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Abstract 

Time-Sensitive Networking (TSN) is an emerging technology for real-time and non-real-time hybrid networked 
systems. TSN is standardized by IEEE 802.1 TSN Task Group and is becoming widely used in various scenarios includ-
ing the cloud network. However, existing programmable packet schedulers such as PIFO, PIEO, and AIFO in program-
mable switches either lack the ability to express most scheduling algorithms in TSN or introduce intolerable on-chip 
memory overhead (e.g., strict-priority queues). This makes programmable switches and NICs incapable of providing 
deterministic forwarding. 

In this paper, we present AIAO (Admission-In-Admission-Out), a new set of programmable scheduling primitives using 
just a single FIFO to support typical TSN scheduling algorithms, as well as other popular work-conserving algorithms. 
AIAO is inspired by AIFO but improves it with a group of high-speed packet ingress/egress admission control trig-
gered by high-precise and globally synchronized time, thus being able to support time-sensitive scheduling. We 
implement AIAO and evaluate it with FPGA-based TSN switches. The preliminary results show that AIAO guarantees 
correctness for a typical TSN scheduling algorithm with minimal logic and memory overhead.

Keywords Time-sensitive networking, Programmable data plane, Packet scheduling, FIFO

Introduction
Today, there is an emerging need to deploy time-critical 
applications and non-time-critical applications on the 
same network infrastructure [1, 2]. Motivated by this 
trend, TSN is proposed and standardized by IEEE 802.1 
TSN Task Group to support deterministic end-to-end 
communication for time-critical applications over non-
deterministic Ethernet [3]. At the core of TSN is a time-
precise packet scheduling mechanism on both switches 
and NICs. The mechanism guarantees deterministic 
packet forwarding for time-sensitive (TS) flows. Together 
with precise traffic injection control on the sender side, 
the time-critical packet is able to arrive at the receiver at 

a deterministic latency without heavy jitter. Currently, 
most existing packet scheduling mechanisms in TSN 
require globally synchronized time on each switch and 
time-precise packet ingress/egress control for time-sen-
sitive packets in a non-work-conserving manner [2–5]. 
Non-work-conserving algorithms allow a link to be idle 
rather than sending an ineligible packet. Conversely, 
work-conserving algorithms do not let a link idle if there 
exists a packet waiting to be scheduled on it.

On the other side of the spectrum, programmable 
data plane such as RMT [6], dRMT [7] and Trio [8] 
has been widely adopted in many scenarios such as 
data centers, bringing benefits like software-defined 
policies, in-network computing, and network visu-
alization into different use-cases. For instance, HPCC 
[9] leverages the in-band telemetry to implement fine-
grained on-path congestion control. SwitchML [10] and 
OmniReduce [11] use the Very-Long-Instruction-Word 
(VLIW) Action Engine in PISA architecture [6] to sup-
port in-network parameter aggregation, boosting the 
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training performance for distributed machine learning 
systems. It is reasonable that such features may also be 
beneficial to time-critical applications that require TSN 
[12].

However, supporting TSN scheduling algorithms effi-
ciently on the programmable data plane is non-trivial. In 
recent years, a number of representative general packet 
scheduling primitives such as PIFO (Push-In-First-
Out) [13], PIEO (Push-In-Extract-Out) [14] and AIFO 
(Admit-In-First-Out) [15] are proposed to implement 
various packet scheduling algorithms with user-custom-
ized scheduling program. But those primitives above are 
either not able to provide deterministic packet forward-
ing latency with reasonable jitter or too resource-heavy 
to be implemented onto off-the-shelf switch chips. On 
the other hand, schedulers like PIPO [16] are able to sup-
port the TSN scheduling algorithms above but still need 
to implement priority queues on chip. Making things 
worse, at least one queue will be left unused when TSN 
features are not implemented. Such inefficiency is gener-
ally intolerable for switch chip design.

In this paper, we propose a set of high-speed and pro-
grammable packet scheduling primitives named Admis-
sion-In Admission-Out (AIAO), which is designed to 
implement a broad spectrum of scheduling algorithms 
including those in TSN with minimal on-chip memory 
overhead. AIAO is inspired by the recently proposed 
programmable scheduler AIFO [15], which uses only one 
FIFO queue to implement complex packet schedulers 
but is more expressive to support time-sensitive schedul-
ing algorithms that are necessary to ensure deterministic 
packet forwarding. The fundamental difference between 
AIAO and AIFO has two folds: On the one hand, AIAO 
allows the data plane to maintain the expected eligi-
ble time of the last packet in the FIFO queue so that the 
ingress admission control is capable of granting time-
sensitive packets into the queue according to synchro-
nized time. On the other hand, AIAO implements an 
egress admission control that sends out the packet from 
the head of the queue. This combination enables dynamic 
and resource-efficient packet scheduling while maintain-
ing the flexibility to adapt to both work-conserving and 
non-work-conserving requirements.

The main contributions of this paper are:

1) A hardware primitive design of AIAO, which uses 
just one FIFO queue to support both work-conserv-
ing and non-work-conserving packet scheduling 
algorithms, especially for TSN.

2) A programming framework demonstrates how typi-
cal TSN schedulers such as Time-Aware Shaper [2] 
(TAS) and Cyclic Queuing and Forwarding [4] (CQF) 
can be efficiently programmed using AIAO.

3) A preliminary evaluation of AIAO on Xilinx Zynq 
7020 FPGAs, demonstrating its feasibility and 
resource efficiency in expressing TSN scheduling 
algorithms.

The remainder of the paper is organized as follows: 
Section II presents the background on programmable 
packet scheduling and the motivation of AIAO. Section 
III describes the fundamental design of AIAO’s architec-
ture and components. Section IV details the implementa-
tion and Section V discusses the preliminary evaluation 
of AIAO. Finally, Section VI discusses related works and 
Section VII concludes the paper.

Background and motivation
In this section, we first discuss existing programmable 
scheduler primitives, then introduce the time-sensitive 
scheduling model, and finally illustrate our motivation 
with a simple example.

Programmable scheduler
The programmable scheduler is a key component provid-
ing software-defined scheduling abilities for programma-
ble packet processing architectures such as PISA/RMT 
[6] and Trio [8]. PIFO [13] is the first among existing 
methods that enable such abilities.

PIFO
PIFO leverages a tree of PIFO blocks (i.e., PIFO mesh) 
to support work-conserving and non-work-conserving 
scheduling methods. Besides a PIFO queue, each block 
also has a ranking computing module that determines 
the order of packet enqueue. By the module’s program-
mability, the PIFO mesh can determine how the packets 
are scheduled to the egress port. However, the draw-
backs come in three folds: First, the implementation 
of PIFO-based schedulers requires quite an amount of 
SRAM [13, 15], which is quite rare and shared globally 
by components like hash tables and state memory on the 
switch. Second, PIFO requires packet reordering on the 
hardware queue, which so far lacks an efficient way to 
deliver and thus causes scalability issue with the packet 
processing speed’s increase. Last and most importantly, 
PIFO-based methods only decide the order when pack-
ets enqueue, without a comprehensive control on packet 
dequeue, which is crucial for time-sensitive packet 
scheduling. To our knowledge, no off-the-shelf switch 
chip implements PIFO because of the reasons above.

PIEO
 To overcome the scalability issue and improve pro-
grammability on the packet dequeue of PIFO [14], 
PIEO, on the other hand, implements a programmable 
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predicate-based filtering [14] for packet dequeue at the 
cost of lower packet rate. The filtering partially solves 
the third issue we discussed above but is still too expen-
sive (it needs multiple SRAM-based FIFOs for reorder-
ing) and has scalability issues to implement.

AIFO
 Unlike PIFO and PIEO, AIFO [15] reduces the on-chip 
SRAM overhead aggressively by consuming only a sin-
gle FIFO queue for scheduling. The key insight is that 
up-to-date data center networks (and networks that 
prioritize low-latency over other metrics) prefer shal-
low buffer, which makes packet drop decision the more 
important metric over packet order decision. Thus, the 
AIFO-based scheduler only computes the packet rank 
before enqueue stage and drops the packet according to 
the computed rank. While the AIFO-based scheduler 
can express most typical scheduling algorithms at very 
high packet rates and low SRAM overhead, it fails to 
implement time-sensitive algorithms because of Head-
of-Line (HoL) blocks.

Time‑sensitive scheduling model
TS and non‑TS flows
 Unlike standard Ethernet, flows in TSN are divided into 
time-sensitive (TS) flows and non-TS flows according to 
their real-time requirements. TS flows are a stream of 
static, periodic packets requiring stringent end-to-end 
delay and ultra-low jitter, i.e., determinism. To ensure 
the stringent determinism, when a TS packet is transmit-
ted from each switch along its route path is planned in 
advance by the planning algorithm [17]. In other words, 
planning algorithms synthesize TS flows’ transmission 
time table. To guarantee stringent determinism, TS pack-
ets must be scheduled according to their pre-planned 
transmission timetable. Non-TS flows are usually 
dynamic and have relaxed requirements of determinism, 
whose transmission cannot be planned in advance.

To guarantee determinism for TS flows, TSN intro-
duces two time-sensitive schedulers: TAS and CQF. TAS 
and CQF schedule frames in a time-triggered manner, 
i.e., schedule a specific frame at a specific time. TAS and 
CQF are based on a mechanism named time gating, as 
shown in Fig. 1.

Fig. 1 Time-sensitive scheduling model
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Time gating mechanism
The time gating mechanism sets gates before or after 
packet transmission queues. A gate can be in one of two 
states: open or closed. Frames can only pass a gate when 
it is in the open state. The time when a gate switches its 
state is controlled by a Gate Control List (GCL) and a 
globally synchronized clock. The pre-planned transmis-
sion time table computed by planning algorithms is con-
figured into GCL. GCL works in a cyclic way. It starts 
with the first entry, moves to the last entry, and then rolls 
back to the first entry again. The global clock is achieved 
by the time synchronization standard, IEEE 802.1AS [1], 
which is beyond the scope of this paper. The detailed 
workflow of the two schedulers is as follows.

TAS
 TAS sets egress gates after each transmission queue 
as shown in Fig. 1(a). The standard Ethernet often has 
eight transmission queues, so TAS often has eight 
gates. A GCL controls all eight gates. For example, at 
time T0 , the gate after Q7 is open, and the other seven 
gates are closed according to Occc cccc in the GCL. 

The GCL in TAS is computed by traffic scheduling 
algorithms.

CQF
Unlike TAS, CQF set two ingress gates before two trans-
mission queues and two egress gates after two transmis-
sion queues, as shown in Fig.  1(b). I-GCL controls two 
ingress gates, and E-GCL controls two egress gates. Two 
queues work in a ping-pong manner according to I-GCL 
and E-GCL. At the time T0 , the ingress gate of Q7 is 
open, and egress gates of Q6 are open. Thus frames from 
upstream nodes queue up in Q7 , and frames queueing in 
Q6 can be transmitted to a downstream node. At time T1 , 
the opposite happens.

In summary, TAS and CQF use timed-gate to isolate 
frames in the time domain, thus enabling contention-free 
transmission.

Motivating example
This paper aims to design a set of primitives that require 
minimal on-chip SRAM resources but support both 
time-sensitive scheduling and other classic algorithms 
that PIFO/PIEO/AIFO is supposed to support.

Fig. 2 Motivating time-sensitive scheduling example



Page 5 of 13Lv et al. Journal of Cloud Computing          (2023) 12:141  

To demonstrate what is missing in up-to-date pro-
grammable scheduler primitives, we examine the 
examples in Fig. 2. We consider separately using PIFO, 
PIEO, and AIFO for TS and non-TS data transfer. The 
arrival order of packets and the ideal scheduling are 
shown in Fig.  2(a) and   (b). The TS packets pkt1 and 
pkt4 should be scheduled at t0 and t2 . And the non-TS 
packets pkt2 and pkt3 can only occupy the remaining 
bandwidth.

In the PIFO and PIEO cases in Fig. 2(c), both pkt1 and 
pkt4 will be scheduled first, as time-sensitive data has a 
higher rank. However, because there is no time-sensitive 
egress control, pkt4 experiences uncertain jitters. The 
scheduling time of pkt4 is not aligned with the planned 
time t2 , and is aligned with t ′1 instead, which violates the 
deterministic requirements. In the AIFO case, the admis-
sion control first allows all four packets into the queue. 
And the scheduling order is the arrival order of packets 
due to its FIFO queue. When pkt3 finishes transmission, 
pkt4 has missed its planned transmission time t2 , and is 
scheduled at t ′3 instead. Thus, due to pkt3, pkt4 experi-
ence queuing delays waiting for pkt3 to be scheduled out 
of the pipeline, which causes pkt4 to miss its pre-planned 
scheduling time t2 . Instead, pkt4 is scheduling at t ′3 , 
violating determinism. In summary, all three schedulers 
above fail to meet deterministic requirements as they all 
lack deterministic ingress/egress co-scheduling for TS 
packets.

Although AIFO does not support TSN features, AIFO 
inspires us that a single FIFO queue can approximate 
PIFO behaviors while using the minimum hardware 
resources, thus maintaining scalability. Based on this 
observation, we add an admission control before and 
after a FIFO, which is shown in the last case in Fig. 2(c). 
Ingress Admission decides the right set of packets to 
admit into the FIFO queue. Egress Admission supports 
time-sensitive scheduling. Ingress Admission and Egress 
Admission have the knowledge of the globally synchro-
nized clock. Since pkt3 hinders the scheduling of pkt4, 
Ingress Admission drops pkt3 because pkt3 is a non-
TS packet so it just needs best-effort transmission. The 
Egress Admission controls the time when pkt4 is sched-
uled. Although pkt3 is dropped, the TS packets pkt1 and 
pkt4 can be scheduled at their pre-planned transmis-
sion time, which is the same as the ideal scheduling in 
Fig. 2(b).

Design
Design insights
Before diving into the details, there are two key observa-
tions regarding packet scheduling in TSN:

• The transmission order of TS packets on a switch may 
not be identical to their arrival order. Since we aim to 
use a single FIFO to schedule TS packets, TS packets in 
the queue should be arranged in strict ascending order 
of their transmission time. It is different from AIFO 
because the packets in the queue of AIFO are not nec-
essarily arranged in strict rank order (see Fig. 3 in [15] 
for details). However, the arrival order of TS packets 
may not be the transmission order. We call it disor-
dered problem. The disordered problem of TS packets 
needs to be solved when using a single FIFO. TS pack-
ets need to be cached when disordered packets exist.

• Non-TS packets must not interfere with the scheduling 
of TS packets. Non-TS packets share the same FIFO 
queue with TS packets, and there is no physical isola-
tion between them. We call it shared queue problem. 
If a non-TS packet is admitted into the FIFO queue 
unreasonably, it may hinder the scheduling of subse-
quent TS packets. To maintain the correctness of TS 
scheduling, non-TS packets need to be aggressively 
dropped when there is only a single FIFO.

Based on the observations above, the major techni-
cal challenges we tackle are the disordered problem and 
the shared queue problem. Thus we present Admission-
In-Admission-Out (AIAO). The key idea of AIAO is to: 
1) maintain the packet order in the FIFO in the increas-
ing order of transmission time and 2) decide whether 
a non-TS packet can be admitted into the FIFO. To 
address the challenges, AIAO proposes a program-
ming framework consisting of three components: a 
FIFO queue, Ingress Admission and Egress Admission, 
among which Ingress Admission is the key component 
to solve the challenges.

Programming framework
The high-level framework of AIAO is shown in Fig.  3. 
And the pseudocode of AIAO is shown in Algorithm 1. 
AIAO has three underlying components: a primary 
FIFO queue, Ingress Admission and Egress Admission. 
The function of each component is as follows.
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Fig. 3 AIAO framework. For convenience, telig is abbreviated as t, and rank is abbreviated as r 

Algorithm 1 AIAO transactions

FIFO
A primary FIFO queue maintains the scheduling order 
for enqueued packets. A packet is enqueued into the tail 
of the queue and dequeued from the head of the queue.

Ingress Admission (IA)
IA is located before the FIFO queue. IA has two func-
tions, as shown in Lines 1-12 in Algorithm  1. The first 
function assigns the attributes, rank and eligible time, to 
the packets (Lines 2-3). Each packet has five attributes in 
AIAO, which will be introduced later. The second func-
tion is deciding whether packets can be admitted into 
the FIFO queue according to rank and telig of the packet 
(Line 4-11).

To solve the disordered problem and shared queue prob-
lem, IA implements two state variables, LstPktTime and 
NxtTSIdx, and two tables, Index Table (abbreviated as 
IdxTbl) and Sequence Table (abbreviated as SeqTbl). For 
the disordered problem, IA uses NxtTSIdx, IdxTbl and 
SeqTbl to obtain the eligible time of TS packets within the 
time complexity of O(1). Besides, IA uses a few registers 
for TS packets’ reordering. For the shared queue problem, 
IA uses LstPktTime to track the transmission time of 
the last packet in the FIFO queue and NxtTSIdx to track 
the next TS packet to be enqueued.

IA supports three programming functions, i.e., getEli-
gibleTime, getRank and isAdmitted, which could express 
different planning algorithms by assigning attributes to 
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packets with the help of state variables, tables and regis-
ters mentioned above.

Egress Admission (EA)
EA is located at the end of the queue. The function of 
EA is shown in Lines 13-17 in Algorithm 1. When the 
queue is not empty and the eligible time of the first 
packet in FIFO exceeds or is equal to the current net-
work time (Line 14), EA schedules the first packet out 
of the queue (Line 15).

The following section introduce the AIAO program-
ming framework from three aspects: Packet attributes, 
queue primitives and programming functions.

Packet attributes
Each packet in AIAO is assigned five attributes:

• type: This attribute indicates whether the packet is a 
TS or non-TS packet. Packet scheduling algorithms 
treat the two types of packets differently.

• flow_id : This attribute indicates to which flow the 
packet belongs.

• period_id : This attribute indicates that the packet is 
the period_id-th packet of a flow during the hyper 
period. The hyper period is the least common multiple 
of all flow periods. The transmission timetable for TS 
packets repeats over during the hyper period. In prac-
tice, such attributes can be tagged on the sender side 
and thus can be obtained when the packet arrives.

• eligible_time(telig ): This attribute indicates when the 
packets are eligible to be transmitted. Once that time 
is reached, the packet should be sent immediately. 
Note that the network-wide global synchronization 
clock is used as the wall clock. The telig of TS and 
non-TS packets are calculated differently. The telig of 
TS packets is pre-calculated and static, while the telig 
of non-TS packets needs to be calculated dynamically 
based on the pre-planned telig of TS packets.

• rank: This attribute indicates the priority of a packet 
and is identical to rank in AIFO. The rank of packets 
is considered the same in the TSN scheduling algo-
rithm. This attribute enables AIAO to express other 
non-TSN scheduling algorithms.

Queue primitives
AIFO supports five primitive operations atop the FIFO 
queue and registers, shown in Table 1. enqueue(pkt) support 
inserting a sequence of packets into the FIFO queue due to 
the disordered problem, which will be discussed in “Expres-
siveness” section. store(pkt) and retrieve(addr) are built atop 
registers that are used to cache disordered TS packets.

Programming functions
 There are three programming functions that the pro-
grammers can leverage to program the AIAO scheduler 
to support TSN and non-TSN scheduling algorithms.

• getEligibleTime function: This function takes the packet 
of a flow to be enqueued as an argument and assigns a 
possible eligible time for that packet as dictated by the 
scheduling algorithm being programmed. The eligible 
time of a TS packet is calculated in advance. The eligi-
ble time of a non-TS packet is determined dynamically 
based on the eligible time of the last packet in the FIFO 
queue and the eligible time of the next TS packet to be 
enqueued. Two tables, IdxTbl and SeqTbl, are used to 
record the eligible time of TS packets. LstPktTime 
state variable is used to track the eligible time of the 
last packet in the FIFO queue, and NxtTSIdx state 
variable is used to track the index of the next TS packet 
that is to be enqueued. This index is used to look up the  
eligible time of this packet in the SeqTbl.

• getRank function: This function takes the packet of a flow to 
be enqueued as an argument and assigns rank to the packets 
as dictated by the scheduling algorithm being programmed.

• isAdmitted function: This function takes a packet of a 
flow as an argument and determines whether the packet 
can be admitted to the queue based on the rank or telig 
of the packet. The function has three types of return 
results, ADMIT, STORE and DROP. DROP means a 
packet cannot enter the FIFO. ADMIT means a packet 
immediately enters the FIFO. STORE means a TS 
packet is temporarily stored in a register. When AIAO 
is programmed to support TSN, telig is usually used to 
determine whether to be admitted. When AIAO is used 
to program non-TSN algorithms, the rank is often used 
to determine whether to be admitted.

Table 1 AIAO primitives

Primitive Function

enqueue(pkt) inserts a packet or a sequence of packets into the end of the FIFO queue

dequeue() takes a packet from the head of the FIFO queue

drop(pkt) discards a packet, preventing it from entering the FIFO queue

store(pkt) puts a TS packet into a register and returns the register’s address

retrieve(addr) retrieves a TS packet from the register indicated by its address addr
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Note that the possible high-level programming lan-
guage of AIAO is out of the scope of this paper. However, 
existing network programming languages such as P4 [18] 
and Domino [19] can be used to program a scheduler as 
needed in AIAO. We leave the details of such a program-
ming language for future work.

Expressiveness
In order to demonstrate the expressiveness of AIAO, we first 
present the detailed expression of the most representative 

TSN schedulers, i.e., TAS and CQF. Then we show how 
AIAO could support non-TSN scheduling algorithms.

1) Expressing TAS. TAS algorithm using AIAO is shown 
in Algorithm  2. TAS calculates telig of TS and non-TS 
packets differently (Lines 2 and 5). The telig of TS packets 
are planned by planning algorithms in advance [17], which 
is recorded by IdxTbl and SeqTbl. IdxTbl is used to obtain 
the index of a packet in SeqTbl within the time complex-
ity of O(1)(Line 3), and SeqTbl is used to obtain the telig 
of the packet within the time complexity of O(1)(Line 4).

Algorithm 2 TAS algorithm using AIAO
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The telig of a non-TS packet depends on the eligible 
time of the last packet in the FIFO queue. When a non-
TS packet arrives, its earliest possible eligible time is 
when the last packet in the FIFO queue finishes its trans-
mission. The earliest possible eligible time is tracked by 
LstPktTime state variable. Thus the telig of a BE packet 
is identical to LstPktTime (Line 6).

Since TAS schedules packets according to their eligible 
time, the rank of each packet could be set to be the same, 
which is 0 in this paper (Line 10).

The implementation of isAdmitted functions is non-
trivial. In general, all TS packets are always admitted, and 
non-TS packets are not admitted if they interfere with the 
scheduling of TS packets, i.e., the shared queue problem. 
Besides, the disordered problem of TS packets should be 
handled carefully.

When a TS packet arrives (Line 13), if the index of this 
packet in the SeqTbl (Line 14) is not identical to NxtT-
SIdx state variable (Line 15), it means this packet is 
not the packet being waited for, but the packet was sent 
after the packet was waited for, which is the disordered 
problem. Thus the current packet enters the register, 
and the address of this register is returned (Line 16). 
The returned address needs to be updated in the address 
field of the corresponding table entry in SeqTbl (Line 
17). The packet is temporarily stored in the register. Thus 
STORE is returned (Line 18). If the current packet is the 
TS packet being waited for (Line 19), there is no disor-
dered problem. The tables and state variables need to be 
updated (Line 20). First, the address field of the packet in 
SeqTbl is reset to null to indicate that the packet does not 
need to be buffered. Second, the TS packet is now the last 
packet in the FIFO queue and then the telig of this packet 
is updated to LstPktTime. Third, NxtTSIdx should 
be updated to the current index+1 (Line 14). If the pack-
ets corresponding to the new NxtTSIdx have arrived 
in advance, the packets are taken out from their regis-
ter, and the update operation is repeated (Lines 16-18). 
All the TS packets are admitted into the FIFO queue, and 
ADMIT is returned (Line 26).

When a BE packet arrives (Line 28), if LstPktTime 
plus its transmission delay does not exceed the telig of 
the next TS packet, and there are no TS packets in the 
registers (Line 30), it means that this BE packet will not 
interfere with the scheduling of the next TS packet, then 
the BE packet is admitted into the FIFO queue (Line 31). 
Otherwise, the BE packet is dropped (Line 33).

2) Expressing CQF. CQF algorithm using AIAO is 
shown in Algorithm  3. Like TAS, CQF assigns the telig 
of TS and non-TS packets differently (Lines 2 and 4). In 
CQF, the telig of TS packets is also planned in advance. 
The telig of TS packets is recorded by IdxTbl only. Because 
there is no disordered problem in CQF, so there is no 

need to use SeqTbl. Thus CQF can obtain the telig of 
packets from IdxTbl within the time complexity of O(1) 
directly(Line 3). Note that the telig of multiple TS pack-
ets sent in the same time slot is when the time slot starts. 
The telig of multiple TS packets is identical. This does not 
affect the egress scheduling of the FIFO queue. A non-TS 
packet’s telig is tracked by LstPktTime (Line 5). Simi-
larly, the rank of packets in CQF is identical and thus is 
set to be 0 (Line 9).

Algorithm 3 CQF algorithm using AIAO

Since TS packets in CQF do not have the disordered 
problem, TS packets need not be reordered before 
being admitted into the FIFO queue. As a result, when 
a TS packet arrives, it is directly admitted into the FIFO 
queue (Line 14). Besides, LstPktTime should add the 
transmission delay of the TS packet(Line 13).

For non-TS packets, since the eligible transmission 
time of TS packets is a coarse-grained time slot (the 
typical value of the time slot is usually over 100µs ), 
the time at the back of a time slot that is not used by 
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TS packets can be used for the scheduling of non-TS 
packets. Whether a non-TS packet can enter the FIFO 
queue depends on whether the non-TS packet affects 
the scheduling of TS packets in the next time slot. The 
moment when the next time slot starts is taken from 
NxtTSIdx (Line 21). Note that NxtTSIdx in CQF 
has a different meaning in TAS. If the LstPktTime 
plus the transmission delay of this non-TS packet does 
not exceed NxtTSIdx, the non-TS packet is admitted 
(Line 18). Otherwise, it is dropped (Line 20). Besides, 
NxtTSIdx needs to be updated to the moment when 
the transmission of the packet ends (Line 17). Note that 
for each increase in the length of the slot in the global 
clock, NxtTSIdx automatically adds 1.

3) Expressing non-TSN scheduler. AIAO can also 
express non-TSN scheduling algorithms. Take the short-
est remaining processing time (SRPT) that AIFO can 
express as an example. AIAO can achieve the same 
effect as AIFO. The principle of SRPT is that flows with 
the shortest remaining bytes of flows are scheduled first. 
Thus the remaining bytes of flows can be used as rank 
that can be implemented in getRank function. Packets 
whose ranks are larger than a certain rank are dropped, 
and those smaller than a certain rank enter the FIFO 
queue, which can be implemented in the isAdmitted 
function. The telig of packets is set to be 0, which can be 
implemented in the getEligibleTime function. Once the 
FIFO queue is not empty, the packets can be scheduled 
immediately. In summary, AIAO can also express algo-
rithms other than TSN scheduling algorithms.

Implementation
This section briefly presents how AIAO can be imple-
mented on the hardware. As shown in Fig. 4, the funda-
mental feature of AIAO is that it only contains a single 
FIFO queue for packet scheduling. To support time-sen-
sitive algorithms, high-precision global time via 802.1AS 
[1] is provided to both IA and EA modules to issue time-
sensitive decisions. Each packet is assigned a unique 
description containing the attributes mentioned above: 
type, flow_id, period_id, eligible_time, and rank.

Next, we present how the scheduling decision is issued 
and executed by AIAO. In the first step (①), a packet 
descriptor is issued to the scheduler when a packet 
arrives at the packet processing pipeline. Then AIAO 
reads the packet descriptor by the order they enter the 
pipeline and places the descriptor in a pre-queue cache 
according to the packet type attribute (the second step 
②). For non-TS packets, the descriptor will be fed 
directly to the Rank Selector, waiting to enqueue or to be 
dropped by the Rank Selector. Because TS packets may 
arrive disordered, a Reordering Module is implemented 
before an enqueue operation is issued. Specifically, when 
the packet descriptor of a TS packet arrives, the flow_id 
and period_id are matched against the IdxTbl to obtain 
the time index, which indicates the packet order in each 
TS flow. Based on this index, the Reordering Module can 
reorder the TS packets before the enqueuing operation.

In the third step(③), for TS packets, the larger value 
of the time index and the NxtTSIdx is matched against 
the SeqTbl to get the eligible time for the next TS packet 

Fig. 4 AIAO Primitives Implementation
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that is expected to enqueue. The Rank Selector is the key 
scheduling module in the ingress stage. It reads the regis-
ter LstPktTime, which indicates when the last packet 
in the FIFO queue is expected to finish the dequeue 
operation. Then it calculates if the arriving packet should 
enqueue by comparing the eligible time of the next TS 
packet and the expected dequeue time of the current 
non-TS packet (④). Next, the Rank Selector grants the 
next packet based on the result and issues the enqueue 
operation. Finally, both NxtTSIdx and LstPktTime 
are updated accordingly. In the last step(⑤), Transmis-
sion Module issues a dequeue operation when the cur-
rent time exceeds the eligible time of the packet on the 
head of the queue.

As all the tables, the reordering registers and the FIFO 
queue are implemented using SRAM on-chip, AIAO can 
run at reasonably high frequency in a deep-pipelined 
manner. We left the discussion of the size of the FIFO 
queue, IdxTbl, and SeqTbl for a future expended version 
because of the space limitation.

Preliminary results
At the time just before the submission, we implemented 
an early-version prototype (within an open-source TSN 
switch project) of AIAO on Xilinx Zynq 7020 (125Mhz) 
and evaluate it on a ring topology with 6 nodes. We 

briefly demonstrate the resource usage and feasibility of 
AIAO in this section.

Firstly, we compare the FPGA resource usage between 
the TSN switch with a standard CQF scheduler and the 
TSN switch with an AIAO-based CQF scheduler. The 
result is shown in Table  2. Though the AIAO-based 
scheduler consumes slightly more (1.6%) LUT than the 
baseline, it reduces the BRAM usage by over 11 36k 
BRAM (8%). Such reduction is possible using one FIFO 
queue instead of eight in standard CQF. The resource 
usage comparison between AIAO and other scheduler 
primitives, such as PIFO and PIEO, is still ongoing.

Next, we demonstrate whether AIAO is programmable 
enough to support typical TSN scheduling algorithms. 
Thus, we focus on the end-to-end delay of TS streams 
in the preliminary experimental results. Note that cur-
rent results can only prove the feasibility of AIAO. Other 
experiments, such as stress testing with non-TS flows 
and comparison with other scheduling primitives, are 
undergoing.

We run the experiment on a ring topology with 6 
switches as shown in Fig.  5. The output ports of the 
switches are equipped with AIAO. The period of the TS 
flow is 16777.216µs , which means the minimum inter-
val between two consecutive packets is 16777.216µs , 
and the packet size is 512 bytes. The size of a time slot in 
CQF configuration is 131.072µs . When CQF scheduling 
is used, the end-to-end delay d of a TS flow is between 
(h− 1)× slot ≤ d ≤ (h+ 1)× slot , where h is the num-
ber of hops of the flow and slot is the size of a time slot. 
(h− 1)× slot and (h+ 1)× slot are the TS flow’s theo-
retical lower and upper bound. We set up four experi-
ments, each with a different number of hops for the 
flow. The four experiments send the flow from switch 0 
to switch 2, switch 3, switch 4 and switch 5. That is, the 

Table 2 Resources usage of a TSN switch when implementing 
standard CQF and AIAO-based CQF

Hardware Implementation Slice LUTs Block RAMs

Standard CQF 25536 (48.00%) 82.50 (58.93%)

AIAO‑based CQF 26419 (49.66%) 71.05 (50.75%)

Fig. 5 Experimental topology
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number of hops is increased from 2 to 5. We collect the 
end-to-end delay of this TS flow during 1024 periods/
rounds. The results are shown in Fig. 6.

As the number of hops increases, the end-to-end 
delay of the TS flow increases. However, its end-to-
end delay is always within the theoretical upper and 
lower bounds. For example, the hop number of the 
flow in Fig.  6(b) is 3, so the lower bound of delay is 
(3− 1)× 131.072 = 262.144µs and the upper bound 
of delay is (3+ 1)× 131.072 = 524.288µs . The end-to-
end delay of this flow always fluctuates within the upper 
and lower bounds. The results show that it is feasible to 
express CQF with AIAO. Compared to the original CQF 
scheduler in TSN, AIAO uses only a single FIFO queue.

Related work
Programmable packet scheduling. Programmable 
packet scheduling is the opposite of fix-function packet 
scheduling. This field starts with PIFO [13]. PIFO is a 
popular packet scheduling primitive, which allows a 
packet to be pushed into an arbitrary queue position 
and dequeued only from the head of the queue. At the 
same time, the scalability of PIFO is extremely limited. 
SP-PIFO [20] and AIFO [15] are two primitives which 

aim to approximate PIFO. PIEO is another scheduling 
primitive, but it cannot be pipelined [16]. However, those 
primitives cannot support the deterministic packet for-
warding required by TSN scheduling algorithms. As far 
as we know, PIPO [16] is the only scheduling primitive 
that supports TSN features but consumes several prior-
ity queues. Besides, when PIPO is not used to express 
the TSN scheduling algorithm, it has at least one idle 
priority queue. Such inefficiency is intolerable for chip 
designs, especially since priority queues are such critical 
resources [15].

TSN scheduling. There are two features in TSN packet 
scheduling. First, flows are divided according to their 
quality of service requirements, among which TS flows 
require the most stringent determinism. Second, TSN 
introduces the network-wide global synchronization 
clock [1], and the scheduling of TS flows should refer to 
the global synchronization time. Typical TSN schedul-
ing algorithms include TAS [2], CQF [4], CBS [21], ATS 
[5], etc. Among them, TAS and CQF can ensure strict 
determinism for TS traffic, which is the most significant 
feature that distinguishes TSN from traditional Ethernet 
scheduling. This paper mainly focuses on the expression 
of these two algorithms.

Fig. 6 The end-to-end delay in CQF
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Conclusion
The paper presents AIAO (Admission-In-Admission-
Out), a new set of programmable scheduler primitives 
using a single FIFO to support typical TSN schedulers 
standardized in IEEE 802.1Q and other popular work-
conserving algorithms. AIAO is inspired by AIFO but 
improves AIFO by a group of high-speed packet ingress/
egress admission control triggered by high-precise and 
globally synchronized time, thus supporting time-sensi-
tive scheduling. This paper discusses AIAO and evaluates 
it with FPGAs. The preliminary results demonstrate that 
it guarantees correctness for a typical TSN scheduling 
algorithm with limited logic and memory overhead.
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