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Abstract 

IoT systems are becoming an essential part of our environment. Smart cities, smart manufacturing, augmented reality, 
and self-driving cars are just some examples of the wide range of domains, where the applicability of such systems 
have been increasing rapidly. These IoT use cases often require simultaneous access to geographically distributed 
arrays of sensors, heterogeneous remote, local as well as multi-cloud computational resources. This gives birth 
to the extended Cloud-to-Things computing paradigm. The emergence of this new paradigm raised the quintes-
sential need to extend the orchestration requirements (i.e., the automated deployment and run-time management) 
of applications from the centralised cloud-only environment to the entire spectrum of resources in the Cloud-to-
Things continuum. In order to cope with this requirement, in the last few years, there has been a lot of attention 
to the development of orchestration systems in both industry and academic environments. This paper is an attempt 
to gather the research conducted in the orchestration for the Cloud-to-Things continuum landscape and to propose 
a detailed taxonomy, which is then used to critically review the landscape of existing research work. We finally discuss 
the key challenges that require further attention and also present a conceptual framework based on the conducted 
analysis.
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Introduction
The advent of cloud computing has reshaped the way in 
which software is developed, deployed and used. Since its 
inception, the adoption of cloud services has continually 

increased. This is evident from the worldwide public 
cloud service revenue growth of 33 %, from 266.4 billion 
dollars in 2020 to 354.6 billion dollars in 2022 [1]. This 
increased shift towards cloud computing is due to its 
inherent characteristics, such as on-demand provision-
ing, pay-as-you-go utility model and elasticity, which 
offer economic benefits as well as operational efficiencies 
to enterprises [2].

In order to fully exploit the strength of cloud comput-
ing, effective and optimised usage of the associated com-
puting resources is important. This is the responsibility of 
an orchestration system. More formally, an orchestration 
system automates the seamless delivery of applications 
over clouds, and guarantees various Quality of Service 
(QoS) goals, by handling the required complex tasks of 
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resource selection, deployment, monitoring, and run-
time control of the resources and applications [3].

In the last decade, cloud orchestration has become a 
mature research area and there emerged a large number 
of orchestration solutions. These include vendor-specific 
solutions, such as Amazon’s AWS Cloud-Formation [4], 
OpenStack HEAT [5], Microsoft Azure’s Resource Man-
ager (ARM) templates [6], and Google’s Deployment 
Manager [7]; some Open-source cloud agnostic initia-
tives, such as Kubernetes [8], Docker Swarm [9], Apache 
Brooklyn [10], Cloudify [11], Cloudiator [12], Alien-
4Cloud [13], MODAClouds [14] and MiCADO [15]. 
The key purpose of all such tools is to improve resource 
utilisation and introduce a great deal of agility by mak-
ing application development, deployment, execution and 
maintenance easier for cloud applications.

In recent years, the introduction of IoT has fuelled 
a new breed of applications, which in addition to cloud 
resources, also require IoT devices to capture and pos-
sibly process data from local environments. Such sys-
tems have a wide range of requirements in terms of 
low-latency analytics, data privacy and sensitivity, con-
text  awareness, time- and location- awareness, and 
simultaneous access to geographically distributed arrays 
of sensors, remote localised heterogeneous computa-
tional resources and to large-scale on-the-fly multi-cloud 
computational resources. A traditional cloud computing 
architecture is impractical, if not inadequate, to handle 
the aforementioned requirements. This gives rise to new 
computational paradigms such as fog computing, edge 
computing, and compute continuum.

The terms fog computing and edge computing are often 
used interchangeably to loosely refer to moving process-
ing or computation away from the central cloud to nodes 
that are closer to endpoints at the network edge. Though 
they both aim to reduce the amount of data sent to the 
cloud in data-dense applications, there are subtle differ-
ences between the two. Fog computing is an intermedi-
ate layer between the cloud and edge that represents the 
nodes between the cloud to the IoT sensors and actua-
tors, possibly spanning across multiple layers of the net-
work topology. In contrast, in edge computing, the nodes 
where the computation takes place are normally very 
close to the IoT devices in terms of network proximity, 
often only one or a few hops away from the IoT devices, 
or even embedded within the connected device [16].

The compute continuum—also known by other 
names such as cloud continuum, cloud-edge contin-
uum, cloud-to-edge continuum, or cloud-to-things 
continuum—on the other hand, refers to the extension 
of cloud with energy-efficient and low-latency devices 
closer to the data sources located at the network 
edge  [17]. More specifically, it extends the traditional 

Cloud towards multiple entities such as Fog, Edge, and 
IoT to provide different capabilities including analy-
sis, processing, storage, and data generation  [18]. Our 
adoption of the term Cloud-to-Things is to indicate the 
notion that the continuum connects cloud(s) and the 
IoT-connected devices (i.e., things) [18], where we con-
sider the ‘things’ mainly as a  source of data that need 
to be processed in real-time using various layers of 
resources scattered across the continuum.

The emergence of these new paradigms raised the 
quintessential need to extend the orchestration require-
ments of applications from the centralised cloud-only 
environment to the entire spectrum of resources in 
the Cloud-to-Things continuum, as the existing cloud 
orchestration solutions are unable to address them. 
This mainly includes the application deployment and 
management to be performed in a more complex, het-
erogeneous and geographically distributed infrastruc-
ture, where resources are located across different layers 
of the continuum. More specifically, the  following are 
some of the key challenges of orchestration in the 
Cloud-to-Things compute continuum [19–22]: 

1 The Cloud-to-Things compute continuum is highly 
diverse, where resources are not only distributed 
across different layers of the spectrum but also het-
erogeneous having different architecture, operating 
systems, and computational capabilities. An orches-
tration system needs to provide seamless and simul-
taneous access to such a heterogeneous and decen-
tralised resource landscape.

2 The federated coordination across different admin-
istrative domains to facilitate end-to-end services 
across different cloud, fog and edge providers is chal-
lenging. An orchestration system needs standardised 
APIs and interfaces to achieve such coordination.

3 A specific challenge to address in the case of edge 
nodes is to deal with volatility and mobility i.e., the 
nodes may shut down or lose connectivity or their 
locations may change. In such scenarios, the orches-
tration system needs to deal with resource fluctua-
tion and changing environmental conditions.

4 Efficient monitoring mechanisms are required to col-
lect the statuses of the workload and resource usage 
statistics across the entire spectrum of the contin-
uum.

5 The implementation of efficient run-time mecha-
nisms that enforce policy-based deployment and 
run-time reconfiguration of target applications to 
ensure that the system meets the SLA goals speci-
fied in the form of contextual configurations in terms 
of resource discovery, optimal placement, optimise 
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resource usage, efficient processing of data, and secu-
rity aspects.

6 The scale of the compute continuum can be massive, 
where resources can be gathered from different cloud 
and edge providers to fulfil the needs of target appli-
cations. An orchestration system needs to deal with 
the required level of scalability across the different 
administrative domains.

7 Lastly, an orchestration system is required to guaran-
tee the security of the overall system against different 
attack scenarios while minimising the need for user-
supplied configurations. This is particularly challeng-
ing in the Cloud-to-Things continuum due to the 
heterogeneity of the resources involved and the pos-
sibility of their belonging to different administrative 
domains.

To deal with the above-mentioned challenges, there has 
recently been a lot of attention, both in industry and aca-
demia, to the development of Cloud-to-Things Orches-
tration Solutions (CoTOS). This paper is an attempt 
to gather, analyse and synthesis the research work con-
ducted in the field of orchestration systems for the 
Cloud-to-Things continuum. The key contributions of 
this paper are as follows: 

1 We identified a wide range of key characteristics in 
relation to the orchestration of IoT applications in the 
Cloud-to-Things computing continuum. These char-
acteristics are the essential ingredients of, and there-
fore, important for the evaluation of CoTOS. Using 
these characteristics, a novel taxonomy of CoTOS is 
proposed, which is vital for the understanding and 
analysis of existing solutions.

2 We performed a thorough review covering a 
wide range of existing orchestration solutions from 
industry and academia that target the Cloud-to-
Things continuum. The entire landscape of existing 
CoTOS is classified into different logical groups, 
and a detailed consolidated review and analysis of 
each group is performed in light of the proposed 
taxonomy.

3 Based on the results obtained from the review, we 
identified and discussed the key issues and gaps in 
the existing landscape of orchestration solutions to 
highlight future research directions.

4 Lastly, we proposed a conceptual architecture of a 
novel and comprehensive orchestration framework 
as a reference to alleviate the identified gaps.

The rest of this paper is structured as follows. Sec-
tion “Related work” discusses the existing related review 
papers to highlight the gaps and motivations in order to 

justify the need for conducting yet another review. Sec-
tion  “Taxonomy” presents our proposed taxonomy and 
explains each of the included characteristics. A thorough 
review of existing orchestration solutions, using the pro-
posed taxonomy, is carried out in Section  “Review of 
existing CoTOS”. Section “Discussion, Issues, and Future 
directions” further reflects on the summarised results 
to identify key issues and gaps from the review and to 
highlight research directions for the future. Section  “A 
conceptual framework of orchestration in the Cloud-to-
Things compute continuum”, presents and discusses a 
conceptual framework that can be used as a reference for 
future implementations of orchestration solutions. Lastly, 
Section “Conclusion” concludes this paper.

Related work
This section discusses the most relevant review papers 
from the Cloud-to-Things orchestration domain, with a 
view to analyse their strengths and weaknesses and high-
light how they differ from the review carried out in this 
work.

The most relevant studies related to the Cloud-to-
Things orchestration include  [19, 23, 24]. The authors 
in these papers have identified and discussed the target 
application scenarios and key challenges, in order to 
derive requirements that can be used for the design of a 
Cloud-to-Things orchestration solution. Based on these 
requirements, a detailed evaluation and analysis of some 
of the existing reference architectures and fog orchestra-
tion solutions have been provided. However, the list is 
not exhaustive and the authors, except in [19], have only 
covered a very small number of solutions. Furthermore, 
all these studies lack a detailed taxonomy.

Similarly, papers [25–28] also identified and discussed 
the core issues and challenges related to the orchestra-
tion of IoT applications. The focus though in Karima, 
et al. [28] is in the context of 5G (and beyond) networks. 
However, none of these papers provided a detailed taxon-
omy nor carried out a detailed review of existing orches-
tration solutions.

The authors in [29] produced a systematic review of 
the deployment and orchestration approaches for the 
IoT. Their proposed taxonomy consists of the follow-
ing three categories: (1) deployment and orchestration 
support, (2) specification, and (3) advance prospects (as 
defined by authors), i.e., monitoring, parameter adapta-
tion, and trustworthiness features. As such, the authors 
used these very high-level characteristics only to clas-
sify the available solutions. In contrast, in this paper, we 
consider deployment and run-time management of IoT 
applications as the two essential key ingredients of an 
orchestration solution. Based on this notion, we used 
them as fundamental categories in our taxonomy. We 



Page 4 of 29Ullah et al. Journal of Cloud Computing          (2023) 12:135 

further identified a large number of detailed, lower-level 
characteristics associated with these key ingredients to 
be part of the taxonomy. As a result, we review the exist-
ing approaches in light of these essential characteristics 
rather than the aforementioned high-level categories. 
Lastly, we also used additional aspects to classify the 
available approaches into different categories to provide 
a detailed comparative analysis and review of the overall 
spectrum of existing orchestration solutions.

The review by Wu in [30] is mainly focused on the 
aspects related to architecture and AI-powered data pro-
cessing techniques. The architecture was discussed in the 
context of an underlying communication infrastructure, 
such as the industrial network, mobile and vehicular net-
works; whereas, the data processing techniques are cat-
egorised and discussed based on the various functions 
from the orchestration viewpoint, such as Offloading, 
Placement, and Resource management. The scope of [30] 
is on the different possible underlying architectures for 
the IoT ecosystem and the data processing techniques 
used by the applications. This paper, in contrast to [30], 
aims to perform a critical review of existing orchestration 
solutions.

Vaquero et al. [31] carried out an interesting and com-
prehensive review related to the challenges of next-gen-
eration service orchestration, where they focused on how 
the emergence of new technology trends such as Net-
work Function Virtualisation (NFV), Software Defined 
Networking (SDN), Fog/Edge computing, and Serverless 
computing have changed requirements for the orchestra-
tion of microservices. Using the identified requirements, 
the authors further reviewed and discussed the state-
of-the-art techniques by classifying them based on the 
implementation aspects, such as Machine learning tech-
niques, P2P/Agent-based, Hierarchical and no orches-
tration. In contrast, our paper focused on the review of 
existing solutions with respect to the key functions of 
orchestration rather than their underlying implementa-
tion techniques.

The review in [32, 33] mainly focused on Kubernetes-
based orchestration architectures that have been used 
within the context of the smart-city domain. Their key 
focus is on identifying the fundamental requirements 
for edge orchestration, analysis of existing kubernetes-
based architectures and in general the evaluation of 
Kuberentes as the suitable candidate for cloud-edge 
orchestration. The authors further reviewed and dis-
cussed the state-of-the-art Kubernetes architectures by 
classifying them mainly into three categories including 
frameworks that realise edge orchestration, solutions 
that implement custom modifications and extensions 
to Kubernetes, and solutions that only deal with edge 
layer using customised Kubernetes. All these categories 

in our paper are captured through only one category, 
titled Lower level (Please see Section “Review of exist-
ing CoTOS” for further details). Furthermore, we also 
include a range of other categories to cover the entire 
spectrum of cloud-to-edge orchestration solutions. 
Lastly, our paper provides a detailed taxonomy for 
cloud-to-edge orchestration, where the scope is also 
not limited to the smart city domain.

Fakude et  al.  [34] and Šatkauskas et  al.  [35] have dis-
cussed fog/edge orchestration from the viewpoint of 
security in fog-enabled IoT-based computing environ-
ments. However, neither of these studies are detailed and 
only discusses a small number of existing works from the 
perspective of various security challenges. The focus in 
both studies is on the identification of security-oriented 
challenges related to fog orchestration. In the same realm, 
Al-Doghman [36] focused on highlighting the challenges 
of IoT management and secure decision-making at the 
edge for AI-based Microservices. All these studies, in 
comparison to our paper, do not provide a detailed taxon-
omy, formal classification and detailed analysis of existing 
orchestration solutions. Lastly, there is no discussion on 
identifying research gaps and future research directions.

Besides the above-mentioned studies, there are a 
number of considerably extensive review papers such 
as [37–42] that have discussed the resource management 
related research works. The focus of these papers is on 
the classification of approaches that relate to resource 
management using different viewpoints. For example, 
the taxonomy proposed in  [40] relies on the classifica-
tion based on the core functions such as application 
placement, resource scheduling, offloading. Similarly, 
Luo et  al.  [41] focused on the core issues of computa-
tion offloading, resource allocation, and resource pro-
visioning. On the other hand, the authors in  [39] use a 
set of criteria consisting of four points (type of resource, 
objective, resource location, and usage) to classify the 
available research work, where Duc et  al.  [42] reviewed 
machine learning techniques for resource provisioning in 
Edge-Cloud environment. All these papers provide a con-
solidated view of the available literature in the fog/edge 
computing area from a resource management point of 
view. In all these papers, there are either no or very lim-
ited attention provided to the automated orchestration of 
applications and resources.

In contrast to the above-mentioned related works, the 
research works in [3, 43–46] focus specifically on orches-
tration. However, their scope is only limited to the cloud 
environment and does not cover the Cloud-to-Things 
ecosystem, as it is done in this paper. In terms of struc-
ture, our work extends and complements the taxonomies 
proposed in the aforementioned cloud orchestration 
review papers.
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To summarise, in contrast to the related works, our 
scope is on the overall key functions of orchestration 
rather than the underlying implementation techniques. 
As a result, this paper presents a detailed taxonomy of 
relevant characteristics, features, and dimensions related 
to the Cloud-to-Things orchestration. This taxonomy 
is further used as a unified framework to evaluate and 
perform a thorough analysis of existing orchestration 
solutions.

Taxonomy
We identified a widerange of characteristics in relation 
to the orchestration of IoT applications in the Cloud-to-
Things computing continuum using the various studies 
discussed in Section  “Related work”, literature review of 
target orchestration solutions, as well as our own experi-
ence of implementing an application-level cloud orches-
tration solution called MiCADO [15] and a CoTOS called 
MiCADO-Edge [22]. The identified characteristics of the 
taxonomy represent the essential ingredients of a CoTOS 
and therefore are important to be considered from an 
implementation viewpoint. Figure  1 presents the pro-
posed taxonomy, where the identified characteristics are 
structured and summarised under five main categories.

The categorisation of attributes enabled us to demys-
tify the concept and scope of orchestration for the 

continuum. However, all attributes are relevant to the 
entire orchestration solution and are not part of a spe-
cific type of resource environment, i.e., cloud or edge. 
The overall purpose of this taxonomy is to provide a uni-
fied framework whereby all candidate solutions can be 
objectively compared and evaluated. A brief description 
of each category and of their associated characteristics is 
provided in the following subsections.

Cloud resource handling
This category groups together the characteristics related 
to the cloud infrastructure part of the orchestration sys-
tem and includes the three aspects described below.

Environment This attribute refers to the underlying 
support of a CoTOS for cloud environment(s) in terms 
of the ability to use or combine resources from different 
cloud providers. The possibilities include Single cloud, 
where a CoTOS only supports a single specific cloud 
environment; Multi-cloud, where a CoTOS facilitates 
the selection of suitable resources from multiple cloud 
environments, however, only one is utilised at a time; 
and Cross-cloud, where multiple cloud environments 
are exploited simultaneously to allow the distribution of 
components belonging to the same application across 

Fig. 1 Taxonomy of Cloud-to-Things orchestration
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different cloud providers. The use of multi and cross-
cloud features is of particular importance as they help in 
optimising cost and performance by allowing the selec-
tion of suitable offers. This is also important to avoid ven-
dor lock-in. Furthermore, it also helps in addressing pri-
vacy issues by allowing the use of specific cloud providers 
or private clouds for certain application components [3].

Resource types The support of a CoTOS in relation to 
the different types of resources that can be dynamically 
controlled by the orchestration solution. The choices 
include the three common utility services provided by 
cloud providers, i.e., compute, storage, and network.

Resource selection The support of a CoTOS that deter-
mines how the resources are selected during the deploy-
ment process. The available choices include Statically 
defined, where specific instances of resources are stati-
cally assigned by the application owner at the time of 
deployment; Automatic selection, where the application 
owner specifies the general resource characteristics and 
the CoTOS automatically selects the suitable instances at 
run-time, however, the selection does not change at run-
time; Runtime optimised, where the CoTOS automati-
cally chooses the suitable resources from a diverse range 
of cloud vendors based on certain specific optimisation 
criteria, e.g., cost, locality.

Fog/Edge resource handling
This category groups together the characteristics related 
to the handling of resources from fog and edge (referred 
to  as “non-cloud” collectively hereafter). More par-
ticularly, this covers the key aspects described in the 
following.

Heterogeneity The Cloud-to-Things compute con-
tinuum is highly heterogeneous, namely computa-
tional devices of different natures are usually required 
to support the requirements of an IoT application. This 
attribute will measure the support of CoTOS for device 
heterogeneity.

Connectivity In the Cloud-to-Things scenario, both 
dynamically created cloud resources (e.g., VMs) and 
non-cloud physical ones are available. Therefore, the 
CoTOS has to provide a mechanism that enables the 
connectivity/registration of these non-cloud resources 
to a resource pool, such that they can be utilised for the 
deployment as per the requirements of the IoT applica-
tion. In this regard, the Connectivity attribute analyses 

the underlying support of a CoTOS that enables the con-
nection of non-cloud resource elements to the pool of 
resources. This support can be further classified into two 
categories: i.e., Manual registration, where the CoTOS 
facilitates users through some manual pre-defined proce-
dure that allows the registration of non-cloud resources 
with the CoTOS prior to the deployment process; or 
Automatic registration, where the CoTOS provides auto-
matic procedure that allows the registration of non-cloud 
resources at run-time, even after the deployment process.

Automatic re-connectivity Non-cloud resources can be 
volatile in nature due to a number of reasons (e.g., low-
powered computational devices, mobility, network con-
nection), where they may lose connectivity to the rest of 
the system at different points in time. In this regard, the 
attribute refers to the ability (or not) of a CoTOS to sup-
port automatic re-connectivity of a non-cloud resource.

Resource discovery As resources in the Cloud-to-
Things continuum are geographically distributed, it can 
be important for a CoTOS to support discovering all the 
available resources. Resource discovery refers to the abil-
ity of a CoTOS to support optimal re-configuration deci-
sions by finding the most suitable resources based on cer-
tain contextual requirements.

Orchestration functionalities
This category groups together the essential functions of 
a CoTOS.

Service/Job handling This attribute determines the 
mechanism related to the deployment and management 
of services (or jobs in the case of batch-based appli-
cations). This can be further subdivided into the two 
aspects reported next.

1 Virtualisation support: this attribute can either 
refer to Virtual Machines (VMs) to indicate that the 
CoTOS features the dynamic provision of VMs and 
the ability of direct deployment and management of 
application components on VMs without the use of 
containers; and Containerisation to indicate that the 
CoTOS provides support for the deployment and 
management of application components through 
containers.

2 Mapping: The mapping mechanism of applica-
tion components to Cloud-to-Things resources can 
either be Static, where the application owner stati-
cally configures application components to the avail-
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able resources (or resource types); or Context-aware 
dynamic, where the mapping is dynamically deter-
mined based on various user-defined contextual con-
ditions associated with the application components 
and/or resources.

Run-time reconfiguration One of the key functions of 
any orchestration solution is its adaptability at run-time 
using reconfiguration of application components and 
associated resources according to the changing work-
ing conditions. We classify the Run-time reconfiguration 
based on the list of attributes reported below.

1 Definition type: This represents the nature of the 
available reconfiguration functions. It can be one of 
the following two types: Statically pre-defined, where 
a set of reconfiguration policies already exists and the 
application owners are restricted to provide thresh-
old values based on some already established crite-
ria; or User-defined dynamic, where the application 
owners have the freedom to write their own policies 
based on available system and/or application-level 
metrics.

2 Operating type: This represents the triggering behav-
iour of the reconfiguration operation. There are three 
possible types: Reactive, where the reconfiguration 
is performed as a response to some changes; Proac-
tive, where changes are anticipated and reconfigura-
tion decisions are performed in advance; or Hybrid, 
meaning that the same solution consist of both reac-
tive and proactive reconfiguration mechanisms.

3 Scaling: This attribute represents the automated 
scaling ability of a CoTOS. It can be of the following 
three types: Horizontal, where the number of addi-
tional resources is increased or decreased depending 
on the needs; Vertical, where the capacity of existing 
computational resources is increased or decreased; 
or Hybrid, where the system supports both Horizon-
tal and Vertical scaling.

4 Offloading: This refers to the transfer of computa-
tional tasks from one execution device to another. For 
example, within the context of Cloud-to-Things com-
pute continuum, services are offloaded from cloud to 
edge devices due to latency sensitivity and/or geo-
distributed requirements. Similarly, a service request 
can be offloaded from edge to cloud or another edge 
device if the existing device can not fulfil the required 
computational capacity. Consequently, three types of 
offloading generally occur. These are Cloud-to-Edge, 
Edge-to-Cloud, and Edge-to-Edge.

Monitoring An orchestration system hugely relies on 
run-time monitoring through which information on the 
status of the system and of the application is gathered. 
The collected information is used to trigger run-time 
reconfiguration decisions in order to comply with sys-
tem-stated objectives. Using this attribute, the monitor-
ing support of a CoTOS can be evaluated in the following 
two aspects.

1 Level of support: To identify whether monitoring of 
application components and resources is possible at 
each layer of the continuum or not.

2 Metrics support: The provided support of a CoTOS 
in gathering different types of metrics. The different 
types include system-level (e.g., CPU/memory utilisa-
tion), application-level (e.g., number of active HTTP 
requests), as well as the ability to define custom met-
rics for collection (e.g., number of running jobs in a 
batch processing application).

Security handling A CoTOS is required to guarantee 
the security of the overall system against different attack 
scenarios while minimising the need for user-supplied 
configurations. Security handling in a CoTOS is a chal-
lenging task because an application in a Cloud-to-Things 
ecosystem typically runs on heterogeneous resources. 
Furthermore, these resources can contain low-powered 
devices that also operate in different administrative 
domains. Using this attribute, the support of CoTOS 
security handling will be evaluated according to the 
aspects reported below.

1 Configurable application level security settings: The 
support of a CoTOS that gives application owners 
the ability to define application level security settings 
(e.g., firewall setting, TLS/SSL certificate, ports con-
figuration) in a configurable way.

2 System-wide inter-component communication: The 
internal function of a CoTOS that enables secure 
communication amongst the different parts of a sys-
tem, i.e., between system components that may oper-
ate in different VMs (and/or different layers).

3 Edge resource authentication: An important func-
tion of a CoTOS is to facilitate the registration of 
non-cloud resources to the pool of resources that are 
then used for the deployment of application compo-
nents. Such a registration process should be secure, 
where only authenticated non-cloud resources will 
be allowed to become part of the resources pool.
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4 Access control: This attribute will evaluate the sup-
port of CoTOS functionality in relation to the access 
control that includes aspects like secure access to the 
system resources.

Fault diagnosis The support for the detection of system 
and/or application level faults at run-time, e.g., a fault in 
the cloud provider’s system causing an unexpected ter-
mination of a VM, an unhandled run-time exception at 
application level forcing to stop a container, or a volatile 
edge node losing connection with the cluster.

Service Level Agreement (SLA) handling This attribute 
will evaluate the support of a CoTOS in relation to the 
handling of SLA-related functionalities, such as specifica-
tion, enforcement, and negotiation.

Design
This category grouped together the design aspects of the 
orchestration solution. The following attributes are iden-
tified in what follows.

Architecture The employed architecture of a CoTOS 
influences how the overall system operates to perform 
the key orchestration functions, such as resource han-
dling, application management, deployment and run-
time reconfiguration decisions. This can be one of  the 
following three types: Centralised, where a central entity, 
usually operating at the cloud layer, is responsible for all 
functions; Decentralised, where multiple system entities 
are running at different Cloud-to-Things continuum lay-
ers and handle various orchestration functions accord-
ingly. Hybrid, where a combination of the centralised and 
decentralised approaches are employed by the CoTOS.

Extensibility The support provided by the design of a 
CoTOS for facilitating extension in terms of the addition 
of new resource providers, and the implementation of 
additional orchestration functions.

User interface The ways users can interact with the 
CoTOS. The possible types include Graphical User Inter-
face (GUI), Command Line Interface (CLI), and API-
based Interfaces.

Application description The orchestration solution 
usually provides application owners with a mechanism 
to provide the description of an application by express-
ing the specification of resources and components, the 
application topology, and any associated scaling and 
security policies. A number of well-known high-level 

description standards are available for this purpose, e.g., 
TOSCA  [47]—an OASIS  [48] standard for describing 
complex application topologies in the cloud. A standard 
TOSCA template in YAML defines the various compo-
nents of a cloud application (software, storage, networks, 
virtual machines) as nodes, which may have requirements 
for, or share relationships with, other nodes in the tem-
plate. TOSCA also supports policies for defining rules for 
scalability, monitoring, placement or security that will 
govern application behaviour at run-time.

The possible values are labelled as Solution independent 
to represent that the provided mechanism is based on 
some standard and is independent of the underlying solu-
tion; or Solution specific to represent that the provided 
mechanism is specifically designed for a given solution.

Supported application types
A CoTOS can be developed to target a specific applica-
tion area. This attribute will evaluate a CoTOS in relation 
to its suitability with respect to particular application 
area/s. We treat this as an open-ended attribute, where 
specific application areas, such as Data streaming, Com-
puter vision, or Generic, will be listed.

Review of existing CoTOS
This section presents a comprehensive review of exist-
ing CoTOS in light of the proposed taxonomy. The avail-
able landscape of orchestration solutions is very diverse, 
as subsets of solutions are quite different in nature from 
each other. Therefore, we first classified the landscape 
of existing solutions into different categories in order to 
reduce the overall complexity. The classification, on the 
one hand, allowed us to cover representative solutions 
from each category. On the other hand, this enabled us to 
perform a detailed comparative analysis of solutions that 
are closely related to each other and to cluster the results 
of each category. The overall hierarchy of these catego-
ries can be seen in Figure 2 and their brief description is 
reported below.

1 Lower level: This category represents those solu-
tions that act as middleware, lacking a high-level 
abstraction layer, and often requiring the knowledge 
and configuration of underlying low-level techni-
cal details in relation to setting up the infrastructure 
resources to be used for the application deployment. 
Furthermore, these solutions, also do not provide 
core orchestration functions such as deployment and 
reconfiguration based on user-provided dynamic cri-
teria. Hence, these solutions cannot be directly con-
sidered as cloud-to-things orchestrators. However, 
they are essential for higher-level application orches-
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trators to rely on as a middleware for the extension of 
orchestration capabilities to the edge.

2 Higher level: This category represents a subset of 
solutions that hides the underlying complexity of 
resource settings and management using a high-
level abstraction layer. Such an abstraction layer can 
be provided using a GUI and/or some standardised 
specification language, e.g., TOSCA. Such solutions 
may rely on the use of some lower-level solution (fur-
ther discussed in Section  “Lower level solutions”). 
From the application owners’ viewpoint, the higher-
level solutions are of particular interest. However, 
from the viewpoint of orchestration solution devel-
opers, the lower-level solutions are also relevant 
when analysing and selecting technologies that can 
support their higher-level orchestrator. Therefore, 
both are included in our analysis for completeness, 
and as a way to equally support application owners 
and orchestration solution developers. The higher-
level solutions are further classified based on their 
existing status, i.e., Concept only, which consists of 
those academic research proposals that only provide 
a conceptual framework and/or prototypical imple-
mentation only, and Production ready, which consists 
solutions that provide a fully working implemen-
tation. The Production ready solutions are further 
grouped into, Research initiatives that are developed 
as a result of some research projects, or Industry ini-
tiatives, where they are industry products and are 
commercially available.

In the following subsections, we respectively review 
and analyse a subset of relevant orchestration solutions 
from each of the above categories.

Lower level solutions
All major public cloud providers such as Amazon, Micro-
soft, Google and Alibaba, provide middleware solutions 
that enable application developers to combine their 
edge resources and to use them simultaneously with the 
respective cloud resources. Some examples of such solu-
tions include AWS Greengrass [49], Azure IoT Edge [50], 
Google Distributed Cloud Edge  [51], Alibaba Link IoT 
Edge [52], IBM Edge Application Manager [53], and Aka-
mai EdgeWorkers  [54]. These (and other similar) solu-
tions have been developed with their respective cloud 
platforms in mind. Hence, they are not cross-platform 
solutions and cause a degree of vendor lock-in and there-
fore are not of particular interest for this review paper.

There also exist a number of vendor-agnostic mid-
dleware solutions that fall into this category. A sub-
set of such solutions are discussed in this section. The 
key factors that led to the inclusion of these solutions 
include 1) the availability of their implementation, 2) 
their implementations’ being regularly maintained, 
and 3) the presence of available technical documenta-
tion and/or associated research papers. It is important 
to note that such middleware solutions can be used 
by higher-level application orchestrators to extend 
their capabilities to the edge. However, these solu-
tions cannot be directly considered as cloud-to-edge 

Fig. 2 Classification of existing orchestration solutions
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orchestrators, as they lack some core essential features 
such as a high-level abstraction layer and dynamic 
deployment or reconfiguration based on user-provided 
criteria. Therefore, in this section, we only review these 
solutions and will not present their results in accord-
ance with the taxonomy. The rest of this section dis-
cusses these solutions.

Project EVE  [55], a Linux Foundation (LF) project, 
provides a flexible foundation for IoT edge deployments 
with a  choice of any hardware, application, and cloud. 
EVE enables centralized scalable management of large 
volumes of edge compute nodes, where the orchestra-
tion of the underlying hardware and installed software 
is achieved through the open EVE API, which ensures 
consistency across diverse platforms. EVE is com-
plementary to other LF Edge application frameworks 
including Open Horizon [56], EdgeX Foundry [57], and 
Fledge [58]. Open Horizon facilitates the management 
and deployment of workloads on edge devices from a 
management hub cluster. EdgeX Foundry provides an 
Edge IoT plug-and-play ecosystem with an aim to sim-
plify and standardize edge computing architectures in 
the Industrial IoT market. Fledge is a Kubernetes-com-
patible container orchestrator for edge devices. Lastly, 
Fledge, in collaboration with the EVE system provides 
orchestration services and container run-time for 
Fledge-based applications.

KubeEdge  [59] is another open-source initiative with 
a significant community behind it. KubeEdge extends 
native containerised application orchestration capabili-
ties to non-cloud nodes at the edge of the network. It 
facilitates seamless and automatic configuration of edge 
nodes to make them part of a central Kubernetes cluster. 
KubeEdge empowers application developers to orches-
trate apps, manage devices, and monitor application and 
system status at edge nodes, just like a normal Kuber-
netes cluster in the cloud. The components of KubeEdge 
facilitate the underlying infrastructure support for net-
work, application deployment and synchronisation of 
metadata between cloud and edge. KubeEdge follows a 
centralised model. Hence, there is the risk of isolation for 
edge sites and therefore it is impossible to provision or 
reconfigure workloads hosted on non-cloud workers if 
the Kubernetes master node cannot be reached.

In contrast to such a centralised approach, Kubefed 
[60] and Submariner [61] follow a federated approach, 
where each edge site can continue to operate in case of 
network partitions. Such a federated approach offers the 
advantage of independent control over each edge site, in 
comparison of a single point of control as in the case of a 
centralised approach.

Kubefed, despite following a federated approach, 
still provides a unified way to manage the life cycle of a 

multi-cluster workload environment. Therefore, Kubefed 
can be considered as a centralized server that distributes 
and propagates Kubernetes API objects to multiple clus-
ters. It extends the Kubernetes API by leveraging the use 
of CustomResourceDefinitions, which is a mechanism to 
provide user-defined data types in Kubernetes. Overall, 
although Kubefed is able to provide cluster autonomy to 
a degree, it also presents several limitations to the edge 
use  cases. For example, it does not implement any sort 
of knowledge or cooperation between the clusters them-
selves. Furthermore, the federation control plane, which 
is designed in a centralized manner, requires the re-cre-
ation of a lot of existing features at the federation level.

Submariner, on the other hand, aims to solve the 
network connectivity between multiple Kubernetes 
instances. Unlike Kubefed, Submariner can expose 
Pods and Services from one cluster to another without 
requiring a new API. Submariner relies on a few internal 
CustomResourceDefinitions (CRD) to make the inter-
cluster communication possible. All the involved clusters 
synchronize their state to a shared cluster called Bro-
ker, which is responsible for the storage of all the CRD 
objects. Using this approach, Submariner succeeded in 
establishing interactions across the Services and Pods of 
independent clusters. However, the scalability and the 
robustness of sharing information are limited as most 
of the locally created objects, such as Deployments and 
Namespaces, remain local only.

StarlingX  [62], similarly to KubeEdge, also extends 
native containerised application orchestration capabili-
ties to the edges of the network, however, with two key 
distinctions: (1) StarlingX is specific to the use of Open-
Stack cloud, and (2) it forms independent edge clouds in 
contrast to just connecting an edge node with a central-
ised cluster. The StarlingX solution has a central Kuber-
netes-based control centre called central cloud, with as 
many as required sub-clouds deployed on the edge nodes. 
Using this model, StarlingX forms a federated architec-
ture in a way, similar to that of KubeFed and Submariner. 
However, it still does not facilitate support for cross-
cloud orchestration operations. Hence, all sub-clouds are 
independently controlled by their own controller. Unique 
features of StarlingX are its support of cluster manage-
ment for services running on the HA (High Availability) 
master/control nodes cluster and recovery of services 
running on all nodes within the cluster.

OpenIoTFog  [63] specifically focuses on the Indus-
trial Internet of Things (IIoT) with two objectives: 1) to 
extend orchestration functions to the edge devices, and 
2) to support the vision of Industry 4.0 by facilitating var-
ious related functions, such as real-time data aggregation, 
asset supervision, predictive maintenance, asset safety 
and the enablement of Digital Twins. The main aim of 
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the OpenIoTFog is to provide software-based program-
mable logic controllers that can be dynamically updated 
and re-configured without production downtime. From 
a functional viewpoint, OpenIoTFog follows a similar 
model to that of KubeEdge, i.e., an agent component is 
required to be installed on an edge device, which makes 
that device part of a centralised cluster where dynamic 
policies, concerning the deployment of services on spe-
cific edge devices, can be applied. In addition, the agent 
component can also gather data from various sensors via 
industrial field bus systems and various (industrial) wire-
less technologies. It can also standardise, communicate 
and aggregate them through secured standard-compliant 
interfaces.

Fornax [64], developed within the scope of an umbrella 
project called Centaurus  [65], is an open-source edge 
computing framework for managing compute resources 
on edge environments. The key novel aspect of this pro-
ject, amongst all the other ones described in this cate-
gory, is its hierarchical topology that allows edge clusters 
to be formed and organised in a multi-layer tree-like 
structure. Hence, the infrastructure can be managed in 
N layers in comparison with the two-layered approach of 
KubeEdge and OpenIoTFog, or the federated approach 
adopted by other works including KubeFed, Submariner, 
StarlingX.

Higher level solutions
Concept‑only solutions
A large number of academic research papers are focused 
on the Cloud-to-Things orchestration aspects. It is not 
possible to cover all such papers individually and there-
fore, we shortlisted 10 papers from this category for 
review in detail, where other papers are briefly intro-
duced. Amongst the 10 papers, half of them are the most 
highly cited papers of all time so far and the rest of them 
are all papers published in 2019 and onwards. It is impor-
tant to note that these solutions are theoretical with no 
or just proof-of-concept implementation. The rest of this 
section discusses these solutions, where Table  1 further 
presents a complete summary of the reviewed solutions 
in light of the attributes from the taxonomy.

ENORM  [66], a framework for edge node resource 
management, aimed to address the following three 
problems: (1) Edge node provisioning, (2) Workload 
deployment on edge with a focus on how to deploy and 
what services to deploy, and (3) resource management 
at the edge. ENORM follows a decentralised architec-
ture, where edge nodes are responsible for their own 
resource management decisions. However, the over-
all architecture is static in nature, as all edge nodes are 
known in advance to the cloud servers’ managers run-
ning in the cloud. The focus of ENORM is mostly on the 

operations of edge nodes, where it supports provision-
ing, monitoring, vertical scaling, and offloading appli-
cations. However, the details related to the cloud layer 
are not known, e.g., how the cloud server managers that 
are responsible for different applications are provisioned 
and maintained.

Fernandez et  al.  [67] introduced slice orchestrator, 
which facilitates the automated orchestration of IoT ser-
vices based on certain specific operational (and/or busi-
ness) requirements over a set of shared infrastructures. 
Their idea is based on the 5G concept called network 
slice, which is an end-to-end logical network, capable of 
providing an agreed quality of service for a defined cus-
tomer’s purpose  [68]. Based on this notion, an IoT slice 
would be a partition of the entire end-to-end IoT solution 
created to serve a specific (or a group of ) customer(s). 
The job of the slice orchestrator is to establish network 
slices, set up edge and cloud tenants, and the deployment 
of IoT functions as per the specific requirements related 
to resources in terms of computing, storage, network, 
and target locations (e.g., edge and/or, cloud, and trans-
port network). This solution followed a hybrid architec-
ture, where a centralised slice orchestrator creates and 
manages slices but also relies on other domain-specific 
resource orchestrators (e.g., a different cloud orchestra-
tor is responsible for a specific cloud environment) to 
perform key resource management functions such as 
resource selection and deployment. However, no details 
are provided regarding resource provisioning by domain 
orchestration, run-time reconfiguration aspects and the 
requirement specification that will be given as input to 
the system.

Alam et  al.  [69] introduced a 3-layered reference 
architecture that makes use of Docker as the underly-
ing orchestration tool for the automated deployment 
of microservices as containers. Their system follows a 
centralised model, where key functions like monitor-
ing, adaptation, and orchestration take place at the cloud 
layer. Their Fog layer is mainly used as a gateway to medi-
ate between the cloud and edge layers for system-spe-
cific operations (e.g., to update the status of connected 
edge devices) or application-specific operations (e.g., 
data transformation). This system is mostly suitable for 
publish-subscribe based IoT applications. Similarly to 
Fernandez et  al., [67], no details of various important 
functions, such as device connectivity at the edge level, 
resource provisioning at different layers, and run-time 
reconfiguration, are provided. However, different to 
others, they include a data mining component, which 
is responsible for erroneous behaviour detection such 
as responsiveness of deployed components, and edge 
devices’ statuses. Hence, their system is adaptable in case 
of any failures.
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Santos et  al.  [70] focused on the optimal applica-
tion placement problem in smart city applications while 
considering the reduction in network bandwidth usage 
and improved latency. Their proposal extends the ETSI 
NFV MANO architecture [71] with additional functions 
of monitoring and data analysis. Their system follows a 
hybrid approach where management and decision-mak-
ing related to the various functions happen at the cloud 
layer by cloud node (CN) and at the  local layer by fog 
nodes (FNs). CN is responsible for the global view of the 
system including operations like coordination and con-
trol of FNs, global level data analysis and monitoring of 
the overall SLA. Each FN on the other hand has its own 
orchestrator and is responsible for autonomously manag-
ing its own local infrastructure, associated devices, and 
the life-cycle of microservices, as well as interfacing with 
the modules for resource discovery, system monitoring, 
data analysis, security, machine to machine communica-
tion, and decision making related to application life cycle 
and related policies. However, no details are provided 
in relation to these policies, their structure, or how they 
will be passed on to the system. This solution provides 
both GUI and API access to facilitate application owners 
managing and controlling FNs (and CN) independently 
and to perform manual updates if required. Lastly, a fog 
protocol based on the existing Open Shortest Path First 
(OSPF) routing protocol [72] has been proposed to ena-
ble and exchange communication between fog and edge 
layers. Details on edge device management, application 
description and run-time reconfiguration are missing.

Foggy  [73] framework, similarly to Santos et  al.  [70], 
aimed to minimise latency and perform optimal appli-
cation placement. Foggy follows a centralised model. It 
consists of an orchestration server (OS)—a central entity 
responsible for deployment and resource management 
decisions—and an orchestration client (OC)—running 
on each computational resource and is responsible for 
enforcing deployment decisions. Overall, Foggy offers 
the following unique characteristics in contrast to other 
solutions discussed in this category: 1) To facilitate an 
automated build, a direct integration of a version con-
trol system (such as Github) and continuous integration 
process as part of their system architecture; 2) A plug-
gable policy-driven deployment planner that dynami-
cally identifies suitable resources based on user provided 
requirements; 3) A JSON based container specification to 
facilitate application owners to provide service require-
ments using qualitative constructs such as Low, Medium, 
and High. However, it is not clear how these qualitative 
specifications for different aspects, such as computation 
and latency, are mapped within the system. Similarly to 
others, Foggy also does not cover details related to edge 

device registration, standardised application description 
and run-time reconfiguration.

Castellano et  al.  [74] solution follows a distributed 
approach where a dedicated instance of a service-defined 
orchestrator (SDO) is initiated every time a new appli-
cation is deployed. The input to the system is an appli-
cation deployment request that mainly consists of a list 
of components, their topology and a set of declarative 
statements to form the Orchestration Behaviour Model 
(OBM) that drives the orchestration functions. The OBM 
features aspects, such as infrastructure and/or appli-
cation state, required objectives to be optimised, the 
events and the corresponding actions to be performed. 
Using the OBM, every SDO instance aims to make opti-
mal decisions with respect to the managed application. 
However, this also raises the resource allocation issue for 
different instances of SDOs at the shared infrastructure 
level when resources are limited. To cope with this, Cas-
tellano et al. [74] introduced Dragon—an additional com-
ponent responsible for the optimal partitioning of the 
underlying shared resources across different SDOs. Using 
Dragon, the SDO can decide to terminate an application 
component if it cannot allocate the required resources to 
that particular component. Their proposed declarative 
statementsbased application description approach, how-
ever, is specific to this solution only and does not follow a 
standardised approach.

HYDRA  [75], similar to Castellano et al.  [74] also fol-
lows a decentralised architecture, where a set of distrib-
uted nodes without the presence of a centralised entity 
are responsible for performing the orchestration func-
tions of one application. HYDRA actually builds a peer-
to-peer (P2P) overlay network of computational nodes, 
where every node serves both as an orchestrator as well 
as a computational resource—responsible for running 
the application micro-services. HYDRA supports both 
location-agnostic as well as location-aware application 
deployment with a primary focus on the overall scal-
ability and resilience aspects of the underlying resource 
infrastructure through its decentralised architecture. This 
has been achieved through the adoption of a dynamic 
partitioning scheme, where orchestrator nodes operate 
independently to control the needs on a per-application 
basis.

Caravela  [76] follows a similar decentralised model, 
where all key aspects such as the overall architecture, 
resource discovery and scheduling are also based on 
the concept of a  P2P overlay network. However, differ-
ent for HYDRA, it follows a market-oriented approach, 
where volunteer resources can join the ecosystem and get 
rewarded for their services. Caravela dynamically builds 
edge cloud from the volunteer resources that are further 
used to deploy applications using Docker containers. 
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Caravela’s scope, however, is only limited to non-cloud 
layers and does not include resource provisioning from 
cloud.

Mathias et al.  [77] solution consists of a Fog Orches-
trator (FO)—a central entity responsible for maintaining 
a resource catalogue of fog nodes, overall service man-
agement, global level monitoring, and orchestration—
and an agent component called Fog Orchestrator Agent 
(FOA) that runs on every fog node and is responsible for 
activities such as management of connected edge devices, 
security and monitoring. The working mechanism of this 
solution suggests that FO composes a TOSCA-based 
orchestration template using information obtained from 
a resource catalogue and monitoring components. This 
template is further used for deployment and run-time 
management. Such usage of TOSCA for expressing 
orchestration strategies is common and has been used by 
many solutions such as [11, 22, 78, 79]. However, in this 
case, the TOSCA template is dynamically generated by 
the system and, therefore, it is not clear what the initial 
input to the system is. A unique prospect of this solution, 
in contrast to others discussed in this category, is that the 
FOA can also act as FO if the connection is lost between 
them. However, this behaviour is static and the specific 
fog node has to specify this at the time of joining. Fur-
thermore, the scope of the overall solution only includes 
the non-cloud layers.

Hetero-Edge  [80] follows a similar concept to that of 
Mathias et al. [77], where a central entity has been used 
to handle the orchestration functions at the non-cloud 
(edge) layer only. The solution, however, is specific to 
computer vision applications and relies on the use of 
Apache Storm (or something similar, such as Apache 
Flink). Hetero-Edge breaks down an application into 
smaller Apache Storm tasks and then efficiently maps 
them onto the connected edge nodes with the objective 
of minimising the overall end-to-end latency. The speci-
fication of tasks is provided through a directed acyclic 
graph, where the mapping is performed using their cus-
tom-developed task scheduler that takes into account the 
estimated performance and resource demands of tasks. 
The solutions proposed by Donassolo et al. [81] also fol-
low a similar model, which supports orchestration at the 
non-cloud layers, however, with a particular focus on 
optimising the provisioning cost of IoT applications.

Some other more recent notable contributions include 
GeneSIS [82], which proposed a model-driven approach 
to automate the deployment of different kinds of deploy-
able artefacts including binary, ThingML-based [83], and 
container; ECCO [84], which proposed an orchestration 
framework for enabling the collective use of edge-cloud 
resources for road context assessment; KubeHICE  [85], 
which took on the challenge of addressing hardware 

heterogeneity by automatically matching the right com-
putational device that is compatible with the instruction 
set architecture (ISA) supported by the containerized 
application; and Gand et al.  [86] and Sonmez et al.  [87], 
which focused on the presence and importance of uncer-
tainty in the cloud-to edge environment and therefore 
adopted a fuzzy logic-based approach for workload 
deployment.

In addition to the above-mentioned solutions, there 
are also some research works that did not directly cover 
the core orchestration functions, however, they empha-
sised the importance of other related aspects. For exam-
ple, the authors in [88, 89] introduced the notion of 
trusted orchestration, where the proposed approach 
aimed at identifying and tracking orchestration activi-
ties to improve trust across the involved actors of the 
system. Similarly, Kochovski et al. [90] proposed a smart 
contract (SC) based architecture for SLA management 
and verification amongst relevant entities and actors of 
a decentralised environment. More recent works on the 
DRL-based advanced techniques for dynamic load bal-
ancing [91] and network dynamic clustering [92] in edge 
computing focused on the overall optimisation of cloud-
to-edge system. Such solutions can be integrated into 
distributed orchestration solutions to support self-organ-
isation and optimisation behaviours. Lastly, with the 
growing popularity of Deep Learning (DL) applications, 
there is also an increasing interest in proposing resource 
management solutions that are specifically tailored to 
DL applications. For example, FlowCon  [93] monitors 
the execution of DL jobs at run-time to make informed 
resource allocation and placement decisions. Similarly, 
SpeCon  [94] is a container scheduler that aims to opti-
mise resource usage and improves the performance of DL 
training jobs, whereas DQoES  [95] aims at dynamically 
adjusting cloud resources to meet the target Quality of 
Experience (QoE) specified by the clients. The scope of 
all the aforementioned DL-tailored solutions, however, 
only includes the cloud layer. The details of these papers 
do not directly fall within the scope of the proposed tax-
onomy and therefore have not been included here in 
larger details.

Production ready solutions

Research initiatives In the last few years, a number of 
EU-funded research projects focused on developing 
cloud-to-edge solutions. The selection of this subset was 
made considering three key aspects: 1) whether their core 
functionality was related to the cloud-to-edge orches-
tration, 2) whether their implementation was available, 
and 3) whether there were any publications associated 
with the solution. The rest of this section discusses these 
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solutions, and Table 2 further presents a complete sum-
mary of the reviewed solutions in light of the attributes 
from the taxonomy.

SODALITE@RT  [79] supports the deployment and 
management of applications across a cloud-to-edge 
infrastructure in a portable manner. The term “portable” 
is based on their use of TOSCA as the deployment model 
to represent application components and resources; and 
the use of the Infrastructure as Code (IaC) concept [96] 
to implement the life-cycle operations of components, for 
which they utilised Ansible  [97]. SODALITE@RT follows 
a centralised model, where a central component called 
a meta-orchestrator receives TOSCA-based deployment 
models and Ansible implementation scripts to set up the 
resources and to perform the deployment. The Ansible 
scripts are cloud provider specific that the orchestrator 
pulls from an IaC repository. Such an approach enables 
custom implementation, however, also burdens applica-
tion developers with the production of Ansible scripts 
in comparison with other TOSCA-based solutions such 
as  [22, 78], where the TOSCA model is the only input. 
The Ansible scripts take care of the cloud resources han-
dling, where the edge resources are handled as part of 
a Kubernetes cluster. However, details on edge cluster 
formation are not provided and therefore it is not clear 
whether a meta-orchestrator creates the edge cluster or 
it must exist prior to the deployment process. SODA-
LITE@RT also provides an event-condition-action-based 
policy language to support custom redeployment poli-
cies. Furthermore, it also supports access control and 
mechanisms for secure storage of application secrets. 
However, no mechanism for application-level security 
configurations is provided.

Capillary  [98] focused on the use of a custom-built 
monitoring system to measure QoS parameters and Off-
loading across different resource layers based on vari-
ous user-defined characteristics, including geographic 
positioning. The offloading decisions follow an “offload 
to next immediate layer” model (e.g., edge to fog or 
fog to cloud) that resembles the capillary fluid move-
ment, hence the name Capillary. It follows a centralised 
approach, where a central entity called Capillary con-
tainer orchestrator performs the deployment and off-
loading operations. The input to the system is a TOSCA 
deployment model that includes various details, such 
as resource capacity requirements for services, zone 
details, and constraints on QoS thresholds that are used 
for reconfiguration purposes. At run-time, the moni-
toring system raises alarms based on the developer-
provided thresholds. As a result, a sub-component of 
the orchestrator, similar to SODALITE@RT  [79], takes 
an offloading decision, changes the TOSCA model and 

triggers re-deployment. For resource handling, the cloud 
resources are dynamically provisioned by the orchestra-
tor based on the user-provided minimum requirements 
for the service. However, no details on the provisioning 
of the fog and edge infrastructure are provided.

MiCADO-Edge  [22] is also a centralised solution, 
where a central entity called MiCADO-Master is respon-
sible for the automated deployment and management of 
a microservices-based application across the cloud-to-
edge continuum using a single TOSCA based deploy-
ment model. This model consists of details related to 
computational resources, component specification, 
application topology, service placement mapping, user-
defined scaling policies and any application-specific 
security settings. The key focus in MiCADO-Edge is on 
generalising the resources across the different layers of 
the continuum by facilitating a mechanism to allow the 
resources from fog and edge layers (referred to as non-
cloud resources) to join a centralised cluster prior to 
the application deployment process. Once they become 
part of the  MiCADO cluster, developers can reference 
them in the TOSCA-based deployment model to define 
placement and reconfiguration policies. Furthermore, 
MiCADO-Edge empowers application developers to 
write custom dynamic scaling policies based on a wide 
range of application and system metrics. MiCADO-
Edge, however, currently lacks support for context-based 
placement of application services and developers are 
required to provide static mapping between services and 
resources.

PrEstoCloud  [99, 100] follows a similar model of a 
TOSCA-based orchestration solution. However, it pro-
vides an optimisation step before deployment. This step 
consists of receiving TOSCA in a high-level form (type 
level TOSCA model as they referred  to it), which also 
contains optimisation criteria independent from the 
underlying infrastructure resources. Based on the pro-
vided criteria, the solution automatically produces a more 
specific instance-level TOSCA deployment model con-
taining the specific resources across the infrastructure 
that are to be used for application deployment. Hence, it 
provides an optimised placement mechanism. Further-
more, PrEstoCloud also focused on facilitating predictive 
reconfiguration based on the changing data stream con-
ditions considering data-intensive applications.

mF2C  [101] adopted an N-layered approach to uti-
lise the available resources in the continuum from edge 
(Layer-N) to the cloud (Layer-0), in contrast to the two-
layered (i.e., cloud and non-cloud) approach followed 
by MiCADO-Edge  [22] and the typical three-layered 
approach as followed in [98]. Their proposed solution is 
decentralised, where deployed mF2C agents, coordinate 
with each other to find suitable resources, closer to the 
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edge, for the execution of application services. The input 
to the system, e.g., a service execution request is received 
by the mF2C agent at the lower layer. The receiving agent, 
in coordination with other agents at the same layer, aims 
to execute the service request if the required resource 
specification can be fulfilled. Otherwise, the request is 
further passed on to the mF2C agents at the upper layer. 
The service execution request is in JSON format that 
includes the required resource specification used by the 
mF2C agents to make deployment decisions. In terms of 
resource handling, the mF2C architecture supports the 
automatic discovery of other mF2C agents, the dynamic 
formation of clusters, and also reconfiguration in case of 
device mobility prospects. However, it does not address 
aspects like scaling, offloading, dynamic provisioning of 
resources, and configurable policies.

DECENTER  [102] is specifically developed for trans-
forming construction sites into smart and safe environ-
ments. Hence, this solution facilitates methods that 
are specifically tailored to the problems related to con-
struction processes. The unique feature of DECENTER, 
amongst other solutions in this category, is the Block-
chain-based resource brokerage mechanism, which 
facilitates the trusted brokerage and negotiation of 
computational resources that can be used for deploy-
ment. Furthermore, all transactions of the system are 
traceable and can be formally verified. Hence, improv-
ing the trust and transparency of the overall system. 
DECENTER follows a centralised architecture, where 
four key components of the system including Applica-
tion composer, QoS-aware decision maker, Monitoring 
system, and Orchestrator are responsible for performing 
the key orchestration functions. It also facilitates users 
with a GUI interface to select the services they want to 
use and define their QoS objectives. These details, along 
with the monitoring data, are used by the QoS-aware 
decision maker to perform deployment decisions that are 
forwarded to the orchestrator. DECENTER also supports 
automatic redeployment, when the system encounters 
violation of QoS specifications. However, it lacks func-
tions like dynamic auto-scaling and offloading.

Pledger [103] also makes use of Blockchain to improve 
trust, secure communication and enable ad-hoc networks 
between the resources of non-cloud layers to collaborate 
with each other for the execution of a specific application. 
Although Pledger’s overall architecture follows a central-
ised model, its implementation does not comply with a 
traditional adapter-based interaction model between dif-
ferent parts of the system. Pledger provides different tool-
kits for resource providers to integrate their resources 
into the Pledger ecosystem and for the application own-
ers to perform mapping of their applications on specific 

resources, which is further assessed and reconfigured by 
the core Pledger service to ensure optimised use.

Rainbow  [104] particularly focused on the issue of 
lack of handling concerning the fog-specific constraints 
related to the deployed services. For this purposes, their 
proposed solution consists of a high-level abstraction 
mechanism, where application topology and the related 
constraints on services are described through a graph. 
The Rainbow orchestration system accepts the graph 
as input and deals with the optimised placement of the 
services and the execution thereafter. The orchestration 
system follows a decentralised model, where different 
components of the system may run on the different com-
putational nodes that are part of the Rainbow ecosystem. 
To address the various challenges of the fog environment 
(such as low-powered devices, intermittent connectivity, 
and the interactions of sub-components), the system fol-
lows a publish-subscribe mechanism where a component 
called Orchestrator Repository maintains the states of 
the system and its sub-components. The Rainbow plat-
form facilitates the dynamic registration of edge devices 
and their reconfiguration as per defined service level 
objectives (SLO) violations. However, its scope is only 
limited to fog/edge resources and lacks the dynamic pro-
visioning of cloud resources.

Slack4things  [105] is an open-source initiative 
developed by the Mobile and Distributed Systems Lab 
(MDSLab) at the University of Messina, Italy. This project 
aimed to provide an OpenStack-based IoT framework for 
managing IoT devices seamlessly, i.e., without consider-
ing their physical location, network configuration, and 
underlying technology. The tools from this project are 
further extended by Merlino et al. [106] to build a distrib-
uted orchestration solution based on a three-layer archi-
tecture that covers cloud-fog-edge, and supporting both 
horizontal and vertical task offloading. With the former, 
tasks can be migrated within the same layer, e.g., from 
one edge device to another; with vertical offloading, tasks 
can move across different layers, e.g., from edge to fog, or 
from fog to cloud. Unlike other systems, this solution is 
based on independent managers deployed at each layer 
of the architecture; hence, applications can be directly 
deployed, partly or as a whole, to any layer through the 
provided managers.

Beyond the projects introduced above, there are some 
relevant EU research initiatives that have just recently 
started; however, at the time of review, we were not 
able to find any reported results from these initiatives 
therefore, we only briefly review them below for the 
purpose of completeness. The European Cloud, Edge 
and IoT (CEI) Continuum [107] is an umbrella initia-
tive that provides the strategic guidance and next stage 
of tech development to achieve the goals of an active 
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and dynamic European CEI ecosystem, with an empha-
sis on promoting the establishment of a global and open 
ecosystem for the Cloud-Edge-IoT technologies. The 
initiative coordinates across clusters of Research and 
Innovation Actions to support industries and research-
ers in creating impact, promoting the link between 
open source and open standards, and engaging relevant 
industrial alliances in actions directed toward open 
approaches. Among such clusters, the Meta-Operating 
Systems for the Next Generation IoT and Edge Com-
puting (MetaOS) [108] are relevant for this review 
paper, and include projects such as AerOS, FluiDOS, 
ICOS, NebulOus, NEMO and NEPHELE. Likewise, the 
cluster AI-enabled computing continuum from Cloud 
to Edge (CognitiveCloud) [109] is also related to our 
work, and includes projects such as AC3, ACES, Cloud-
Skin, CODECO, COGNIFOG, DECICE, EDGELESS, 
MLSysOps and SovereignEdge.Cognit. More details of 
these projects are available at the CEI website.

Industry initiatives This section presents an overview 
of some of the existing industry platforms that support 
the combined orchestration of cloud and edge resources. 
The key factors that led to the inclusion of these solutions 
are both the availability of their implementation and the 
presence of technical documentation and/or associated 
white papers. It is important to note that, even though 
such solutions often rely on underlying open source com-
ponents, such as Docker and Kubernetes, they are in fact 
vendor specific, with their scope mostly focused on the 
orchestration of (5G) network services. Moreover, these 
being industry-oriented solutions, we found that they 
often lacked documentation providing in-depth descrip-
tions of the related technical details. Instead, the available 
documentation focused more on the presentation of fea-
tures for targeting customers. Therefore, the evaluation 
of the characteristics of these solutions against the tax-
onomy was not obvious due to the lack of information. 
Nonetheless, we include these solutions in the paper for 
the purposes of completeness, even though a detailed 
comparative summary table will not be presented in this 
section.

HPE GreenLake  [110] cloud-to-edge is an infra-
structure-as-a-service solution that brings the pub-
lic cloud model to multiple IT environments, such as 
private clouds, multi-cloud and on-premises, in order 
to deliver an agile cloud everywhere modality to the 
users. HPE GreenLake allows for the integration, man-
agement and monitoring of all the above resources 
through a centralised interface. Users can access dif-
ferent types of deployable resources and services, e.g., 
bare-metal, compute, storage, containers and data 

protection services, as well as HPC, AI/ML and virtual 
desktop infrastructures.

Intel Smart Edge Open  [111] is an edge computing 
software toolkit for building platforms optimized for the 
edge. This is done by providing a toolkit of functionality 
selected from across the cloud native landscape, which 
has been extended and optimised to be used at the edge. 
This solution is able to work with heterogeneous hard-
ware resources from the on-premise edge to regional 
data centres. These are managed by using a set of “experi-
ence kits”, provided by Intel and built on top of Kuber-
netes, that combine 5G capabilities and cloud-native 
components to simplify the deployment of complex net-
work architectures, significantly reducing development 
time and cost. For instance, the Developer Experience Kit 
provides the base capabilities to run containerised edge 
services, including networking, security, and telemetry. 
An experience kit consists of building blocks that can 
be chosen according to the customer’s needs. Specifi-
cally, Resource management provides identification, con-
figuration, allocation, and continuous monitoring of the 
hardware and software resources on the edge cluster; the 
Telemetry and Monitoring combine application telem-
etry, hardware telemetry, and events to create a heat-map 
across the edge cluster and enable the orchestrator to 
make scheduling decisions.

AMCOP  [112]—Aarna Networks Multi Cluster 
Orchestration Platform—is an open-source platform for 
orchestration, life-cycle management, and closed-loop 
automation of cloud-native network services and edge 
computing applications. AMCOP aims to solve the prob-
lem of managing the growing number of edge applications 
and edge sites by offering intent-based orchestration of 
network services and composite edge computing appli-
cations, which comprise cloud-native network functions 
and cloud native applications; it also supports service 
assurance for edge and 5G services through real-time, 
policy-driven closed-loop automation. AMCOP works by 
interfacing (northbound) with the collection of systems/
applications that a network service provider already uses 
to operate its business (OSS/BSS), and by orchestrating 
infrastructure and network services/applications across 
multiple heterogeneous Kubernetes clusters (southbound).

Ormuco  [113] is a solution that aims to lead the 
deployment and usage of edge computing as an effec-
tive approach to deliver data processing. The platform 
was developed to respond to the needs of modern busi-
nesses that require the setup of an infrastructure-as-a-
service via a decentralised approach in order to increase 
their revenue, reduce both the operations and mainte-
nance costs, and automate the deployment of systems 
and applications on  demand. The platform’s Cerebro 
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virtual sysadmin is able to collect logs from heterogene-
ous computing nodes and applications; these are used to 
learn the expected behaviour of the deployed software 
and to notify application owners of any detected poten-
tial anomalies.

Azion  [114] is an end-to-end encrypted edge orches-
tration service with cloud management and zero-touch 
provisioning, created for large-scale edge networks. 
Users can manage and control resources across the edge 
in real-time and orchestrate services more easily, accord-
ing to specific service requirements. The orchestration 
relies on an agent, installed on the edge nodes, that pro-
vides encrypted remote node management to the Azion 
Control panel, within the Real-Time Manager, deployed 
in the cloud. The Edge Node module enables devices to 
be created, managed and implements the integration 
with the orchestrator. The Edge Services module enables 
the customers to create their own services and allows 
them to be managed and orchestrated by the Real-Time 
Manager.

ONAP  [115] platform provides a unified operating 
framework for vendor-agnostic, policy-driven service 
design and implementation, as well as analytics and life-
cycle management for large-scale workloads and services. 
Network operators can use ONAP to orchestrate both 
physical and virtual network functions; hence, they can 
capitalise on their existing network infrastructure while 
being part of a vibrant VNF ecosystem that includes pro-
viders around the globe. The ONAP Operations Manager 
(OOM) module, based on Kubernetes is responsible for 
orchestrating the end-to-end lifecycle management and 
monitoring of ONAP components, as well as enforcing 
scalability and resiliency mechanisms.

ZEDEDA  [116] is a cloud-based orchestration solu-
tion for the secure control of distributed edge comput-
ing deployments, which provides users with full-stack 
remote management of edge computing hardware and 
applications deployed both on clouds or on-premises 
systems. ZEDEDA leverages EVE-OS  [55], a secure, 
open universal operating system, developed with vendor-
neutral and open-source governance as part of the Linux 
Foundation’s LF Edge organization. EVE-OS simplifies 
the deployment, orchestration and security of cloud-
native and legacy applications on distributed edge com-
pute nodes. EVE-OS encrypts data, maintains device 
and software integrity and supports VMs, containers and 
clusters (Docker and Kubernetes).

Discussion, issues, and future directions
Section  “Review of existing CoTOS” thoroughly 
reviewed the existing solutions by classifying them into 
different groups. Table 1 and 2 further summarised the 
solutions from the concept-only and research initiatives 

categories by outlining their characteristics based on 
the proposed taxonomy. This section discusses and 
reflects on the results from tables with the aim of high-
lighting directions for future work in relation to the 
advancement of cloud-to-edge orchestration. More 
particularly, Section  “Open issues” discusses the open 
issues that require further consideration, whereas Sec-
tion  “A conceptual framework of orchestration in the 
Cloud-to-Things compute continuum”, based on the 
analysis of the CoTOS landscape and the identification 
of notable gaps, presents a generic high-level concep-
tual framework for the development of the next genera-
tion CoTOS.

Open issues
Standardised support for application description
A key distinction that we made in this paper is the 
differentiation between lower-level and higher-level 
solutions using the presence (or lack) of a high-level 
abstraction layer. Such an abstraction aims to increase 
portability and interoperability by empowering users to 
specify their applications’ requirements using a high-
level standardised method to avoid any kind of vendor 
and/or technology lock-in. It is evident from results 
by focusing on the “App description” attribute that a 
number of solutions such as ENORM  [66], Fernandez 
et  al.  [67], Alam et  al.  [69], Santos et  al.  [70] do not 
provide such an abstraction layer. A number of other 
solutions, including Foggy  [73], Gabriele et  al.  [74], 
mF2C [101], and Rainbow [104] used a YAML or cus-
tom DSL based abstraction mechanism. However, all 
these approaches are specific to respective solutions, 
hence solution dependent. On the other hand, most of 
the solutions in the research initiative category includ-
ing SODALITE@RE  [79], Capillary  [98], MiCADO-
Edge  [22], PrEstoCloud  [99, 100], DECENTER  [102] 
and Pledger  [103] follow a solution independent 
approach, where they mainly apply the TOSCA stand-
ard format for application description. TOSCA is a 
well-known, popular and standardised cloud orches-
tration modelling language that has been extensively 
used by many cloud orchestration tools. However, the 
latest TOSCA standard (i.e., Version 1.3  [117] at the 
time of writing) still lacks support for edge-related 
aspects. Due to the lack of native support, all the afore-
mentioned solutions provide ad-hoc extension and 
implementation for the edge-related aspects. Such 
ad-hoc adoption of TOSCA loses the inherent port-
ability aspects of utilising TOSCA as an abstraction 
layer. Hence, further efforts are required to develop (or 
extend) existing standardised modelling languages to 
enable native support for edge-related aspects.
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SLA management
The complex nature of the cloud-to-edge continuum, 
which consists of heterogeneous computational and com-
munication infrastructures belonging to multi-domains, 
and often relies on ephemeral mobile, low-power com-
putational devices with volatile connectivity, brings in 
possibly varying run-time conditions that can ultimately 
influence the delivery of the expected QoS. Therefore, 
from a system viewpoint, the management of SLAs of IoT 
applications is a very complex task. It is evident from the 
results by referring to the “SLA handling” attribute that, 
some of the existing works, e.g., ENORM [66], Fernandez 
et al. [67] from the concept-only category, and almost all 
solutions from the research initiative category have con-
sidered the SLA aspect. However, the majority of these 
solutions have focused only on SLA enforcement, where 
they perform reconfiguration as a result of the viola-
tion of certain conditions. We consider that the scope of 
SLA management is larger than just SLA enforcement, 
and orchestration systems are also needed to focus on 
other related aspects, e.g., a standardised way of describ-
ing SLA, reporting of SLA violation, formal assurance 
of SLA, SLA negotiation considering different admin-
istrative domains, and SLA monitoring across different 
administrative domains. However, amongst the reviewed 
solutions, very limited efforts are provided with regard 
to these aspects. Some limited notable examples include 
the reporting of SLA violations by mF2C  [101] and the 
formal assurance of SLA in DECENTER  [102]. For the 
SLA specification, which is an essential task for QoS-
aware orchestration, a number of solutions provide their 
custom method to define a reconfiguration policy, e.g., 
MiCADO-Edge asks application owners to define their 
SLA by writing a Python-based scaling policy using a set 
of exposed variables, while mF2C allows resource based 
conditions. However, all such methods assume specific 
knowledge of the underlying systems. On the other hand, 
commercial solutions, such as AMCOP and ONAP also 
have their SLA specification mechanisms based on exist-
ing ETSI proposals [118]. However, the scope of these is 
mainly focused on the network domain only and hence 
may not be applicable to the whole cloud-to-edge con-
tinuum. Further efforts are required to provide a stand-
ardised format that facilitates application owners to 
specify the SLA requirements of their applications. Some 
limited individual works in this direction include  [119, 
120]. These works advocate the use of model-driven SLA 
specifications that extend TOSCA with SLA-defining 
constructs. For other aspects, there are also some initial 
works, e.g., for QoS negotiation [121, 122], and for formal 
assurance of SLA [90, 123]. From an overall orchestration 
viewpoint, these aspects are essential and there should be 
more focus on incorporating these functions.

Context‑aware resource discovery
As already pointed out for SLA Management, the multi-
domain, heterogeneous nature of the cloud-to-edge 
continuum poses considerable challenges to the unified 
management of the available resources. These should 
ideally be made available as a pool that can grow and 
shrink as resource elements are dynamically discovered 
across the different layers of the involved administra-
tive domains. The results (relevant attributes include: 
“Resource discovery” and “Mapping”) inform us that most 
of the solutions lack a resource discovery mechanism and 
therefore provide a static mapping, where users manu-
ally define the association of components to specific 
resources, rather than a context-aware one. However, 
the cloud-to-thing continuum model is highly dynamic, 
where IoT applications have different requirements relat-
ing to resource, e.g., locality, type of resources, operating 
system, architecture, remaining battery power. Hence, 
from a uniform resource management viewpoint, an 
orchestration solution should provide a standardised 
dynamic way to empower resource owners to securely 
register their resources using the various associated 
contextual attributes, and where these resources can be 
dynamically discoverable across different administra-
tive domains at the time of deployment and reconfigura-
tion decisions. Hence, we foresee the usage of solutions 
similar to the one described in our previous work [124], 
where a Resource Marketplace was considered as a 
dynamic approach for sharing resource availability infor-
mation among various domains. This also allows the 
execution of mapping algorithms aimed at identifying 
resources across the cloud-to-edge continuum that can 
be used to satisfy the performance requirements of the 
IoT services requested by the users.

Proactive run‑time reconfiguration
It is evident from the results by focusing on the “Oper-
ating type” attribute that almost all of the reviewed solu-
tions are reactive in nature, rather than proactive. Such 
solutions execute reconfiguration actions (i.e., either scal-
ing and/or offloading) in response to the changes in the 
behaviour of the system that can be identified through the 
fulfilment (or violation) of some conditions. The key issue 
with the reactive approach is the delay elapsed between 
the time of the reaction to a change and the actual com-
pletion time of the reconfiguration process  [125]. Reac-
tive orchestration is also more prone to oscillation. You 
may react too fast and then react again, causing too many 
reconfigurations. The proactive approach on the other 
hand anticipates future behaviour of the system and per-
forms the necessary reconfiguration in advance. Within 
the cloud-only domain, there is already a lot of attention 
provided on the use of proactive approaches to perform 
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auto-scaling (e.g., please check these review papers for 
further details [126, 127]). However, as evident from the 
results, there is very limited attention on the use of pro-
active approaches by orchestration systems in the cloud-
to-edge continuum. Therefore, a  new breed of machine 
learning-based contextual models need to be developed 
to take reconfiguration decisions by anticipating future 
system behaviour considering a large range of relevant 
contextual information, such as: System resources (e.g., 
utilisation, capabilities, types, availability), Networking 
aspects (e.g., congestion level, available bandwidth, com-
munication overhead), Energy requirements (e.g., bat-
tery utilisation, battery life), Environmental context (e.g., 
locality, time of the day), Application service context (low 
latency, QoS specification), and Social behaviour aspects, 
(e.g., roaming habits of users).

Decentralised architecture
Most of the reviewed solutions, especially the ones with 
implementations, follow a centralised approach. This 
approach offers a number of key advantages, such as 
significantly reducing the complexity of the implemen-
tation and offering consistent decision-making, thanks 
to the information relevant to the decision process 
being located in a single place. However, the centralised 
approach also comes with significant drawbacks  [37]. 
For example, it suffers from the lack of scalability, it 
offers a single point of failure and a centralised target 
for cyber-attacks. Moreover, a single central compo-
nent can easily become a bottleneck from an efficiency 
point of view. Such a model fits more naturally in the 
single-cloud domain. However, considering the cross-
cloud and distributed nature of the cloud-to-edge eco-
system, a centralised approach also raises additional 
concerns, e.g., the transfer of recurrent monitoring data 
from distributed resources to a central point, sporadic 
connectivity, privacy and locality constraints. A decen-
tralised approach can address the aforementioned 
limitations. In such an approach, multiple orchestra-
tors (decision makers) work independently, and each 
orchestrator manages its dedicated applications or its 
own domain of the infrastructure and also collaborates 
with each other to reach QoS standards or fulfil SLAs 
or policy requirements [128, 129].

Security handling
The core focus of this paper was not on the security 
aspects of orchestration systems. However, we still 
evaluated existing solutions in four basic but essential 
aspects related to security. It is evident from the results 
by focusing on the sub-attributes of “Security handling” 
that only a few solutions have very limited and par-
tial attention on some of the four aspects. Hence, more 

attention is required in this regard. One of the key chal-
lenges for orchestration systems related to security is 
the resource-constrained computational devices at the 
edge, which in some cases are unable to support the tra-
ditional security methods. Therefore, new methods need 
to be designed considering the distributed, multi-admin-
istrative domain and resource-constrained nature of the 
cloud-to-edge environment. Further specific details in 
relation to security challenges and some solutions can be 
found in [35, 130, 131].

A conceptual framework of orchestration 
in the Cloud-to-Things compute continuum
Based on the analysis of the CoTOS landscape, and the 
identification of notable gaps described in the previ-
ous section, we present a generic high-level conceptual 
framework for the development of the next generation of 
CoTOS. This section describes the high-level abstract 
details of the framework to help researchers and devel-
opers in identifying potential components and building 
blocks, based on the functionalities and notable missing 
features of the current solutions.

The ideas that underpin our framework proposal are 
also aligned with the objectives targeted by some of 
the newly started research initiatives in the context of 
orchestration in the cloud-to-edge continuum, such 
as those mentioned earlier in the paper [107]. Similar 
to [108], we also foresee the development of a unified 
framework for smart IoT applications, acting as a Meta-
Operating System that enables seamless cloud and edge 
computing orchestration by bringing computation, data 
and intelligence closer to where the data is produced. As 
in [109], AI techniques will also be used to build a cogni-
tive framework that will automatically adapt to the grow-
ing complexity and data deluge by integrating seamlessly 
and securely diverse computing and data environments, 
spanning from core cloud to edge.

The implementation aspects of the suggested frame-
work’s components and overall execution model are left 
out for developers to choose based on their key require-
ments. Figure  3 illustrates the high-level architecture of 
our envisioned system, where the overall structure has 
been categorised into three layers, namely the Applica-
tion Description layer, the Orchestration layer, and the 
Infrastructure layer. The following sections explain each 
of these layers.

Application description layer
We expect enabling application owners to produce ven-
dor-agnostic and interoperable deployment models for 
their applications that will be deployed, managed and 
executed within the Cloud-to-Things continuum. We 
aim to have a single uniform standardised deployment 
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descriptor (a deployment model for the application) that 
incorporates all the relevant details of the target applica-
tion, including the topological structure of the involved 
microservices, the specification of the cloud-to-edge 
resource requirements and SLA specification, reconfigu-
ration, and application-level security policies. Inspired 
from  [78, 124], we consider a multi-level deployment 
model. A high-level, where an application owner provides 
an abstract description of the required resources and 
some optimisation criteria, rather than specific details in 
relation to resource providers, and/or instances. Based 
on user-provided optimisation criteria, the Cloud/Edge 
Offerings Manager component is responsible to produce 
an optimised deployment model consisting of specific 
details of the resources that will be used. The optimised 
deployment model is then passed on to the Deployment 
Model Manager component. Alternatively, application 
owners could also follow a static approach, whereby 

they can directly produce a deployment model, contain-
ing all the required resource-specific details, which can 
be directly passed on to the Deployment Model Manager 
component.

Orchestration layer
At this layer, the Deployment Model Manager receives 
either the high-level or intermediate-level deployment 
model mentioned above, and it is responsible for the 
translation, validation and transformation of the model 
into the corresponding low-level details related to the 
platform (and resources), such as specific orchestration 
manifests, policies enforcement. For the key operations, 
i.e., the deployment, reconfiguration and run-time opera-
tional management of the target application, we envision 
the MAPE-K  [132] loop architectural concept of self-
adaptive systems. As Figure 3 depicts, there are specific 
components that are responsible for each stage of the 

Fig. 3 Conceptual framework of orchestration in the Cloud-to-Things computing continuum
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MAPE-K loop. More particularly, the role of the Monitor-
ing System is to collect the system and application-related 
metrics, as well as the related contextual information, 
across the entire Cloud-to-Things ecosystem. The col-
lected information will be received by the Contextualisa-
tion Engine and utilised at different points in time; It will 
be fed into a wide range of relevant Artificial Intelligence 
models to make system-level proactive decisions related 
to the applications being executed. These decisions will 
be further planned and scheduled in terms of specific 
actions, considering the available resources by the Plan-
ning Manager. Lastly, the Orchestration Manager will 
execute the planned actions.

The key MAPE-K components of the envisioned sys-
tem are supported by the Resource Manager—respon-
sible for the overall management of both cloud and 
non-cloud resources. For the non-cloud resources, it will 
also manage resource registration and dynamic discovery 
at run-time; Run-time Optimiser—responsible to opti-
mise the overall deployment setup in terms of resource 
usage and application performance; SLA Manager—
responsible to manage the SLA related aspects, includ-
ing providing an  interface for negotiation, monitoring 
and verification at run-time; and the Faults Recovery—
responsible for detecting run-time errors in relation to 
application services and resources, and taking steps for 
automatic recovery. Lastly, the Security Manager consists 
of various enablers that are responsible for dealing with 
the overall security of the system across the multi-level 
cloud-to-edge layers, such that the entire system can 
securely operate on heterogeneous resources geographi-
cally dispersed across multiple domains. It will also be 
responsible for enforcing the application-level security 
policies defined by the application owners at the Deploy-
ment layer. Moreover, the Security Manager should also 
provide methods for authentication of resources (and IoT 
devices), such that unauthorised use of resources can be 
eliminated at the resource level and not only at the sys-
tem component level.

Infrastructure layer
Various types of geographically dispersed resources 
belonging to the Cloud-to-Things continuum, and poten-
tially spanning multiple administrative domains, are the 
constituting elements of this layer. These resources will 
be used by the above-mentioned components of the 
Orchestration layer in order to simultaneously deploy, 
reconfigure and manage IoT applications.

Conclusion
The increasing adoption of the Cloud-to-Things com-
puting model emphasises the importance of intelli-
gent and robust orchestration solutions to address the 

quintessential needs of modern IoT applications, which 
require simultaneous access and management of geo-
graphically distributed arrays of sensors, heterogeneous 
remote, local and multi-cloud computational resources, 
as well as dynamic handling of the application execu-
tion. In this paper, we thoroughly reviewed a diverse 
range of existing orchestration solutions; we then pro-
posed a novel taxonomy that consists of a wide set of 
characteristics that we deemed essential for the auto-
mated deployment and run-time management of IoT 
applications within the Cloud-to-Things continuum.

Based on the obtained results from this review, we 
identified six key areas, where current solutions are 
lacking focus. These areas include standardisation sup-
port for application description, SLA management, 
context-aware resource discovery, proactive run-time 
reconfiguration, decentralised architectures, and secu-
rity management. These areas highlight directions for 
future work. Moreover, based on these identified areas, 
we also presented a proposal for a  conceptual frame-
work that can provide a foundation for the implementa-
tion of future orchestration solutions.
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