
Lv et al. Journal of Cloud Computing (2023) 12:141
https://doi.org/10.1186/s13677-023-00518-3

RESEARCH

Making programmable packet scheduling
time-sensitive with a FIFO queue
Qianru Lv1†, Xuyan Jiang1† and Xiangrui Yang1*

Abstract

Time-Sensitive Networking (TSN) is an emerging technology for real-time and non-real-time hybrid networked
systems. TSN is standardized by IEEE 802.1 TSN Task Group and is becoming widely used in various scenarios includ-
ing the cloud network. However, existing programmable packet schedulers such as PIFO, PIEO, and AIFO in program-
mable switches either lack the ability to express most scheduling algorithms in TSN or introduce intolerable on-chip
memory overhead (e.g., strict-priority queues). This makes programmable switches and NICs incapable of providing
deterministic forwarding.

In this paper, we present AIAO (Admission-In-Admission-Out), a new set of programmable scheduling primitives using
just a single FIFO to support typical TSN scheduling algorithms, as well as other popular work-conserving algorithms.
AIAO is inspired by AIFO but improves it with a group of high-speed packet ingress/egress admission control trig-
gered by high-precise and globally synchronized time, thus being able to support time-sensitive scheduling. We
implement AIAO and evaluate it with FPGA-based TSN switches. The preliminary results show that AIAO guarantees
correctness for a typical TSN scheduling algorithm with minimal logic and memory overhead.

Keywords Time-sensitive networking, Programmable data plane, Packet scheduling, FIFO

Introduction
Today, there is an emerging need to deploy time-critical
applications and non-time-critical applications on the
same network infrastructure [1, 2]. Motivated by this
trend, TSN is proposed and standardized by IEEE 802.1
TSN Task Group to support deterministic end-to-end
communication for time-critical applications over non-
deterministic Ethernet [3]. At the core of TSN is a time-
precise packet scheduling mechanism on both switches
and NICs. The mechanism guarantees deterministic
packet forwarding for time-sensitive (TS) flows. Together
with precise traffic injection control on the sender side,
the time-critical packet is able to arrive at the receiver at

a deterministic latency without heavy jitter. Currently,
most existing packet scheduling mechanisms in TSN
require globally synchronized time on each switch and
time-precise packet ingress/egress control for time-sen-
sitive packets in a non-work-conserving manner [2–5].
Non-work-conserving algorithms allow a link to be idle
rather than sending an ineligible packet. Conversely,
work-conserving algorithms do not let a link idle if there
exists a packet waiting to be scheduled on it.

On the other side of the spectrum, programmable
data plane such as RMT [6], dRMT [7] and Trio [8]
has been widely adopted in many scenarios such as
data centers, bringing benefits like software-defined
policies, in-network computing, and network visu-
alization into different use-cases. For instance, HPCC
[9] leverages the in-band telemetry to implement fine-
grained on-path congestion control. SwitchML [10] and
OmniReduce [11] use the Very-Long-Instruction-Word
(VLIW) Action Engine in PISA architecture [6] to sup-
port in-network parameter aggregation, boosting the

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

†Qianru Lv and Xuyan Jiang contributed equally to this work.

*Correspondence:
Xiangrui Yang
yangxiangrui11@nudt.edu.cn
1 College of Computer, National University of Defense Technology, No.109
Deya Street, Changsha 410073, Hunan, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00518-3&domain=pdf

Page 2 of 13Lv et al. Journal of Cloud Computing (2023) 12:141

training performance for distributed machine learning
systems. It is reasonable that such features may also be
beneficial to time-critical applications that require TSN
[12].

However, supporting TSN scheduling algorithms effi-
ciently on the programmable data plane is non-trivial. In
recent years, a number of representative general packet
scheduling primitives such as PIFO (Push-In-First-
Out) [13], PIEO (Push-In-Extract-Out) [14] and AIFO
(Admit-In-First-Out) [15] are proposed to implement
various packet scheduling algorithms with user-custom-
ized scheduling program. But those primitives above are
either not able to provide deterministic packet forward-
ing latency with reasonable jitter or too resource-heavy
to be implemented onto off-the-shelf switch chips. On
the other hand, schedulers like PIPO [16] are able to sup-
port the TSN scheduling algorithms above but still need
to implement priority queues on chip. Making things
worse, at least one queue will be left unused when TSN
features are not implemented. Such inefficiency is gener-
ally intolerable for switch chip design.

In this paper, we propose a set of high-speed and pro-
grammable packet scheduling primitives named Admis-
sion-In Admission-Out (AIAO), which is designed to
implement a broad spectrum of scheduling algorithms
including those in TSN with minimal on-chip memory
overhead. AIAO is inspired by the recently proposed
programmable scheduler AIFO [15], which uses only one
FIFO queue to implement complex packet schedulers
but is more expressive to support time-sensitive schedul-
ing algorithms that are necessary to ensure deterministic
packet forwarding. The fundamental difference between
AIAO and AIFO has two folds: On the one hand, AIAO
allows the data plane to maintain the expected eligi-
ble time of the last packet in the FIFO queue so that the
ingress admission control is capable of granting time-
sensitive packets into the queue according to synchro-
nized time. On the other hand, AIAO implements an
egress admission control that sends out the packet from
the head of the queue. This combination enables dynamic
and resource-efficient packet scheduling while maintain-
ing the flexibility to adapt to both work-conserving and
non-work-conserving requirements.

The main contributions of this paper are:

1) A hardware primitive design of AIAO, which uses
just one FIFO queue to support both work-conserv-
ing and non-work-conserving packet scheduling
algorithms, especially for TSN.

2) A programming framework demonstrates how typi-
cal TSN schedulers such as Time-Aware Shaper [2]
(TAS) and Cyclic Queuing and Forwarding [4] (CQF)
can be efficiently programmed using AIAO.

3) A preliminary evaluation of AIAO on Xilinx Zynq
7020 FPGAs, demonstrating its feasibility and
resource efficiency in expressing TSN scheduling
algorithms.

The remainder of the paper is organized as follows:
Section II presents the background on programmable
packet scheduling and the motivation of AIAO. Section
III describes the fundamental design of AIAO’s architec-
ture and components. Section IV details the implementa-
tion and Section V discusses the preliminary evaluation
of AIAO. Finally, Section VI discusses related works and
Section VII concludes the paper.

Background and motivation
In this section, we first discuss existing programmable
scheduler primitives, then introduce the time-sensitive
scheduling model, and finally illustrate our motivation
with a simple example.

Programmable scheduler
The programmable scheduler is a key component provid-
ing software-defined scheduling abilities for programma-
ble packet processing architectures such as PISA/RMT
[6] and Trio [8]. PIFO [13] is the first among existing
methods that enable such abilities.

PIFO
PIFO leverages a tree of PIFO blocks (i.e., PIFO mesh)
to support work-conserving and non-work-conserving
scheduling methods. Besides a PIFO queue, each block
also has a ranking computing module that determines
the order of packet enqueue. By the module’s program-
mability, the PIFO mesh can determine how the packets
are scheduled to the egress port. However, the draw-
backs come in three folds: First, the implementation
of PIFO-based schedulers requires quite an amount of
SRAM [13, 15], which is quite rare and shared globally
by components like hash tables and state memory on the
switch. Second, PIFO requires packet reordering on the
hardware queue, which so far lacks an efficient way to
deliver and thus causes scalability issue with the packet
processing speed’s increase. Last and most importantly,
PIFO-based methods only decide the order when pack-
ets enqueue, without a comprehensive control on packet
dequeue, which is crucial for time-sensitive packet
scheduling. To our knowledge, no off-the-shelf switch
chip implements PIFO because of the reasons above.

PIEO
 To overcome the scalability issue and improve pro-
grammability on the packet dequeue of PIFO [14],
PIEO, on the other hand, implements a programmable

Page 3 of 13Lv et al. Journal of Cloud Computing (2023) 12:141

predicate-based filtering [14] for packet dequeue at the
cost of lower packet rate. The filtering partially solves
the third issue we discussed above but is still too expen-
sive (it needs multiple SRAM-based FIFOs for reorder-
ing) and has scalability issues to implement.

AIFO
 Unlike PIFO and PIEO, AIFO [15] reduces the on-chip
SRAM overhead aggressively by consuming only a sin-
gle FIFO queue for scheduling. The key insight is that
up-to-date data center networks (and networks that
prioritize low-latency over other metrics) prefer shal-
low buffer, which makes packet drop decision the more
important metric over packet order decision. Thus, the
AIFO-based scheduler only computes the packet rank
before enqueue stage and drops the packet according to
the computed rank. While the AIFO-based scheduler
can express most typical scheduling algorithms at very
high packet rates and low SRAM overhead, it fails to
implement time-sensitive algorithms because of Head-
of-Line (HoL) blocks.

Time‑sensitive scheduling model
TS and non‑TS flows
 Unlike standard Ethernet, flows in TSN are divided into
time-sensitive (TS) flows and non-TS flows according to
their real-time requirements. TS flows are a stream of
static, periodic packets requiring stringent end-to-end
delay and ultra-low jitter, i.e., determinism. To ensure
the stringent determinism, when a TS packet is transmit-
ted from each switch along its route path is planned in
advance by the planning algorithm [17]. In other words,
planning algorithms synthesize TS flows’ transmission
time table. To guarantee stringent determinism, TS pack-
ets must be scheduled according to their pre-planned
transmission timetable. Non-TS flows are usually
dynamic and have relaxed requirements of determinism,
whose transmission cannot be planned in advance.

To guarantee determinism for TS flows, TSN intro-
duces two time-sensitive schedulers: TAS and CQF. TAS
and CQF schedule frames in a time-triggered manner,
i.e., schedule a specific frame at a specific time. TAS and
CQF are based on a mechanism named time gating, as
shown in Fig. 1.

Fig. 1 Time-sensitive scheduling model

Page 4 of 13Lv et al. Journal of Cloud Computing (2023) 12:141

Time gating mechanism
The time gating mechanism sets gates before or after
packet transmission queues. A gate can be in one of two
states: open or closed. Frames can only pass a gate when
it is in the open state. The time when a gate switches its
state is controlled by a Gate Control List (GCL) and a
globally synchronized clock. The pre-planned transmis-
sion time table computed by planning algorithms is con-
figured into GCL. GCL works in a cyclic way. It starts
with the first entry, moves to the last entry, and then rolls
back to the first entry again. The global clock is achieved
by the time synchronization standard, IEEE 802.1AS [1],
which is beyond the scope of this paper. The detailed
workflow of the two schedulers is as follows.

TAS
 TAS sets egress gates after each transmission queue
as shown in Fig. 1(a). The standard Ethernet often has
eight transmission queues, so TAS often has eight
gates. A GCL controls all eight gates. For example, at
time T0 , the gate after Q7 is open, and the other seven
gates are closed according to Occc cccc in the GCL.

The GCL in TAS is computed by traffic scheduling
algorithms.

CQF
Unlike TAS, CQF set two ingress gates before two trans-
mission queues and two egress gates after two transmis-
sion queues, as shown in Fig. 1(b). I-GCL controls two
ingress gates, and E-GCL controls two egress gates. Two
queues work in a ping-pong manner according to I-GCL
and E-GCL. At the time T0 , the ingress gate of Q7 is
open, and egress gates of Q6 are open. Thus frames from
upstream nodes queue up in Q7 , and frames queueing in
Q6 can be transmitted to a downstream node. At time T1 ,
the opposite happens.

In summary, TAS and CQF use timed-gate to isolate
frames in the time domain, thus enabling contention-free
transmission.

Motivating example
This paper aims to design a set of primitives that require
minimal on-chip SRAM resources but support both
time-sensitive scheduling and other classic algorithms
that PIFO/PIEO/AIFO is supposed to support.

Fig. 2 Motivating time-sensitive scheduling example

Page 5 of 13Lv et al. Journal of Cloud Computing (2023) 12:141

To demonstrate what is missing in up-to-date pro-
grammable scheduler primitives, we examine the
examples in Fig. 2. We consider separately using PIFO,
PIEO, and AIFO for TS and non-TS data transfer. The
arrival order of packets and the ideal scheduling are
shown in Fig. 2(a) and (b). The TS packets pkt1 and
pkt4 should be scheduled at t0 and t2 . And the non-TS
packets pkt2 and pkt3 can only occupy the remaining
bandwidth.

In the PIFO and PIEO cases in Fig. 2(c), both pkt1 and
pkt4 will be scheduled first, as time-sensitive data has a
higher rank. However, because there is no time-sensitive
egress control, pkt4 experiences uncertain jitters. The
scheduling time of pkt4 is not aligned with the planned
time t2 , and is aligned with t ′1 instead, which violates the
deterministic requirements. In the AIFO case, the admis-
sion control first allows all four packets into the queue.
And the scheduling order is the arrival order of packets
due to its FIFO queue. When pkt3 finishes transmission,
pkt4 has missed its planned transmission time t2 , and is
scheduled at t ′3 instead. Thus, due to pkt3, pkt4 experi-
ence queuing delays waiting for pkt3 to be scheduled out
of the pipeline, which causes pkt4 to miss its pre-planned
scheduling time t2 . Instead, pkt4 is scheduling at t ′3 ,
violating determinism. In summary, all three schedulers
above fail to meet deterministic requirements as they all
lack deterministic ingress/egress co-scheduling for TS
packets.

Although AIFO does not support TSN features, AIFO
inspires us that a single FIFO queue can approximate
PIFO behaviors while using the minimum hardware
resources, thus maintaining scalability. Based on this
observation, we add an admission control before and
after a FIFO, which is shown in the last case in Fig. 2(c).
Ingress Admission decides the right set of packets to
admit into the FIFO queue. Egress Admission supports
time-sensitive scheduling. Ingress Admission and Egress
Admission have the knowledge of the globally synchro-
nized clock. Since pkt3 hinders the scheduling of pkt4,
Ingress Admission drops pkt3 because pkt3 is a non-
TS packet so it just needs best-effort transmission. The
Egress Admission controls the time when pkt4 is sched-
uled. Although pkt3 is dropped, the TS packets pkt1 and
pkt4 can be scheduled at their pre-planned transmis-
sion time, which is the same as the ideal scheduling in
Fig. 2(b).

Design
Design insights
Before diving into the details, there are two key observa-
tions regarding packet scheduling in TSN:

• The transmission order of TS packets on a switch may
not be identical to their arrival order. Since we aim to
use a single FIFO to schedule TS packets, TS packets in
the queue should be arranged in strict ascending order
of their transmission time. It is different from AIFO
because the packets in the queue of AIFO are not nec-
essarily arranged in strict rank order (see Fig. 3 in [15]
for details). However, the arrival order of TS packets
may not be the transmission order. We call it disor-
dered problem. The disordered problem of TS packets
needs to be solved when using a single FIFO. TS pack-
ets need to be cached when disordered packets exist.

• Non-TS packets must not interfere with the scheduling
of TS packets. Non-TS packets share the same FIFO
queue with TS packets, and there is no physical isola-
tion between them. We call it shared queue problem.
If a non-TS packet is admitted into the FIFO queue
unreasonably, it may hinder the scheduling of subse-
quent TS packets. To maintain the correctness of TS
scheduling, non-TS packets need to be aggressively
dropped when there is only a single FIFO.

Based on the observations above, the major techni-
cal challenges we tackle are the disordered problem and
the shared queue problem. Thus we present Admission-
In-Admission-Out (AIAO). The key idea of AIAO is to:
1) maintain the packet order in the FIFO in the increas-
ing order of transmission time and 2) decide whether
a non-TS packet can be admitted into the FIFO. To
address the challenges, AIAO proposes a program-
ming framework consisting of three components: a
FIFO queue, Ingress Admission and Egress Admission,
among which Ingress Admission is the key component
to solve the challenges.

Programming framework
The high-level framework of AIAO is shown in Fig. 3.
And the pseudocode of AIAO is shown in Algorithm 1.
AIAO has three underlying components: a primary
FIFO queue, Ingress Admission and Egress Admission.
The function of each component is as follows.

Page 6 of 13Lv et al. Journal of Cloud Computing (2023) 12:141

Fig. 3 AIAO framework. For convenience, telig is abbreviated as t, and rank is abbreviated as r

Algorithm 1 AIAO transactions

FIFO
A primary FIFO queue maintains the scheduling order
for enqueued packets. A packet is enqueued into the tail
of the queue and dequeued from the head of the queue.

Ingress Admission (IA)
IA is located before the FIFO queue. IA has two func-
tions, as shown in Lines 1-12 in Algorithm 1. The first
function assigns the attributes, rank and eligible time, to
the packets (Lines 2-3). Each packet has five attributes in
AIAO, which will be introduced later. The second func-
tion is deciding whether packets can be admitted into
the FIFO queue according to rank and telig of the packet
(Line 4-11).

To solve the disordered problem and shared queue prob-
lem, IA implements two state variables, LstPktTime and
NxtTSIdx, and two tables, Index Table (abbreviated as
IdxTbl) and Sequence Table (abbreviated as SeqTbl). For
the disordered problem, IA uses NxtTSIdx, IdxTbl and
SeqTbl to obtain the eligible time of TS packets within the
time complexity of O(1). Besides, IA uses a few registers
for TS packets’ reordering. For the shared queue problem,
IA uses LstPktTime to track the transmission time of
the last packet in the FIFO queue and NxtTSIdx to track
the next TS packet to be enqueued.

IA supports three programming functions, i.e., getEli-
gibleTime, getRank and isAdmitted, which could express
different planning algorithms by assigning attributes to

Page 7 of 13Lv et al. Journal of Cloud Computing (2023) 12:141

packets with the help of state variables, tables and regis-
ters mentioned above.

Egress Admission (EA)
EA is located at the end of the queue. The function of
EA is shown in Lines 13-17 in Algorithm 1. When the
queue is not empty and the eligible time of the first
packet in FIFO exceeds or is equal to the current net-
work time (Line 14), EA schedules the first packet out
of the queue (Line 15).

The following section introduce the AIAO program-
ming framework from three aspects: Packet attributes,
queue primitives and programming functions.

Packet attributes
Each packet in AIAO is assigned five attributes:

• type: This attribute indicates whether the packet is a
TS or non-TS packet. Packet scheduling algorithms
treat the two types of packets differently.

• flow_id : This attribute indicates to which flow the
packet belongs.

• period_id : This attribute indicates that the packet is
the period_id-th packet of a flow during the hyper
period. The hyper period is the least common multiple
of all flow periods. The transmission timetable for TS
packets repeats over during the hyper period. In prac-
tice, such attributes can be tagged on the sender side
and thus can be obtained when the packet arrives.

• eligible_time(telig): This attribute indicates when the
packets are eligible to be transmitted. Once that time
is reached, the packet should be sent immediately.
Note that the network-wide global synchronization
clock is used as the wall clock. The telig of TS and
non-TS packets are calculated differently. The telig of
TS packets is pre-calculated and static, while the telig
of non-TS packets needs to be calculated dynamically
based on the pre-planned telig of TS packets.

• rank: This attribute indicates the priority of a packet
and is identical to rank in AIFO. The rank of packets
is considered the same in the TSN scheduling algo-
rithm. This attribute enables AIAO to express other
non-TSN scheduling algorithms.

Queue primitives
AIFO supports five primitive operations atop the FIFO
queue and registers, shown in Table 1. enqueue(pkt) support
inserting a sequence of packets into the FIFO queue due to
the disordered problem, which will be discussed in “Expres-
siveness” section. store(pkt) and retrieve(addr) are built atop
registers that are used to cache disordered TS packets.

Programming functions
 There are three programming functions that the pro-
grammers can leverage to program the AIAO scheduler
to support TSN and non-TSN scheduling algorithms.

• getEligibleTime function: This function takes the packet
of a flow to be enqueued as an argument and assigns a
possible eligible time for that packet as dictated by the
scheduling algorithm being programmed. The eligible
time of a TS packet is calculated in advance. The eligi-
ble time of a non-TS packet is determined dynamically
based on the eligible time of the last packet in the FIFO
queue and the eligible time of the next TS packet to be
enqueued. Two tables, IdxTbl and SeqTbl, are used to
record the eligible time of TS packets. LstPktTime
state variable is used to track the eligible time of the
last packet in the FIFO queue, and NxtTSIdx state
variable is used to track the index of the next TS packet
that is to be enqueued. This index is used to look up the
eligible time of this packet in the SeqTbl.

• getRank function: This function takes the packet of a flow to
be enqueued as an argument and assigns rank to the packets
as dictated by the scheduling algorithm being programmed.

• isAdmitted function: This function takes a packet of a
flow as an argument and determines whether the packet
can be admitted to the queue based on the rank or telig
of the packet. The function has three types of return
results, ADMIT, STORE and DROP. DROP means a
packet cannot enter the FIFO. ADMIT means a packet
immediately enters the FIFO. STORE means a TS
packet is temporarily stored in a register. When AIAO
is programmed to support TSN, telig is usually used to
determine whether to be admitted. When AIAO is used
to program non-TSN algorithms, the rank is often used
to determine whether to be admitted.

Table 1 AIAO primitives

Primitive Function

enqueue(pkt) inserts a packet or a sequence of packets into the end of the FIFO queue

dequeue() takes a packet from the head of the FIFO queue

drop(pkt) discards a packet, preventing it from entering the FIFO queue

store(pkt) puts a TS packet into a register and returns the register’s address

retrieve(addr) retrieves a TS packet from the register indicated by its address addr

Page 8 of 13Lv et al. Journal of Cloud Computing (2023) 12:141

Note that the possible high-level programming lan-
guage of AIAO is out of the scope of this paper. However,
existing network programming languages such as P4 [18]
and Domino [19] can be used to program a scheduler as
needed in AIAO. We leave the details of such a program-
ming language for future work.

Expressiveness
In order to demonstrate the expressiveness of AIAO, we first
present the detailed expression of the most representative

TSN schedulers, i.e., TAS and CQF. Then we show how
AIAO could support non-TSN scheduling algorithms.

1) Expressing TAS. TAS algorithm using AIAO is shown
in Algorithm 2. TAS calculates telig of TS and non-TS
packets differently (Lines 2 and 5). The telig of TS packets
are planned by planning algorithms in advance [17], which
is recorded by IdxTbl and SeqTbl. IdxTbl is used to obtain
the index of a packet in SeqTbl within the time complex-
ity of O(1)(Line 3), and SeqTbl is used to obtain the telig
of the packet within the time complexity of O(1)(Line 4).

Algorithm 2 TAS algorithm using AIAO

Page 9 of 13Lv et al. Journal of Cloud Computing (2023) 12:141

The telig of a non-TS packet depends on the eligible
time of the last packet in the FIFO queue. When a non-
TS packet arrives, its earliest possible eligible time is
when the last packet in the FIFO queue finishes its trans-
mission. The earliest possible eligible time is tracked by
LstPktTime state variable. Thus the telig of a BE packet
is identical to LstPktTime (Line 6).

Since TAS schedules packets according to their eligible
time, the rank of each packet could be set to be the same,
which is 0 in this paper (Line 10).

The implementation of isAdmitted functions is non-
trivial. In general, all TS packets are always admitted, and
non-TS packets are not admitted if they interfere with the
scheduling of TS packets, i.e., the shared queue problem.
Besides, the disordered problem of TS packets should be
handled carefully.

When a TS packet arrives (Line 13), if the index of this
packet in the SeqTbl (Line 14) is not identical to NxtT-
SIdx state variable (Line 15), it means this packet is
not the packet being waited for, but the packet was sent
after the packet was waited for, which is the disordered
problem. Thus the current packet enters the register,
and the address of this register is returned (Line 16).
The returned address needs to be updated in the address
field of the corresponding table entry in SeqTbl (Line
17). The packet is temporarily stored in the register. Thus
STORE is returned (Line 18). If the current packet is the
TS packet being waited for (Line 19), there is no disor-
dered problem. The tables and state variables need to be
updated (Line 20). First, the address field of the packet in
SeqTbl is reset to null to indicate that the packet does not
need to be buffered. Second, the TS packet is now the last
packet in the FIFO queue and then the telig of this packet
is updated to LstPktTime. Third, NxtTSIdx should
be updated to the current index+1 (Line 14). If the pack-
ets corresponding to the new NxtTSIdx have arrived
in advance, the packets are taken out from their regis-
ter, and the update operation is repeated (Lines 16-18).
All the TS packets are admitted into the FIFO queue, and
ADMIT is returned (Line 26).

When a BE packet arrives (Line 28), if LstPktTime
plus its transmission delay does not exceed the telig of
the next TS packet, and there are no TS packets in the
registers (Line 30), it means that this BE packet will not
interfere with the scheduling of the next TS packet, then
the BE packet is admitted into the FIFO queue (Line 31).
Otherwise, the BE packet is dropped (Line 33).

2) Expressing CQF. CQF algorithm using AIAO is
shown in Algorithm 3. Like TAS, CQF assigns the telig
of TS and non-TS packets differently (Lines 2 and 4). In
CQF, the telig of TS packets is also planned in advance.
The telig of TS packets is recorded by IdxTbl only. Because
there is no disordered problem in CQF, so there is no

need to use SeqTbl. Thus CQF can obtain the telig of
packets from IdxTbl within the time complexity of O(1)
directly(Line 3). Note that the telig of multiple TS pack-
ets sent in the same time slot is when the time slot starts.
The telig of multiple TS packets is identical. This does not
affect the egress scheduling of the FIFO queue. A non-TS
packet’s telig is tracked by LstPktTime (Line 5). Simi-
larly, the rank of packets in CQF is identical and thus is
set to be 0 (Line 9).

Algorithm 3 CQF algorithm using AIAO

Since TS packets in CQF do not have the disordered
problem, TS packets need not be reordered before
being admitted into the FIFO queue. As a result, when
a TS packet arrives, it is directly admitted into the FIFO
queue (Line 14). Besides, LstPktTime should add the
transmission delay of the TS packet(Line 13).

For non-TS packets, since the eligible transmission
time of TS packets is a coarse-grained time slot (the
typical value of the time slot is usually over 100µs),
the time at the back of a time slot that is not used by

Page 10 of 13Lv et al. Journal of Cloud Computing (2023) 12:141

TS packets can be used for the scheduling of non-TS
packets. Whether a non-TS packet can enter the FIFO
queue depends on whether the non-TS packet affects
the scheduling of TS packets in the next time slot. The
moment when the next time slot starts is taken from
NxtTSIdx (Line 21). Note that NxtTSIdx in CQF
has a different meaning in TAS. If the LstPktTime
plus the transmission delay of this non-TS packet does
not exceed NxtTSIdx, the non-TS packet is admitted
(Line 18). Otherwise, it is dropped (Line 20). Besides,
NxtTSIdx needs to be updated to the moment when
the transmission of the packet ends (Line 17). Note that
for each increase in the length of the slot in the global
clock, NxtTSIdx automatically adds 1.

3) Expressing non-TSN scheduler. AIAO can also
express non-TSN scheduling algorithms. Take the short-
est remaining processing time (SRPT) that AIFO can
express as an example. AIAO can achieve the same
effect as AIFO. The principle of SRPT is that flows with
the shortest remaining bytes of flows are scheduled first.
Thus the remaining bytes of flows can be used as rank
that can be implemented in getRank function. Packets
whose ranks are larger than a certain rank are dropped,
and those smaller than a certain rank enter the FIFO
queue, which can be implemented in the isAdmitted
function. The telig of packets is set to be 0, which can be
implemented in the getEligibleTime function. Once the
FIFO queue is not empty, the packets can be scheduled
immediately. In summary, AIAO can also express algo-
rithms other than TSN scheduling algorithms.

Implementation
This section briefly presents how AIAO can be imple-
mented on the hardware. As shown in Fig. 4, the funda-
mental feature of AIAO is that it only contains a single
FIFO queue for packet scheduling. To support time-sen-
sitive algorithms, high-precision global time via 802.1AS
[1] is provided to both IA and EA modules to issue time-
sensitive decisions. Each packet is assigned a unique
description containing the attributes mentioned above:
type, flow_id, period_id, eligible_time, and rank.

Next, we present how the scheduling decision is issued
and executed by AIAO. In the first step (①), a packet
descriptor is issued to the scheduler when a packet
arrives at the packet processing pipeline. Then AIAO
reads the packet descriptor by the order they enter the
pipeline and places the descriptor in a pre-queue cache
according to the packet type attribute (the second step
②). For non-TS packets, the descriptor will be fed
directly to the Rank Selector, waiting to enqueue or to be
dropped by the Rank Selector. Because TS packets may
arrive disordered, a Reordering Module is implemented
before an enqueue operation is issued. Specifically, when
the packet descriptor of a TS packet arrives, the flow_id
and period_id are matched against the IdxTbl to obtain
the time index, which indicates the packet order in each
TS flow. Based on this index, the Reordering Module can
reorder the TS packets before the enqueuing operation.

In the third step(③), for TS packets, the larger value
of the time index and the NxtTSIdx is matched against
the SeqTbl to get the eligible time for the next TS packet

Fig. 4 AIAO Primitives Implementation

Page 11 of 13Lv et al. Journal of Cloud Computing (2023) 12:141

that is expected to enqueue. The Rank Selector is the key
scheduling module in the ingress stage. It reads the regis-
ter LstPktTime, which indicates when the last packet
in the FIFO queue is expected to finish the dequeue
operation. Then it calculates if the arriving packet should
enqueue by comparing the eligible time of the next TS
packet and the expected dequeue time of the current
non-TS packet (④). Next, the Rank Selector grants the
next packet based on the result and issues the enqueue
operation. Finally, both NxtTSIdx and LstPktTime
are updated accordingly. In the last step(⑤), Transmis-
sion Module issues a dequeue operation when the cur-
rent time exceeds the eligible time of the packet on the
head of the queue.

As all the tables, the reordering registers and the FIFO
queue are implemented using SRAM on-chip, AIAO can
run at reasonably high frequency in a deep-pipelined
manner. We left the discussion of the size of the FIFO
queue, IdxTbl, and SeqTbl for a future expended version
because of the space limitation.

Preliminary results
At the time just before the submission, we implemented
an early-version prototype (within an open-source TSN
switch project) of AIAO on Xilinx Zynq 7020 (125Mhz)
and evaluate it on a ring topology with 6 nodes. We

briefly demonstrate the resource usage and feasibility of
AIAO in this section.

Firstly, we compare the FPGA resource usage between
the TSN switch with a standard CQF scheduler and the
TSN switch with an AIAO-based CQF scheduler. The
result is shown in Table 2. Though the AIAO-based
scheduler consumes slightly more (1.6%) LUT than the
baseline, it reduces the BRAM usage by over 11 36k
BRAM (8%). Such reduction is possible using one FIFO
queue instead of eight in standard CQF. The resource
usage comparison between AIAO and other scheduler
primitives, such as PIFO and PIEO, is still ongoing.

Next, we demonstrate whether AIAO is programmable
enough to support typical TSN scheduling algorithms.
Thus, we focus on the end-to-end delay of TS streams
in the preliminary experimental results. Note that cur-
rent results can only prove the feasibility of AIAO. Other
experiments, such as stress testing with non-TS flows
and comparison with other scheduling primitives, are
undergoing.

We run the experiment on a ring topology with 6
switches as shown in Fig. 5. The output ports of the
switches are equipped with AIAO. The period of the TS
flow is 16777.216µs , which means the minimum inter-
val between two consecutive packets is 16777.216µs ,
and the packet size is 512 bytes. The size of a time slot in
CQF configuration is 131.072µs . When CQF scheduling
is used, the end-to-end delay d of a TS flow is between
(h− 1)× slot ≤ d ≤ (h+ 1)× slot , where h is the num-
ber of hops of the flow and slot is the size of a time slot.
(h− 1)× slot and (h+ 1)× slot are the TS flow’s theo-
retical lower and upper bound. We set up four experi-
ments, each with a different number of hops for the
flow. The four experiments send the flow from switch 0
to switch 2, switch 3, switch 4 and switch 5. That is, the

Table 2 Resources usage of a TSN switch when implementing
standard CQF and AIAO-based CQF

Hardware Implementation Slice LUTs Block RAMs

Standard CQF 25536 (48.00%) 82.50 (58.93%)

AIAO‑based CQF 26419 (49.66%) 71.05 (50.75%)

Fig. 5 Experimental topology

Page 12 of 13Lv et al. Journal of Cloud Computing (2023) 12:141

number of hops is increased from 2 to 5. We collect the
end-to-end delay of this TS flow during 1024 periods/
rounds. The results are shown in Fig. 6.

As the number of hops increases, the end-to-end
delay of the TS flow increases. However, its end-to-
end delay is always within the theoretical upper and
lower bounds. For example, the hop number of the
flow in Fig. 6(b) is 3, so the lower bound of delay is
(3− 1)× 131.072 = 262.144µs and the upper bound
of delay is (3+ 1)× 131.072 = 524.288µs . The end-to-
end delay of this flow always fluctuates within the upper
and lower bounds. The results show that it is feasible to
express CQF with AIAO. Compared to the original CQF
scheduler in TSN, AIAO uses only a single FIFO queue.

Related work
Programmable packet scheduling. Programmable
packet scheduling is the opposite of fix-function packet
scheduling. This field starts with PIFO [13]. PIFO is a
popular packet scheduling primitive, which allows a
packet to be pushed into an arbitrary queue position
and dequeued only from the head of the queue. At the
same time, the scalability of PIFO is extremely limited.
SP-PIFO [20] and AIFO [15] are two primitives which

aim to approximate PIFO. PIEO is another scheduling
primitive, but it cannot be pipelined [16]. However, those
primitives cannot support the deterministic packet for-
warding required by TSN scheduling algorithms. As far
as we know, PIPO [16] is the only scheduling primitive
that supports TSN features but consumes several prior-
ity queues. Besides, when PIPO is not used to express
the TSN scheduling algorithm, it has at least one idle
priority queue. Such inefficiency is intolerable for chip
designs, especially since priority queues are such critical
resources [15].

TSN scheduling. There are two features in TSN packet
scheduling. First, flows are divided according to their
quality of service requirements, among which TS flows
require the most stringent determinism. Second, TSN
introduces the network-wide global synchronization
clock [1], and the scheduling of TS flows should refer to
the global synchronization time. Typical TSN schedul-
ing algorithms include TAS [2], CQF [4], CBS [21], ATS
[5], etc. Among them, TAS and CQF can ensure strict
determinism for TS traffic, which is the most significant
feature that distinguishes TSN from traditional Ethernet
scheduling. This paper mainly focuses on the expression
of these two algorithms.

Fig. 6 The end-to-end delay in CQF

Page 13 of 13Lv et al. Journal of Cloud Computing (2023) 12:141

Conclusion
The paper presents AIAO (Admission-In-Admission-
Out), a new set of programmable scheduler primitives
using a single FIFO to support typical TSN schedulers
standardized in IEEE 802.1Q and other popular work-
conserving algorithms. AIAO is inspired by AIFO but
improves AIFO by a group of high-speed packet ingress/
egress admission control triggered by high-precise and
globally synchronized time, thus supporting time-sensi-
tive scheduling. This paper discusses AIAO and evaluates
it with FPGAs. The preliminary results demonstrate that
it guarantees correctness for a typical TSN scheduling
algorithm with limited logic and memory overhead.

Authors’ contributions
Q.L and X.J wrote the main manuscript text and conducted the experiments
and collected the data of the manuscripts. X.Y proposed the basic idea of
AIAO, prepared figure 2/4 and helped to implement AIAO on the FPGA-based
TSN switch. All authors reviewed the manuscript.

Funding
All authors are funded by National University of Defense Technology.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 23 August 2023 Accepted: 13 September 2023

References
 1. 802.1AS-2020 - IEEE Standard for Local and Metropolitan Area Networks

- Timing and Synchronization for Time-Sensitive Applications. https://
stand ards. ieee. org/ ieee/ 802. 1AS/ 7121/. Accessed 26 Sept 2023

 2. 802.1Qbv-2015 - IEEE Standard for Local and Metropolitan Area Networks
- Bridges and Bridged Networks - Amendment 25: Enhancements for
Scheduled Traffic. https:// stand ards. ieee. org/ ieee/ 802. 1Qbv/ 6068/.
Accessed 26 Sept 2023

 3. Dürr F, Nayak NG (2016) No-wait packet scheduling for IEEE Time-
Sensitive Networks (TSN). In: Proceedings of the ACM RTNS conference,
Association for Computing Machinery, New York, NY, USA, pp 203–212

 4. 802.1Qch-2017: IEEE Standard for Local and Metropolitan Area Networks
- Bridges and Bridged Networks - Amendment 29: Cyclic Queuing and
Forwarding. https:// stand ards. ieee. org/ ieee/ 802. 1Qch/ 6072/. Accessed
26 Sept 2023

 5. 802.1Qcr-2020: IEEE Standard for Local and Metropolitan Area Networks
- Bridges and Bridged Networks - Amendment: Asynchronous Traffic
Shaping. https:// stand ards. ieee. org/ ieee/ 802. 1Qcr/ 7420/. Accessed 26
Sept 2023

 6. Bosshart P, Gibb G, Kim HS, Varghese G, McKeown N, Izzard M, Mujica
F, Horowitz M (2013) Forwarding Metamorphosis: Fast Programmable
Match-Action Processing in Hardware for SDN. In: Proceedings of the
ACM SIGCOMM conference, Association for Computing Machinery, New
York, NY, USA, pp 99–110

 7. Chole S, Fingerhut A, Ma S, Sivaraman A, Vargaftik S, Berger A, Mendel-
son G, Alizadeh M, Chuang ST, Keslassy I, Orda A, Edsall T (2017) dRMT:
Disaggregated Programmable Switching. In: Proceedings of the ACM
SIGCOMM conference, Association for Computing Machinery, New York,
NY, USA, pp 1–14

 8. Yang M, Baban A, Kugel V, Libby J, Mackie S, Kananda SSR, Wu CH, Gho-
badi M (2022) Using Trio: Juniper networks’ programmable chipset for
emerging in-network applications. In: Proceedings of the ACM SIGCOMM
conference, Association for Computing Machinery, New York, NY, USA, pp
633–648

 9. Li Y, Miao R, Liu HH, Zhuang Y, Feng F, Tang L, Cao Z, Zhang M, Kelly F,
Alizadeh M, Yu M (2019) HPCC: High Precision Congestion Control. In: Pro-
ceedings of the ACM SIGCOMM conference, Association for Computing
Machinery, New York, NY, USA, pp 44–58

 10. Sapio A, Canini M, Ho CY, Nelson J, Kalnis P, Kim C, Krishnamurthy A,
Moshref M, Ports DRK, Richtarik P (2021) Scaling Distributed Machine
Learning with In-Network Aggregation. In: Proceedings of the USENIX
NSDI conference, USENIX Association, Santa Clara, USA, pp 785–808

 11. Fei J, Ho CY, Sahu AN, Canini M, Sapio A (2021) Efficient sparse collective
communication and its application to accelerate distributed deep learn-
ing. In: Proceedings of the ACM SIGCOMM conference, Association for
Computing Machinery, New York, NY, USA, pp 676–691

 12. Yang X, Li C, Yang L, Han C, Li T, Sun Z (2021) Cames: enabling centralized
automotive embedded systems with Time-Sensitive Network. In: Pro-
ceedings of the ACM SIGCOMM Poster and Demo Sessions, Association
for Computing Machinery, New York, NY, USA, pp 85–87

 13. Sivaraman A, Subramanian S, Alizadeh M, Chole S, Chuang ST, Agrawal
A, Balakrishnan H, Edsall T, Katti S, McKeown N (2016) Programmable
Packet Scheduling at Line Rate. In: Proceedings of the ACM SIGCOMM
conference, Association for Computing Machinery, New York, NY, USA, pp
44–57

 14. Shrivastav V (2019) Fast, scalable, and programmable packet scheduler in
hardware. In: Proceedings of the ACM SIGCOMM conference, Association
for Computing Machinery, New York, NY, USA, pp 367–379

 15. Yu Z, Hu C, Wu J, Sun X, Braverman V, Chowdhury M, Liu Z, Jin X (2021)
Programmable packet scheduling with a single queue. In: Proceedings of
the ACM SIGCOMM conference, Association for Computing Machinery,
New York, NY, USA, pp 179–193

 16. Zhang C, Chen Z, Song H, Yao R, Xu Y, Wang Y, Miao J, Liu B (2021) PIPO:
Efficient programmable scheduling for Time Sensitive Networking. In:
Proceedings of the IEEE ICNP conference, IEEE, Piscataway, NJ, USA, pp
1–11

 17. Yan J, Quan W, Jiang X, Sun Z (2020) Injection time planning: Making
CQF practical in Time-Sensitive Networking. In: Proceedings of the IEEE
INFOCOM conference, IEEE, Piscataway, NJ, USA, pp 616–625

 18. P4-16 Language Specification. https:// p4. org/ p4- spec/ docs/ P4- 16- v1.2. 1.
html. Accessed 26 Sept 2023

 19. Sivaraman A, Cheung A, Budiu M, Kim C, Alizadeh M, Balakrishnan H,
Varghese G, McKeown N, Licking S (2016) Packet transactions: High-level
programming for line-rate switches. In: Proceedings of the ACM SIG-
COMM conference, Association for Computing Machinery, New York, NY,
USA, pp 15–28

 20. Alcoz AG, Dietmüler A, Vanbever L (2020) SP-PIFO: Approximating Push-In
First-Out behaviors using Strict-Priority queues. In: Proceedings of the
USENIX NSDI conference. USENIX Association, Santa Clara, USA, pp 59–76

 21. 802.1Qav-2009 - IEEE Standard for Local and metropolitan area networks
- Virtual Bridged Local Area Networks Amendment 12: Forwarding and
Queuing Enhancements for Time-Sensitive Streams. https:// stand ards.
ieee. org/ ieee/ 802. 1Qav/ 4401/. Accessed 26 Sept 2023

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://standards.ieee.org/ieee/802.1AS/7121/
https://standards.ieee.org/ieee/802.1AS/7121/
https://standards.ieee.org/ieee/802.1Qbv/6068/
https://standards.ieee.org/ieee/802.1Qch/6072/
https://standards.ieee.org/ieee/802.1Qcr/7420/
https://p4.org/p4-spec/docs/P4-16-v1.2.1.html
https://p4.org/p4-spec/docs/P4-16-v1.2.1.html
https://standards.ieee.org/ieee/802.1Qav/4401/
https://standards.ieee.org/ieee/802.1Qav/4401/

	Making programmable packet scheduling time-sensitive with a FIFO queue
	Abstract
	Introduction
	Background and motivation
	Programmable scheduler
	PIFO
	PIEO
	AIFO

	Time-sensitive scheduling model
	TS and non-TS flows
	Time gating mechanism
	TAS
	CQF

	Motivating example

	Design
	Design insights
	Programming framework
	FIFO
	Ingress Admission (IA)
	Egress Admission (EA)
	Packet attributes
	Queue primitives
	Programming functions

	Expressiveness

	Implementation
	Preliminary results
	Related work
	Conclusion
	References

