orchestration solution developers. The higher-
level solutions are further classified based on their
existing status, i.e., Concept only, which consists of
those academic research proposals that only provide
a conceptual framework and/or prototypical imple-
mentation only, and Production ready, which consists
solutions that provide a fully working implemen-
tation. The Production ready solutions are further
grouped into, Research initiatives that are developed
as a result of some research projects, or Industry ini-
tiatives, where they are industry products and are
commercially available.

In the following subsections, we respectively review
and analyse a subset of relevant orchestration solutions
from each of the above categories.

Lower level solutions
All major public cloud providers such as Amazon, Micro-
soft, Google and Alibaba, provide middleware solutions
that enable application developers to combine their
edge resources and to use them simultaneously with the
respective cloud resources. Some examples of such solu-
tions include AWS Greengrass [49], Azure IoT Edge [50],
Google Distributed Cloud Edge [51], Alibaba Link IoT
Edge [52], IBM Edge Application Manager [53], and Aka-
mai EdgeWorkers [54]. These (and other similar) solu-
tions have been developed with their respective cloud
platforms in mind. Hence, they are not cross-platform
solutions and cause a degree of vendor lock-in and there-
fore are not of particular interest for this review paper.

There also exist a number of vendor-agnostic mid-
dleware solutions that fall into this category. A sub-
set of such solutions are discussed in this section. The
key factors that led to the inclusion of these solutions
include 1) the availability of their implementation, 2)
their implementations’ being regularly maintained,
and 3) the presence of available technical documenta-
tion and/or associated research papers. It is important
to note that such middleware solutions can be used
by higher-level application orchestrators to extend
their capabilities to the edge. However, these solu-
tions cannot be directly considered as cloud-to-edge

Fig. 2 Classification of existing orchestration solutions

Page 10 of 29Ullah et al. Journal of Cloud Computing (2023) 12:135

orchestrators, as they lack some core essential features
such as a high-level abstraction layer and dynamic
deployment or reconfiguration based on user-provided
criteria. Therefore, in this section, we only review these
solutions and will not present their results in accord-
ance with the taxonomy. The rest of this section dis-
cusses these solutions.

Project EVE [55], a Linux Foundation (LF) project,
provides a flexible foundation for IoT edge deployments
with a choice of any hardware, application, and cloud.
EVE enables centralized scalable management of large
volumes of edge compute nodes, where the orchestra-
tion of the underlying hardware and installed software
is achieved through the open EVE API, which ensures
consistency across diverse platforms. EVE is com-
plementary to other LF Edge application frameworks
including Open Horizon [56], EdgeX Foundry [57], and
Fledge [58]. Open Horizon facilitates the management
and deployment of workloads on edge devices from a
management hub cluster. EdgeX Foundry provides an
Edge IoT plug-and-play ecosystem with an aim to sim-
plify and standardize edge computing architectures in
the Industrial IoT market. Fledge is a Kubernetes-com-
patible container orchestrator for edge devices. Lastly,
Fledge, in collaboration with the EVE system provides
orchestration services and container run-time for
Fledge-based applications.

KubeEdge [59] is another open-source initiative with
a significant community behind it. KubeEdge extends
native containerised application orchestration capabili-
ties to non-cloud nodes at the edge of the network. It
facilitates seamless and automatic configuration of edge
nodes to make them part of a central Kubernetes cluster.
KubeEdge empowers application developers to orches-
trate apps, manage devices, and monitor application and
system status at edge nodes, just like a normal Kuber-
netes cluster in the cloud. The components of KubeEdge
facilitate the underlying infrastructure support for net-
work, application deployment and synchronisation of
metadata between cloud and edge. KubeEdge follows a
centralised model. Hence, there is the risk of isolation for
edge sites and therefore it is impossible to provision or
reconfigure workloads hosted on non-cloud workers if
the Kubernetes master node cannot be reached.

In contrast to such a centralised approach, Kubefed
[60] and Submariner [61] follow a federated approach,
where each edge site can continue to operate in case of
network partitions. Such a federated approach offers the
advantage of independent control over each edge site, in
comparison of a single point of control as in the case of a
centralised approach.

Kubefed, despite following a federated approach,
still provides a unified way to manage the life cycle of a

multi-cluster workload environment. Therefore, Kubefed
can be considered as a centralized server that distributes
and propagates Kubernetes API objects to multiple clus-
ters. It extends the Kubernetes API by leveraging the use
of CustomResourceDefinitions, which is a mechanism to
provide user-defined data types in Kubernetes. Overall,
although Kubefed is able to provide cluster autonomy to
a degree, it also presents several limitations to the edge
use cases. For example, it does not implement any sort
of knowledge or cooperation between the clusters them-
selves. Furthermore, the federation control plane, which
is designed in a centralized manner, requires the re-cre-
ation of a lot of existing features at the federation level.

Submariner, on the other hand, aims to solve the
network connectivity between multiple Kubernetes
instances. Unlike Kubefed, Submariner can expose
Pods and Services from one cluster to another without
requiring a new API. Submariner relies on a few internal
CustomResourceDefinitions (CRD) to make the inter-
cluster communication possible. All the involved clusters
synchronize their state to a shared cluster called Bro-
ker, which is responsible for the storage of all the CRD
objects. Using this approach, Submariner succeeded in
establishing interactions across the Services and Pods of
independent clusters. However, the scalability and the
robustness of sharing information are limited as most
of the locally created objects, such as Deployments and
Namespaces, remain local only.

StarlingX [62], similarly to KubeEdge, also extends
native containerised application orchestration capabili-
ties to the edges of the network, however, with two key
distinctions: (1) StarlingX is specific to the use of Open-
Stack cloud, and (2) it forms independent edge clouds in
contrast to just connecting an edge node with a central-
ised cluster. The StarlingX solution has a central Kuber-
netes-based control centre called central cloud, with as
many as required sub-clouds deployed on the edge nodes.
Using this model, StarlingX forms a federated architec-
ture in a way, similar to that of KubeFed and Submariner.
However, it still does not facilitate support for cross-
cloud orchestration operations. Hence, all sub-clouds are
independently controlled by their own controller. Unique
features of StarlingX are its support of cluster manage-
ment for services running on the HA (High Availability)
master/control nodes cluster and recovery of services
running on all nodes within the cluster.

OpenIoTFog [63] specifically focuses on the Indus-
trial Internet of Things (IIoT) with two objectives: 1) to
extend orchestration functions to the edge devices, and
2) to support the vision of Industry 4.0 by facilitating var-
ious related functions, such as real-time data aggregation,
asset supervision, predictive maintenance, asset safety
and the enablement of Digital Twins. The main aim of

Page 11 of 29Ullah et al. Journal of Cloud Computing (2023) 12:135

the OpenIoTFog is to provide software-based program-
mable logic controllers that can be dynamically updated
and re-configured without production downtime. From
a functional viewpoint, OpenIoTFog follows a similar
model to that of KubeEdge, i.e., an agent component is
required to be installed on an edge device, which makes
that device part of a centralised cluster where dynamic
policies, concerning the deployment of services on spe-
cific edge devices, can be applied. In addition, the agent
component can also gather data from various sensors via
industrial field bus systems and various (industrial) wire-
less technologies. It can also standardise, communicate
and aggregate them through secured standard-compliant
interfaces.

Fornax [64], developed within the scope of an umbrella
project called Centaurus [65], is an open-source edge
computing framework for managing compute resources
on edge environments. The key novel aspect of this pro-
ject, amongst all the other ones described in this cate-
gory, is its hierarchical topology that allows edge clusters
to be formed and organised in a multi-layer tree-like
structure. Hence, the infrastructure can be managed in
N layers in comparison with the two-layered approach of
KubeEdge and OpenIoTFog, or the federated approach
adopted by other works including KubeFed, Submariner,
StarlingX.

Higher level solutions
Concept‑only solutions
A large number of academic research papers are focused
on the Cloud-to-Things orchestration aspects. It is not
possible to cover all such papers individually and there-
fore, we shortlisted 10 papers from this category for
review in detail, where other papers are briefly intro-
duced. Amongst the 10 papers, half of them are the most
highly cited papers of all time so far and the rest of them
are all papers published in 2019 and onwards. It is impor-
tant to note that these solutions are theoretical with no
or just proof-of-concept implementation. The rest of this
section discusses these solutions, where Table 1 further
presents a complete summary of the reviewed solutions
in light of the attributes from the taxonomy.

ENORM [66], a framework for edge node resource
management, aimed to address the following three
problems: (1) Edge node provisioning, (2) Workload
deployment on edge with a focus on how to deploy and
what services to deploy, and (3) resource management
at the edge. ENORM follows a decentralised architec-
ture, where edge nodes are responsible for their own
resource management decisions. However, the over-
all architecture is static in nature, as all edge nodes are
known in advance to the cloud servers’ managers run-
ning in the cloud. The focus of ENORM is mostly on the

operations of edge nodes, where it supports provision-
ing, monitoring, vertical scaling, and offloading appli-
cations. However, the details related to the cloud layer
are not known, e.g., how the cloud server managers that
are responsible for different applications are provisioned
and maintained.

Fernandez et al. [67] introduced slice orchestrator,
which facilitates the automated orchestration of IoT ser-
vices based on certain specific operational (and/or busi-
ness) requirements over a set of shared infrastructures.
Their idea is based on the 5G concept called network
slice, which is an end-to-end logical network, capable of
providing an agreed quality of service for a defined cus-
tomer’s purpose [68]. Based on this notion, an IoT slice
would be a partition of the entire end-to-end IoT solution
created to serve a specific (or a group of) customer(s).
The job of the slice orchestrator is to establish network
slices, set up edge and cloud tenants, and the deployment
of IoT functions as per the specific requirements related
to resources in terms of computing, storage, network,
and target locations (e.g., edge and/or, cloud, and trans-
port network). This solution followed a hybrid architec-
ture, where a centralised slice orchestrator creates and
manages slices but also relies on other domain-specific
resource orchestrators (e.g., a different cloud orchestra-
tor is responsible for a specific cloud environment) to
perform key resource management functions such as
resource selection and deployment. However, no details
are provided regarding resource provisioning by domain
orchestration, run-time reconfiguration aspects and the
requirement specification that will be given as input to
the system.

Alam et al. [69] introduced a 3-layered reference
architecture that makes use of Docker as the underly-
ing orchestration tool for the automated deployment
of microservices as containers. Their system follows a
centralised model, where key functions like monitor-
ing, adaptation, and orchestration take place at the cloud
layer. Their Fog layer is mainly used as a gateway to medi-
ate between the cloud and edge layers for system-spe-
cific operations (e.g., to update the status of connected
edge devices) or application-specific operations (e.g.,
data transformation). This system is mostly suitable for
publish-subscribe based IoT applications. Similarly to
Fernandez et al., [67], no details of various important
functions, such as device connectivity at the edge level,
resource provisioning at different layers, and run-time
reconfiguration, are provided. However, different to
others, they include a data mining component, which
is responsible for erroneous behaviour detection such
as responsiveness of deployed components, and edge
devices’ statuses. Hence, their system is adaptable in case
of any failures.

Page 12 of 29Ullah et al. Journal of Cloud Computing (2023) 12:135

Ta
bl

e
1

Co
m

pa
ra

tiv
e

su
m

m
ar

y
of

 th
e

co
nc

ep
t-

on
ly

 o
rc

he
st

ra
tio

n
so

lu
tio

ns

A
tt

ri
bu

te
s

EN
O

RM
 [6

6]
Fe

rn
an

de
z

et
 a

l.
[6

7]
Al

am
 e

t a
l.

[6
9]

Sa
nt

os

et
 a

l.
[7

0]
Fo

gg
y

[7
3]

Ca
st

el
la

no

et
 a

l.
[7

4]
H

YD
RA

 [7
5]

Ca
ra

ve
la

 [7
6]

M
at

hi
as

et

 a
l.

[7
7]

H
et

er
o-

Ed
ge

 [8
0]

C
lo

ud
 re

so
ur

ce
 h

an
dl

in
g

En
vi

ro
nm

en
t

Si
ng

le
 c

lo
ud

�
�

�
�

M
ul

ti-
cl

ou
d

�
�

�

C
ro

ss
-c

lo
ud

Re
so

ur
ce

 ty
pe

s
Co

m
pu

te
�

�
�

�
�

�
�

�

St
or

ag
e

�
�

�

N
et

w
or

k
�

�
�

Re
so

ur
ce

 s
el

ec
tio

n
St

at
ic

al
ly

 d
efi

ne
d

�
�

�
�

A
ut

om
at

ic
 s

el
ec

tio
n

�
�

�
�

Ru
n-

tim
e

op
tim

is
ed

�
�

Fo
g/

Ed
ge

 re
so

ur
ce

 h
an

dl
in

g
Co

nn
ec

tiv
ity

M
an

ua
l r

eg
is

tr
at

io
n

�
�

�
�

�
�

�

Au
to

m
at

ic
 re

gi
st

ra
tio

n
�

�
�

O
th

er
s

H
et

er
og

en
ei

ty
�

�
�

�
�

�
�

�
�

A
ut

o
re

co
nn

ec
tiv

ity
�

Re
so

ur
ce

 d
is

co
ve

ry
�

�
�

�
�

O
rc

he
st

ra
tio

n
fu

nc
tio

n-
al

iti
es

Se
rv

ic
e/

Jo
b

H
an

dl
in

g
Vi

rt
 s

up
po

rt
VM

�
�

�
�

�

Co
nt

ai
ne

ris
at

io
n

�
�

�
�

�
�

�
�

�
�

M
ap

pi
ng

St
at

ic
�

�
�

�
�

�
�

Co
nt

ex
t a

w
ar

e
�

�
�

�

Ru
n-

tim
e

re
co

n-
fig

ur
at

io
n

D
efi

ni
tio

n
ty

pe
St

at
ic

al
ly

 p
re

-
de

fin
ed

�
�

U
se

r-
de

fin
ed

dy

na
m

ic
�

O
pe

ra
tin

g
ty

pe
Re

ac
tiv

e
�

�
�

�

Pr
oa

ct
iv

e
�

H
yb

rid

Sc
al

in
g

H
or

iz
on

ta
l

�

Ve
rt

ic
al

�

H
yb

rid
�

�

Page 13 of 29Ullah et al. Journal of Cloud Computing (2023) 12:135

Ta
bl

e
1

(c
on

tin
ue

d)

A
tt

ri
bu

te
s

EN
O

RM
 [6

6]
Fe

rn
an

de
z

et
 a

l.
[6

7]
Al

am
 e

t a
l.

[6
9]

Sa
nt

os

et
 a

l.
[7

0]
Fo

gg
y

[7
3]

Ca
st

el
la

no

et
 a

l.
[7

4]
H

YD
RA

 [7
5]

Ca
ra

ve
la

 [7
6]

M
at

hi
as

et

 a
l.

[7
7]

H
et

er
o-

Ed
ge

 [8
0]

O
ffl

oa
di

ng
C

lo
ud

-t
o-

Ed
ge

�
�

�

Ed
ge

-t
o-

C
lo

ud
�

�

Ed
ge

-t
o-

Ed
ge

�

M
on

ito
rin

g
Su

pp
or

t l
ev

el
C

lo
ud

�

Ed
ge

�
�

�
�

C
lo

ud
-t

o-
Ed

ge
�

�
�

�

M
et

ric
s

su
pp

or
t

Sy
st

em
�

�
�

�
�

�
�

A
pp

lic
at

io
n

�
�

�
�

�

Cu
st

om

Se
cu

rit
y

ha
nd

lin
g

Co
nfi

gu
ra

bl
e

ap
p

le
ve

l
�

�

Sy
s

w
id

e
in

te
r-

co
m

p
�

Ed
ge

 a
ut

he
nt

ic
at

io
n

�

A
cc

es
s

co
nt

ro
l

�

O
th

er
s

Fa
ul

t d
ia

gn
os

is
�

�

SL
A

 H
an

dl
in

g
∼

∼

D
es

ig
n

A
rc

hi
te

ct
ur

e
Ce

nt
ra

lis
ed

�
�

�
�

D
ec

en
tr

al
is

ed
�

�
�

�

H
yb

rid
�

�

A
pp

 d
es

cr
ip

tio
n

So
lu

tio
n

in
de

pe
nd

-
en

t
�

�

So
lu

tio
n

sp
ec

ifi
c

�
�

�
�

Ex
te

ns
ib

ili
ty

Re
so

ur
ce

s

Fu
nc

tio
na

lit
ie

s
�

�
�

U
se

r i
nt

er
fa

ce
G

U
I (

W
eb

/D
es

kt
op

)
�

C
LI

�
�

�
�

�
�

�

A
PI

 (S
er

vi
ce

/L
ib

ra
ry

)
�

�

Su
pp

or
te

d
A

pp
 ty

pe
s

G
G

PS
SC

G
D

S
G

G
G

C
V

[S
up

po
rt

ed
 =

 �
 , p

ar
tia

lly
 s

up
po

rt
ed

 =
 ∼

] S
up

po
rt

ed
 A

pp
 ty

pe
s ⇒

 P
ub

lis
h

Su
bs

cr
ib

er
 (P

S)
, S

m
ar

t C
ity

 (S
C)

, D
at

a
St

re
am

in
g

(D
S)

, C
om

pu
te

r V
is

io
n

CV
, G

en
er

ic
 (G

)

Page 14 of 29Ullah et al. Journal of Cloud Computing (2023) 12:135

Santos et al. [70] focused on the optimal applica-
tion placement problem in smart city applications while
considering the reduction in network bandwidth usage
and improved latency. Their proposal extends the ETSI
NFV MANO architecture [71] with additional functions
of monitoring and data analysis. Their system follows a
hybrid approach where management and decision-mak-
ing related to the various functions happen at the cloud
layer by cloud node (CN) and at the local layer by fog
nodes (FNs). CN is responsible for the global view of the
system including operations like coordination and con-
trol of FNs, global level data analysis and monitoring of
the overall SLA. Each FN on the other hand has its own
orchestrator and is responsible for autonomously manag-
ing its own local infrastructure, associated devices, and
the life-cycle of microservices, as well as interfacing with
the modules for resource discovery, system monitoring,
data analysis, security, machine to machine communica-
tion, and decision making related to application life cycle
and related policies. However, no details are provided
in relation to these policies, their structure, or how they
will be passed on to the system. This solution provides
both GUI and API access to facilitate application owners
managing and controlling FNs (and CN) independently
and to perform manual updates if required. Lastly, a fog
protocol based on the existing Open Shortest Path First
(OSPF) routing protocol [72] has been proposed to ena-
ble and exchange communication between fog and edge
layers. Details on edge device management, application
description and run-time reconfiguration are missing.

Foggy [73] framework, similarly to Santos et al. [70],
aimed to minimise latency and perform optimal appli-
cation placement. Foggy follows a centralised model. It
consists of an orchestration server (OS)—a central entity
responsible for deployment and resource management
decisions—and an orchestration client (OC)—running
on each computational resource and is responsible for
enforcing deployment decisions. Overall, Foggy offers
the following unique characteristics in contrast to other
solutions discussed in this category: 1) To facilitate an
automated build, a direct integration of a version con-
trol system (such as Github) and continuous integration
process as part of their system architecture; 2) A plug-
gable policy-driven deployment planner that dynami-
cally identifies suitable resources based on user provided
requirements; 3) A JSON based container specification to
facilitate application owners to provide service require-
ments using qualitative constructs such as Low, Medium,
and High. However, it is not clear how these qualitative
specifications for different aspects, such as computation
and latency, are mapped within the system. Similarly to
others, Foggy also does not cover details related to edge

device registration, standardised application description
and run-time reconfiguration.

Castellano et al. [74] solution follows a distributed
approach where a dedicated instance of a service-defined
orchestrator (SDO) is initiated every time a new appli-
cation is deployed. The input to the system is an appli-
cation deployment request that mainly consists of a list
of components, their topology and a set of declarative
statements to form the Orchestration Behaviour Model
(OBM) that drives the orchestration functions. The OBM
features aspects, such as infrastructure and/or appli-
cation state, required objectives to be optimised, the
events and the corresponding actions to be performed.
Using the OBM, every SDO instance aims to make opti-
mal decisions with respect to the managed application.
However, this also raises the resource allocation issue for
different instances of SDOs at the shared infrastructure
level when resources are limited. To cope with this, Cas-
tellano et al. [74] introduced Dragon—an additional com-
ponent responsible for the optimal partitioning of the
underlying shared resources across different SDOs. Using
Dragon, the SDO can decide to terminate an application
component if it cannot allocate the required resources to
that particular component. Their proposed declarative
statementsbased application description approach, how-
ever, is specific to this solution only and does not follow a
standardised approach.

HYDRA [75], similar to Castellano et al. [74] also fol-
lows a decentralised architecture, where a set of distrib-
uted nodes without the presence of a centralised entity
are responsible for performing the orchestration func-
tions of one application. HYDRA actually builds a peer-
to-peer (P2P) overlay network of computational nodes,
where every node serves both as an orchestrator as well
as a computational resource—responsible for running
the application micro-services. HYDRA supports both
location-agnostic as well as location-aware application
deployment with a primary focus on the overall scal-
ability and resilience aspects of the underlying resource
infrastructure through its decentralised architecture. This
has been achieved through the adoption of a dynamic
partitioning scheme, where orchestrator nodes operate
independently to control the needs on a per-application
basis.

Caravela [76] follows a similar decentralised model,
where all key aspects such as the overall architecture,
resource discovery and scheduling are also based on
the concept of a P2P overlay network. However, differ-
ent for HYDRA, it follows a market-oriented approach,
where volunteer resources can join the ecosystem and get
rewarded for their services. Caravela dynamically builds
edge cloud from the volunteer resources that are further
used to deploy applications using Docker containers.

Page 15 of 29Ullah et al. Journal of Cloud Computing (2023) 12:135

Caravela’s scope, however, is only limited to non-cloud
layers and does not include resource provisioning from
cloud.

Mathias et al. [77] solution consists of a Fog Orches-
trator (FO)—a central entity responsible for maintaining
a resource catalogue of fog nodes, overall service man-
agement, global level monitoring, and orchestration—
and an agent component called Fog Orchestrator Agent
(FOA) that runs on every fog node and is responsible for
activities such as management of connected edge devices,
security and monitoring. The working mechanism of this
solution suggests that FO composes a TOSCA-based
orchestration template using information obtained from
a resource catalogue and monitoring components. This
template is further used for deployment and run-time
management. Such usage of TOSCA for expressing
orchestration strategies is common and has been used by
many solutions such as [11, 22, 78, 79]. However, in this
case, the TOSCA template is dynamically generated by
the system and, therefore, it is not clear what the initial
input to the system is. A unique prospect of this solution,
in contrast to others discussed in this category, is that the
FOA can also act as FO if the connection is lost between
them. However, this behaviour is static and the specific
fog node has to specify this at the time of joining. Fur-
thermore, the scope of the overall solution only includes
the non-cloud layers.

Hetero-Edge [80] follows a similar concept to that of
Mathias et al. [77], where a central entity has been used
to handle the orchestration functions at the non-cloud
(edge) layer only. The solution, however, is specific to
computer vision applications and relies on the use of
Apache Storm (or something similar, such as Apache
Flink). Hetero-Edge breaks down an application into
smaller Apache Storm tasks and then efficiently maps
them onto the connected edge nodes with the objective
of minimising the overall end-to-end latency. The speci-
fication of tasks is provided through a directed acyclic
graph, where the mapping is performed using their cus-
tom-developed task scheduler that takes into account the
estimated performance and resource demands of tasks.
The solutions proposed by Donassolo et al. [81] also fol-
low a similar model, which supports orchestration at the
non-cloud layers, however, with a particular focus on
optimising the provisioning cost of IoT applications.

Some other more recent notable contributions include
GeneSIS [82], which proposed a model-driven approach
to automate the deployment of different kinds of deploy-
able artefacts including binary, ThingML-based [83], and
container; ECCO [84], which proposed an orchestration
framework for enabling the collective use of edge-cloud
resources for road context assessment; KubeHICE [85],
which took on the challenge of addressing hardware

heterogeneity by automatically matching the right com-
putational device that is compatible with the instruction
set architecture (ISA) supported by the containerized
application; and Gand et al. [86] and Sonmez et al. [87],
which focused on the presence and importance of uncer-
tainty in the cloud-to edge environment and therefore
adopted a fuzzy logic-based approach for workload
deployment.

In addition to the above-mentioned solutions, there
are also some research works that did not directly cover
the core orchestration functions, however, they empha-
sised the importance of other related aspects. For exam-
ple, the authors in [88, 89] introduced the notion of
trusted orchestration, where the proposed approach
aimed at identifying and tracking orchestration activi-
ties to improve trust across the involved actors of the
system. Similarly, Kochovski et al. [90] proposed a smart
contract (SC) based architecture for SLA management
and verification amongst relevant entities and actors of
a decentralised environment. More recent works on the
DRL-based advanced techniques for dynamic load bal-
ancing [91] and network dynamic clustering [92] in edge
computing focused on the overall optimisation of cloud-
to-edge system. Such solutions can be integrated into
distributed orchestration solutions to support self-organ-
isation and optimisation behaviours. Lastly, with the
growing popularity of Deep Learning (DL) applications,
there is also an increasing interest in proposing resource
management solutions that are specifically tailored to
DL applications. For example, FlowCon [93] monitors
the execution of DL jobs at run-time to make informed
resource allocation and placement decisions. Similarly,
SpeCon [94] is a container scheduler that aims to opti-
mise resource usage and improves the performance of DL
training jobs, whereas DQoES [95] aims at dynamically
adjusting cloud resources to meet the target Quality of
Experience (QoE) specified by the clients. The scope of
all the aforementioned DL-tailored solutions, however,
only includes the cloud layer. The details of these papers
do not directly fall within the scope of the proposed tax-
onomy and therefore have not been included here in
larger details.

Production ready solutions

Research initiatives In the last few years, a number of
EU-funded research projects focused on developing
cloud-to-edge solutions. The selection of this subset was
made considering three key aspects: 1) whether their core
functionality was related to the cloud-to-edge orches-
tration, 2) whether their implementation was available,
and 3) whether there were any publications associated
with the solution. The rest of this section discusses these

Page 16 of 29Ullah et al. Journal of Cloud Computing (2023) 12:135

solutions, and Table 2 further presents a complete sum-
mary of the reviewed solutions in light of the attributes
from the taxonomy.

SODALITE@RT [79] supports the deployment and
management of applications across a cloud-to-edge
infrastructure in a portable manner. The term “portable”
is based on their use of TOSCA as the deployment model
to represent application components and resources; and
the use of the Infrastructure as Code (IaC) concept [96]
to implement the life-cycle operations of components, for
which they utilised Ansible [97]. SODALITE@RT follows
a centralised model, where a central component called
a meta-orchestrator receives TOSCA-based deployment
models and Ansible implementation scripts to set up the
resources and to perform the deployment. The Ansible
scripts are cloud provider specific that the orchestrator
pulls from an IaC repository. Such an approach enables
custom implementation, however, also burdens applica-
tion developers with the production of Ansible scripts
in comparison with other TOSCA-based solutions such
as [22, 78], where the TOSCA model is the only input.
The Ansible scripts take care of the cloud resources han-
dling, where the edge resources are handled as part of
a Kubernetes cluster. However, details on edge cluster
formation are not provided and therefore it is not clear
whether a meta-orchestrator creates the edge cluster or
it must exist prior to the deployment process. SODA-
LITE@RT also provides an event-condition-action-based
policy language to support custom redeployment poli-
cies. Furthermore, it also supports access control and
mechanisms for secure storage of application secrets.
However, no mechanism for application-level security
configurations is provided.

Capillary [98] focused on the use of a custom-built
monitoring system to measure QoS parameters and Off-
loading across different resource layers based on vari-
ous user-defined characteristics, including geographic
positioning. The offloading decisions follow an “offload
to next immediate layer” model (e.g., edge to fog or
fog to cloud) that resembles the capillary fluid move-
ment, hence the name Capillary. It follows a centralised
approach, where a central entity called Capillary con-
tainer orchestrator performs the deployment and off-
loading operations. The input to the system is a TOSCA
deployment model that includes various details, such
as resource capacity requirements for services, zone
details, and constraints on QoS thresholds that are used
for reconfiguration purposes. At run-time, the moni-
toring system raises alarms based on the developer-
provided thresholds. As a result, a sub-component of
the orchestrator, similar to SODALITE@RT [79], takes
an offloading decision, changes the TOSCA model and

triggers re-deployment. For resource handling, the cloud
resources are dynamically provisioned by the orchestra-
tor based on the user-provided minimum requirements
for the service. However, no details on the provisioning
of the fog and edge infrastructure are provided.

MiCADO-Edge [22] is also a centralised solution,
where a central entity called MiCADO-Master is respon-
sible for the automated deployment and management of
a microservices-based application across the cloud-to-
edge continuum using a single TOSCA based deploy-
ment model. This model consists of details related to
computational resources, component specification,
application topology, service placement mapping, user-
defined scaling policies and any application-specific
security settings. The key focus in MiCADO-Edge is on
generalising the resources across the different layers of
the continuum by facilitating a mechanism to allow the
resources from fog and edge layers (referred to as non-
cloud resources) to join a centralised cluster prior to
the application deployment process. Once they become
part of the MiCADO cluster, developers can reference
them in the TOSCA-based deployment model to define
placement and reconfiguration policies. Furthermore,
MiCADO-Edge empowers application developers to
write custom dynamic scaling policies based on a wide
range of application and system metrics. MiCADO-
Edge, however, currently lacks support for context-based
placement of application services and developers are
required to provide static mapping between services and
resources.

PrEstoCloud [99, 100] follows a similar model of a
TOSCA-based orchestration solution. However, it pro-
vides an optimisation step before deployment. This step
consists of receiving TOSCA in a high-level form (type
level TOSCA model as they referred to it), which also
contains optimisation criteria independent from the
underlying infrastructure resources. Based on the pro-
vided criteria, the solution automatically produces a more
specific instance-level TOSCA deployment model con-
taining the specific resources across the infrastructure
that are to be used for application deployment. Hence, it
provides an optimised placement mechanism. Further-
more, PrEstoCloud also focused on facilitating predictive
reconfiguration based on the changing data stream con-
ditions considering data-intensive applications.

mF2C [101] adopted an N-layered approach to uti-
lise the available resources in the continuum from edge
(Layer-N) to the cloud (Layer-0), in contrast to the two-
layered (i.e., cloud and non-cloud) approach followed
by MiCADO-Edge [22] and the typical three-layered
approach as followed in [98]. Their proposed solution is
decentralised, where deployed mF2C agents, coordinate
with each other to find suitable resources, closer to the

Page 17 of 29Ullah et al. Journal of Cloud Computing (2023) 12:135

Ta
bl

e
2

Co
m

pa
ra

tiv
e

su
m

m
ar

y
of

 re
se

ar
ch

 p
ro

je
ct

s
ba

se
d

or
ch

es
tr

at
io

n
so

lu
tio

ns

A
tt

ri
bu

te
s

SO
D

A
LI

TE
@

RE
 [7

9]
Ca

pi
lla

ry
 [9

8]
m

F2
C

[1
01

]
M

iC
AD

O
-

Ed
ge

 [2
2]

Pr
Es

to
Cl

ou
d

[9
9,

10

0]
D

EC
EN

TE
R

[1
02

]
Ra

in
bo

w
 [1

04
]

Pl
ed

ge
r [

10
3]

Sl
ac

k4
th

in
gs

 [1
05

,
10

6]

C
lo

ud
 re

so
ur

ce
 h

an
dl

in
g

En
vi

ro
nm

en
t

Si
ng

le
 c

lo
ud

�
�

M
ul

ti-
cl

ou
d

�
�

�

C
ro

ss
-c

lo
ud

�
�

�

Re
so

ur
ce

 ty
pe

s
Co

m
pu

te
�

�
�

�
�

�
�

�
�

St
or

ag
e

�

N
et

w
or

k

Re
so

ur
ce

 s
el

ec
-

tio
n

St
at

ic
al

ly
 d

efi
ne

d
�

�
�

�

A
ut

om
at

ic
 s

el
ec

-
tio

n
�

�
�

�
�

Ru
n-

tim
e

op
ti-

m
is

ed
�

�

Fo
g/

Ed
ge

 re
so

ur
ce

 h
an

dl
in

g
Co

nn
ec

tiv
ity

M
an

ua
l r

eg
is

tr
a-

tio
n

�
�

�
�

�

A
ut

om
at

ic
 re

gi
s-

tr
at

io
n

�
�

�
�

�

O
th

er
s

H
et

er
og

en
ei

ty
�

�
�

�
�

�
�

�
�

A
ut

o
re

co
nn

ec
-

tiv
ity

�
�

�
�

�
�

Re
so

ur
ce

 d
is

-
co

ve
ry

�
�

�
�

�

O
rc

he
st

ra
tio

n
fu

nc
tio

na
lit

ie
s

Se
rv

ic
e/

Jo
b

H
an

dl
in

g
Vi

rt
 s

up
po

rt
VM

�

Co
nt

ai
ne

ris
at

io
n

�
�

�
�

�
�

�
�

�

M
ap

pi
ng

St
at

ic
�

�
�

�

Co
nt

ex
t a

w
ar

e
∼

�
�

�
�

�

Ru
n-

tim
e

re
co

n-
fig

ur
at

io
n

D
efi

ni
tio

n
ty

pe
St

at
ic

al
ly

 p
re

-
de

fin
ed

�
�

�
�

�

U
se

r-
de

fin
ed

dy

na
m

ic
�

�
�

�
�

O
pe

ra
tin

g
ty

pe
Re

ac
tiv

e
�

�
�

�
�

�
�

�

Pr
oa

ct
iv

e
�

H
yb

rid

Sc
al

in
g

H
or

iz
on

ta
l

�
�

Ve
rt

ic
al

�

H
yb

rid
�

�

Page 18 of 29Ullah et al. Journal of Cloud Computing (2023) 12:135

Ta
bl

e
2

(c
on

tin
ue

d)

A
tt

ri
bu

te
s

SO
D

A
LI

TE
@

RE
 [7

9]
Ca

pi
lla

ry
 [9

8]
m

F2
C

[1
01

]
M

iC
AD

O
-

Ed
ge

 [2
2]

Pr
Es

to
Cl

ou
d

[9
9,

10

0]
D

EC
EN

TE
R

[1
02

]
Ra

in
bo

w
 [1

04
]

Pl
ed

ge
r [

10
3]

Sl
ac

k4
th

in
gs

 [1
05

,
10

6]

O
ffl

oa
di

ng
C

lo
ud

-t
o-

Ed
ge

�
�

�

Ed
ge

-t
o-

C
lo

ud
�

�
�

Ed
ge

-t
o-

Ed
ge

�
�

�
�

M
on

ito
rin

g
Su

pp
or

t l
ev

el
C

lo
ud

�

Ed
ge

�

C
lo

ud
-t

o-
Ed

ge
�

�
�

�
�

�
�

�

M
et

ric
s

su
pp

or
t

Sy
st

em
�

�
�

�
�

�
�

�
�

A
pp

lic
at

io
n

�
�

�
�

�
�

�
�

Cu
st

om
�

�
�

�
�

Se
cu

rit
y

ha
nd

lin
g

Co
nfi

gu
ra

bl
e

ap
p

le
ve

l
�

Sy
s

w
id

e
in

te
r-

co
m

p
�

�
�

�

Ed
ge

 a
ut

he
nt

ic
a-

tio
n

�
�

�

A
cc

es
s

co
nt

ro
l

�
�

�
�

O
th

er
s

Fa
ul

t d
ia

gn
os

is
�

�

SL
A

 H
an

dl
in

g
∼

∼
∼

∼
∼

Page 19 of 29Ullah et al. Journal of Cloud Computing (2023) 12:135

Ta
bl

e
2

(c
on

tin
ue

d)

A
tt

ri
bu

te
s

SO
D

A
LI

TE
@

RE
 [7

9]
Ca

pi
lla

ry
 [9

8]
m

F2
C

[1
01

]
M

iC
AD

O
-

Ed
ge

 [2
2]

Pr
Es

to
Cl

ou
d

[9
9,

10

0]
D

EC
EN

TE
R

[1
02

]
Ra

in
bo

w
 [1

04
]

Pl
ed

ge
r [

10
3]

Sl
ac

k4
th

in
gs

 [1
05

,
10

6]

D
es

ig
n

A
rc

hi
te

ct
ur

e
Ce

nt
ra

lis
ed

�
�

�
�

�
�

D
ec

en
tr

al
is

ed
�

�
�

H
yb

rid

A
pp

 d
es

cr
ip

tio
n

So
lu

tio
n

in
de

-
pe

nd
en

t
�

�
�

�
�

�

So
lu

tio
n

sp
ec

ifi
c

�
�

Ex
te

ns
ib

ili
ty

Re
so

ur
ce

s
�

�
�

�

Fu
nc

tio
na

lit
ie

s
�

�

U
se

r i
nt

er
fa

ce
G

U
I (

W
eb

/D
es

k-
to

p)
�

�
�

�
�

C
LI

�

A
PI

 (S
er

vi
ce

/
Li

br
ar

y)
�

�
�

�
�

�

Su
pp

or
te

d
A

pp
 ty

pe
s

G
D

I
G

G
D

I
SC

G
G

G

[S
up

po
rt

ed
 =

 �
 , p

ar
tia

lly
 s

up
po

rt
ed

 =
 ∼

] S
up

po
rt

ed
 A

pp
 ty

pe
s ⇒

 G
en

er
ic

 (G
),

D
at

a
In

te
ns

iv
e

(D
I),

 S
m

ar
t c

on
st

ru
ct

io
n

(S
C)

Page 20 of 29Ullah et al. Journal of Cloud Computing (2023) 12:135

edge, for the execution of application services. The input
to the system, e.g., a service execution request is received
by the mF2C agent at the lower layer. The receiving agent,
in coordination with other agents at the same layer, aims
to execute the service request if the required resource
specification can be fulfilled. Otherwise, the request is
further passed on to the mF2C agents at the upper layer.
The service execution request is in JSON format that
includes the required resource specification used by the
mF2C agents to make deployment decisions. In terms of
resource handling, the mF2C architecture supports the
automatic discovery of other mF2C agents, the dynamic
formation of clusters, and also reconfiguration in case of
device mobility prospects. However, it does not address
aspects like scaling, offloading, dynamic provisioning of
resources, and configurable policies.

DECENTER [102] is specifically developed for trans-
forming construction sites into smart and safe environ-
ments. Hence, this solution facilitates methods that
are specifically tailored to the problems related to con-
struction processes. The unique feature of DECENTER,
amongst other solutions in this category, is the Block-
chain-based resource brokerage mechanism, which
facilitates the trusted brokerage and negotiation of
computational resources that can be used for deploy-
ment. Furthermore, all transactions of the system are
traceable and can be formally verified. Hence, improv-
ing the trust and transparency of the overall system.
DECENTER follows a centralised architecture, where
four key components of the system including Applica-
tion composer, QoS-aware decision maker, Monitoring
system, and Orchestrator are responsible for performing
the key orchestration functions. It also facilitates users
with a GUI interface to select the services they want to
use and define their QoS objectives. These details, along
with the monitoring data, are used by the QoS-aware
decision maker to perform deployment decisions that are
forwarded to the orchestrator. DECENTER also supports
automatic redeployment, when the system encounters
violation of QoS specifications. However, it lacks func-
tions like dynamic auto-scaling and offloading.

Pledger [103] also makes use of Blockchain to improve
trust, secure communication and enable ad-hoc networks
between the resources of non-cloud layers to collaborate
with each other for the execution of a specific application.
Although Pledger’s overall architecture follows a central-
ised model, its implementation does not comply with a
traditional adapter-based interaction model between dif-
ferent parts of the system. Pledger provides different tool-
kits for resource providers to integrate their resources
into the Pledger ecosystem and for the application own-
ers to perform mapping of their applications on specific

resources, which is further assessed and reconfigured by
the core Pledger service to ensure optimised use.

Rainbow [104] particularly focused on the issue of
lack of handling concerning the fog-specific constraints
related to the deployed services. For this purposes, their
proposed solution consists of a high-level abstraction
mechanism, where application topology and the related
constraints on services are described through a graph.
The Rainbow orchestration system accepts the graph
as input and deals with the optimised placement of the
services and the execution thereafter. The orchestration
system follows a decentralised model, where different
components of the system may run on the different com-
putational nodes that are part of the Rainbow ecosystem.
To address the various challenges of the fog environment
(such as low-powered devices, intermittent connectivity,
and the interactions of sub-components), the system fol-
lows a publish-subscribe mechanism where a component
called Orchestrator Repository maintains the states of
the system and its sub-components. The Rainbow plat-
form facilitates the dynamic registration of edge devices
and their reconfiguration as per defined service level
objectives (SLO) violations. However, its scope is only
limited to fog/edge resources and lacks the dynamic pro-
visioning of cloud resources.

Slack4things [105] is an open-source initiative
developed by the Mobile and Distributed Systems Lab
(MDSLab) at the University of Messina, Italy. This project
aimed to provide an OpenStack-based IoT framework for
managing IoT devices seamlessly, i.e., without consider-
ing their physical location, network configuration, and
underlying technology. The tools from this project are
further extended by Merlino et al. [106] to build a distrib-
uted orchestration solution based on a three-layer archi-
tecture that covers cloud-fog-edge, and supporting both
horizontal and vertical task offloading. With the former,
tasks can be migrated within the same layer, e.g., from
one edge device to another; with vertical offloading, tasks
can move across different layers, e.g., from edge to fog, or
from fog to cloud. Unlike other systems, this solution is
based on independent managers deployed at each layer
of the architecture; hence, applications can be directly
deployed, partly or as a whole, to any layer through the
provided managers.

Beyond the projects introduced above, there are some
relevant EU research initiatives that have just recently
started; however, at the time of review, we were not
able to find any reported results from these initiatives
therefore, we only briefly review them below for the
purpose of completeness. The European Cloud, Edge
and IoT (CEI) Continuum [107] is an umbrella initia-
tive that provides the strategic guidance and next stage
of tech development to achieve the goals of an active

Page 21 of 29Ullah et al. Journal of Cloud Computing (2023) 12:135

and dynamic European CEI ecosystem, with an empha-
sis on promoting the establishment of a global and open
ecosystem for the Cloud-Edge-IoT technologies. The
initiative coordinates across clusters of Research and
Innovation Actions to support industries and research-
ers in creating impact, promoting the link between
open source and open standards, and engaging relevant
industrial alliances in actions directed toward open
approaches. Among such clusters, the Meta-Operating
Systems for the Next Generation IoT and Edge Com-
puting (MetaOS) [108] are relevant for this review
paper, and include projects such as AerOS, FluiDOS,
ICOS, NebulOus, NEMO and NEPHELE. Likewise, the
cluster AI-enabled computing continuum from Cloud
to Edge (CognitiveCloud) [109] is also related to our
work, and includes projects such as AC3, ACES, Cloud-
Skin, CODECO, COGNIFOG, DECICE, EDGELESS,
MLSysOps and SovereignEdge.Cognit. More details of
these projects are available at the CEI website.

Industry initiatives This section presents an overview
of some of the existing industry platforms that support
the combined orchestration of cloud and edge resources.
The key factors that led to the inclusion of these solutions
are both the availability of their implementation and the
presence of technical documentation and/or associated
white papers. It is important to note that, even though
such solutions often rely on underlying open source com-
ponents, such as Docker and Kubernetes, they are in fact
vendor specific, with their scope mostly focused on the
orchestration of (5G) network services. Moreover, these
being industry-oriented solutions, we found that they
often lacked documentation providing in-depth descrip-
tions of the related technical details. Instead, the available
documentation focused more on the presentation of fea-
tures for targeting customers. Therefore, the evaluation
of the characteristics of these solutions against the tax-
onomy was not obvious due to the lack of information.
Nonetheless, we include these solutions in the paper for
the purposes of completeness, even though a detailed
comparative summary table will not be presented in this
section.

HPE GreenLake [110] cloud-to-edge is an infra-
structure-as-a-service solution that brings the pub-
lic cloud model to multiple IT environments, such as
private clouds, multi-cloud and on-premises, in order
to deliver an agile cloud everywhere modality to the
users. HPE GreenLake allows for the integration, man-
agement and monitoring of all the above resources
through a centralised interface. Users can access dif-
ferent types of deployable resources and services, e.g.,
bare-metal, compute, storage, containers and data

protection services, as well as HPC, AI/ML and virtual
desktop infrastructures.

Intel Smart Edge Open [111] is an edge computing
software toolkit for building platforms optimized for the
edge. This is done by providing a toolkit of functionality
selected from across the cloud native landscape, which
has been extended and optimised to be used at the edge.
This solution is able to work with heterogeneous hard-
ware resources from the on-premise edge to regional
data centres. These are managed by using a set of “experi-
ence kits”, provided by Intel and built on top of Kuber-
netes, that combine 5G capabilities and cloud-native
components to simplify the deployment of complex net-
work architectures, significantly reducing development
time and cost. For instance, the Developer Experience Kit
provides the base capabilities to run containerised edge
services, including networking, security, and telemetry.
An experience kit consists of building blocks that can
be chosen according to the customer’s needs. Specifi-
cally, Resource management provides identification, con-
figuration, allocation, and continuous monitoring of the
hardware and software resources on the edge cluster; the
Telemetry and Monitoring combine application telem-
etry, hardware telemetry, and events to create a heat-map
across the edge cluster and enable the orchestrator to
make scheduling decisions.

AMCOP [112]—Aarna Networks Multi Cluster
Orchestration Platform—is an open-source platform for
orchestration, life-cycle management, and closed-loop
automation of cloud-native network services and edge
computing applications. AMCOP aims to solve the prob-
lem of managing the growing number of edge applications
and edge sites by offering intent-based orchestration of
network services and composite edge computing appli-
cations, which comprise cloud-native network functions
and cloud native applications; it also supports service
assurance for edge and 5G services through real-time,
policy-driven closed-loop automation. AMCOP works by
interfacing (northbound) with the collection of systems/
applications that a network service provider already uses
to operate its business (OSS/BSS), and by orchestrating
infrastructure and network services/applications across
multiple heterogeneous Kubernetes clusters (southbound).

Ormuco [113] is a solution that aims to lead the
deployment and usage of edge computing as an effec-
tive approach to deliver data processing. The platform
was developed to respond to the needs of modern busi-
nesses that require the setup of an infrastructure-as-a-
service via a decentralised approach in order to increase
their revenue, reduce both the operations and mainte-
nance costs, and automate the deployment of systems
and applications on demand. The platform’s Cerebro

Page 22 of 29Ullah et al. Journal of Cloud Computing (2023) 12:135

virtual sysadmin is able to collect logs from heterogene-
ous computing nodes and applications; these are used to
learn the expected behaviour of the deployed software
and to notify application owners of any detected poten-
tial anomalies.

Azion [114] is an end-to-end encrypted edge orches-
tration service with cloud management and zero-touch
provisioning, created for large-scale edge networks.
Users can manage and control resources across the edge
in real-time and orchestrate services more easily, accord-
ing to specific service requirements. The orchestration
relies on an agent, installed on the edge nodes, that pro-
vides encrypted remote node management to the Azion
Control panel, within the Real-Time Manager, deployed
in the cloud. The Edge Node module enables devices to
be created, managed and implements the integration
with the orchestrator. The Edge Services module enables
the customers to create their own services and allows
them to be managed and orchestrated by the Real-Time
Manager.

ONAP [115] platform provides a unified operating
framework for vendor-agnostic, policy-driven service
design and implementation, as well as analytics and life-
cycle management for large-scale workloads and services.
Network operators can use ONAP to orchestrate both
physical and virtual network functions; hence, they can
capitalise on their existing network infrastructure while
being part of a vibrant VNF ecosystem that includes pro-
viders around the globe. The ONAP Operations Manager
(OOM) module, based on Kubernetes is responsible for
orchestrating the end-to-end lifecycle management and
monitoring of ONAP components, as well as enforcing
scalability and resiliency mechanisms.

ZEDEDA [116] is a cloud-based orchestration solu-
tion for the secure control of distributed edge comput-
ing deployments, which provides users with full-stack
remote management of edge computing hardware and
applications deployed both on clouds or on-premises
systems. ZEDEDA leverages EVE-OS [55], a secure,
open universal operating system, developed with vendor-
neutral and open-source governance as part of the Linux
Foundation’s LF Edge organization. EVE-OS simplifies
the deployment, orchestration and security of cloud-
native and legacy applications on distributed edge com-
pute nodes. EVE-OS encrypts data, maintains device
and software integrity and supports VMs, containers and
clusters (Docker and Kubernetes).

Discussion, issues, and future directions
Section “Review of existing CoTOS” thoroughly
reviewed the existing solutions by classifying them into
different groups. Table 1 and 2 further summarised the
solutions from the concept-only and research initiatives

categories by outlining their characteristics based on
the proposed taxonomy. This section discusses and
reflects on the results from tables with the aim of high-
lighting directions for future work in relation to the
advancement of cloud-to-edge orchestration. More
particularly, Section “Open issues” discusses the open
issues that require further consideration, whereas Sec-
tion “A conceptual framework of orchestration in the
Cloud-to-Things compute continuum”, based on the
analysis of the CoTOS landscape and the identification
of notable gaps, presents a generic high-level concep-
tual framework for the development of the next genera-
tion CoTOS.

Open issues
Standardised support for application description
A key distinction that we made in this paper is the
differentiation between lower-level and higher-level
solutions using the presence (or lack) of a high-level
abstraction layer. Such an abstraction aims to increase
portability and interoperability by empowering users to
specify their applications’ requirements using a high-
level standardised method to avoid any kind of vendor
and/or technology lock-in. It is evident from results
by focusing on the “App description” attribute that a
number of solutions such as ENORM [66], Fernandez
et al. [67], Alam et al. [69], Santos et al. [70] do not
provide such an abstraction layer. A number of other
solutions, including Foggy [73], Gabriele et al. [74],
mF2C [101], and Rainbow [104] used a YAML or cus-
tom DSL based abstraction mechanism. However, all
these approaches are specific to respective solutions,
hence solution dependent. On the other hand, most of
the solutions in the research initiative category includ-
ing SODALITE@RE [79], Capillary [98], MiCADO-
Edge [22], PrEstoCloud [99, 100], DECENTER [102]
and Pledger [103] follow a solution independent
approach, where they mainly apply the TOSCA stand-
ard format for application description. TOSCA is a
well-known, popular and standardised cloud orches-
tration modelling language that has been extensively
used by many cloud orchestration tools. However, the
latest TOSCA standard (i.e., Version 1.3 [117] at the
time of writing) still lacks support for edge-related
aspects. Due to the lack of native support, all the afore-
mentioned solutions provide ad-hoc extension and
implementation for the edge-related aspects. Such
ad-hoc adoption of TOSCA loses the inherent port-
ability aspects of utilising TOSCA as an abstraction
layer. Hence, further efforts are required to develop (or
extend) existing standardised modelling languages to
enable native support for edge-related aspects.

Page 23 of 29Ullah et al. Journal of Cloud Computing (2023) 12:135

SLA management
The complex nature of the cloud-to-edge continuum,
which consists of heterogeneous computational and com-
munication infrastructures belonging to multi-domains,
and often relies on ephemeral mobile, low-power com-
putational devices with volatile connectivity, brings in
possibly varying run-time conditions that can ultimately
influence the delivery of the expected QoS. Therefore,
from a system viewpoint, the management of SLAs of IoT
applications is a very complex task. It is evident from the
results by referring to the “SLA handling” attribute that,
some of the existing works, e.g., ENORM [66], Fernandez
et al. [67] from the concept-only category, and almost all
solutions from the research initiative category have con-
sidered the SLA aspect. However, the majority of these
solutions have focused only on SLA enforcement, where
they perform reconfiguration as a result of the viola-
tion of certain conditions. We consider that the scope of
SLA management is larger than just SLA enforcement,
and orchestration systems are also needed to focus on
other related aspects, e.g., a standardised way of describ-
ing SLA, reporting of SLA violation, formal assurance
of SLA, SLA negotiation considering different admin-
istrative domains, and SLA monitoring across different
administrative domains. However, amongst the reviewed
solutions, very limited efforts are provided with regard
to these aspects. Some limited notable examples include
the reporting of SLA violations by mF2C [101] and the
formal assurance of SLA in DECENTER [102]. For the
SLA specification, which is an essential task for QoS-
aware orchestration, a number of solutions provide their
custom method to define a reconfiguration policy, e.g.,
MiCADO-Edge asks application owners to define their
SLA by writing a Python-based scaling policy using a set
of exposed variables, while mF2C allows resource based
conditions. However, all such methods assume specific
knowledge of the underlying systems. On the other hand,
commercial solutions, such as AMCOP and ONAP also
have their SLA specification mechanisms based on exist-
ing ETSI proposals [118]. However, the scope of these is
mainly focused on the network domain only and hence
may not be applicable to the whole cloud-to-edge con-
tinuum. Further efforts are required to provide a stand-
ardised format that facilitates application owners to
specify the SLA requirements of their applications. Some
limited individual works in this direction include [119,
120]. These works advocate the use of model-driven SLA
specifications that extend TOSCA with SLA-defining
constructs. For other aspects, there are also some initial
works, e.g., for QoS negotiation [121, 122], and for formal
assurance of SLA [90, 123]. From an overall orchestration
viewpoint, these aspects are essential and there should be
more focus on incorporating these functions.

Context‑aware resource discovery
As already pointed out for SLA Management, the multi-
domain, heterogeneous nature of the cloud-to-edge
continuum poses considerable challenges to the unified
management of the available resources. These should
ideally be made available as a pool that can grow and
shrink as resource elements are dynamically discovered
across the different layers of the involved administra-
tive domains. The results (relevant attributes include:
“Resource discovery” and “Mapping”) inform us that most
of the solutions lack a resource discovery mechanism and
therefore provide a static mapping, where users manu-
ally define the association of components to specific
resources, rather than a context-aware one. However,
the cloud-to-thing continuum model is highly dynamic,
where IoT applications have different requirements relat-
ing to resource, e.g., locality, type of resources, operating
system, architecture, remaining battery power. Hence,
from a uniform resource management viewpoint, an
orchestration solution should provide a standardised
dynamic way to empower resource owners to securely
register their resources using the various associated
contextual attributes, and where these resources can be
dynamically discoverable across different administra-
tive domains at the time of deployment and reconfigura-
tion decisions. Hence, we foresee the usage of solutions
similar to the one described in our previous work [124],
where a Resource Marketplace was considered as a
dynamic approach for sharing resource availability infor-
mation among various domains. This also allows the
execution of mapping algorithms aimed at identifying
resources across the cloud-to-edge continuum that can
be used to satisfy the performance requirements of the
IoT services requested by the users.

Proactive run‑time reconfiguration
It is evident from the results by focusing on the “Oper-
ating type” attribute that almost all of the reviewed solu-
tions are reactive in nature, rather than proactive. Such
solutions execute reconfiguration actions (i.e., either scal-
ing and/or offloading) in response to the changes in the
behaviour of the system that can be identified through the
fulfilment (or violation) of some conditions. The key issue
with the reactive approach is the delay elapsed between
the time of the reaction to a change and the actual com-
pletion time of the reconfiguration process [125]. Reac-
tive orchestration is also more prone to oscillation. You
may react too fast and then react again, causing too many
reconfigurations. The proactive approach on the other
hand anticipates future behaviour of the system and per-
forms the necessary reconfiguration in advance. Within
the cloud-only domain, there is already a lot of attention
provided on the use of proactive approaches to perform

Page 24 of 29Ullah et al. Journal of Cloud Computing (2023) 12:135

auto-scaling (e.g., please check these review papers for
further details [126, 127]). However, as evident from the
results, there is very limited attention on the use of pro-
active approaches by orchestration systems in the cloud-
to-edge continuum. Therefore, a new breed of machine
learning-based contextual models need to be developed
to take reconfiguration decisions by anticipating future
system behaviour considering a large range of relevant
contextual information, such as: System resources (e.g.,
utilisation, capabilities, types, availability), Networking
aspects (e.g., congestion level, available bandwidth, com-
munication overhead), Energy requirements (e.g., bat-
tery utilisation, battery life), Environmental context (e.g.,
locality, time of the day), Application service context (low
latency, QoS specification), and Social behaviour aspects,
(e.g., roaming habits of users).

Decentralised architecture
Most of the reviewed solutions, especially the ones with
implementations, follow a centralised approach. This
approach offers a number of key advantages, such as
significantly reducing the complexity of the implemen-
tation and offering consistent decision-making, thanks
to the information relevant to the decision process
being located in a single place. However, the centralised
approach also comes with significant drawbacks [37].
For example, it suffers from the lack of scalability, it
offers a single point of failure and a centralised target
for cyber-attacks. Moreover, a single central compo-
nent can easily become a bottleneck from an efficiency
point of view. Such a model fits more naturally in the
single-cloud domain. However, considering the cross-
cloud and distributed nature of the cloud-to-edge eco-
system, a centralised approach also raises additional
concerns, e.g., the transfer of recurrent monitoring data
from distributed resources to a central point, sporadic
connectivity, privacy and locality constraints. A decen-
tralised approach can address the aforementioned
limitations. In such an approach, multiple orchestra-
tors (decision makers) work independently, and each
orchestrator manages its dedicated applications or its
own domain of the infrastructure and also collaborates
with each other to reach QoS standards or fulfil SLAs
or policy requirements [128, 129].

Security handling
The core focus of this paper was not on the security
aspects of orchestration systems. However, we still
evaluated existing solutions in four basic but essential
aspects related to security. It is evident from the results
by focusing on the sub-attributes of “Security handling”
that only a few solutions have very limited and par-
tial attention on some of the four aspects. Hence, more

attention is required in this regard. One of the key chal-
lenges for orchestration systems related to security is
the resource-constrained computational devices at the
edge, which in some cases are unable to support the tra-
ditional security methods. Therefore, new methods need
to be designed considering the distributed, multi-admin-
istrative domain and resource-constrained nature of the
cloud-to-edge environment. Further specific details in
relation to security challenges and some solutions can be
found in [35, 130, 131].

A conceptual framework of orchestration
in the Cloud-to-Things compute continuum
Based on the analysis of the CoTOS landscape, and the
identification of notable gaps described in the previ-
ous section, we present a generic high-level conceptual
framework for the development of the next generation of
CoTOS. This section describes the high-level abstract
details of the framework to help researchers and devel-
opers in identifying potential components and building
blocks, based on the functionalities and notable missing
features of the current solutions.

The ideas that underpin our framework proposal are
also aligned with the objectives targeted by some of
the newly started research initiatives in the context of
orchestration in the cloud-to-edge continuum, such
as those mentioned earlier in the paper [107]. Similar
to [108], we also foresee the development of a unified
framework for smart IoT applications, acting as a Meta-
Operating System that enables seamless cloud and edge
computing orchestration by bringing computation, data
and intelligence closer to where the data is produced. As
in [109], AI techniques will also be used to build a cogni-
tive framework that will automatically adapt to the grow-
ing complexity and data deluge by integrating seamlessly
and securely diverse computing and data environments,
spanning from core cloud to edge.

The implementation aspects of the suggested frame-
work’s components and overall execution model are left
out for developers to choose based on their key require-
ments. Figure 3 illustrates the high-level architecture of
our envisioned system, where the overall structure has
been categorised into three layers, namely the Applica-
tion Description layer, the Orchestration layer, and the
Infrastructure layer. The following sections explain each
of these layers.

Application description layer
We expect enabling application owners to produce ven-
dor-agnostic and interoperable deployment models for
their applications that will be deployed, managed and
executed within the Cloud-to-Things continuum. We
aim to have a single uniform standardised deployment

Page 25 of 29Ullah et al. Journal of Cloud Computing (2023) 12:135

descriptor (a deployment model for the application) that
incorporates all the relevant details of the target applica-
tion, including the topological structure of the involved
microservices, the specification of the cloud-to-edge
resource requirements and SLA specification, reconfigu-
ration, and application-level security policies. Inspired
from [78, 124], we consider a multi-level deployment
model. A high-level, where an application owner provides
an abstract description of the required resources and
some optimisation criteria, rather than specific details in
relation to resource providers, and/or instances. Based
on user-provided optimisation criteria, the Cloud/Edge
Offerings Manager component is responsible to produce
an optimised deployment model consisting of specific
details of the resources that will be used. The optimised
deployment model is then passed on to the Deployment
Model Manager component. Alternatively, application
owners could also follow a static approach, whereby

they can directly produce a deployment model, contain-
ing all the required resource-specific details, which can
be directly passed on to the Deployment Model Manager
component.

Orchestration layer
At this layer, the Deployment Model Manager receives
either the high-level or intermediate-level deployment
model mentioned above, and it is responsible for the
translation, validation and transformation of the model
into the corresponding low-level details related to the
platform (and resources), such as specific orchestration
manifests, policies enforcement. For the key operations,
i.e., the deployment, reconfiguration and run-time opera-
tional management of the target application, we envision
the MAPE-K [132] loop architectural concept of self-
adaptive systems. As Figure 3 depicts, there are specific
components that are responsible for each stage of the

Fig. 3 Conceptual framework of orchestration in the Cloud-to-Things computing continuum

Page 26 of 29Ullah et al. Journal of Cloud Computing (2023) 12:135

MAPE-K loop. More particularly, the role of the Monitor-
ing System is to collect the system and application-related
metrics, as well as the related contextual information,
across the entire Cloud-to-Things ecosystem. The col-
lected information will be received by the Contextualisa-
tion Engine and utilised at different points in time; It will
be fed into a wide range of relevant Artificial Intelligence
models to make system-level proactive decisions related
to the applications being executed. These decisions will
be further planned and scheduled in terms of specific
actions, considering the available resources by the Plan-
ning Manager. Lastly, the Orchestration Manager will
execute the planned actions.

The key MAPE-K components of the envisioned sys-
tem are supported by the Resource Manager—respon-
sible for the overall management of both cloud and
non-cloud resources. For the non-cloud resources, it will
also manage resource registration and dynamic discovery
at run-time; Run-time Optimiser—responsible to opti-
mise the overall deployment setup in terms of resource
usage and application performance; SLA Manager—
responsible to manage the SLA related aspects, includ-
ing providing an interface for negotiation, monitoring
and verification at run-time; and the Faults Recovery—
responsible for detecting run-time errors in relation to
application services and resources, and taking steps for
automatic recovery. Lastly, the Security Manager consists
of various enablers that are responsible for dealing with
the overall security of the system across the multi-level
cloud-to-edge layers, such that the entire system can
securely operate on heterogeneous resources geographi-
cally dispersed across multiple domains. It will also be
responsible for enforcing the application-level security
policies defined by the application owners at the Deploy-
ment layer. Moreover, the Security Manager should also
provide methods for authentication of resources (and IoT
devices), such that unauthorised use of resources can be
eliminated at the resource level and not only at the sys-
tem component level.

Infrastructure layer
Various types of geographically dispersed resources
belonging to the Cloud-to-Things continuum, and poten-
tially spanning multiple administrative domains, are the
constituting elements of this layer. These resources will
be used by the above-mentioned components of the
Orchestration layer in order to simultaneously deploy,
reconfigure and manage IoT applications.

Conclusion
The increasing adoption of the Cloud-to-Things com-
puting model emphasises the importance of intelli-
gent and robust orchestration solutions to address the

quintessential needs of modern IoT applications, which
require simultaneous access and management of geo-
graphically distributed arrays of sensors, heterogeneous
remote, local and multi-cloud computational resources,
as well as dynamic handling of the application execu-
tion. In this paper, we thoroughly reviewed a diverse
range of existing orchestration solutions; we then pro-
posed a novel taxonomy that consists of a wide set of
characteristics that we deemed essential for the auto-
mated deployment and run-time management of IoT
applications within the Cloud-to-Things continuum.

Based on the obtained results from this review, we
identified six key areas, where current solutions are
lacking focus. These areas include standardisation sup-
port for application description, SLA management,
context-aware resource discovery, proactive run-time
reconfiguration, decentralised architectures, and secu-
rity management. These areas highlight directions for
future work. Moreover, based on these identified areas,
we also presented a proposal for a conceptual frame-
work that can provide a foundation for the implementa-
tion of future orchestration solutions.

Authors’ contributions
All authors equally contributed to the design of taxonomy and classifica-
tion and the general conceptualisation and concept of the paper. Amjad:
Initial conceptualisation, Design of the conceptual framework, Contributed
to the write-up of Sections including Introduction, Related work, Taxonomy,
Concept-only, Research initiatives, “Discussion, issues, and future directions”
and “A proposal of conceptual framework”. Tamas: Design of the conceptual
framework, and review of the entire manuscript. J ozsef: Contributed to the
design of taxonomy, the write-up of Section “Industry initiatives”, and review
of the entire manuscript. Francesco: Contributed to the write-up of sections
including “Industry initiatives”, “Discussion, issues, and future directions”, “A
proposal for a conceptual framework”, and review of the entire manuscript.
James: Contributed to the write-up of Section “Lower-level solutions”.
Huseyin: Contributed to the write-up of Section “Lower-level solutions”, and
review of the entire manuscript. Resmi: Contributed to the write-up of Sec-
tion “Lower-level solutions”. Hamed: Contributed to the write-up of Section
“Research initiatives”.

Funding
This work was supported by the following projects funded by the European
Commission’s H2020 Programme: DIGITbrain (project number 952071),
PITHIA-NRF (project number 101007599) and Harpocrates (project number
101069535).

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 13 December 2022 Accepted: 4 September 2023

Page 27 of 29Ullah et al. Journal of Cloud Computing (2023) 12:135

References
 1. Gartner (2019) Gartner forecasts worldwide public cloud revenue to

grow 17 in 2020. https:// www. gartn er. com/ en/ newsr oom/ press- relea
ses/ 2019- 11- 13- gartn er- forec asts- world wide- public- cloud- reven ue- to-
grow- 17- perce nt- in- 2020. Accessed 5 Oct 2020

 2. Marston S, Li Z, Bandyopadhyay S, Ghalsasi A, Zhang J, Ghalsasi A
(2011) Cloud computing - the business perspective. Decis Support Syst
52(1)176–189

 3. Tomarchio O, Calcaterra D, Modica GD (2020) Cloud resource
orchestration in the multi-cloud landscape: a systematic review
of existing frameworks. J Cloud Comput. https:// doi. org/ 10. 1186/
s13677- 020- 00194-7

 4. Amazon (2020) Aws cloudformation: Speed up cloud provisioning
with infrastructure as code. https:// aws. amazon. com/ cloud forma tion/.
Accessed 18 Oct 2020

 5. OpenStack (2020) Openstack orchestration. https:// wiki. opens tack. org/
wiki/ Heat. Accessed 18 Oct 2020

 6. Azure (2020) Azure resource manager (arm) templates. https:// docs.
micro soft. com/ en- us/ azure/ azure- resou rce- manag er/ templ ates/ overv
iew. Accessed 19 Oct 2020

 7. Google (2020) Google cloud depyment manager. https:// cloud. google.
com/ deplo yment- manag er. Accessed 19 Oct 2020

 8. Kubernetes (2020) Kubernetes : Production-grade container orchestra-
tion. https:// kuber netes. io/. Accessed 4 Oct 2020

 9. Docker (2020) Docker swarm. https:// docs. docker. com/ engine/ swarm/.
Accessed 4 Oct 2020

 10. Apache Brooklyn (2020) Apache brooklyn: software for managing cloud
applications. http:// brook lyn. apache. org/. Accessed 4 Oct 2020

 11. Cloudify (2020) Cloudify orchestration platform - multi cloud, cloud
native & edge. https:// cloud ify. co/. Accessed 6 Sep 2022

 12. Cloudiator (2020) Cloudiator: A multi-tenant, cross-cloud orchestration
framework. https:// github. com/ cloud iator. Accessed 4 Oct 2020

 13. Alien4Cloud (2020) Alien 4 cloud. https:// alien 4cloud. github. io/.
Accessed 4 Oct 2020

 14. MODAClouds (2020) Modaclouds multi-cloud devops alliance: Moda-
clouds releases multi-cloud devops toolbox. http:// multi cloud devops.
com/. Accessed 4 Oct 2020

 15. Kiss T, Kacsuk P, Kovács J, Rakoczi B, Hajnal Á, Farkas A, Gesmier G, Ter-
styanszky G (2019) Micado–microservice-based cloud application-level
dynamic orchestrator. Futur Gener Comput Syst 94:937–946

 16. (1934) IEEE standard for adoption of openfog reference architecture for
fog computing. IEEE Std 2018:1–176

 17. Kimovski D, Mathá R, Hammer J, Mehran N, Hellwagner H, Prodan R
(2021) Cloud, fog, or edge: Where to compute? IEEE Internet Comput
25(4):30–36

 18. Moreschini S, Pecorelli F, Li X, Naz S, Hästbacka D, Taibi D (2022) Cloud
continuum: the definition. IEEE. Access 10:131876–131886

 19. Svorobej S, Bendechache M, Griesinger F, Domaschka J (2020) Orches-
tration from the Cloud to the Edge. In: Lynn T, Mooney JG, Lee B, Endo
PT (eds) The Cloud-to-Thing Continuum: Opportunities and Challenges
in Cloud, Fog and Edge Computing. Springer International Publishing,
Cham, p 61–77. https:// doi. org/ 10. 1007/ 978-3- 030- 41110-7_4

 20. Bittencourt L, Immich R, Sakellariou R, Fonseca N, Madeira E, Curado
M, Villas L, DaSilva L, Lee C, Rana O (2018) The internet of things, fog
and cloud continuum: Integration and challenges. Internet Things
3:134–155

 21. DesLauriers J, Kiss T, Ariyattu RC, Dang H-V, Ullah A, Bowden J, Krefting
D, Pierantoni G, Terstyanszky G (2021) Cloud apps to-go: Cloud portabil-
ity with TOSCA and MiCADO. Concurr Comput: Practice and Experience
33(19):e6093

 22. Ullah A, Dagdeviren H, Ariyattu RC, DesLauriers J, Kiss T, Bowden J
(2021) MiCADO-Edge: Towards an Application-level Orchestrator for the
Cloud-to-Edge Computing Continuum. J Grid Comput 19(4):1–28

 23. Velasquez K, Abreu DP, Assis MR, Senna C, Aranha DF, Bittencourt LF,
Laranjeiro N, Curado M, Vieira M, Monteiro E, Madeira E (2018) Fog
orchestration for the Internet of Everything: state-of-the-art and
research challenges. J Internet Serv Appl. https:// doi. org/ 10. 1186/
s13174- 018- 0086-3

 24. Lynn T, Mooney JG, Lee B, Endo PT (2020) The cloud-to-thing contin-
uum: opportunities and challenges in cloud, fog and edge computing.
https:// doi. org/ 10. 1007/ 978-3- 030- 41110-7

 25. Wen Z, Yang R, Garraghan P, Lin T, Xu J, Rovatsos M (2017) Fog orches-
tration for internet of things services. IEEE Internet Comput. https:// doi.
org/ 10. 1109/ MIC. 2017. 36

 26. Jiang Y, Huang Z, Tsang DH (2018) Challenges and Solutions in Fog
Computing Orchestration. IEEE Netw. https:// doi. org/ 10. 1109/ MNET.
2017. 17002 71

 27. Comma-Di L, Abdullaziz OI, Antevski K, Chundrigar SB, Gdowski R, Kuo
PH, Mourad A, Yen LH, Zabala A, (2018) Opportunities and challenges
of joint edge and Fog orchestration. In 2018 IEEE Wireless Communica-
tions and Networking Conference Workshops, WCNCW 2018. https://
doi. org/ 10. 1109/ WCNCW. 2018. 83690 06

 28. Velasquez K, Abreu DP, Curado M, Monteiro E (2022) Resource orches-
tration in 5G and beyond: Challenges and opportunities. Comp Com-
mun 192:311–315

 29. Nguyen PH, Ferry N, Erdogan G, Song H, Lavirotte S, Tigli JY, Solberg A
(2019) Advances in deployment and orchestration approaches for IoT -
A systematic review. In: Proceedings - 2019 IEEE International Congress
on Internet of Things, ICIOT 2019 - Part of the 2019 IEEE World Congress
on Services. https:// doi. org/ 10. 1109/ ICIOT. 2019. 00021

 30. Wu Y (2020) Cloud-edge orchestration for the Internet of Things:
Architecture and AI-powered data processing. IEEE Internet Things J
8(16):12792–12805

 31. Vaquero LM, Cuadrado F, Elkhatib Y, Bernal-Bernabe J, Srirama SN, Zhani
MF (2019) Research challenges in nextgen service orchestration. Futur
Gener Comput Syst. https:// doi. org/ 10. 1016/j. future. 2018. 07. 039. 1806.
00764

 32. Böhm S, Wirtz G (2022a) Towards orchestration of cloud-edge architec-
tures with kubernetes. In: Science and Technologies for Smart Cities: 7th
EAI International Conference, SmartCity360◦ , Virtual Event, December
2-4, 2021, Proceedings, Springer, pp 207–230

 33. Böhm S, Wirtz G (2022) Cloud-edge orchestration for smart cities: A
review of kubernetes-based orchestration architectures. EAI Endorsed
Trans Smart Cities 6(18):e2–e2

 34. Fakude NC, Tarwireyi P, Adigun MO, Abu-Mahfouz AM (2019) Fog
Orchestrator as an Enabler for Security in Fog Computing: A Review. In:
Proceedings - 2019 International Multidisciplinary Information Technol-
ogy and Engineering Conference, IMITEC 2019. https:// doi. org/ 10. 1109/
IMITE C45504. 2019. 90158 96

 35. Šatkauskas N, Venčkauskas A, Morkevičius N, Liutkevičius A (2020) Orchestra-
tion Security Challenges in the Fog Computing. In: International Confer-
ence on Information and Software Technologies, Springer, pp 196–207

 36. Al-Doghman F, Moustafa N, Khalil I, Sohrabi N, Tari Z, Zomaya AY (2023)
AI-Enabled Secure Microservices in Edge Computing: Opportunities
and Challenges. IEEE Trans Serv Comp. 16(2):1485-1504. https:// doi. org/
10. 1109/ TSC. 2022. 31554 47

 37. Hong CH, Varghese B (2019) Resource management in fog/edge com-
puting: a survey on architectures, infrastructure, and algorithms. ACM
Comput Surv (CSUR) 52(5):1–37

 38. Hong CH, Varghese B (2019) Resource Management in Fog/Edge Com-
puting. ACM Comput Surv. https:// doi. org/ 10. 1145/ 33260 66

 39. Toczé K, Nadjm-Tehrani S (2018). A Taxonomy for Management and
Optimization of Multiple Resources in Edge Computing. https:// doi.
org/ 10. 1155/ 2018/ 74762 01

 40. Ghobaei-Arani M, Souri A, Rahmanian AA (2020). Resource Manage-
ment Approaches in Fog Computing: a Comprehensive Review. https://
doi. org/ 10. 1007/ s10723- 019- 09491-1

 41. Luo Q, Hu S, Li C, Li G, Shi W (2021) Resource scheduling in edge com-
puting: A survey. IEEE Commun Surv Tutor 23(4):2131–2165

 42. Duc TL, Leiva RG, Casari P, Östberg PO (2019) Machine learning meth-
ods for reliable resource provisioning in edge-cloud computing: A
survey. ACM Comput Surv (CSUR) 52(5):1–39

 43. Raj P, Raman A (2018). Automated Multi-cloud Operations and Con-
tainer Orchestration. https:// doi. org/ 10. 1007/ 978-3- 319- 78637-7_9

 44. Bellendorf J, Mann ZÁ (2018) Cloud topology and orchestration using
TOSCA: A systematic literature review. In: Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). https:// doi. org/ 10. 1007/ 978-3- 319-
99819-0_ 16

 45. Ranjan R, Benatallah B, Dustdar S, Papazoglou MP (2015) Cloud
Resource Orchestration Programming: Overview. Issues, and Directions.
https:// doi. org/ 10. 1109/ MIC. 2015. 20

https://www.gartner.com/en/newsroom/press-releases/2019-11-13-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2020
https://www.gartner.com/en/newsroom/press-releases/2019-11-13-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2020
https://www.gartner.com/en/newsroom/press-releases/2019-11-13-gartner-forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2020
https://doi.org/10.1186/s13677-020-00194-7
https://doi.org/10.1186/s13677-020-00194-7
https://aws.amazon.com/cloudformation/
https://wiki.openstack.org/wiki/Heat
https://wiki.openstack.org/wiki/Heat
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/overview
https://docs.microsoft.com/en-us/azure/azure-resource-manager/templates/overview
https://cloud.google.com/deployment-manager
https://cloud.google.com/deployment-manager
https://kubernetes.io/
https://docs.docker.com/engine/swarm/
http://brooklyn.apache.org/
https://cloudify.co/
https://github.com/cloudiator
https://alien4cloud.github.io/
http://multiclouddevops.com/
http://multiclouddevops.com/
https://doi.org/10.1007/978-3-030-41110-7_4
https://doi.org/10.1186/s13174-018-0086-3
https://doi.org/10.1186/s13174-018-0086-3
https://doi.org/10.1007/978-3-030-41110-7
https://doi.org/10.1109/MIC.2017.36
https://doi.org/10.1109/MIC.2017.36
https://doi.org/10.1109/MNET.2017.1700271
https://doi.org/10.1109/MNET.2017.1700271
https://doi.org/10.1109/WCNCW.2018.8369006
https://doi.org/10.1109/WCNCW.2018.8369006
https://doi.org/10.1109/ICIOT.2019.00021
https://doi.org/10.1016/j.future.2018.07.039.1806.00764
https://doi.org/10.1016/j.future.2018.07.039.1806.00764
https://doi.org/10.1109/IMITEC45504.2019.9015896
https://doi.org/10.1109/IMITEC45504.2019.9015896
https://doi.org/10.1109/TSC.2022.3155447
https://doi.org/10.1109/TSC.2022.3155447
https://doi.org/10.1145/3326066
https://doi.org/10.1155/2018/7476201
https://doi.org/10.1155/2018/7476201
https://doi.org/10.1007/s10723-019-09491-1
https://doi.org/10.1007/s10723-019-09491-1
https://doi.org/10.1007/978-3-319-78637-7_9
https://doi.org/10.1007/978-3-319-99819-0_16
https://doi.org/10.1007/978-3-319-99819-0_16
https://doi.org/10.1109/MIC.2015.20

Page 28 of 29Ullah et al. Journal of Cloud Computing (2023) 12:135

 46. Weerasiri D, Barukh MC, Benatallah B, Sheng QZ, Ranjan R (2017). A
taxonomy and survey of cloud resource orchestration techniques.
https:// doi. org/ 10. 1145/ 30541 77

 47. Lauwers C, Tamburri D OASIS Topology and Orchestration Specifica-
tion for Cloud Applications. www. oasis- open. org/ commi ttees/ tosca.
Accessed 6 Dec 2021

 48. (2020) Oasis. https:// www. oasis- open. org/. Accessed 6 Aug 2023
 49. AWS (2022) AWS Greengrass. https:// aws. amazon. com/ green grass/.

Accessed 28 Oct 2022
 50. Azure (2022) What is Azure IoT Edge. https:// learn. micro soft. com/ en-

us/ azure/ iot- edge/ about- iot- edge? view= ioted ge-1.4. Accessed 28
Oct 2022

 51. Google (2022) Google Distributed Cloud Edge. https:// cloud. google.
com/ distr ibuted- cloud. Accessed 28 Oct 2022

 52. Alibaba (2022) Link IoT Edge. https:// www. aliba baclo ud. com/ produ
ct/ linki otedge. Accessed 28 Oct 2022

 53. IBM (2022) IBM Edge Application Manager. https:// www. ibm. com/
cloud/ edge- appli cation- manag er. Accessed 28 Oct 2022

 54. Akimi (2022) Akami EdgeWorkers. https:// devel oper. akamai. com/
akamai- edgew orkers- overv iew. Accessed 28 Oct 2022

 55. Linux foundation (2022) Project eve. https:// www. lfedge. org/ proje
cts/ eve/. Accessed 4 Sep 2022

 56. Open Horizon (2022) Open horizon. https:// open- horiz on. github. io/
docs/. Accessed 4 Sep 2022

 57. EdgeX Foundry (2022) Edgex foundry. https:// www. edgex found ry.
org. Accessed 4 Sep 2022

 58. Goethals T, De Turck F, Volckaert B (2020) Fledge: Kubernetes compat-
ible container orchestration on low-resource edge devices. In: Internet
of vehicles : technologies and services toward smart cities, 6th Interna-
tional Conference, IOV 2019, Proceedings, Springer, pp 174–189

 59. KubeEdge (2022) Kubeedge: A kubernetes native edge computing
framework. https:// kubee dge. io/ en/. Accessed 4 Sep 2022

 60. KubeFed (2022) Kubernetes federation project. https:// github. com/
kuber netes- sigs/ kubef ed. Accessed 4 Sep 2022

 61. Submariner (2022) Submariner, connected kubernetes overlay
networks. https:// github. com/ subma riner- io/ subma riner. Accessed 4
Sep 2022

 62. Starlingx (2022) Starlingx: Distributed edge cloud native platform.
https:// www. starl ingx. io/. Accessed 4 Sep 2022

 63. Openiotfog (2022) Openiotfog: Edge computing for industry 4.0
applications. https:// openi otfog. org. Accessed 4 Sep 2022

 64. Fornax-project (2022) Fornax - and edge computing framework.
https:// github. com/ centa urusi nfra/ fornax. Accessed 31 Oct 2022

 65. Centaurus-project (2022) Centaurus - An infrastructure platform for dis-
tributed cloud. https:// www. centa urusc loud. io/. Accessed 31 Oct 2022

 66. Wang N, Varghese B, Matthaiou M, Nikolopoulos DS (2017) Enorm:
A framework for edge node resource management. IEEE Trans Serv
Comput 13(6):1086–1099

 67. Fernandez JM, Vidal I, Valera F (2019) Enabling the orchestration of
iot slices through edge and cloud microservice platforms. Sensors
19(13):2980

 68. GSMA (2022) Gsma network slicing: Use case requirements. https://
www. gsma. com/ futur enetw orks/ wp- conte nt/ uploa ds/ 2018/ 04/ NS-
Final. pdf. Accessed 2 Sep 2022

 69. Alam M, Rufino J, Ferreira J, Ahmed SH, Shah N, Chen Y (2018)
Orchestration of microservices for iot using docker and edge com-
puting. IEEE Commun Mag 56(9):118–123

 70. Santos J, Wauters T, Volckaert B, De Turck F (2017) Fog computing:
Enabling the management and orchestration of smart city applica-
tions in 5g networks. Entropy 20(1):4

 71. ETSI (2022) NFV in ETSI. https:// www. etsi. org/ techn ologi es/ nfv.
Accessed 4 Sep 2022

 72. Moy J (1997) OSPF Version 2. https:// www. rfc- editor. org/ rfc/ rfc21 78.
Accessed 13 Oct 2022

 73. Yigitoglu E, Mohamed M, Liu L, Ludwig H (2017) Foggy: A framework
for continuous automated iot application deployment in fog com-
puting. In: 2017 IEEE International Conference on AI Mobile Services
(AIMS), pp 38–45. https:// doi. org/ 10. 1109/ AIMS. 2017. 14

 74. Castellano G, Esposito F, Risso F (2019) A service-defined approach for
orchestration of heterogeneous applications in cloud/edge platforms.
IEEE Trans Netw Serv Manag 16(4):1404–1418

 75. Jimenez LL, Schelen O (2020) Hydra: Decentralized location-aware
orchestration of containerized applications. IEEE Trans Cloud Comput
10(4):2664–2678

 76. Pires A, Simão J, Veiga L (2021) Distributed and decentralized orchestra-
tion of containers on edge clouds. J Grid Comput 19:1–20

 77. De Brito MS, Hoque S, Magedanz T, Steinke R, Willner A, Nehls D, Keils O,
Schreiner F (2017) A service orchestration architecture for fog-enabled
infrastructures. In: 2017 Second International Conference on Fog and
Mobile Edge Computing (FMEC), IEEE, pp 127–132

 78. Tsagkaropoulos A, Verginadis Y, Compastié M, Apostolou D, Mentzas G
(2021) Extending tosca for edge and fog deployment support. Electron-
ics 10(6):737

 79. Kumara I, Mundt P, Tokmakov K, Radolović D, Maslennikov A, González
RS, Fabeiro JF, Quattrocchi G, Meth K, Nitto ED, et al (2021) Sodalite@
rt: Orchestrating applications on cloud-edge infrastructures. J Grid
Comput 19(3). https:// doi. org/ 10. 1007/ s10723- 021- 09572-0

 80. Zhang W, Li S, Liu L, Jia Z, Zhang Y, Raychaudhuri D (2019) Hetero-edge:
Orchestration of real-time vision applications on heterogeneous edge
clouds. In: IEEE INFOCOM 2019-IEEE Conference on Computer Com-
munications, IEEE, pp 1270–1278

 81. Donassolo B, Fajjari I, Legrand A, Mertikopoulos P (2019) Fog based
framework for IoT service provisioning. In: 2019 16th IEEE annual con-
sumer communications & networking conference (CCNC), IEEE, pp 1–6

 82. Ferry N, Nguyen P, Song H, Novac PE, Lavirotte S, Tigli JY, Solberg A
(2019) Genesis: Continuous orchestration and deployment of smart iot
systems. In: 2019 IEEE 43rd Annual Computer Software and Applica-
tions Conference (COMPSAC), vol 1. IEEE, pp 870–875

 83. Morin B, Fleurey F, Husa KE, Barais O (2016) A generative middleware
for heterogeneous and distributed services. In: 2016 19th International
ACM SIGSOFT Symposium on Component-Based Software Engineering
(CBSE), IEEE, pp 107–116

 84. Cozzolino V, Ott J, Ding AY, Mortier R (2020) Ecco: Edge-cloud chaining
and orchestration framework for road context assessment. In: 2020
IEEE/ACM Fifth International Conference on Internet-of-Things Design
and Implementation (IoTDI), IEEE, pp 223–230

 85. Yang S, Ren Y, Zhang J, Guan J, Li B (2021) Kubehice: Performance-
aware container orchestration on heterogeneous-isa architectures in
cloud-edge platforms. In: 2021 IEEE Intl Conf on Parallel & Distributed
Processing with Applications, Big Data & Cloud Computing, Sustainable
Computing & Communications, Social Computing & Networking (ISPA/
BDCloud/SocialCom/SustainCom), IEEE, pp 81–91

 86. Gand F, Fronza I, El Ioini N, Barzegar HR, Azimi S, Pahl C (2020) A fuzzy
controller for self-adaptive lightweight edge container orchestration. In:
Proceedings of the 10th International Conference on Cloud Computing
and Services Science-CLOSER, SciTePress, pp 79–90

 87. Sonmez C, Ozgovde A, Ersoy C (2019) Fuzzy workload orchestration for
edge computing. IEEE Trans Netw Serv Manag 16(2):769–782

 88. Pahl C, El Ioini N, Helmer S, Lee B (2018) An architecture pattern for
trusted orchestration in IoT edge clouds. In: 2018 third international
conference on fog and mobile edge computing (FMEC), IEEE, pp 63–70

 89. El Ioini N, Pahl C (2018) Trustworthy orchestration of container based
edge computing using permissioned blockchain. 2018 Fifth Interna-
tional Conference on Internet of Things: Systems. Management and
Security, IEEE, pp 147–154

 90. Kochovski P, Stankovski V, Gec S, Faticanti F, Savi M, Siracusa D, Kum S
(2020) Smart contracts for service-level agreements in edge-to-cloud
computing. J Grid Comput 18(4):673–690

 91. Liu Q, Xia T, Cheng L, Van Eijk M, Ozcelebi T, Mao Y (2021) Deep rein-
forcement learning for load-balancing aware network control in IoT
edge systems. IEEE Trans Parallel Distrib Syst 33(6):1491–1502

 92. Liu Q, Cheng L, Ozcelebi T, Murphy J, Lukkien J (2019) Deep reinforce-
ment learning for IoT network dynamic clustering in edge computing.
2019 19th IEEE/ACM international symposium on cluster. Cloud and
Grid Computing (CCGRID), IEEE, pp 600–603

 93. Mao Y, Sharma V, Zheng W, Cheng L, Guan Q, Li A (2023) Elastic
Resource Management for Deep Learning Applications in a Container
Cluster. IEEE Trans Cloud Comp 11(2):2204–2216. https:// doi. org/ 10.
1109/ TCC. 2022. 31941 28

 94. Mao Y, Fu Y, Zheng W, Cheng L, Liu Q, Tao D (2021) Speculative con-
tainer scheduling for deep learning applications in a kubernetes cluster.
IEEE Syst J 16(3):3770–3781

https://doi.org/10.1145/3054177
http://www.oasis-open.org/committees/tosca
https://www.oasis-open.org/
https://aws.amazon.com/greengrass/
https://learn.microsoft.com/en-us/azure/iot-edge/about-iot-edge?view=iotedge-1.4
https://learn.microsoft.com/en-us/azure/iot-edge/about-iot-edge?view=iotedge-1.4
https://cloud.google.com/distributed-cloud
https://cloud.google.com/distributed-cloud
https://www.alibabacloud.com/product/linkiotedge
https://www.alibabacloud.com/product/linkiotedge
https://www.ibm.com/cloud/edge-application-manager
https://www.ibm.com/cloud/edge-application-manager
https://developer.akamai.com/akamai-edgeworkers-overview
https://developer.akamai.com/akamai-edgeworkers-overview
https://www.lfedge.org/projects/eve/
https://www.lfedge.org/projects/eve/
https://open-horizon.github.io/docs/
https://open-horizon.github.io/docs/
https://www.edgexfoundry.org
https://www.edgexfoundry.org
https://kubeedge.io/en/
https://github.com/kubernetes-sigs/kubefed
https://github.com/kubernetes-sigs/kubefed
https://github.com/submariner-io/submariner
https://www.starlingx.io/
https://openiotfog.org
https://github.com/centaurusinfra/fornax
https://www.centauruscloud.io/
https://www.gsma.com/futurenetworks/wp-content/uploads/2018/04/NS-Final.pdf
https://www.gsma.com/futurenetworks/wp-content/uploads/2018/04/NS-Final.pdf
https://www.gsma.com/futurenetworks/wp-content/uploads/2018/04/NS-Final.pdf
https://www.etsi.org/technologies/nfv
https://www.rfc-editor.org/rfc/rfc2178
https://doi.org/10.1109/AIMS.2017.14
https://doi.org/10.1007/s10723-021-09572-0
https://doi.org/10.1109/TCC.2022.3194128
https://doi.org/10.1109/TCC.2022.3194128

Page 29 of 29Ullah et al. Journal of Cloud Computing (2023) 12:135

 95. Mao Y, Yan W, Song Y, Zeng Y, Chen M, Cheng L, Liu Q (2023) Differenti-
ate Quality of Experience Scheduling for Deep Learning Inferences With
Docker Containers in the Cloud. IEEE Transactions on Cloud Computing
11(2):1667-1677. https:// doi. org/ 10. 1109/ TCC. 2022. 31541 17

 96. Morris K (2016) Infrastructure as code: managing servers in the cloud.
O’Reilly Media, Inc

 97. Ansible (2022) Ansible documentation. https:// docs. ansib le. com/ ansib
le/ latest/ index. html. Accessed 30 Sep 2022

 98. Taherizadeh S, Stankovski V, Grobelnik M (2018) A capillary computing
architecture for dynamic internet of things: Orchestration of micros-
ervices from edge devices to fog and cloud providers. Sensors 18(9).
https:// doi. org/ 10. 3390/ s1809 2938. https:// www. mdpi. com/ 1424-
8220/ 18/9/ 2938

 99. Verginadis Y, Apostolou D, Taherizadeh S, Ledakis I, Mentzas G, Tsagka-
ropoulos A, Papageorgiou N, Paraskevopoulos F (2021) Prestocloud:
a novel framework for data-intensive multi-cloud, fog, and edge
function-as-a-service applications. Inf Resour Manag J 34(1):66–85

 100. Verginadis Y, Alshabani I, Mentzas G, Stojanovic N (2017) Prestocloud:
Proactive cloud resources management at the edge for efficient
real-time big data processing. In: Proceedings of the 7th International
Conference on Cloud Computing and Services Science - CLOSER. p.
611–617. SciTePress, NSTICC, https:// doi. org/ 10. 5220/ 00063 59106
110617

 101. Masip-Bruin X, Marín-Tordera E, Sánchez-López S, Garcia J, Jukan A, Juan
Ferrer A, Queralt A, Salis A, Bartoli A, Cankar M et al (2021) Managing the
cloud continuum: Lessons learnt from a real fog-to-cloud deployment.
Sensors 21(9):2974

 102. Kochovski P, Stankovski V (2021) Building applications for smart and
safe construction with the decenter fog computing and brokerage
platform. Autom Constr 124(103):562

 103. Pledger-project (2022) Pledger project. http:// www. pledg er- proje ct.
eu/. Accessed 27 Oct 2022

 104. Rainbow-project (2022) Rainbow Horizon2020 Project. https:// rainb ow-
h2020. eu/ rainb ow- platf orm/. Accessed 22 Oct 2022

 105. Slack4things (2023) Slack4things: An openstack-based internet of
things framework. http:// stack 4thin gs. unime. it/. Accessed 21 Apr 2023

 106. Merlino G, Dautov R, Distefano S, Bruneo D (2019) Enabling workload
engineering in edge, fog, and cloud computing through Openstack-
based middleware. ACM Trans Internet Technol 19(2):1–22

 107. EUCloudEdgeIoT (2006) Building the European Cloud, Edge & IoT Con-
tinuum for business and research. https:// euclo udedg eiot. eu. Accessed
20 Apr 2023

 108. European Commission (2021) Future European platforms for the Edge:
Meta Operating Systems (RIA). https:// ec. europa. eu/ info/ fundi ng- tende
rs/ oppor tunit ies/ portal/ screen/ oppor tunit ies/ topic- detai ls/ horiz on- cl4-
2021- data- 01- 05. Accessed 20 Apr 2023

 109. European Commission (2022) Cognitive Cloud: AI-enabled computing
continuum from Cloud to Edge (RIA). https:// ec. europa. eu/ info/ fundi
ng- tende rs/ oppor tunit ies/ portal/ screen/ oppor tunit ies/ topic- detai ls/
horiz on- cl4- 2022- data- 01- 02. Accessed 20 Apr 2023

 110. HP (2022) HPE GreenLake. https:// www. hpe. com/ us/ en/ green lake. html.
Accessed 12 Sept 2022

 111. Intel (2022) Intel Smart Edge Open. https:// smart- edge- open. github. io/
docs/ produ ct- overv iew/. Accessed 16 Sept 2022

 112. Aarna (2022) Aarna Networks Multi Cluster Orchestration Platform
(AMCOP). https:// www. aarna netwo rks. com/ produ cts/ amcop. Accessed
12 Sept 2022

 113. Ormuco (2022) Ormuco IaaS. https:// ormuco. com/ iaas/. Accessed 12
Sept 2022

 114. Azion (2022) Azion Edge Orchestrator. https:// www. azion. com/ en/
docum entat ion/ produ cts/ edge- orche strat or. Accessed 12 Sept 2022

 115. ONAP (2022) Open Network Architecture Platform (ONAP). https://
www. onap. org/ archi tectu re. Accessed 13 Sept 2022

 116. Zededa (2022) ZEDEDA Technologies. https:// zededa. com/ techn ologi
es/. Accessed 13 Sept 2022

 117. Lauwers C, Tamburri D OASIS Topology and Orchestration Specification
for Cloud Applications. https:// docs. oasis- open. org/ tosca/ TOSCA-
Simple- Profi le- YAML/ v1.3/ os/ TOSCA- Simple- Profi le- YAML- v1.3- os. pdf.
Accessed 27 Nov 2022

 118. ETSI (2015) Quality of ict services: Template for service level agreements
(SLA). https:// tinyu rl. com/ etsi- SLA. Accessed 9 Dec 2022

 119. Alqahtani A, Li Y, Patel P, Solaiman E, Ranjan R (2018) End-to-end service
level agreement specification for iot applications. In: 2018 International
Conference on High Performance Computing & Simulation (HPCS),
IEEE, pp 926–935

 120. Antonescu AF, Braun T (2015) Service level agreements-driven manage-
ment of distributed applications in cloud computing environments.
In: 2015 IFIP/IEEE International Symposium on Integrated Network
Management (IM), IEEE, pp 1122–1128

 121. Antonacci M, Brigandì A, Caballer M, Cetinić E, Davidovic D, Donvito G,
Moltó G, Salomoni D (2019) Digital repository as a service: automatic
deployment of an invenio-based repository using tosca orchestration
and apache mesos. In: EPJ Web of Conferences, vol 214. EDP Sciences, p
07023

 122. Costantini A, Duma DC, Martelli B, Antonacci M, Galletti M, Tisbeni SR,
Bellavista P, Modica GD, Nehls D, Ahouangonou JC, et al (2021) A cloud-
edge orchestration platform for the innovative industrial scenarios of
the iotwins project. In: International Conference on Computational
Science and Its Applications, Springer, pp 533–543

 123. Alzubaidi A, Solaiman E, Patel P, Mitra K (2019) Blockchain-based SLA
management in the context of IoT. IT Prof 21(4):33–40

 124. Tusa F, Clayman S (2022) End-to-end slices to orchestrate resources and
services in the cloud-to-edge continuum. Futur Gener Comput Syst.
https:// doi. org/ 10. 1016/j. future. 2022. 11. 026. https:// www. scien cedir ect.
com/ scien ce/ artic le/ pii/ S0167 739X2 20039 71

 125. Ullah A (2017) Towards a novel biologically-inspired cloud elasticity
framework. PhD thesis, University of Stirling

 126. Lorido-Botran T, Miguel-Alonso J, Lozano JA (2014) A review of auto-
scaling techniques for elastic applications in cloud environments. J Grid
Comput 12(4):559–592

 127. Ullah A, Li J, Shen Y, Hussain A (2018) A control theoretical view of
cloud elasticity: taxonomy, survey and challenges. Clust Comput
21(4):1735–1764

 128. Sgambelluri A, Tusa F, Gharbaoui M, Maini E, Toka L, Perez JM, Paolucci
F, Martini B, Poe WY, Melian Hernandes J, Muhammed A, Ramos A,
de Dios OG, Sonkoly B, Monti P, Vaishnavi I, Bernardos CJ, Szabo R (2017)
Orchestration of network services across multiple operators: The 5g
exchange prototype. In: 2017 European Conference on Networks and
Communications (EuCNC), pp 1–5. https:// doi. org/ 10. 1109/ EuCNC.
2017. 79806 66

 129. Tusa F, Clayman S, Valocchi D, Galis A (2018) Multi-domain orchestration
for the deployment and management of services on a slice enabled
nfvi. In: 2018 IEEE Conference on Network Function Virtualization and
Software Defined Networks (NFV-SDN), pp 1–5. https:// doi. org/ 10.
1109/ NFV- SDN. 2018. 87257 69

 130. Ren J, Zhang D, He S, Zhang Y, Li T (2019) A survey on end-edge-cloud
orchestrated network computing paradigms: Transparent computing,
mobile edge computing, fog computing, and cloudlet. ACM Comput
Surv (CSUR) 52(6):1–36

 131. Fakude NC, Tarwireyi P, Adigun MO, Abu-Mahfouz AM (2019) Fog
orchestrator as an enabler for security in fog computing: A review.
In: 2019 International Multidisciplinary Information Technology and
Engineering Conference (IMITEC), IEEE, pp 1–6

 132. Computing A et al (2006) An architectural blueprint for autonomic
computing. IBM White Paper 31(2006):1–6

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/TCC.2022.3154117
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/index.html
https://doi.org/10.3390/s18092938
https://www.mdpi.com/1424-8220/18/9/2938
https://www.mdpi.com/1424-8220/18/9/2938
https://doi.org/10.5220/0006359106110617
https://doi.org/10.5220/0006359106110617
http://www.pledger-project.eu/
http://www.pledger-project.eu/
https://rainbow-h2020.eu/rainbow-platform/
https://rainbow-h2020.eu/rainbow-platform/
http://stack4things.unime.it/
https://eucloudedgeiot.eu
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-cl4-2021-data-01-05
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-cl4-2021-data-01-05
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-cl4-2021-data-01-05
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-cl4-2022-data-01-02
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-cl4-2022-data-01-02
https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-cl4-2022-data-01-02
https://www.hpe.com/us/en/greenlake.html
https://smart-edge-open.github.io/docs/product-overview/
https://smart-edge-open.github.io/docs/product-overview/
https://www.aarnanetworks.com/products/amcop
https://ormuco.com/iaas/
https://www.azion.com/en/documentation/products/edge-orchestrator
https://www.azion.com/en/documentation/products/edge-orchestrator
https://www.onap.org/architecture
https://www.onap.org/architecture
https://zededa.com/technologies/
https://zededa.com/technologies/
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.pdf
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/os/TOSCA-Simple-Profile-YAML-v1.3-os.pdf
https://tinyurl.com/etsi-SLA
https://doi.org/10.1016/j.future.2022.11.026
https://www.sciencedirect.com/science/article/pii/S0167739X22003971
https://www.sciencedirect.com/science/article/pii/S0167739X22003971
https://doi.org/10.1109/EuCNC.2017.7980666
https://doi.org/10.1109/EuCNC.2017.7980666
https://doi.org/10.1109/NFV-SDN.2018.8725769
https://doi.org/10.1109/NFV-SDN.2018.8725769

	Orchestration in the Cloud-to-Things compute continuum: taxonomy, survey and future directions
	Abstract
	Introduction
	Related work
	Taxonomy
	Cloud resource handling
	FogEdge resource handling
	Orchestration functionalities
	Design
	Supported application types

	Review of existing CoTOS
	Lower level solutions
	Higher level solutions
	Concept-only solutions
	Production ready solutions

	Discussion, issues, and future directions
	Open issues
	Standardised support for application description
	SLA management
	Context-aware resource discovery
	Proactive run-time reconfiguration
	Decentralised architecture
	Security handling

	A conceptual framework of orchestration in the Cloud-to-Things compute continuum
	Application description layer
	Orchestration layer
	Infrastructure layer

	Conclusion
	References

