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Abstract

Hadoop is a framework for storing and processing huge volumes of data on clusters. It uses Hadoop Distributed

File System (HDFS) for storing data and uses MapReduce to process that data. MapReduce is a parallel computing
framework for processing large amounts of data on clusters. Scheduling is one of the most critical aspects of MapRe-
duce. Scheduling in MapReduce is critical because it can have a significant impact on the performance and effi-
ciency of the overall system. The goal of scheduling is to improve performance, minimize response times, and utilize
resources efficiently. A systematic study of the existing scheduling algorithms is provided in this paper. Also, we
provide a new classification of such schedulers and a review of each category. In addition, scheduling algorithms have
been examined in terms of their main ideas, main objectives, advantages, and disadvantages.
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Introduction

Big data is a term used to describe a collection of
extremely large amounts of data that cannot be han-
dled by conventional database management tools [1].
Big data has become very popular in information tech-
nology, where data is becoming increasingly compli-
cated and large amounts of it are being created every
day. Data comes from social networking sites, business
transactions, sensors, mobile devices, etc. [2]. Due to the
increase in volume, velocity, and variety of data, process-
ing leads to complexities and challenges. Thus, big data
becomes a complex process in terms of correctness,
transformation, matching, relating [3]. A new platform
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is required for data transmission, storage, and processing
because the data is so big and unstructured. The platform
can process and analyze huge volumes of data at a rea-
sonable speed. This necessity led to the development of
parallel and distributed processing in clusters and grades
[4]. In order to hide the complexity of the parallel pro-
cessing system from the users, numerous frameworks
have been released [5].

MapReduce is a programming pattern that is popular
among all frameworks. Using the Map and Reduce func-
tions of MapReduce, users do not have to worry about
the details of parallelism when defining parallel pro-
cesses, such as data distribution, load balancing, and fault
tolerance [6]. MapReduce is used to process high vol-
umes of data concurrently. Map and Reduce are the two
functions of MapReduce. In this framework, the first step
in parallel computing is to assign map tasks to various
nodes and perform them on input data. Then, the final
results are generated by combining the map outputs and
applying the reduce function [7, 8].

MapReduce is in competition with other program
paradigms like Spark and DataMPI. The choice of
MapReduce for investigation is based on the fact that
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it is high-performance open source, utilized by many
large companies to process batch jobs [9, 10], and is
our future research area. Scheduling is the process of
assigning tasks to the nodes, which is a critical fac-
tor for improving system performance in MapReduce.
There are many algorithms to solve scheduling issues
with different techniques and approaches. The main
goal of scheduling is to increase throughput while
reducing response time and improving performance
and resource utilization [11, 12].

Using recent articles and inclusion and exclusion
criteria, we provide a systematic and comprehensive
survey of MapReduce scheduling papers. MapReduce
scheduling was the subject of a systematic literature
review in 2017 [13], but there hasn’t been another sys-
tematic study. As far as we know, our review is the first
systematic study from 2017 to June 2023. In this paper,
we have reviewed the existing scheduling algorithms
and identified trends and open challenges in this area.
To answer the research questions (RQs), we gathered
and analyzed relevant data from papers on MapReduce
scheduling and provided the answers.

In this study, our purpose is to provide the results
of a systematic survey on MapReduce scheduling
algorithms. Thus, we consider current algorithms,
compare the differences between the schedulers, and
describe several scheduling algorithms. The remain-
der of the paper is structured as follows. “Background
and research method” section has two parts: In part
one, an architectural overview of MapReduce and
Hadoop is introduced, and in part two, our research
method is provided. “Regular surveys” section dis-
cusses schedulers in Hadoop MapReduce and catego-
rizes them. It also presents a comparison of selected
algorithms. In “Schedulers in Hadoop MapReduce”
section, we discuss the mentioned schedulers and ana-
lyze the results. Finally, our conclusions are provided
in “Discussion” section.

Master
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Background and research method

Background

Doug Cutting and Mike Cafarela designed Hadoop spe-
cifically for distributed applications. It is an open-source
Apache project that used Google’s MapReduce approach.
Hadoop has two major parts: Hadoop Distributed File
System (HDFS) and MapReduce [14], which is shown in
Fig. 1.

HDFS: the data storage part of Hadoop is HDFS. The
HDES architecture is based on master/slave. It consists of
one NameNode and several DataNodes. The NameNode
acts as a master node, while the DataNodes act as a slave
to the master node [16]. Also, NameNode maps input
data splits to DataNodes and maintains the metadata,
and DataNodes store application data. The data stored in
HDES is fetched by MapReduce for computation [15, 17].

MapReduce is the processing unit of Hadoop with two
primary parts: one JobTracker and numerous TaskTrack-
ers. The JobTracker breaks the job into several map and
reduce tasks and assigns them to TaskTrackers, and the
TaskTrackers run the tasks [18]. The MapReduce job
execution flow is depicted in Fig. 2. Map tasks are per-
formed in parallel on input splits to create a set of inter-
mediate key-value pairs. Using key-value pairs, these
pairs are shuffled across multiple reduce tasks. One key
is accepted by each Reduce task at a time, and that key’s
data is processed, generating the output files which are
stored on HDFS [19].

Research method
According to [20-22], the papers are selected using the
following method:

« Several research questions are established based on
the research area;

+ Keywords are discovered based on the research ques-
tions;

+ Search strings are defined according to the keywords;

« The final papers are vetted according to several inclu-
sion and exclusion criteria.

Slave

MapReduce

|

DataNode DataNode

TaskTracker TaskTracker

Fig. 1 Hadoop Architecture [15]




Hedayati et al. Journal of Cloud Computing ~ (2023) 12:143

Page 3 of 30

HDFS I

Input Splitl

-
-
-

Input Split2

T

Input Split3

-~
-
-~

S~ Input: (K1,V1)

MapReduce I ~_

n
I

1

1

P Qutput: list(K3, V3)

Output partl

HDFS |

Output partl

Fig. 2 MapReduce job execution flow [19]

Research question

In this paper, we review and analyze the selected studies
to present a summary of current research on MapReduce
scheduling. We plan to respond to the following research
questions:

« RQ1I1: What was the trend of publications in the field
of Hadoop MapReduce scheduling in the last five
years?

« RQ2: What are the proposed schedulers, and what
are the techniques used?

+ RQ3: What are the key ideas of each paper?

« RQ4: What evaluation techniques have been used to
assess the results of each paper?

« RQ5: What scheduling metrics are considered?

Search strategy

We used search strings to find systematic mapping
and literature studies. The search strings were defined
after the study questions were created. The databases
were also described. Research keywords: Using the
research questions, we chose the keywords. The identi-
fied keywords were: “Hadoop’, “MapReduce’; and “Sched-
uling” Search strings: we defined the search strings
using the selected keywords according to the research
questions. The survey’s initial results were found using
the search string, i.e., “Hadoop OR MapReduce” AND

“Scheduling” This expressive style was subsequently
adapted to suit the specific requirements of each data-
base. Sources: After defining the search string, we
selected the following databases as sources:

« IEEE Xplore

+ Science Direct
+ Springer

+ ACM Portal

The search period was from 2009 to 2023, and it was
carried out in July 2023. A typical attendance graph is
shown in Fig. 3, with its characteristic funnel shape.

Search selection

After getting the database results, each paper must be
carefully examined to ensure it pertains to our survey
context. To find the studies, the following inclusion and
exclusion criteria were applied. The results removed from
each stage can be seen in Fig. 4.

Stage 1. Apply the search query to all the sources,
gathering the results.

Stage 2. Apply inclusion/exclusion criteria to the
paper title.

Stage 3. Apply inclusion/exclusion criteria to the
paper abstract.

Stage 4. Apply inclusion/exclusion criteria to the
introduction.
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Fig. 3 References Word Cloud—This figure shows the word cloud generated by processing the references. Top 200 most used words are selected.
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Fig. 4 Selection of the papers

Inclusion criteria 'The relevance of a work to the
research issues is one of the inclusion criteria. First, we
examined the study titles and abstracts from the initial
database searches. The introduction then conducted a
second analysis of the chosen studies from this stage. The
study was discarded whenever one of the inclusion crite-
ria was not met. The inclusion criteria are as follows:

1) Studies are addressing scheduling concepts for
Hadoop MapReduce.

2) Studies use predetermined performance measures to
assess their performance approach.

3) Studies are presented at conferences or published in
journals (peer review).

Exclusion criteria  Studies were disqualified based on an
analysis of their title, abstract, and, if necessary, introduc-
tion. The exclusion criteria are as follows:

1) Studies that do not address scheduling in Hadoop
MapReduce.

2) Studies whose entire texts are not accessible at the
source.

3) Studies unrelated to the research questions.
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4) Repeated studies that were printed in multiple
sources;
5) Presentations, demonstrations, or tutorials.

Data extraction

During the phase of data extraction for analysis of the
selected studies, the data gathered from them are sum-
marized. We synthesized the data to answer the research
question RQ1 in this section.

Answer to Question RQ1 What was the trend of publi-
cations in the field of Hadoop MapReduce scheduling in
the last five years?

Figure 5 shows the percentage of selected studies per
year. As can be seen, 17 (34%) studies have been pub-
lished in the last five years. To be more specific, 1 (2%)
articles were published in 2023, 7 (14%) articles were
published in 2022, 4 (8%) studies were published in 2021,
3 (6%) studies were published in 2020, and 2 (4%) articles
were published in 2019.

Figure 6 shows the percentage of selected studies from
each database. It is shown that 7% of studies are related
to ACM Digital Library, 65% are related to IEEE Xplore,
5% belong to Science Direct, and 23% belong to Springer
Link.

Figure 7 presents the percentage of studies in each
type. As can be seen, 61% of the studies were presented at
a conference, and 39% were published in journals.
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Regular surveys

In this section, we aim to provide an extensive review
of regular surveys conducted in the field. Our goal is to
comprehensively analyze and summarize the existing
surveys to offer a comprehensive understanding of the
subject matter.

Ghazali et al. [23] presented a novel classification sys-
tem for job schedulers, categorizing them into three
distinct groups: job schedulers for mitigating stragglers,
job schedulers for enhancing data locality, and job sched-
ulers for optimizing resource utilization. For each job
scheduler within these groups, they provided a detailed
explanation of their performance-enhancing approach
and conducted evaluations to identify their strengths
and weaknesses. Additionally, the impact of each sched-
uler was assessed, and recommendations were offered
for selecting the best option in each category. Finally, the
authors provided valuable guidelines for choosing the
most suitable job scheduler based on specific environ-
mental factors. However, the survey is not systematic and
the process of selecting articles is not clear. Moreover,
there is no information about the environment and the
platform for implementation or simulation of the sur-
veyed articles.

Abdallat et al. [24] focused on the topic of job sched-
uling algorithms in Big Data Hadoop environment.
The authors emphasize the importance of efficient
job scheduling in processing large amounts of data in
real-time, considering the limitations of traditional
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Fig. 6 Percentage of selected studies per database

Fig. 7 Percentage of selected studies per type database

ecosystems. The paper provides background informa-
tion on the Hadoop MapReduce framework and con-
ducts a comparative analysis of different job scheduling
algorithms based on various criteria such as cluster
environment, job allocation strategy, optimization
strategy, and quality metrics. The authors present use
cases to illustrate the characteristics of selected algo-
rithms and offer a comparative display of their details.
The paper discusses popular scheduling considera-
tions, including locality, synchronization, and fairness,
and evaluates Hadoop schedulers based on metrics
such as locality, response time, and fairness. However,
the survey is not systematic and the process of select-
ing articles is not clear. Also, there is no comparison
between these studies’ advantages and disadvantages,
and there is no information about the environment and
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the platform for implementation or simulation of the
surveyed articles.

Hashem et al. [25] conducted a comprehensive com-
parison of resource scheduling mechanisms in three
widely-used frameworks: Hadoop, Mesos, and Corona.
The scheduling algorithms within MapReduce were sys-
tematically categorized based on strategies, resources,
workload, optimization approaches, requirements,
and speculative execution. The analysis encompassed
two aspects: taxonomy and performance evaluation,
where they thoroughly reviewed the advancements
made in MapReduce scheduling algorithms. Addition-
ally, the authors highlighted existing limitations and
identified potential areas for future research in this
domain. However, the survey is not systematic and the
process of selecting articles is not clear. Also, there is
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no information about the environment and the plat-
form for implementation or simulation of the surveyed
articles.

Soualhia et al. [26] analyzed 586 papers to identify
the most significant factors impacting scheduler perfor-
mance. They broadly discussed these factors, including
challenges related to resource utilization, and total execu-
tion time. Additionally, they categorized existing sched-
uling approaches into adaptive, constrained, dynamic,
and multi-objective groups, summarizing their advan-
tages and disadvantages. Furthermore, they classified
scheduling issues into categories like resource manage-
ment, data management (including data locality, place-
ment, and replication), fairness, workload balancing, and
fault-tolerance, and analyzed approaches to address these
issues, grouping them into four main categories: dynamic
scheduling, constrained scheduling, adaptive scheduling,
and others. However, there is no comparison between
these studies’ advantages and disadvantages, and there
is no information about the environment and the plat-
form for implementation or simulation of the surveyed
articles.

Khezr et al. [27] proposed a comprehensive review of
the applications, challenges, and architecture of MapRe-
duce. This review aims to highlight the advantages and
disadvantages of various MapReduce implementations
in order to discuss the differences between them. They
examined the utilization of MapReduce in multi-core
systems, cloud computing, and parallel computing envi-
ronments. This study provides a comprehensive review of
MapReduce applications. Additionally, open issues and
future work are discussed. However, the survey is not
systematic and did not outline a clear process for select-
ing articles. Moreover, it did not specifically focus on
Hadoop.

Senthilkumar et al. [28] explored different scheduling
issues, such as locality, fairness, performance, through-
put, and load balancing. They proposed several job
scheduling algorithms, including FIFO scheduler, Fair
scheduler, Delay scheduler, and Capacity scheduler, and
evaluated the pros and cons of each algorithm. The study
also discussed various tools for node allocation, load bal-
ancing, and job optimization, providing a comparative
analysis of their strengths and weaknesses. Additionally,
optimization techniques to maximize resource utiliza-
tion within time and memory constraints were reviewed
and compared for their effectiveness. However, the sur-
vey is not systematic and did not outline a clear process
for selecting articles. Furthermore, there is no compari-
son between these studies’ advantages and disadvantages,
and there is no information about the environment and
the platform for implementation or simulation of the sur-
veyed articles.
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Hashem et al. [29] presented a comprehensive review
of MapReduce challenges, including data access, data
transfer, iteration, data processing, and declarative inter-
faces. Bibliometric analysis and review are performed on
MapReduce research assessment publications indexed
in Scopus. Also, the MapReduce application is included
from 2006 to 2015. Furthermore, it discusses the most
significant studies on MapReduce improvements and
future research directions related to big data processing
with MapReduce. It is suggested that power management
in Hadoop clusters on MapReduce is one of the main
issues to be addressed. In this study, the paper selec-
tion process is clear, but there is no comparison between
these studies’ advantages and disadvantages, and there
is no information about the environment and the plat-
form for implementation or simulation of the surveyed
articles.

Li et al. [30] addressed the basic concept of the MapRe-
duce framework, its limitations, and the proposed opti-
mization methods. These optimization methods are
categorized into several subjects, including job schedul-
ing optimization, improvement in the MapReduce pro-
gramming model, support for stream data in real-time,
performance tuning such as configuration parameters,
energy savings as a major cost, and enhanced authentica-
tion and authorization. However, there is no comparison
between these studies’ pitfalls and advantages, and there
is no information about the environment and the plat-
form for implementation or simulation of the surveyed
articles. Moreover, the survey is not systematic, and the
process of selecting articles is not clear.

Tiwari et al. [31] introduced a multidimensional clas-
sification framework for comparing and contrasting vari-
ous MapReduce scheduling algorithms. The framework
was based on three dimensions: quality attribute, entity
scheduled, and adaptability to runtime environment. The
study provided an extensive survey of scheduling algo-
rithms tailored for different quality attributes, analyz-
ing commonalities, gaps, and potential improvements.
Additionally, the authors explored the trade-offs that
scheduling algorithms must make to meet specific qual-
ity requirements. They also proposed an empirical evalu-
ation framework for MapReduce scheduling algorithms
and summarized the extent of empirical evaluations con-
ducted against this framework to assess their thorough-
ness. However, the survey is not systematic and did not
outline a clear process for selecting articles. Furthermore,
there is no comparison between these studies’ advantages
and disadvantages, and there is no information about the
environment and the platform for implementation or
simulation of the surveyed articles.

Polato et al. [32] performed a systematic literature
review to establish a taxonomy for classifying research
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related to the Hadoop framework architecture. They cat-
egorized the studies into four main categories: MapRe-
duce, Data Storage & Manipulation, Hadoop Ecosystem,
and Miscellaneous. The MapReduce category encom-
passed studies on solutions utilizing the paradigm and
associated concepts, while the Data Storage & Manipu-
lation category covered research on HDES, storage,
replication, indexing, random access, queries, DBMS
infrastructure, Cloud Computing, and Cloud Storage.
The Hadoop Ecosystem category focused on studies
exploring new approaches within the Hadoop Ecosystem,
and the Miscellaneous category included research on
topics like GPGPU, cluster cost management, data secu-
rity, and cryptography. The taxonomy developed in this
study provides a comprehensive overview of the diverse
research landscape surrounding the Hadoop framework
architecture. In this study, the paper selection process is
clear, but there is no comparison between these studies’
advantages and disadvantages, and there is no informa-
tion about the environment and the platform for imple-
mentation or simulation of the surveyed articles.

We compared and highlighted shortcomings of these
surveys. Table 1 provides a summary of them and their
main properties. The analysis table includes references,
key ideas, systematic survey, advantages and disadvan-
tages, comparison algorithms, and evaluation techniques.

Schedulers in Hadoop MapReduce

To respond to RQ2, RQ3, and RQ4, a thorough review
of the selected studies was conducted and the most fre-
quently addressed scheduling issues in Hadoop MapRe-
duce were analyzed. We classified the schedulers into six
categories:

+ Deadline-aware schedulers;

+ Data Locality-aware schedulers;
+ Cost-aware schedulers;

+ Resource-aware schedulers;

+ Makespan-aware schedulers;

+ Learning-aware Schedulers.

The idea of each paper has been validated by com-
paring the performance against existing solutions and
benchmarks, which is shown in Tables 2, 3, 4, 5, 6, 7 and
8 in “Deadline-aware Schedulers” to “Learning-aware
schedulers” sections, respectively. Each category will be
discussed in the following subsections.

Deadline-aware schedulers

Some MapReduce jobs on big data platforms have dead-
lines and need to be completed within those deadlines.
When a job has a deadline, the proper resources must be
allocated to the job; otherwise, the deadline cannot be
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satisfied [87]. Therefore, meeting the job deadline is cru-
cial in MapReduce clusters. We classify deadline-aware
schedulers into two categories: deadline-aware sched-
ulers in heterogeneous Hadoop Clusters and deadline-
aware schedulers in homogeneous Hadoop clusters. In
this section, we first survey and review the most popular
deadline-aware schedulers, which minimize job deadline
misses. Finally, the reviewed schedulers are compared
and summarized.

Deadline-aware schedulers in homogeneous clusters

Gao et al. [33] proposed a deadline-aware preemptive
job scheduling strategy, called DAPS, for minimizing job
deadline misses in Hadoop Yarn clusters. The proposed
method considers the deadline constraints of MapRe-
duce applications and maximizes the number of jobs that
meet their deadlines while improving cluster resource
utilization. DAPS is formulated as an online optimiza-
tion problem, and a preemptive resource allocation algo-
rithm is developed to search for a good job scheduling
policy. DAPS is a distributed scheduling framework that
includes a central resource scheduler, a job analyzer, and
node resource schedulers.

Cheng et al. [34] provided a MapReduce job sched-
uler for deadline constraints called RDS. This scheduler
assigns resources to jobs based on resource prediction
and job completion time estimation. The problem of job
scheduling was modeled as an optimization problem.
To find the optimal solution, a receding horizon con-
trol algorithm was used. They estimated job completion
times using a self-learning model.

Kao et al. [35] proposed a scheduling framework, called
DamRT, to provide deadline guarantees while consider-
ing data locality for MapReduce jobs in homogeneous
systems. In the proposed method, tasks are non-preemp-
tive. DamRT schedules the jobs in four steps: Firstly,
DamRT determines the dispatching order of jobs. The
urgency value instead of the deadline determines the
dispatching order of jobs if the map tasks of jobs can be
distributed across nodes concurrently. In contrast, if the
map tasks of jobs can be allocated across nodes concur-
rently, the urgency value determines the priority of the
jobs. An "urgency value" is calculated by dividing the esti-
mated response time by the slack time slots across nodes.
DamRT first dispatches the job with the highest urgency
value. Secondly, the partition order is adjusted for all map
tasks of the job. The scheduler assigns the map tasks of a
job across nodes, based on the access probability of the
required data of the nodes. Thirdly, DamRT assigns the
map tasks to nodes according to data locality and block-
ing time. If two map tasks are assigned to one node, one
task will wait for another task’s data transfer and execu-
tion. For other tasks, the blocking time is defined by the



Hedayati et al. Journal of Cloud Computing

Table 1 Surveys and their properties

(2023) 12:143

Page 9 of 30

Reference

Year

Key Ideas

Systematic The process

Survey

of selecting
surveys

Advantages/
Disadvantages

Scheduling
Metrics

Comparison
Algorithms

Evaluation
Techniques

Ghazali et al. [23]

Abdallat et al.
[24]

Hashem et al.
[25]

Soualhia et al.
[26]

Khezr et al. [27]

Senthilkumar
et al. [28]

Hashem et al.
[29]

Li etal. [30]

Tiwari et al. [31]

Polato et al. [32]

2021

2019

2018

2017

2017

2016

2016

2016

2015

2014

A classification
of Hadoop job
schedulers based
on performance
optimization
approaches
Hadoop MapRe-
duce job sched-
uling algorithms
survey and use
cases

MapReduce
scheduling algo-
rithms: a review

Task Scheduling
in Big Data Plat-
forms: A System-
atic Literature
Review

MapReduce

and its applica-
tions, challenges,
and architecture:
a comprehensive
review and direc-
tions for future
research

A Survey on Job
Scheduling
in Big Data

MapReduce:
review and open
challenges

MapReduce
parallel program-
ming model:

a state-of-the-art
survey

Classification
Framework

of MapReduce
Scheduling
Algorithms

A compre-
hensive view
of Hadoop
research—A
systematic

No

No

No

Yes

No

No

No

No

No

Yes

Is not clear

Is not clear

Is not clear

Is clear

Is not clear

Is not clear

Is clear

Is not clear

Is not clear

Is clear

Considering

Not considering

Considering

Not considering

Not considering

Not considering

Not considering

Not considering

Not considering

Not considering

Considering

Considering

Not considering

Not considering

Not considering

Not considering

Not considering

Not considering

Not considering

Not considering

Not Considering

Not Considering

Not considering

Not considering

Not considering

Not considering

Not considering

Not considering

Not considering

Not considering

Considering

Not Considering

Not considering

Not considering

Not considering

Not considering

Not considering

Not considering

Not considering

Not considering

partition value. Also, the scheduler calculates the parti-
tion value of all the nodes for all the map tasks of the job
and assigns these map tasks to the node that can sched-
ule the job and has the smallest partition value. Finally,
after completing all the map tasks of the job, the reduce
tasks of the job are ready for execution. The urgency
value instead of the deadline determines the priority of
the reduce tasks, if the reduce tasks can be distributed

across nodes concurrently. Then, all reduced tasks are
allocated to the node with the lowest load, where this job
can be scheduled.

Verma et al. [36] extended ARIA and proposed a
deadline-based Hadoop scheduler called MinEDF-
WC (minimum Earliest Deadline First-Work conserv-
ing). They integrated three mechanisms: 1) a policy
for job ordering in the queue: when the job profile is
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unavailable, job ordering is calculated by the EDF pol-
icy (Earliest Deadline First). The EDF policy is used
with Hadoop’s default scheduler, which allocates the
maximum number of slots to job. When a new job
that has an earlier deadline arrives, the active tasks are
killed in this scheme. 2) a mechanism for allocating an
appropriate number of map and reduce slots required
for the job to satisfy the deadline is proposed to
improve the EDF job ordering. This mechanism assigns
the minimum resource required to satisfy a job dead-
line when the job profile is available. As a result, it is
called MinEDF. 3) a mechanism for allocating and deal-
locating extra resources among the jobs: the authors
presented a mechanism that improves the MinEDF.
It is called minEDF-WC and is designed to use spare
slots efficiently. After allocating the minimum number
of slots required for the job, the unallocated slots are
referred to as spare slots. These spare slots are allocated
to active jobs. When the new job with an earlier dead-
line arrives, the mechanism determines whether it can
meet its deadline after completing the running tasks
and their slots are released. If released slots cannot
meet the new job’s deadline, the mechanism stops the
active tasks and reallocates these slots to the new job.
Phan et al. [37] showed that the default schedulers in
Hadoop are inadequate for deadline-constrained MapRe-
duce job scheduling. They presented two deadline-based
schedulers that are based on the Earliest Deadline First
(EDF) but customized for Hadoop environment. The
first is EDF/TD, which minimizes total or maximum tar-
diness. A job’s tardiness is the elapsed time between its
deadline and completion time. The second is EDF/MR,
which minimizes the miss rate. The "miss rate" is the
number of soft real-time jobs that miss their deadlines.
The EDF/TD scheduling policy sorts the job queue based
on job deadlines. For each job, if it has local tasks on a
node, one of those is selected to be scheduled according
to the lowest value of laxity (difference between the dead-
line and the estimated execution time). If all the tasks
of the job are remote tasks, only the tasks whose data is
close to the node are executed. If there are no such tasks,
these steps are repeated for the following job in the queue
by the scheduler. Finally, In the absence of any tasks, the
first task of the first job in the queue is chosen. The EDF/
MR scheduling policy classifies the jobs into two sets:
schedulable jobs are those that are expected to meet their
deadlines, and unschedulable jobs are those that are not
predicted to meet their deadlines. A job is predicted to
meet its deadline if the present time plus the estimated
remaining execution time is less than the job’s deadline.
The scheduler first considers the schedulable set for
scheduling. When it is empty, the scheduler considers it
an unschedulable set. In each set, the priority of the tasks
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is assigned based on the EDF/TD policy, and tasks with
the highest priority are allocated first.

Kc et al. [38] proposed a deadline-based scheduler in
Hadoop clusters. To determine if the job can be com-
pleted by the deadline, the scheduler first performs a
schedulability test. Therefore, it estimates the minimum
number of map and reduce slots required for the job to
be completed before the deadline. In order to schedule a
job, there must be more free slots than or equal to the
minimum number for map and reduce [88, 89]. Hence,
jobs are only scheduled if they can be finished before the
deadline.

Teng et al. [39] addressed the problem of deadline-
based scheduling from two perspectives. 1. The real-
time scheduling problem is formulated by determining
the features of a task, cluster, and algorithm. The task
is modeled as a periodic sequence of instances, and the
MapReduce cluster is modeled as an exclusive cluster.
Also, tasks can be run only sequentially rather than con-
currently. Moreover, tasks are run preemptively since
the cluster supports preemption. 2. To schedule tasks
deadline, they proposed the Paused Rate Monotonic
(PRM) method. The highest priority is assigned to the
task with the shortest deadline. As mentioned, a task is
a periodic sequence of successive instances. As a result,
the current instance needs to be finished before the new
instance arrives. In this algorithm, the period is the dead-
line for any instance, thus, the highest priority is given
to the task with the lowest deadline. Since a MapReduce
job comprises a map task and a reduce task, the authors
segmented the period T into a mapping period TM and
a reducing period TR. TM is the deadline for map tasks,
and TR is the deadline for reduce tasks. PRM pauses the
reduce tasks until the map tasks are completed. Thus, the
reduce tasks are scheduled only after time TM. By paus-
ing between the map and reduce stages, the resources are
utilized efficiently.

Wang et al. [40] presented a scheduling algorithm using
the most effective sequence (SAMES) for scheduling jobs
with deadlines. First, they introduced the concept of a
sequence: an ordered list of jobs. Sequence restricts the
order in which the map phase of jobs is finished. Next,
they defined the concept of effective sequence (ES): The
sequence seq of a job set is an ES if the completion time
of each job is shorter than its deadline. They presented
two efficient techniques for finding ESes. If there is more
than one ES, they utilized a ranking method to select the
most effective sequence (MES). An incremental method
is proposed for determining whether a new arrival job is
acceptable and updating the MES.

Dong et al. [41] addressed the problem of scheduling
mixed real-time and non-real-time MapReduce jobs.
They proposed a two-stage scheduler that is implemented
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using multiple techniques. First, by using a sampling-
based method called TEFS, the scheduler predicts the map
and reduce task execution time. Next, each job is adap-
tively controlled by a resource allocation model (AUMD)
to run with a minimum slot. Finally, a two-stage sched-
uler for scheduling real-time and non-real-time jobs is
proposed, which supports resource preemption.

Verma et al. [42] extended ARIA and proposed a novel
framework and technique to automate the process of
estimating required resources to meet application per-
formance goals and complete data processing by a cer-
tain time deadline. The approach involves building a job
profile from the job’s past executions or by executing the
application on a smaller data set using an automated pro-
filing tool. To explain more, they benefited from linear
regression to predict the job completion time depending
on the size of the input dataset and assigned resources.
Scaling rules combined with a fast and efficient capacity
planning model are applied to generate a set of resource
provisioning options.

We investigated and analyzed deadline-aware sched-
ulers. Table 2 provides a summary of popular deadline-
aware schedulers in homogeneous Hadoop clusters and
their main properties. The analysis table includes refer-
ences, key ideas, advantages and disadvantages, compari-
son algorithms, and evaluation techniques.

Deadline-aware schedulers in heterogeneous clusters
Jabbari et al. [43] addressed the challenge of selecting
appropriate virtual machines (VMs) and distributing
workload efficiently across them to meet both deadline
and cost minimization goals in cloud environments. The
paper proposes a cost minimization approach to calculate
the total hiring cost before and during the computations,
based on the application’s input size and the required
type and number of VMs. The proposed approach uses a
daily price fluctuation timetable to schedule MapReduce
computations and minimize the total cost while meeting
the deadline.

Shao et al. [44] investigated the service level agree-
ment violation (SLAV) of the YARN cluster using a Fair
Scheduling framework. To assign resources to MapRe-
duce jobs, the authors used dynamic capacity manage-
ment and a deadline-driven policy. A Multi-dimensional
Knapsack Problem (MKP) and a greedy algorithm were
employed to model and solve the problem, respectively.

Lin et al. [45] provided a deadline-aware scheduler for
MapReduce jobs, DGIA, in a heterogeneous environ-
ment. Using the data locality, DGIA meets the deadlines
of new tasks. When the deadline of some new tasks is not
met, DGIA re-allocates these tasks. The task re-alloca-
tion problem is transformed into a well-known network
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graph problem: minimum cost maximum-flow (MCMEF)
to optimize the computing resource utilization.

Chen et al. [46] addressed the problem of Deadline-
Constrained MapReduce Scheduling called DCMRS in
heterogeneous environments. Using Bipartite Graph
modeling, they presented a new scheduling method
named BGMRS. It has three major modules, i.e., dead-
line partition, bipartite graph modeling, and scheduling
problem transformation. First, the BGMRS adaptively
determines deadlines for map and reduce task of a job.
Secondly, to demonstrate the relationship between tasks
and slots, they formed a weighted bipartite graph. Finally,
the DCMRS problem is transformed into the minimum
weighted bipartite matching (MWBM) problem to
achieve the best allocation between tasks and resources.
Also, to solve the MWBM problem, they presented a
heuristic method with the node group technique.

Tang et al. [47] presented a deadline-based MapReduce
job scheduler called MTSD. In the presented schedul-
ing, user can specify a job’s deadline. MTSD presents a
node classification algorithm that measures the node’s
computing capacity. The nodes are classified according to
their computing capacity in heterogeneous clusters using
this algorithm. One purpose of node classification is to
demonstrate a new data distribution model to increase
the data locality. Another purpose is to increase the accu-
racy of the evaluations of the task remaining times. To
determine its priority, MTSD computes the minimum
number of map and reduce slot required for the job.

Verma et al. [48] proposed ARIA, a framework for
deadline-based scheduling in Hadoop clusters. It has
three major parts. First, a job profile is created for a pro-
duction job that runs periodically. A job profile shows
the characteristics of the job execution during the map,
shuffle, sort, and reduce phases. Second, using the job
profile, i) the job completion time is estimated according
to the assigned map and reduce slots, and ii) the mini-
mum number of map and reduce slots for meeting the
job’s deadline is estimated based on Lagrange’s method.
Finally, they benefited from the earliest deadline first pol-
icy (EDF) to determine job ordering.

Polo et al. [49] presented the adaptive scheduler for
MapReduce multi-job workloads with deadline con-
straints. The scheduler divides a job into tasks already
completed, not yet started, and currently running. It
adaptively determines the number of slots required for
the job to satisfy the deadline. Therefore, for each job, the
amount of pending work is estimated. To this end, this
technique investigates both the tasks that have not yet
started and the currently running tasks. Based on these
two parameters, it calculates the number of slots. Then,
the scheduler calculates the priority of each job based
on the number of slots to be assigned simultaneously to
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each job. Jobs are sorted into a queue based on their pri-
ority. In order to account for the hardware heterogeneity,
nodes can be classified into two groups: those with gen-
eral-purpose cores and those with specialized accelera-
tors such as the GPU. When a job requires a GPU to run
its tasks, the scheduler assigns slots from the nodes with
the GPUs to run the tasks of the job [90].

We investigated and analyzed deadline-aware sched-
ulers. Table 3 provides a summary of popular deadline-
aware schedulers in heterogeneous Hadoop clusters and
their main properties. The analysis table includes refer-
ences, key ideas, advantages and disadvantages, compari-
son algorithms, and evaluation techniques.

Data locality-aware schedulers

In data locality-aware schedulers, tasks are allocated to
the node where the task’s input data is stored; otherwise,
they are assigned to the node closest to the data node
[56]. Researchers proposed several scheduling algorithms
to improve data locality because it minimizes data trans-
fer over the network and mitigates the total execution
time of tasks, thus improving the Hadoop performance
[4]. Therefore, improving data locality is a crucial prob-
lem in MapReduce clusters. In this section, we review
several important data locality-aware schedulers.

Kalia et al. [50] tackled the issue of heterogeneous
computing nodes in a Hadoop cluster, which can lead
to slower job execution times due to varying processing
capabilities. To address this challenge, the authors intro-
duced a K-Nearest Neighbor (KNN) based scheduler that
employs speculative prefetching and clustering of inter-
mediate map outputs before sending them to the reducer
for final processing. The proposed algorithm prefetches
input data and schedules intermediate key-value pairs to
reduce tasks using the KNN clustering algorithm with
Euclidean distance measure. The study concludes that
their scheduler, based on clustering, enhances data local-
ity rate and improves execution time.

Li et al. [51] concentrated on optimizing computing
task scheduling performance in the Hadoop big data plat-
form. They introduced an enhanced algorithm for task
scheduling in Hadoop, which evaluates the data localiza-
tion saturation of each node and prioritizes nodes with
low saturation to prevent preemption by nodes with
high saturation. The authors concluded that their pro-
posed scheduler enhances data locality, overall perfor-
mance, and reduces job execution time in the Hadoop
environment.

Fu et al. [52] addressed the problem of cross-node/rack
data transfer in the distributed computing framework of
Spark, which can lead to performance degradation, such
as prolonging of entire execution time and network con-
gestion. The authors propose an optimal locality-aware
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task scheduling algorithm that utilizes bipartite graph
modelling and considers global optimality to generate
the optimal scheduling solution for both map tasks and
reduce tasks for data locality. The algorithm calculates
the communication cost matrix of tasks and formulates
an optimal task scheduling scheme to minimize overall
communication cost, which is transformed into the mini-
mum weighted bipartite matching problem. The problem
is resolved by the Kuhn-Munkres algorithm. The paper
also proposes a locality-aware executor allocation strat-
egy to improve data locality further.

Gandomi et al. [53] discussed the importance of data
locality-aware scheduling in the Hadoop MapReduce
framework, which is designed to process big data on
commodity hardware using the divide and conquer
approach. The authors propose a new hybrid scheduling
algorithm called HybSMRP, which focuses on increas-
ing data locality rate and decreasing completion time by
using dynamic priority and localization ID techniques.
The algorithm is compared to Hadoop default schedul-
ing algorithms, and experimental results show that Hyb-
SMRP can often achieve high data locality rates and low
average completion times for map tasks.

He et al. [54] presented a map task scheduler called
MatchMaking to increase data locality. First of all, when
the first job does not have a local map task to the request-
ing node, the scheduler searches for the succeeding jobs.
Then, each node is given an equal chance of getting its
local tasks, to do this, if the node is unable to find a local
task for the first time in a row, it will not be allocated any
non-local tasks. Therefore, the node does not get a map
task during this heartbeat interval. Nodes that fail to find
a local task a second time are assigned a non-local task in
order to prevent the waste of computing resources. Each
slave node is allocated a status marker based on its local-
ity. Based on the marked value of a slave node, the sched-
uler determines if a non-local task is allocated to the slave
node if there is no map task local to it. Third, in this algo-
rithm, a slave node can be assigned a maximum of one
non-local task per heartbeat. Lastly, with the addition of
a new job to the queue, the locality markers of all slave
nodes will be removed. Upon arriving at a new job, the
algorithm resets all slave nodes’ node statuses since they
may have local tasks for a new job.

Ibrahim et al. [55] presented a map task scheduler,
Maestro, to increase the data locality. To accomplish
this, the chunks’ locations, replicas’ locations, and how
many other chunks each node hosts are tracked by Maes-
tro. There are two waves of scheduling that the Maes-
tro employs: the first wave scheduler and the run-time
scheduler. Taking into account the number of map tasks
hosted on each node and the replication scheme for the
input data, the first wave scheduler fills up empty slots on
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each node. The run-time scheduler determines a task’s
probability of being scheduled on a certain machine
based on replicas of its input data.

Zhang et al. [56] proposed a MapReduce job schedul-
ing technique to increase the data locality in heterogene-
ous systems. Upon a node sends a request, the scheduler
assigns the task to the input data stored on that node. In
the absence of such tasks, the task that has the closest
input data to that node is selected and its transmission
and waiting times are calculated. The task is reserved for
the node storing the input data when the waiting time is
shorter than the transmission time.

Zhang et al. [57] provided a map task scheduler, named
next-k-node scheduling (NKS), to achieve the data local-
ity. When a requesting node sends a request, the tech-
nique schedules tasks that their input data is stored on
that node. In the absence of such tasks, a probability is
calculated for each map task, and the ones with higher
probability are scheduled. A task has a low probability
that its input data is stored on the next k nodes, so the
technique reserves these tasks for these nodes.

Zaharia et al. [58] proposed a delay scheduling algo-
rithm to increase the data locality. Upon receiving from
a requesting node, if the head-of-line job is unable to
launch a local task, the scheduler skips and finds a local
task from subsequent jobs. The maximum delay time is
set to D. When the scheduler skips a job for an extended
period of time (D), the job is allocated to the node with
non- local data to avoid starvation [91]. We investigated
and analyzed the data locality-aware schedulers. Table 4
provides a summary of data locality-aware schedulers
and their main properties. The analysis table includes ref-
erences, key ideas, advantages and disadvantages, com-
parison algorithms, and evaluation techniques.

Cost-aware schedulers
In big data platforms, data centers store a huge amount
of data. Processing this data requires thousands of nodes
in Hadoop clusters. Such large clusters consume enor-
mous amounts of power and increase the cost of data
centers. Therefore, we face a big challenge in minimizing
cost in MapReduce clusters [31]. In this section, we sur-
vey and review several important cost-aware schedulers
that reduce the cost of MapReduce systems. Finally, the
reviewed schedulers are compared and summarized.
Seethalakshmi et al. [59] proposed a new schedul-
ing method based on Real Coded Genetic Algorithm
(RCGA) to effectively allocate nodes in heterogeneous
Hadoop settings. The paper evaluates metrics such as
load, makespan of each Virtual Machine (VM), execution
time, and memory constraints of each job to identify the
challenges in allocating jobs to nodes. The authors pro-
pose a solution based on work classification, where jobs

Page 22 of 30

are categorized into 'n’ classes based on execution rate,
priority, and arrival rate. The best set of work classes for
each VM is then proposed to solve the issue of resource
and work mismatch. The final scheduling is done by the
Real coded GA optimization model, which considers
fairness and minimum share satisfaction. The authors
conducted experiments, and the results show that it out-
performs existing systems in terms of metrics such as
execution time, cost, resource utilization, throughput.

Tang et al. [60] addressed the problem of scheduling
cloud applications with precedence-constrained tasks
that are deadline-constrained and must be executed with
minimum financial cost. They proposed a heuristic cost-
efficient task scheduling strategy called CETSS, which
includes a workflow DDAG model, task sub deadline ini-
tialization, greedy workflow scheduling algorithm, and
task adjusting method. The proposed greedy workflow
scheduling algorithm consists of a dynamical task renting
billing period sharing method and an unscheduled task
sub deadline relax technique.

Vinutha et al. [61] proposed a scheduling algorithm to
optimize the MapReduce jobs for performance improve-
ment in processing big data using Hadoop. The goal of
the algorithm is to reduce the budget and execution time
of cloud models by establishing a relationship between
the scheduling of jobs and the allocation of resources.
The earliest finish time is considered for cloud resource
optimization to assign the map tasks. The algorithm
schedules tasks based on the availability of slots and
available resources in the cluster. The authors evaluate
their proposed method on word count with different
input data sizes.

Javanmardi et al. [62] proposed a high-level architec-
ture model for scheduling in heterogeneous Hadoop
clusters. The proposed model reduces the scheduling
load by performing part of the scheduling in the user sys-
tem. They also present a scheduler based on the base unit
that can estimate the execution time in heterogeneous
Hadoop clusters with low overhead and high accuracy,
while being resistant to node failure. The scheduler con-
siders the cost of transfer and processing of jobs in the
clusters, which leads to a reduction in the cost of execut-
ing the jobs. The paper also designs four algorithms for
the scheduler, including the estimation of execution time
in the user system, distributing the input data of jobs
between data nodes based on performance, job schedul-
ing, and task scheduling.

Rashmi et al. [63] proposed a cost-effective workflow
scheduler for Hadoop in cloud data centers. The moti-
vation behind the scheduling issue is the need to effi-
ciently allocate resources to complete MapReduce jobs
within the deadline and at a lower cost. The proposed
scheduler takes into account the workflow as a whole
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rather than treating each job separately, as in many
existing schedulers. The scheduler creates and main-
tains virtual machines (VMs) for jobs in a workflow,
even after their completion to avoid time wastage and
overheads.

Zacheilas et al. [64] proposed a novel framework called
ChEsS for cost-effective scheduling of MapReduce work-
loads in multiple cluster environments. The scheduling
problem is challenging due to the tradeoff between per-
formance and cost, the presence of locality constraints,
and the use of different intra-job scheduling policies
across clusters. The goal of the framework is to automati-
cally suggest jobs-to-clusters assignments that minimize
the required budget and optimize the end-to-end execu-
tion time of the submitted jobs. The framework estimates
the impact of various parameters, such as job locality
constraints, on the user’s makespan/budget and detects
near-optimal job-to-cluster assignments by efficiently
searching the solution space.

Palanisamy et al. [65] proposed a new MapReduce
cloud service model called Cura for cost-effective provi-
sioning of MapReduce services in a cloud. Unlike existing
services, Cura is designed to handle production work-
loads that have a significant amount of interactive jobs.
It leverages MapReduce profiling to automatically create
the best cluster configuration for the jobs, implementing
a globally efficient resource allocation scheme that signif-
icantly reduces the resource usage cost in the cloud. Cura
achieves this by effectively multiplexing the available
cloud resources among the jobs based on the job require-
ments and by using core resource management schemes
such as cost-aware resource provisioning, VM-aware
scheduling, and online virtual machine reconfiguration.

Chen et al. [66] addressed the problem of optimiz-
ing resource provisioning for MapReduce programs in
the public cloud to minimize the monetary or time cost
for a specific job. The authors study the components in
MapReduce processing and build a cost function that
models the relationship among the amount of data, the
available system resources (Map and Reduce slots), and
the complexity of the Reduce function for the target
MapReduce program. The model parameters can be
learned from test runs, and based on this cost model,
the authors propose an approach called Cloud RESource
Provisioning (CRESP) to solve a number of decision
problems, such as the optimal amount of resources that
can minimize the monetary cost with the constraint on
monetary budget or job finish time.

We investigated and analyzed deadline-aware schedul-
ers. Table 5 provides a summary of popular cost-aware
schedulers and their main properties. The analysis table
includes references, key ideas, advantages and disadvan-
tages, comparison algorithms, and evaluation techniques.
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Resource-aware schedulers

In big data applications, data centers are deployed on
large Hadoop clusters. The nodes in these clusters receive
a large number of jobs and require more resources to
execute them. As a result, race condition arises among
the jobs that demand resources like CPU, memory, and
I/0 [92]. Therefore, improving cluster resource utiliza-
tion has become a major concern in MapReduce clusters.
This section presents some of the most popular resource-
aware schedulers which increase resource utilization.

Aarthee et al. [67] proposed a new scheduler, called
Dynamic Performance Heuristic-based Bin Packing (DP-
HBP) MapReduce scheduler, to improve resource utili-
zation in a heterogeneous virtualized environment. By
analyzing the exact combination of vCPU and memory
capacities, the scheduler can effectively allocate resources
and improve the entire virtual cluster’s performance. In
other words, the scheduler allocates the proper number
of virtual machine cores and memory at the datacen-
tres for cloud users. Also, the scheduler is a generalized
model that can handle data-intensive jobs on MapRe-
duce, regardless of their nature.

Jeyaraj et al. [68] addressed the challenge of resource
utilization in virtual clusters running Hadoop MapRe-
duce workloads, which can suffer from heterogeneities at
the hardware, virtual machine, performance, and work-
load levels. The authors propose an efficient MapReduce
scheduler called ACO-BP that places the right combina-
tion of map and reduce tasks in each virtual machine to
improve resource utilization. They transform the MapRe-
duce task scheduling problem into a 2-Dimensional bin
packing model and obtain an optimal schedule using the
ant colony optimization (ACO) algorithm. The ACO-BP
scheduler minimizes the makespan for a batch of jobs
and outperforms three existing schedulers that work well
in a heterogeneous environment. The authors conclude
that their proposed scheduler is an effective solution to
improve resource utilization in virtual clusters running
Hadoop MapReduce workloads.

Zhang et al. [69] presented a phase-level MapReduce
scheduler called PRISM. This scheduler divides tasks
into phases and schedules tasks at the phase level. PRISM
assigns the resources based on the phase that each task
is running. The authors proposed a heuristic algorithm
to determine the order of the phases that can be sched-
uled on a machine: Each phase is assigned a utility value,
which demonstrates the benefit of scheduling the phase.
The utility value is calculated based on the fairness and
job performance of the phase. Then the phase that has
the highest utility is chosen. Also, the utility value is
dependent on the phase. If a phase is a map or shuffle,
a new map or reduce task is selected for scheduling. If
a phase is a map or shuffle, a new map or reduce task is
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selected for scheduling. In this case, the scheduler deter-
mines the phase’s utility by achieving a higher degree of
parallelism by performing an extra task. For other phases,
PRISM determines the utility of the phase by the urgency
of finishing the phase. Urgency is calculated by how long
it has been paused in seconds. A task whose execution
has been paused for a long time needs to be scheduled as
soon as possible.

Rasooli et al. [70] proposed a Hadoop scheduling algo-
rithm called COSHH in heterogeneous environments.
Utilizing a k-means clustering algorithm, COSHH cat-
egorizes the jobs into classes according to their require-
ments. Then the scheduler determines which jobs and
resources are best suited to each other. To do this, it
first builds a linear program (LP) and defines it using the
characteristics of the job classes and the resources. After
solving the LP, the scheduler finds a class set for each
resource. Afterward, COSHH allocates jobs to resources
based on fairness and minimum share requirements.
Moreover, COSHH is composed of two major steps:
first, upon arriving a new job, the algorithm stores it in
the proper queue. Second, when a heartbeat message is
received, the algorithm allocates a job to a free resource.

Polo et al. [71] proposed the Adaptive Scheduler called
RAS for MapReduce multi-job workloads. The main pur-
pose of the method is to utilize the resources efficiently.
This scheduler proposes the "job slot" concept instead of
the "task slot." Each job slot is a specific slot for a certain
job. RAS computes the number of concurrent tasks that
need to be assigned to complete a job before its dead-
line. This calculation is performed using the deadline, the
number of pending tasks, and the average task length.
Then, each job is assigned a utility value by RAS. The
placement algorithm uses a utility value to choose the
best placement of tasks on TaskTrackers.

Sharma et al. [72] proposed MROrchestrator, a fine-
grained, dynamic, and coordinated resource manage-
ment framework that effectively manages the resources.
Resource bottleneck detection and resource bottleneck
mitigation are two functions of the MROrchestrator.
First, it collects the run-time resource allocation infor-
mation of each task and identifies resource bottlenecks.
The latter resolves bottlenecks through coordinated
resource allocations.

Pastorelli et al. [73] proposed a scheduler for Hadoop
called HFSP that achieves fairness and short response
times. HESP utilizes size-based scheduling to assign the
cluster resources to the jobs. Job size is required for size-
based scheduling, but there is no a priori knowledge of
the job size in Hadoop. HFSP estimates job sizes during
job execution to construct job size information. Also,
using an aging function, the priority of jobs is computed.
Afterward, the scheduler allocates resources to jobs
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based on priority. For both small and large jobs, aging is
used to prevent starvation.

Tian et al. [74] discussed the optimal resource provi-
sioning to execute the MapReduce programs in public
clouds. Using a cost method, for the target MapReduce
job, they modeled the relationship between the amount
of input data, Map and Reduce slots, and the complex-
ity of the Reduce function. Using a cost model can figure
out how many resources are needed to reduce costs by a
specified deadline or to reduce the time under a specified
budget [93].

Ghoneem et al. [75] provided a MapReduce schedul-
ing method to improve efficiency and performance in
the heterogeneous cluster. The scheduler uses a classifi-
cation algorithm based on job processing requirements
and resources available in order to categorize jobs as
executable and nonexecutable. To obtain the best perfor-
mance, the scheduler allocates the executable jobs to the
proper nodes. We described the most popular resource-
aware schedulers. Table 6 provides the summary of the
main properties of resource-aware schedulers. The analy-
sis table includes references, key ideas, advantages and
disadvantages, comparison algorithms, and evaluation
techniques.

Makespan-aware schedulers

The makespan (total completion time) of a set of jobs
is the total amount of time it takes to complete jobs. In
order to increase the cluster’s performance, makespan
needs to be minimized by distributing the data across
the nodes. Also, low makespan is a major factor for any
scheduler [94]. Therefore, minimizing the makespan has
become an important issue in MapReduce clusters. In
this section, we first review several important makespan-
aware schedulers. Then, the reviewed schedulers are
compared and summarized.

Varalakshmi et al. [76] proposed a new job scheduler,
called the virtual job scheduler (V]S), which is designed
to schedule MapReduce jobs in a heterogeneous clus-
ter. VJS creates a virtual job set by considering the CPU
and IO resource utilization levels of each job waiting in
the execution queue. The partitioning algorithm is the
core of VJS, and the authors proposed two novel parti-
tioning algorithms: two-level successive partitioning
(TLSP) and predictive partitioning (PRED). The goal of
TLSP is to optimize the busy time of reducers in envi-
ronments where the higher-level scheduler is aware of
the idle time of individual reducers. On the other hand,
the goal of PRED is to optimize the overall time taken by
the Reducer phase, including the idle time of reducers,
and is found to produce better makespan and near-zero
wait time in all scenarios, despite the prediction error
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associated with it. Therefore, PRED is used to partition
the input of individual jobs in the virtual job set.

Maleki et al. [77] presented a secure and performance-
aware optimization framework called SPO, to minimize
the makespan of tasks using a two-stage scheduler. SPO
applies the HEFT algorithm in Map and Reduce stage,
respectively, and considers network traffic in the shuffling
phase. Moreover, the authors proposed a mathemati-
cal optimization model of the scheduler to estimate the
system performance while considering the security con-
straints of tasks.

Maleki et al. [78] proposed a two-stage MapReduce
task scheduler for heterogeneous environments called
TMaR, which aims to minimize the makespan of a batch
of tasks while considering network traffic. The authors
highlight the importance of scheduling Map tasks in
cloud deployments of MapReduce, where input data is
located on remote storage. TMaR schedules Map and
Reduce tasks on servers that minimize the task finish
time in each stage, respectively. The proposed dynamic
partition binder for Reduce tasks in the Reduce stage
reduces shuffling traffic, and TMaR + extends TMaR to
improve total power consumption of the cluster, reduc-
ing it up to 12%.

Jiang et al. [79] studied MapReduce scheduling on n
parallel machines with different speeds, where each job
contains map tasks and reduce tasks, and the reduce
tasks can only be processed after finishing all map tasks.
The authors consider both offline and online scheduling
problems and propose approximation algorithms with
worst-case ratios for non-preemptive and preemptive
reduce tasks. In the offline version, the authors propose
an algorithm with a worst-case ratio of max{l+A"2—
1/n, A} for non-preemptive reduce tasks, where n is the
number of servers, and A is the ratio between the maxi-
mum server speed and the minimum speed. They also
design a 2-ratio algorithm for preemptive reduce tasks.
In the online version, the authors devise two heuristics
for non-preemptive and preemptive reduce tasks, respec-
tively, based on the offline algorithms.

Verma et al. [80] designed a two-stage scheduler called
the BalancedPools to minimize the makespan of multi-
wave batch jobs. The method divides the jobs into two
pools with the same makespan and assigns resources
equally among the pools. Then, to minimize the makes-
pan of each pool, the Johnson algorithm is applied
within each pool to determine an order of jobs. Finally,
the MapReduce simulator SimMR estimates the overall
makespan for two pools.

Yao et al. [81] proposed TuMM, a slot management
scheme in order to allow dynamic slot configuration in
Hadoop. The scheduling goal is to utilize the resources
efficiently and minimize the makespan of a batch of jobs.
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In order to achieve this goal, two major modules are pro-
posed: Workload Monitor and Slot Assigner. To predict
the present workloads of map and reduce tasks, Work-
load Monitor periodically collects prior workload infor-
mation, including execution times of completed tasks.
Slot Assigner for each node utilizes the estimated infor-
mation from Workload Monitor to modify the slot ratio
between map and reduce. Slot ratio is utilized as a tun-
able knob between Map and Reduce tasks.

Zheng et al. [82] studied a joint scheduling optimization
for MapReduce, which overlap the map and shuffle phases
and execute simultaneously. Mitigating the average job
makespan is the goal of scheduling. The main issue is
that since the map and shuffle phases have a dependency
relationship, they cannot be fully parallelized. Therefore,
after the map phase emits data, the shuffle phase must
wait for it to be transferred. To solve the above prob-
lem, the authors introduced a new concept called "strong
pair." As defined by them, two jobs are considered "strong
pairs" if their map and shuffle workloads are equal. They
proved that when all the jobs can be broken down into
strong pairs, the best schedule is to run jobs that can
form a strong pair pairwise. To perform jobs in a pairwise
manner, a number of offline and online scheduling poli-
cies are presented. First, jobs are classified based on their
workloads. Then, using a pairwise manner, jobs are exe-
cuted within each group.

Tang et al. [83] proposed an optimized scheduling
algorithm for MapReduce workflow, named MRWS,
in heterogeneous clusters. Workflows are modeled by
DAG graphs containing MapReduce jobs. The scheduler
includes a phase for prioritizing jobs and a phase for allo-
cating tasks. First, the jobs are divided into I/O-intensive
and computing-intensive categories, and each job’s pri-
orities are determined by considering its category. After
that, each block is assigned a slot, and tasks are sched-
uled based on the data locality [95]. We described the
most popular makespan-aware schedulers. Table 7 pro-
vides a summary of the main properties of makespan-
aware schedulers. The analysis table includes references,
key ideas, advantages and disadvantages, comparison
algorithms, and evaluation techniques.

Learning-aware schedulers

In this section, we first review several important learn-
ing-aware schedulers. Then, the reviewed schedulers are
compared and summarized.

Ghazali et al. [84] focused on the scheduling of MapRe-
duce jobs in Hadoop and specifically addresses the
importance of data and cache locality in improving per-
formance. The authors propose a job scheduler called
CLQLMRS (Cache Locality with Q-Learning in MapRe-
duce Scheduler) that utilizes reinforcement learning
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Table 9 Scheduling metrics in the reviwed algorithms

Reference Meet deadline Data locality Makespan Executiontime Completion Cost Resource Responsetime Throughput
time utilization

Gao et al. [33] . +

Cheng et al. [34] . +

Kao et al. [35] . L3

Verma et al. [36] . *

Phan et al. [37]

Kc et al. [38] .

Teng et al. [39] .

Wang et al. [40] . +

Dong et al. [41] v

Verma et al. [42] *

Jabbarietal. [43] - #

Shao et al. [44] . v

Lin et al. [45]

Chen et al. [46] . v

Tang et al. [47] . L3 *

Verma et al. [48] . *

Polo et al. [49] . <

Kalia et al. [50] L3 v *
Lietal [51] L v

Fuetal. [52] v

Gandomi et al. [53] L +

He et al. [54] & L]
Ibrahim et al. [55] L3 L]
Zhang et al. [56] < v L]
Zhang et al. [57] < v

Zaharia et al. [58] < L] *

Seethalakshmi . L3 v # +
etal. [59]

Tang et al. [60] . #
Vinuthaetal. [61] - * #

Javanmardi et al. #
[62]

Rashmi et al. [63] . #
Zacheilas et al. [64] o v #

Palanisamy et al. # n
[65]

Chen et al. [66] #

Aarthee et al. [67] +

JEYARAJ et al. [68] o

Zhang et al. [69] <> v

Rasooli et al. [70] o< * n

Poloetal. [71] o +

Sharma et al. [72] *

Pastorelli et al. [73] n

Tian et al. [74] o *

Ghoneem et al. L3 *
[75]

Varalakshmi et al. o
[76]

Maleki et al. [77] o v
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Table 9 (continued)
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Reference

Meet deadline Data locality Makespan Executiontime Completion Cost Resource

Response time Throughput

time utilization

Maleki et al. [78]
Jiang et al. [79]
Verma et al. [80]
Yao et al. [81]
Zheng et al. [82]
Tang et al. [83]
Ghazali et al. [84] L3 v
Naik et al. [85] <

Naik et al. [86]

o o o o o
<

7%

v

Fig. 8 Percentage of scheduling metrics in reviewed algorithms

techniques to optimize both data and cache locality. The
proposed scheduler is evaluated through experiments
in a heterogeneous environment. The results demon-
strate a significant reduction in execution time compared
to other scheduling algorithms such as FIFO, Delay,
and Adaptive Cache Local. The CLQLMRS algorithm
improves Hadoop performance compared to the afore-
mentioned schedulers.

Naik et al. [85] focused on the challenges of MapRe-
duce job scheduling in heterogeneous environments
and the importance of data locality in improving the
performance of the MapReduce framework. The paper
highlights that data locality, which involves moving com-
putation closer to the input data for faster access, is a
critical factor in enhancing the performance of MapRe-
duce in heterogeneous Hadoop clusters. However, the
existing MapReduce framework does not fully consider
heterogeneity from a data locality perspective. To address
these issues, the paper proposes a novel hybrid sched-
uler that utilizes a reinforcement learning approach. The

= Deadline

m Data Locality

= Execution time
Makespan

m Completion time

u Cost

m Resource utilization

® Resource time

m Throuput

proposed scheduler aims to identify true straggler tasks
and schedule them on fast processing nodes in the het-
erogeneous cluster, taking data locality into account.

Naik et al. [86] proposed a novel MapReduce sched-
uler called MapReduce Reinforcement Learning (MRRL)
scheduler, which leverages reinforcement learning tech-
niques to adaptively schedule tasks in heterogeneous
environments. The MRRL scheduler observes the sys-
tem state of task execution and identifies slower tasks. It
suggests speculative re-execution of these slower tasks
on other available nodes in the cluster to achieve faster
execution. The proposed approach does not require prior
knowledge of the environmental characteristics and can
adapt to the heterogeneous environment over time. The
authors employ the SARSA learning algorithm, which is
a model-free approach that solves the problem of search-
ing optimal states with state transitions depending on the
scheduler. The state determination criterion and reward
function in the proposed MRRL algorithm are based on
the objective of minimizing job completion time.
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Fig. 9 Evaluation techniques used by studies addressed by the reviewed algorithms

We described several learning-aware schedulers.
Table 8 provides a summary of the main properties of
learning-aware schedulers. The analysis table includes
references, key ideas, advantages and disadvantages,
comparison algorithms, and evaluation techniques.

Discussion

To respond to RQ5, a comparative analysis of different
scheduling metrics in Hadoop MapReduce is presented
in this section. In Table 9 and Fig. 8, we showed how
the selected studies addressed the scheduling metrics.
Figure 8 demonstrates that 19% of the algorithms stud-
ied used the deadline metric, 17% used the data local-
ity metric, 15% addressed the execution time metric, 12%
addressed the makespan metric, 11% used the comple-
tion time metric, 9% used the cost metric, 8% used the
response time metric, 7% used the resource utilization
metric, and 2% addressed the throughput. It is shown
that the majority of algorithms have focused on the dead-
line and data locality metrics.

Figure 9 shows the evaluation techniques used in the
selected studies. As can be seen, 69% of the studies used
implementation, which is the highest; 6% of them used
simulation, and 25% of them used both implementation
and simulation.

Conclusion

Scheduling in Hadoop MapReduce is an important chal-
lenge that Hadoop systems are facing. In this paper, we
provided a comprehensive systematic study in Hadoop
MapReduce. First, an overview of Hadoop major compo-
nents is presented. According to our research questions,
from more than 500 papers, 53 primary studies were

selected. Then we thoroughly reviewed and analysed
individually the selected MapReduce scheduling algo-
rithms. Based on our research method, we classify these
schedulers into six categories: deadline-aware schedulers,
data locality-aware schedulers, cost-aware schedulers,
resource-aware schedulers, makespan-aware schedulers,
and learning-aware schedulers. We compared the stud-
ies in terms of key ideas, main objectives, advantages,
disadvantages, comparison algorithms, and evaluation
techniques. The results are summarized in a table in each
category.
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