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[2]. The DAS embodies an intelligent strategy, facilitat-
ing utility companies to remotely oversee, harmonize, 
and manage distribution components in real-time. The 
key goals of the DAS encompass enhancing voltage 
regulation, precise load prediction, bolstering system 
dependability and security, meticulous data planning and 
execution, along with optimizing fault detection and sys-
tem reconfiguration. Automating the various functions 
of the distribution grid serves as an effective approach to 
alleviate the burden on operational personnel [3]. Distri-
bution automation has been a focal point of research for 
an extended period. Achieving automation in distribution 
operations involves deploying data collection devices, 

Introduction
With the rapid advancement of technology, Artificial 
Intelligence is increasingly permeating various domains, 
bringing about significant transformations and oppor-
tunities to contemporary society. Within the domain of 
electrical power systems, the application of AI is becom-
ing increasingly notable, offering new possibilities for the 
intelligent upgrade and optimization of these systems 
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Abstract
Artificial intelligence (AI) plays a key role in the distribution automation system (DAS). By using artificial intelligence 
technology, it is possible to intelligently verify and monitor distribution automation terminals, improve their safety 
and reliability, and reduce power system operating and maintenance costs. At present, researchers are exploring 
a variety of application methods and algorithms of the distribution automation terminal intelligent acceptance 
system based on artificial intelligence, such as machine learning, deep learning and expert systems, and have 
made significant progress. This paper comprehensively reviews the existing research on the application of artificial 
intelligence technology in distribution automation systems, including fault detection, network reconfiguration, load 
forecasting, and network security. It undertakes a thorough examination and summarization of the major research 
achievements in the field of distribution automation systems over the past few years, while also analyzing the 
challenges that this field confronts. Moreover, this study elaborates extensively on the diverse applications of AI 
technology within distribution automation systems, providing a detailed comparative analysis of various algorithms 
and methodologies from multiple classification perspectives. The primary aim of this endeavor is to furnish valuable 
insights for researchers and practitioners in this domain, thereby fostering the advancement and innovation of 
distribution automation systems.
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remote control apparatuses, and by providing informa-
tion processing and decision-support functionalities [4]. 
Installing remotely controllable devices on the network 
aids in reducing switch-over times and the labor cost 
requirements of manual operations. Reduced manual 
interventions aid in minimizing potential human errors, 
and the incorporation of data collection devices enables 
thorough network monitoring. Within this context, the 
intelligent acceptance system for DAS terminals, as a 
crucial component within the power system, holds key 
significance in ensuring the safe and reliable operation of 
the electric power system [5]. The application of artificial 
intelligence in power systems makes energy management 
more intelligent, efficient and sustainable. The adop-
tion of these technologies can help reduce energy waste, 
improve the reliability of power systems, and promote 
the wider application of renewable energy, thus bringing 
positive changes to the energy industry and environmen-
tal sustainability. The key goals of distribution automa-
tion systems are to improve voltage regulation, accurate 
load prediction, and enhance system reliability and safety.

Artificial Intelligence algorithms, such as deep learn-
ing and machine learning, serve as examples of cutting-
edge technologies that have been extensively applied 
to address complex problems in electric power sys-
tems. Over the past two decades, machine learning has 
emerged in the power sector, capable of learning from 
vast historical data and making swift decisions without 
human intervention. Machine learning encompasses 
diverse algorithms that have proven successful in vari-
ous fields, including but not limited to classification, 
regression, prediction and more [6]. Deep learning is a 
subset of machine learning that employs cascaded lay-
ers to automatically extract multiple features from raw 

data. The evolution of deep learning techniques has been 
swift, finding applications in numerous domains. Cat-
egorizations of deep learning algorithms include super-
vised, semi-supervised, and unsupervised approaches, 
alongside another classification known as reinforcement 
learning or deep reinforcement learning [7]. Figure  1 
summarizes the AI technologies and related models 
available for use in the Distribution Automation System.

Distribution automation integrates computer tech-
nology, data transmission, control techniques, modern 
equipment, and management to enhance power supply 
reliability, elevate energy quality, provide superior user 
services, cut operational costs, and ease the workload of 
operational staff [8]. The intelligent acceptance system for 
distribution automation terminals aims to utilize artificial 
intelligence technologies to intelligently verify and moni-
tor the distribution automation terminals. This enhances 
the safety and reliability of the distribution system while 
reducing operational and maintenance costs [9].

Traditional acceptance methods for distribution auto-
mation terminals often rely on manual operations and 
offline testing, resulting in low efficiency and an inabil-
ity to meet the needs for rapid response. However, with 
the introduction of artificial intelligence algorithms, dis-
tribution automation terminals can achieve autonomous 
learning, intelligent judgment, and real-time monitoring, 
significantly elevating the system’s automation level and 
efficiency. Modern distribution automation systems play 
an essential role in enhancing the efficiency, reliability, 
and safety of distribution networks. They can achieve 
rapid response and precise control, enhancing the resil-
ience and interference resistance of the power system, 
catering to the demands for automation, intelligence, and 
sustainable development of the power system [10].

Fig. 1  Classification of AI methods available in DAS
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Currently, researchers are actively exploring applica-
tion methods and algorithms for the intelligent accep-
tance system of distribution automation terminals based 
on artificial intelligence. AI algorithms such as machine 
learning and expert systems have made significant prog-
ress in this area. By analyzing and learning from vast 
historical data, distribution automation terminals can 
achieve functions like fault detection, network restruc-
turing, load forecasting, network security, and voltage 
control, providing robust support for power system sta-
bility [11].

This paper provides a research overview and applica-
tion developments of the intelligent acceptance system 
for distribution automation terminals based on artificial 
intelligence algorithms. The second section briefly intro-
duces the traditional distribution automation system. 
The third section presents the main methods of artifi-
cial intelligence. The fourth section details the research 
progress of the distribution automation system based on 
artificial intelligence algorithms, which is further divided 
into sub-sections concerning fault detection, network 
restructuring, load forecasting, network security, and 
voltage control. The fifth section describes the challenges 
and limitations of AI technology in distribution automa-
tion systems. The sixth section concludes the paper.

Overview of distribution automation system
There are three stages in the evolution of distribution 
automation: The initial stage entails distribution automa-
tion based on the coordinated operation of automated 
switching devices. The second stage introduces distri-
bution automation systems built upon communication 
networks, feeder terminal units, and backend computer 
networks. With the advancement of computer technol-
ogy, the third stage of distribution automation emerged, 
which integrates automatic control capabilities onto the 
foundation of the second stage distribution automation 
system [12].

Traditional distribution system
The large quantity, wide distribution, and diverse types of 
distribution automation terminals pose challenges for the 
commissioning and acceptance process, which currently 
relies on manual efforts given the existing technological 
conditions. On-site personnel engage in manual simu-
lation of analog signals and switch positioning accord-
ing to signal definitions. They establish communication 
via telephone with dispatch center personnel, conduct-
ing a step-by-step assessment of signal changes through 
observation of system responses. The primary drawbacks 
of this approach include dependence on meticulous 
pre-arrangements for mutual commissioning, resulting 
in coordination difficulties at the dispatch center. The 
acceptance testing process lacks standardization, and 

acceptance management exhibits shortcomings in terms 
of precision and rigor. Furthermore, during peak peri-
ods, frequent occurrences of telephone queues and traffic 
congestion exacerbate the situation [9].

Modern distribution automation systems
Modern distribution automation systems are integrated 
systems designed to enhance the operational efficiency 
and safety of power systems. Leveraging advanced com-
munication and computing technologies, these systems 
enable the monitoring, control, protection, and man-
agement of distribution networks. Modern distribution 
automation systems typically encompass the following 
components and functions:

1)	 Monitoring and Measurement: Real-time monitoring 
and measurement of distribution networks 
are accomplished through intelligent sensors, 
monitoring devices, and data acquisition units.

2)	 Remote Communication and Control: Modern 
communication technologies such as wireless 
communication, fiber optics, and the internet 
facilitate remote communication and control 
between distribution equipment.

3)	 Automated Protection and Switching Control: 
Distribution automation systems can automatically 
detect faults and anomalies, taking appropriate 
actions based on preset protection strategies.

4)	 Fault Diagnosis and Maintenance: The system is 
capable of fault diagnosis and anomaly detection, 
offering assessments of equipment health.

In general, modern distribution automation systems 
improve the efficiency, reliability and sustainability of 
power distribution by introducing advanced technolo-
gies and intelligent functions. These improvements are 
important for meeting growing electricity demand, 
improving energy efficiency and promoting the use of 
renewable energy.

Figure 2 illustrates the structural segmentation of dis-
tribution grid operation into two distinct categories. On 
the one hand, decision support systems utilize measure-
ments to visualize grid conditions, enabling operators to 
take manual control actions. These systems are termed 
decision support systems, functioning in a human-in-
the-loop or open-loop control mode, as they are not fully 
automatic. Notably, this category encompasses state esti-
mation, fault diagnosis systems, and stability assessment 
methods.

Intelligent acceptance system for distribution automation 
terminals
The final criterion for the commissioning of distribu-
tion automation terminals is graphical acceptance, which 
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involves cross-referencing the on-site data with the 
SCADA graphics at the central station. Whether during 
the commissioning phase or in later operational stages, 
the testing main station provides a model-data verifica-
tion function. Even in the event of changes, it ensures 
the standardization and accuracy of the entire process 
of automation terminal integration [1]. Additionally, the 
system boasts the following advantages: ease of mainte-
nance, reduction of external risks and communication-
related failure probabilities. The central station does not 
require continuous tracking by automation personnel; 
on-site personnel independently complete the commis-
sioning tests. The system is accessible from anywhere, 
enabling multiple sites to simultaneously initiate accep-
tance tasks and carry out automated acceptance.

Terminal personnel use the system to realize power 
distribution automation, send tests through intelligent 
acceptance handhelds and obtain test result data, the 

main station commercial library calls system data for 
acceptance tests, the test module has a complete debug-
ging plan, the communication module interacts with the 
test module and communicates with the Master station 
communication. The acceptance test module is used 
to verify whether the distribution automation terminal 
works normally according to specifications and require-
ments. The master control module is the terminal for 
acceptance testing. Figure 3 shows the acceptance prin-
ciple of the system.

In the past few years, numerous AI algorithms have 
been widely applied in distribution automation sys-
tems, playing a crucial role in enhancing system per-
formance and optimizing power distribution. However, 
to effectively harness the advantages brought by these 
algorithms, a familiarity with key artificial intelligence 
algorithms is essential. Therefore, in the upcoming sec-
tion, we will delve into a detailed analysis of some 

Fig. 2  Acceptance principle
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frequently encountered algorithms in distribution auto-
mation systems. This analysis will encompass their fun-
damental principles, application domains, as well as 
potential advantages and limitations. This effort will con-
tribute to a comprehensive understanding of how artifi-
cial intelligence algorithms can be applied to distribution 
automation systems, driving progress and innovation in 
this field.

Artificial intelligence methods
AI represents an emerging domain in technological 
research encompassing the investigation, advancement, 
theory, methods, techniques, and applications aimed 
at replicating, extending, and amplifying human intel-
ligence. Machine learning, on the other hand, is the 
science of enabling computers to mimic human-like 
learning and behavior through exposure to data and 
observations, facilitating autonomous enhancement 
of their learning process. Deep learning is a branch of 
machine learning that aims to use multi-layer com-
putational models with complex structures or mul-
tiple nonlinear transformations to achieve high-level 
abstractions of data. Deep learning methods have been 
widely employed across diverse fields including image 

processing, speech recognition, and natural language 
processing, and have achieved significant breakthroughs 
[13]. In addition, using edge computing technology, the 
intelligent acceptance system of distribution automation 
terminals can better meet the challenges related to large 
data volume, real-time requirements and security. These 
advantages make mobile edge computing an ideal choice 
for achieving efficient, reliable and secure intelligent 
acceptance systems. Although many technologies such 
as edge computing technology and Internet of Things 
technology have been used in research in the field of 
distribution automation, this article focuses on artificial 
intelligence technology [14–17].

Algorithms based on machine learning
As depicted in Fig. 1, this paper frequently employs sev-
eral ML algorithms such as Support Vector Machines, 
Bayesian Networks, Random Forest, and more [18].

SVM is a frequently employed machine learning tech-
nique for tackling binary classification tasks. It achieves 
this by finding a separating hyperplane within the sample 
space to differentiate between samples of different classes 
while maximizing the minimum distance between points 
from each class to the hyperplane. Various studies [19, 

Fig. 3  Acceptance principle
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20], [21, 22] have employed this method and combined 
methods thereof.

Bayesian Networks are probabilistic graphical models 
utilized to represent dependencies between variables and 
perform probabilistic inference. These networks are built 
on the principles of Bayesian theorem and graph theory, 
serving as tools to model and analyze complex uncer-
tainty problems. Numerous references such as [23, 24] 
have employed this method and combinations thereof.

Algorithms based on deep learning
Similarly, numerous deep learning algorithms such as 
Autoencoders, Convolutional Neural Networks, Multi-
Layer Perceptron, and Deep Belief Networks have been 
employed [25, 26].

ANN is a computational model that draws inspiration 
from the structure of biological neural systems, designed 
to simulate and solve a variety of problems. ANNs find 
widespread applications in fields like pattern recognition, 
image and speech processing, natural language process-
ing, prediction, and classification. References such as 
[27, 28] have employed this method and combinations 
thereof.

Autoencoders (AE) are unsupervised learning models 
initially proposed by Rumelhart et al. Literature refer-
ences like [29, 30] have employed this method and com-
binations thereof.

Deep learning models can automatically learn higher-
level feature representations from raw data, while tradi-
tional machine learning usually requires manual design 
of features. This makes deep learning more effective 
when processing complex, large-scale data. A series 
of efficient optimization algorithms and deep learning 
frameworks have emerged in the field of deep learning, 
making model training easier and more efficient.

Algorithms based on reinforcement learning
Based on reinforcement learning, algorithms like 
Q-learning, Deep Reinforcement Learning, and Deep Q 
Networks are also frequently utilized.

RL is a subset of machine learning that centers on 
enabling intelligent agents to learn optimal decision-
making through interactions with their environment, 
aimed at accumulating maximum rewards. The core 
idea of reinforcement learning is learning through trial 
and error, where the agent learns the optimal strategy 
by observing the environment’s states and reward sig-
nals during interactions. References like [31, 32] have 
employed this method and combinations thereof.

Other algorithms based on artificial intelligence
In addition, several other AI-based algorithms such as 
Expert Systems, Fuzzy Logic, and Genetic Algorithms are 
also mentioned.

Expert Systems (ES) are computer software systems 
that can solve complex problems in a specific domain, 
mimicking the problem-solving abilities of human 
experts. They effectively apply the accumulated experi-
ence and expertise of experts to tackle problems that typ-
ically require expert knowledge. Expert systems involve 
storing expert knowledge in a knowledge base through 
specific knowledge acquisition methods. They then use 
an inference engine combined with human-computer 
interaction to operate. Subsequently, valuable expert sys-
tems have been developed by experts worldwide [33, 34] .

Heuristic algorithms are problem-specific analysis and 
step-design approaches that aim to improve computa-
tional performance. Commonly used heuristic algorithms 
include Simulated Annealing (SA), Genetic Algorithms 
(GA), and Ant Colony Optimization (ACO) [35, 36] .

This section provides an overview of commonly used 
artificial intelligence algorithms to lay the groundwork 
for understanding the subsequent section’s applications 
of artificial intelligence. Additionally, the usage of litera-
ture in distribution automation system contexts will be 
thoroughly reviewed and summarized in the upcoming 
content. This will facilitate a better understanding of how 
artificial intelligence is practically applied in distribution 
automation systems and reveal research trends and cut-
ting-edge issues in related fields.

Optimization and control of distribution automation 
system driven by intelligence
The significance of AI technology in the field of distribu-
tion automation cannot be understated. Faced with com-
mon challenges in power systems, artificial intelligence 
technology not only offers effective solutions but also has 
predictive capabilities, thereby reducing future risks. In 
numerous areas such as fault detection, network recon-
figuration, load forecasting, and network security, artifi-
cial intelligence technology has been adeptly applied and 
achieved significant accomplishments [37]. These appli-
cations not only help power systems save costs but also 
yield notable economic benefits, rendering power sys-
tems safer and more reliable. Simultaneously, this dem-
onstrates the substantial potential of artificial intelligence 
technology in driving progress and innovation within the 
distribution automation domain.

Fault detection and recovery
In distribution systems, faults often result in power out-
ages, leading to substantial losses. These faults can stem 
from causes like short circuits, overloads, and human 
errors. Consequently, fault detection and classification 
stand as crucial functionalities that distribution auto-
mation systems need to possess. This not only enhances 
the reliability of distribution systems but also improves 
their operational efficiency and power supply quality. 
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Specifically, fault detection involves analyzing histori-
cal data to identify and locate faults within the power 
system, enabling timely repairs and restoration, thereby 
minimizing the impact of power outages on power sup-
ply and users [38].

The studies below provide a comprehensive overview 
of artificial intelligence methods in fault detection, as 
presented in Table 1.

In the study [10], researchers employed Genetic 
Algorithms (GA) to find optimal switching processes 
to achieve rapid power restoration in the event of 

transmission line faults, thereby significantly improving 
power system operation.

Predicting line tripping faults is a sub-problem within 
fault detection. In reference [19], authors combined 
a Long Short Term Memory (LSTM) network with a 
hybrid algorithm of Stacked Sparse Autoencoders to pre-
dict line tripping faults in both transmission and distribu-
tion, using LSTM networks to train and extract temporal 
features from data. Moreover, to enhance the accuracy 
of power system fault diagnosis, Yixing Wang et al. [20] 
introduced an approach based on Stacked Sparse Auto 
Encoder (SSAE), SVM, and Principal Component Anal-
ysis (PCA) networks. Simulation experiments demon-
strated the effectiveness and practicality of this method. 
Furthermore, Wang et al. [39] proposed a method using 
trained SAE to initialize and train DLNN for diagnosing 
and predicting faults based on current variations before 
the fault occurrence.

In the realm of fault diagnosis, Sragdhara Bhattacharya 
[41] proposed a method using Electromagnetic Tran-
sients Program software and ANN to classify and locate 
various types of faults in non-radiating power system 
networks. Experimental results demonstrated the meth-
od’s capability to rapidly and accurately identify faults 
and determine their locations. References [33] and [34] 
introduced new schemes for automatic restoration after 
power outages. One proposed method is based on ES, 
an advanced software application that has the potential 
to help engineers diagnose anomalies. It offers protective 
measures for unexpected process conditions and employs 
Fuzzy Logic (FL) to address the imprecision inherent in 
process trend representation for fault diagnosis. Further-
more, [23] proposed three simplified Bayesian Network-
based (BN) models for estimating fault segments in 
transmission systems. These models handle uncertain or 
incomplete power system diagnostic data and knowledge, 
demonstrating flexibility. Similarly, in reference [24], 
Bayesian Networks and Multi-Layer Perceptron (MLP) 
artificial neural networks were used for pattern recogni-
tion and non-linear regression in fault detection. Lastly, 
in [40], a simplified method for the Transmission Power 
Transfer Structure (TPTS) was presented. This approach 
employed a finite-capacity Petri net to formally describe 
the simplified structure. In contrast to previous fault 
diagnosis research, this method not only detects and 
recovers faults but also utilizes graphical tools from Petri 
nets to showcase the entire process of fault diagnosis.

In tandem with diagnosis, classification operations 
are often necessary. Mnyanghwalo et al. [38] studied DL 
methods for fault detection in secondary distribution 
networks, including GRU, RNN, and LSTM. Real-time 
measurements from datasets spanning 2014 to 2020 
showed that the RNN method achieved an accuracy 
of 94%, while Gated Recurrent Unit (GRU) and LSTM 

Table 1  Sub-problems of Fault Detection
Sub-Problem Description Type of method Status
Line trip fault 
prediction

Diagnose and predict 
faults through 
changes in current 
before they occur.

SAE + DLNN
LSTM + SVM
PCA + SVM + SSAE

 [39]
 [19]
 [20]

Power distribution 
during faults

When a fault occurs 
in a distribution 
line, the system can 
exchange electricity 
in a larger area faster 
than before.

GA  [10]

Fault diagnosis Improving the accu-
racy of Electrical fault 
diagnosis.

ES + FL
BN
BN + MLP
Petri
WT + ANN

 [34]
 [23]
 [24]
 [40]
 [41]

Automatic recov-
ery after power 
outage

Automatically restore 
power when an 
emergency occurs in 
the system.

ES  [33]

Fault detection 
and classification

Detect faults in the 
power system and 
classify them for 
processing

RNN, LSTM, GRU,
FFNN, ANN
GAN + CNN
RS + KCV
WT + DNN
CWT + CNN
GAN + CNN
Petri + Kalman filter
WT + MRA + ANN

 [38]
 [42]
 [43, 
44]
 [45]
 [46]
 [47, 
48]
 [49]
 [50]

Detect transform-
er faults

Identify faults in the 
transformer.

CSAE + DBN + BP
DBSAE + DGA

 [51]
 [52]

Cable fault 
diagnosis

Identify faults in the 
cable.

DBN  [53]

Single-phase 
grounding fault 
diagnosis

When a grounding 
fault occurs in a 
small current system, 
it is necessary to 
quickly diagnose it to 
shorten the time of 
operation with faults.

ACNN  [27]

Fault cause 
analysis and rapid 
restoration of 
power supply

Analyze the cause of 
the malfunction and 
restore power supply.

CNN  [54]

Fault assessment Evaluate unlearned 
faults.

Transfer learning  [55]
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methods achieved an accuracy of 50%. Additionally, S. 
Chan et al. [42] introduced a hybrid algorithm, CANN, 
combining GAN and CNN for fault detection. The algo-
rithm’s accuracy exceeded 85% in both single-phase and 
three-phase tests. References [43] and [44] proposed 
Rough Set (RS) technology-based solutions that provide 
information and system alert levels to operators, enabling 
more informed decisions and enhancing intelligent grid 
security and system management. James J.Q. Yu et al. 
[45] proposes a microgrid fault detection scheme based 
on wavelet transform(WT) and DNN. By preprocessing 
relay protection samples, extracting statistical features, 
and using deep neural network for fault information 
analysis, fast and accurate fault type and location detec-
tion can be achieved, showing superior performance in 
different systems, achieving higher predictive accuracy 
compared to traditional methods. Furthermore, refer-
ence [46] introduced a fault selection method for reso-
nant grounded distribution networks using Continuous 
Wavelet Transform (CWT) and CNN. The trained CNN 
performed feature extraction and fault feeder detec-
tion simultaneously, demonstrating more accurate per-
formance compared to other techniques like SVM. 
Reference [47] proposed a fault recognition method for 
distribution terminal voltage sampling modules using 
GAN and CNN. By utilizing a GAN model to generate 
samples and training CNN, this approach significantly 
improved fault detection accuracy. Similarly, reference 
[48] presented a specific fault category discrimination 
method for distribution terminal measured electrical 
data, combining GAN and CNN. Finally, reference [50] 
introduced a power system fault detection and classifi-
cation approach that combines WT, Multi-Resolution 
Analysis (MRA), and Adaptive Resonance Theory Neural 
Networks (ARTANN). This algorithm demonstrated high 
accuracy, robustness to various faults, and resistance to 
changes in electrical parameters.

In the context of transformer fault detection, refer-
ence [51] suggests the use of a deep belief SAE method. 
Reference [52], on the other hand, employs a Deep Basic 
Sparse Autoencoder (DBSAE) method based on DGA 
data. This method achieves an average correct rate of 
95.4% for transformer fault diagnosis, showing good dis-
crimination accuracy. Experimental results indicate that 
compared to KNN, SVM, and Back Propagation (BPNN), 
this method outperforms them in terms of performance.

For underground cable fault recognition in distribu-
tion systems, methods based on the DBN algorithm are 
widely employed [53]. Compared to traditional shal-
low neural networks, this approach achieves a recogni-
tion rate of 97.8%, while BP network recognition rate is 
86.6%, and ACCLN recognition rate is 94.1%. This under-
scores the evident advantages of the DBN-based cable 
fault recognition method. Similarly, in reference [49], a 

hybrid Petri net modeling method combined with fault 
tree analysis and Kalman Filtering is utilized for fault 
prediction and handling. Results show that this approach 
is practical and meets the demands of state-based fault 
prediction and handling in power systems. Furthermore, 
Jiefeng Liang et al. [27] propose an adaptive CNN-based 
fault diagnosis method for fault localization in distribu-
tion networks. This method provides short computation 
time and achieves high precision and speed in fault line 
selection. Similarly, reference [54] employs CNN for sim-
ilar purposes. In reference [55], authors introduce a novel 
transfer learning technique to assess multiple untrained 
faults. By comparing it with a dynamic security assess-
ment model, the effectiveness of this method is verified, 
with transfer learning achieving a 97.27% accuracy rate in 
fault assessment.

Network reconstruction and recovery
Distribution Network Reconfiguration (DNR) is an opti-
mization decision-making process aimed at enhancing 
the performance of distribution systems by altering the 
operational states of remotely controlled switches. DNR 
holds immense potential in several crucial aspects of 
power grid operation enhancement. It can be employed 
to minimize power losses or system costs, ameliorate 
voltage distribution, enhance load balancing, or improve 
system reliability. The DNR problem constitutes a mixed-
integer nonlinear conundrum, the intricacy of which is 
influenced not only by the uncertainty in active and reac-
tive power but also by the physical parameters of the sys-
tem [56]. Consequently, for a more effective utilization of 
DNR techniques in optimizing power grid operations, an 
in-depth exploration of these challenges is imperative.

The ensuing studies provide a comprehensive overview 
of artificial intelligence approaches in network reconfigu-
ration, as depicted in Table 2.

For the loss minimization issue, RL methods were 
employed by [31] and [32] to propose a batch-con-
strained algorithm using RL method, and Yuanqi Gao et 
al. [31] proposed a data-driven batch constraint RL algo-
rithm. By learning the network reconstruction control 
strategy in the historical operation data set, it does not 
need Power network interaction, and performed well in 
multiple distribution network experiments. At the same 
time, they use the offline RL method based on histori-
cal operation data, in the absence of network parameter 
information, the optimal network configuration can be 
realized online through Markov decision process mod-
eling. The algorithm aims at Minimize operating costs 
[32]. Additionally, John G. Vlachogiannis et al. [57] intro-
duced a GA-based tabular Q-learning approach for net-
work reconfiguration in distribution grids with the goal 
of minimizing power losses. References [58] and [59] 
presented a GA-based method for distribution network 
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loss-minimizing reconfiguration. On the other hand, 
Mustafa Mosbah et al. [60] proposed an algorithm based 
on the minimum spanning tree, aiming to minimize the 
total power loss by using the Kruskal algorithm on the 
premise of satisfying the power system constraints, and 
proves its effectiveness in optimizing quality, which pro-
vides a useful reference for practical applications.

K. Manjunatha Sharm et al. [5] introduced a network 
reconfiguration approach based on ANN and devel-
oped a software package named DISTFLOW. Genetic 
algorithms (GA) were utilized to determine the optimal 
compensation levels. In another study, [61] presented a 
method for obtaining optimal configurations for worst-
case scenarios of three-phase unbalanced DNR prob-
lems based on a distributed robust model’s probability 
distribution and a fuzzy set of loads. This method takes 
into account the characteristics of stochastic optimiza-
tion and combines the characteristics of robust optimi-
zation to obtain the optimal configuration scheme with 
robustness.

Regarding the issue of equipment load balancing, a 
novel hybrid approach was proposed in [63], combin-
ing LSTM and GRU models with real-time multi-stage 
scheduling for load management of controllable loads 
like Plug-in Electric Vehicles (PEVs). This approach not 
only applies to network applications involving loads and 
market operations but also enhances the efficiency of 
distribution networks. Sanjoy Das et al. [64] introduced 
a algorithm based on Q-learning for ship power system 
reconfiguration, achieving the shortest operating time by 
determining the optimal switch sequence. Similarly, [56] 
introduced a Q-learning framework for distribution net-
work restoration, aiming to optimize switch states and 
reduce power losses. This framework employs a tabular 
Q-learning algorithm for controlling network reconfigu-
ration to minimize power losses. J.S. Wu et al. [35] intro-
duced a candidate feeder system search method based on 
the main search path, incorporating a weighted evalua-
tion function and heuristic rules (HR). System optimi-
zation through efficient switching operations and load 
balancing provides a feasible solution for partially auto-
mated power distribution systems.

Xingquan Ji et al. [67] presented a real-time autono-
mous dynamic reconfiguration (ADR) method based 
on DL algorithms to reduce switching costs in distribu-
tion networks. This method can achieve reconfiguration 
solutions within milliseconds and exhibits high robust-
ness. Dayong Ye et al. [62] proposed a hybrid multi-
agent and Q-learning algorithm framework for rapid 
recovery under catastrophic power grid disturbances, 
combining the advantages of centralized and decentral-
ized architectures to achieve accurate decision-making 
and rapid response in cascading fault detection. Avoids 
single points of failure and demonstrates effectiveness. 
This approach enables swift recovery from catastrophic 
disturbances in the power grid system, including gen-
erator losses, ensuring accurate decisions and rapid 
responses to avert single-point failures in the network. 
A heuristic rule-based expert system was introduced in 
[3], leveraging optimal priority tree search techniques to 
address issues of main transformer or feeder overloads 

Table 2  Sub-problems of Network Reconstruction and Recovery
Sub-Problem Description Type of method Status
Loss minimization In reconfigura-

tion of networks, 
it is beneficial 
to select the 
configuration 
that provides the 
minimum distri-
bution losses.

RL
RL + Q-Learning
GA
Minimum Spanning 
Tree

 [31]
 [32]
、 
[57]
 [58, 
59]
 [60]

Planning and 
Control

Increase gen-
eration capacity 
and optimize 
transmission 
and distribution 
system design.

ANN + GA
DRO + DNN

 [5]
 [61]

Voltage limit 
violation

Maintaining the 
voltages within 
specified limits 
in all parts of 
the distribu-
tion network is 
essential.

HR + ES  [3]

Protection device 
coordination

Coordination 
between protec-
tion devices in 
the network 
should be done 
properly in order 
to avoid adverse 
effects.

Multiagent 
Systems + Q-Learning

 [62]

Load balance of 
equipment

Realize the 
load balance of 
equipment such 
as transformers 
and feeders, and 
avoid the situa-
tion that some 
equipment is 
overloaded and 
other equipment 
is lightly loaded.

LSTM + GRU
Q-Learning
RL + Q-Learning
HR

 [63]
 [64]
 [56]
 [35]

Real time 
implementation

Real time opera-
tion of restora-
tion assistance 
system will be 
beneficial.

HS
Multiagent Systems
GAM

 [65]
 [66]
 [36]

Cost control Reduce power 
losses and 
switching costs 
in distribution 
networks.

LSTM + ADR
Quantum PSO
HSA

 [67]
 [68]
 [69]
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and violations of feeder constraints in automated dis-
tribution systems. A heuristic search (HS) approach for 
distribution network fault restoration was presented 
in [65], aimed at determining the fault location, isolat-
ing the faulty area, and devising appropriate recovery 
plans thereafter. [66] proposes a power system restora-
tion method based on Q-learning, multi-agent systems, 
and battery algorithms, which comprehensively consider 
power constraints and find system switch configura-
tions to maximize system performance after load-pick-
ing failures and keep constraints intact during real-time 
adjustments sex. Yang HuPing et al. [36] determined 
the optimal timing of DNR using a gradual approach. 
Additionally, metaheuristic methods such as Quantum 
PSO [68] can be employed to address this problem. A 
method was proposed in [69] for determining annual 
feeder reconfiguration plans that consider time-varying 
variables such as switch costs and load distribution. This 
approach utilizes collaborative harmony search algorithm 
(HAS) and graph theory to independently determine 
optimal configurations for each day of the year, resulting 
in effective configuration plans.

Load forecasting
In many fields, predictive technology has been used to 
help avoid unnecessary losses [70–72]. Power load fore-
casting is a technology that predicts power demand for 
a period of time in the future by analyzing past power 
consumption data and other factors. This is crucial for 
the management and planning of power systems. It can 

help power companies and operators better arrange the 
use of power generation equipment, optimize energy 
distribution, and ensure stable operation of the power 
system and efficient use of resources [6]. The high pene-
tration of distributed energy resources into existing grids 
increases uncertainties in the operation and planning of 
smart grids. Therefore, accurate load prediction at differ-
ent levels is highly beneficial for enhancing the economic 
efficiency and energy conservation of distribution auto-
mation systems. This is particularly important for achiev-
ing optimized grid operations while ensuring stable and 
reliable power supply [12].

Below, I provide a detailed overview of artificial intel-
ligence methods used in load forecasting, as depicted in 
Table 3.

Load forecasting is influenced by various factors, 
including those that can alter the consumption patterns 
of loads. According to the time frame of the forecast, the 
first is short-term load forecasting (STLF), which predicts 
load changes in the next few hours, medium-term load 
forecasting (MTLF) covers the next few days to a week, 
and long-term load forecasting (LTLF). Load trends over 
weeks or even months [92].

SVM is a machine learning method utilized for load 
forecasting, as discussed in references [21] and [73]. Fur-
thermore, hybrid approaches are also often present and 
applied, which involves combining two different methods 
[22] [74]. In comparison to individual methods, hybrid 
approaches exhibit greater potential in addressing load 
forecasting challenges. Qi Wu et al. [22] introduces a 
Gaussian loss function to reduce the impact of noise on 
regression estimation. Reference [74] employed a wavelet 
neural network as the fundamental unit for air condition-
ing load prediction, and an Improved Differential Evolu-
tion Algorithm (IDEA) for optimizing the parameters of 
the wavelet neural network. Concerning hybrid methods, 
two types have been reported: one involves a blend of 
traditional and artificial intelligence methods, while the 
other combines two artificial intelligence methods [28] 
[75]. Reference [28] proposed an electricity consumption 
prediction method for equipment maintenance based on 
ANN and PSO algorithm. A. Selakov et al. [75] proposed 
a hybrid model for electric load forecasting that com-
bines particle swarm optimization (PSO) and SVM, and 
the results proved the feasibility of the method. The com-
bination of these two artificial intelligence methods pres-
ents an intriguing approach, as it leverages the strengths 
of artificial intelligence methods, as compared to either a 
single method or a blend of traditional and artificial intel-
ligence approaches. In reference [76], a method based 
on DBN and Composite Parameter Copula model was 
introduced for hourly load forecasting, validated through 
experiments with load data from urban areas in Texas. 
The effectiveness of the model was confirmed through 

Table 3  Sub-problems of Load Forecasting
Sub-Problem Description Type of method Status
Load 
Forecasting

Predicts power de-
mand for a period of 
time in the future by 
analyzing past power 
consumption data 
and other factors.

SVM
SVRM
WT
ANN + PSO
PSO + SVM
DBN
DRNN-GRU
Empirical Mode 
Decomposition
CNN
SDA
LSTM
LSTM-RNN
PDRNN

 [73]
 [22]
 [74]
 [28]
 [75]
 [76]
 [77]
 [78, 79]
 [80]
 [81]
 [82, 83]
 [84]
 [85]

STLF Ultra short-term 
load forecasting 
generally outputs 
load changes in the 
next few minutes to 
several hours.

DFN
FFDNN + RDNN
CNN + K-Means
DNN
DBN
COSMOS

 [86]
 [87]
 [88]
 [89]
 [90]
 [91]

MTLF Medium term load 
forecasting predicts 
the load values for 
the coming weeks 
and months.

SVM  [21]
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MAPE and RSME experiments. Using consumption data 
to construct a load dataset, the DRNN-GRU model for 
both STLF and MTLF was proposed [77]. Experimen-
tal data demonstrate the superiority of the model in 
adapting to time dependence, high prediction accuracy, 
and limited input variables, and it also shows effective-
ness in data filling. Jatin Bedi et al. [78] introduces the 
importance of electricity in the economy and society, 
proposes a method based on empirical pattern decom-
position and deep learning for estimating electricity 
demand, and verifies its effectiveness on urban electric-
ity consumption data. Ultimately, the predicted results 
from all IMFs are combined to obtain a composite output 
for power demand. Reference [79] presented a method 
for load demand prediction using the Empirical Mode 
Decomposition method, which involved an Australian 
energy DBN consisting of two Restricted Boltzmann 
Machines (RBM). In reference [80], the use of CNN for 
residential load forecasting was suggested, and the pro-
posed model was combined with CNN to reduce MAE. 
The paper also compared the CNN approach with other 
techniques. A Stacked Denoising Autoencoder (SDA) 
model for power load prediction was proposed in refer-
ence [81]. The output data of the SDA model was used 
as input for the SVR model during the training process. 
In reference [82], two methods based on LSTM were 
introduced for hourly and minute-level load demand 
forecasting. The results showed that the standard LSTM 
method struggled with accurate prediction, while the 
sequence-to-sequence (S2S) approach based on LSTM 
achieved more accurate predictions. Weicong Kong et 
al. [84] proposed a framework based on LSTM recurrent 
neural network to solve the short-term forecasting prob-
lem of single energy user’s power load with high volatility 
and uncertainty, and performed well in actual data tests. 
In reference [85], a Pooling-based Deep Recursive Neu-
ral Network (PDRNN) was proposed, where a batch of 
user load distribution data was fed into an input pool. A 
hybrid ensemble prediction model based on LSTM was 
presented in reference [83]. The predictive performance 
of this model surpassed several state-of-the-art time 
series forecasting models, exhibiting higher accuracy and 
robustness for peak demand prediction.

Particularly, significant achievements have been made 
in STLF. In reference [91], the Combined Short-term 
Energy Management and Forecasting System (COSMOS) 
was employed to combine short-term load forecasting 
models, achieving more accurate predictions of building 
electricity consumption. STLF uses various techniques, 
including traditional time series analysis and modern 
deep learning methods, to effectively deal with load fluc-
tuations, thereby providing reliable power load forecasts 
and helping power system planning and operations to be 
more efficient [6]. MTLF and LTLF can be used for power 

plant planning and represent the dynamic characteristics 
of power systems [12]. Several artificial intelligence algo-
rithms have been utilized for load forecasting based on 
small datasets [92]. Zhifeng Guo et al. [86] used a deep 
feedforward network for short-term power load fore-
casting for the first time, which performed better than 
the popular machine learning model. Combining the 
comprehensive analysis of power consumption patterns 
and temperature characteristics, they proposed a prob-
ability density forecasting method, which was proved by 
case studies. Effectiveness in Electric Load Forecasting. 
The results of this method were compared with machine 
learning tools like Random Forest and Gradient Boost-
ing. Other studies have applied different types of deep 
learning to various STLF problems. In reference [87], 
the application of feedforward DNN and recursive DNN 
models was investigated using STLF data for comparison. 
Reference [88] suggested using the K-means algorithm to 
synthesize CNN suitable for STLF, enhancing scalability 
by clustering large datasets into appropriate subsets and 
utilizing them for CNN training. Experimental results 
confirmed the effectiveness of this approach. Reference 
[89] combined DNN and CNN for STLF in northern Chi-
nese cities. The CNN method learned deep features from 
historical datasets, while RNN based on LSTM modeled 
changes in historical load data, predicting loads through 
dense layers. This flexible and effective approach could 
be applied to other prediction problems. In reference 
[90], a method using DBN was introduced, composed of 
a Macedonian STLF multilayer RBM, employing unsu-
pervised training and supervised backpropagation for 
parameter fine-tuning.

Network Security
The core objective of network security is to safeguard 
network infrastructure from the threats of network 
attacks. Attacks on the power system infrastructure 
pose challenges to the security of intelligent power sys-
tems [76]. Adversaries can manipulate measurement 
data without detection, thereby affecting the normal 
operation of the system. Therefore, early detection and 
response to such attacks are crucial for ensuring the 
secure operation of the power system. This necessitates 
not only the enhancement of protective technologies and 
measures but also the elevation of security awareness and 
risk response capabilities within the system [93].

The following studies offer a detailed overview of arti-
ficial intelligence methods in network security, as pre-
sented in Table 4.

To counter network attacks, various detection-based 
machine learning algorithms exist. In [100], a B-PDA 
framework based on artificial intelligence and block-
chain-supported technology is proposed for solving 
security issues in smart grids. This framework ensures 
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the integrity and privacy of the entire transaction execu-
tion. In [94], the use of CNN algorithms for detecting 
replay attacks is presented. The model is compared with 
other machine learning and deep learning models, dem-
onstrating high detection accuracy. The application of 
deep learning has found broad application in the security 
field. In [96], a Conditional DBN based on a distributed 
DL algorithm is proposed for detecting electricity theft 
behavior. Experimental results showcase high detection 
accuracy, confirming the method’s effectiveness. In [97], 
a Stacked Deep Polynomial Network is employed for 
intrusion detection, effectively categorizing datasets into 
normal and attack data, yielding strong intrusion detec-
tion performance. In [98] and [99], the application of 
DBN in network attack detection is explored. Experimen-
tal outcomes reveal DBN’s robust performance in attack 
detection. In [29], an approach based on SAE is pre-
sented for detecting data manipulation in power systems. 
Similarly, for predicting and detecting power system 
security vulnerabilities, employing SAE models is recom-
mended [101]. This model boasts simple implementation 
and shorter training time, achieving an average predic-
tion accuracy of 95.78% in a real Chinese system. In [95], 
a CNN algorithm based on DL is proposed for network 
intrusion detection in SCADA systems. Experimental 
results demonstrate high accuracy in detecting attacks in 
actual SCADA systems, reaching a detection accuracy of 
99.84%.

For the issue of electricity theft detection, a system uti-
lizing a CNN and LSTM structure is proposed in [102]. 
CNNs can perform data extraction functions and can 
classify the results. To protect smart grids, [103] suggests 
employing a CNN model for electricity theft detection. 
The wide branch learns and memorizes global knowl-
edge, while the DCNN branch classifies non-periodic 
and periodic power data. Similarly, in [104], an integrated 
CNN model for electricity theft detection is introduced. 
Compared to other methods like DCNN, Random For-
ests, and SVM, this model exhibits superior performance. 
Considering the characteristics of power data structures 
as time series data, Florian Thams et al. [105] proposes 
a two-dimensional CNN for electricity theft detection. 
A unique ANN approach called Text CNN is presented 
for electricity theft detection in [106]. Zeeshan Aslam 
et al. [107] proposed a new model, the combined ETD 
model consists of LSTM, UNet and Adaboost, called 
LSTM-UNet-Adaboost. overcomes the shortcomings of 
the limited capacity of traditional methods. This method 
leverages deep learning techniques and ensemble learn-
ing to enhance the performance of electricity theft detec-
tion, yielding a 39.6% increase in accuracy compared to 
SVM.

To address the issue of false data injection attacks, 
Rajendra Rana Bhat et al. [30] propose a new solution 

Table 4  Sub-problems of Network Security
Sub-Problem Description Type of method Status
Attack detecting Replay attacks 

in attack detec-
tion exploit 
the system to 
accept previous 
communica-
tions without 
adequate 
security mea-
sures, which can 
lead to security 
breaches.

CNN
CDBN

 [94, 
95]
 [96]

Security threat 
detection

Check and 
report potential 
vulnerabilities in 
the system.

Stacked Deep Polynomial 
Network

 [97]

Malicious traffic 
detection

Detect mali-
cious traffic in 
IoT networks 
and provide 
security as a 
service.

DBN  [98, 
99]

Interval state 
estimation

Maximize the 
variation range 
of system 
variables.

SAE  [29]

Safety hazard 
prediction

Predict po-
tential safety 
hazards that 
may arise in the 
system.

B-PDA
SAE

 [100]
 [101]

Electricity theft 
detection

Fraudulent 
electricity 
consumption 
reduces power 
supply quality, 
increases power 
generation 
load, leads 
to legitimate 
consumers 
paying exces-
sive electricity 
bills, and affects 
the overall 
economy.

CNN + LSTM
CNN
Text CNN
LSTM-UNet-Adaboost

 [102]
 [103–
105]
 [106]
 [107]

Identify non-
technical power 
losses

Power loss is in-
herent in power 
transmission 
and distribution, 
but it will lead 
to lower power 
conversion 
efficiency.

CNN、LSTM、SAE  [30]

False data 
injection

FDI is an at-
tack on Data 
integrity, which 
poses a serious 
threat to the 
SCADA system.

CDBN
MLP
AAE
GAN

 [108]
 [109]
 [110]
 [111]
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that combines techniques such as LSTM, CNN and SAE. 
These methods are researched for attacks in SCADA sys-
tems, providing a certain level of protection. In [108], 
the adoption of CDBN algorithm is proposed to identify 
false data injection attacks in smart grids. Experimental 
results demonstrate effective detection of FDI attacks 
with high accuracy (over 93%), surpassing ANN and 
SVM methods. In [109], MLP method is employed to 
detect two different types of attacks based on false data 
injection. Meanwhile, [110] proposes a data-driven algo-
rithm based on autoencoders and generative adversarial 
networks to detect unobservable false data injection 
attacks in smart grids, effectively improving security and 
accuracy. Saeed Ahmadian et al. [111] proposed a new 
network security method using GAN algorithm. This 
method targets attackers seeking to conceal identity and 
gain profits from attacking the power grid. Experimental 

results demonstrate the model’s effective detection of 
FDI attacks with high accuracy.

Voltage control
Voltage Var Control (VVC) is one of the important appli-
cations of power distribution system automation, with its 
primary aim being the reduction of network losses and 
enhancement of voltage distribution. Through effective 
VVC strategies, it is possible to achieve energy-efficient 
operation of the power system while ensuring the qual-
ity of power supply [112]. Therefore, this technology is 
of key significance in realizing optimal management of 
power systems.

The following studies provide a comprehensive over-
view of artificial intelligence methods in voltage control, 
as illustrated in Table 5.

Mina Jafari et al. [112] proposed a reinforcement learn-
ing method for network constraints to set control vari-
ables, applying the Q-learning algorithm to constrained 
reactive power control. The results show the superiority 
and flexibility of the Q-learning algorithm. For the VVC 
problem, a constrained MDP method is formulated [113]. 
In [114], Deep Deterministic Policy Gradient (DDPG) is 
introduced to modify voltage distribution and alleviate 
constraints on photovoltaic (PV) generation.

In order to solve the voltage stability problem, Sabo et 
al. [115] designed a nonlinear robust neuro-fuzzy con-
troller (NFC) damping controller to replace the tradi-
tional power system stabilizer (PSS), and successfully 
improved the stability and performance of the power 
system. NFC combines fuzzy control and artificial neural 
networks, integrating expert knowledge into fuzzy logic, 
eliminating the need for plant models and the learning 
capacity of artificial neural networks. Similar approaches 
are employed by Douidi et al. [116], employing a cas-
cade controller consisting of multiple PD fuzzy control 
blocks, and utilizing Particle Swarm Optimization for 
parameter tuning. Masrob et al. [117] propose a simple 
artificial neural network for real-time tuning of control-
ler parameters to achieve responsive control behavior. 
Chitara et al. [118] propose a hyper-heuristic approach, 
employing the Cuckoo Search optimization algorithm. 
Notably, all implemented algorithms have computation 
times exceeding 15  min. Applying metaheuristic algo-
rithm PSS aligns with logical expectations as the problem 
can be easily formulated as a quality factor. Zhu and Jin 
[119] adopt different methods. In this context, the rein-
forcement learning framework is applied to the optimiza-
tion problem of PSS. The Q-learning algorithm is applied 
to the PSS as an additional control.

In [120], a multi-agent Q-learning VVC framework 
is proposed to computational burden on central con-
trollers. The method is based on a fully distributed 
multi-agent framework. In [121], a Least Squares Policy 

Table 5  Sub-problems of Voltage Control
Sub-Problem Description Type of 

method
Sta-
tus

Detection and 
prediction of 
voltage limit 
violations

It is necessary to identify 
high or low voltage limit 
violation in the distribution 
network. Unexpected low 
voltage problems can arise 
due to many reasons such 
as emergency restoration, 
change of weather patterns 
or unexpected events.

CMDP
DRL

 [113]
 [114]

Voltage stability When there is a problem 
with the voltage, it may 
cause the system to lose 
stability.

NFC
CFPSS
ANN
Cuckoo 
Search 
optimization
Q-learning

 [115]
 [116]
 [117]
 [118]
 [119]

CLF problem By adjusting power system 
control variables to meet 
physical and operational 
constraints.

Q-learning  [112]

ORPD problem Optimizing reactive power 
can improve voltage stability 
and reduce energy loss.

Q-learning  [120]

Voltage deviation 
issue

Find a strategy to minimize 
the voltage deviation of the 
entire system by mapping 
the measurement of voltage 
amplitude and topology 
information to the variation 
of LTC tap ratio.

LSPI
DQN
EDLPC
ANN

 [121]
 [122]
 [123]
 [124]

VVO problem This process aims to 
optimize the distribution of 
reactive power so that the 
power system can operate 
in the most efficient manner 
subject to various physical 
and operational constraints.

DRL
Grid Mind

 
[125–
127]
 [128]
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Iteration (LSPI) algorithm is Used in power distribution 
systems to minimize voltage deviations by adjusting tap 
positions of on-load tap-changers, effectively reducing 
voltage deviations. The algorithm is introduced as a batch 
RL method, with considerations for scalability. In [122], 
a voltage regulation scheme combining data-driven and 
physics-based optimization is proposed to effectively 
deal with the voltage fluctuation challenges in modern 
distribution networks through smart inverters and deep 
reinforcement learning algorithms. An Emotional DL 
programming controller (EDLPC) is proposed for voltage 
control in power systems [123], comparative results with 
DNN and Q-learning algorithms attest to the effective-
ness of this approach. Additionally, ANN is utilized for 
online estimating the optimal parameters of traditional 
PSS [124].

Jiajun Duan et al. [125] using a multi-agent deep rein-
forcement learning method, a model-free voltage and 
reactive power optimization algorithm is developed, 
which achieves the dual goals of voltage regulation and 
power loss reduction in unbalanced power distribution 
systems through intelligent agents, and has achieved 
significant superiority. Yuanqi Gao et al. [126] proposed 
a voltage and reactive power control algorithm based 
on consensus multi-agent deep reinforcement learning, 
which is used to improve the performance of the active 
distribution network management system, and solve the 
operation time of voltage regulators, on-load tap-chang-
ers and capacitors It exhibits superior performance, com-
munication efficiency and resilience in table problems. 
Wang et al. [127] propose a voltage control multi-agent 
framework based on deep reinforcement learning. Duan 
et al. [128] also present an autonomous voltage control 
method based on the ‘Grid Mind’ framework, through 
data-driven model-free control agents, the safe operation 
and voltage control of the power grid are realized.

While the application of artificial intelligence technol-
ogy in distribution automation is becoming increasingly 
widespread, we still face certain challenges and limita-
tions. The following content provides a brief overview 
of frequently mentioned issues. These challenges are not 
only the current focus of research but also reveal critical 
factors that shape future directions. By comprehending 
and addressing these challenges, we can harness artifi-
cial intelligence technology more profoundly, facilitat-
ing progress and innovation in the field of distribution 
automation.

Challenges and limitations of distribution automation 
systems
In the course of advancing the development and appli-
cation of distribution automation systems, we inevitably 
encounter a plethora of challenges and limitations. From 
the perspectives of data quality and reliability, algorithm 

precision and interpretability, security and privacy pro-
tection, as well as resource and cost constraints, these 
issues collectively constitute critical topics that necessi-
tate careful consideration and resolution as we strive to 
implement intelligent acceptance systems for distribu-
tion automation. By surmounting these challenges and 
constraints, we can enhance the continuous improve-
ment and innovation of distribution automation systems, 
making valuable and positive contributions to the future 
development of the energy sector [129–131].

Data quality and reliability
The quality and reliability of data directly influence the 
accuracy and performance of a system, holding signifi-
cant implications for ensuring the safety and reliability 
of distribution systems. Issues within the data collection 
process constitute among the primary considerations 
for data quality and reliability [19] [39]. Factors such as 
sensor errors, insufficient sampling frequency, and inter-
ference during transmission can lead to distortion and 
inaccuracy in the data. Therefore, ensuring the accu-
racy and stability of data acquisition equipment, as well 
as reasonable sampling frequency, is the key to ensuring 
data quality and reliability [132]. During data transmis-
sion, errors, data loss, or transmission delays may occur, 
impacting data integrity and accuracy, thereby dimin-
ishing system reliability. Thus, effective data transmis-
sion mechanisms and error correction measures, such 
as employing redundant data, error correction, and data 
validation techniques, are necessary to enhance data reli-
ability and accuracy [133]. In addition, data integrity is 
also a key factor in ensuring data quality and reliability. 
Problems such as missing data, outliers, and inconsisten-
cies may mislead the intelligent verification and monitor-
ing of the system, thereby reducing system reliability and 
performance. Therefore, measures need to be taken to 
monitor and improve data integrity [134, 135].

Algorithm accuracy and interpretability
Algorithm accuracy is a key metric for evaluating the 
effectiveness of artificial intelligence algorithms. Within 
the framework of intelligent acceptance systems for dis-
tribution automation, we aim to precisely validate and 
monitor the status and performance of distribution 
terminals using algorithms. The accuracy of an algo-
rithm is influenced by various factors, such as the qual-
ity of training data, feature selection, and model choice. 
These factors can lead to decreased algorithm accuracy, 
thus impacting system reliability and performance [63]. 
Interpretability pertains to the capacity of artificial intel-
ligence algorithms to explain and present their decision-
making processes and outcomes. Researchers need to 
seek methods to enhance algorithm interpretability, such 
as designing and developing interpretable models. This 
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allows users and system operators to comprehend and 
trust the decision-making process and outcomes of the 
algorithm [136]. At times, improving algorithm accuracy 
may come at the cost of sacrificing a certain level of inter-
pretability, as more complex algorithms can be difficult to 
explain. Therefore, researchers need to comprehensively 
consider performance requirements, system needs, and 
user expectations for algorithm selection, finding the 
optimal balance between accuracy and interpretability 
for distribution automation intelligent acceptance sys-
tems [48] [73].

Security and privacy protection
Security involves safeguarding the intelligent acceptance 
system for distribution automation terminals from exter-
nal threats and attacks. As automation and connectivity 
advance, distribution automation systems become more 
vulnerable to network attacks and malicious activities. 
These attacks could lead to severe consequences such as 
system paralysis, data tampering, and information leak-
age [99]. Consequently, ensuring the security of distribu-
tion automation terminal intelligent acceptance systems 
is paramount. Privacy protection entails preventing the 
abuse or leakage of private and sensitive information 
related to distribution automation terminal data [108]. 
The system involves a substantial amount of power data 
and user information, encompassing sensitive details 
like users’ electricity consumption behavior and load 
information. Without proper protection, this data could 
pose risks to user privacy and information leakage. Thus, 
researchers must employ privacy protection measures 
like data anonymization, differential privacy preserva-
tion, and access permission management to effectively 
safeguard the privacy of distribution automation termi-
nal data [105]. Strengthening security and privacy pro-
tection can sometimes increase system complexity and 
costs, impacting system performance to some extent. 
Consequently, researchers need to holistically consider 
the relationship between security, privacy protection, and 
system performance, seeking suitable solutions [137].

Resource and cost constraints
Resource limitations refer to the potential inadequacy or 
constraints on resources within the intelligent acceptance 
system for distribution automation. These resources 
encompass computing power, storage capacity, commu-
nication resources, and more. When applying artificial 
intelligence algorithms, these resource limitations can 
impact algorithm execution speed, data processing capa-
bilities, and system scalability [138]. Hence, in design-
ing and implementing the system, careful consideration 
of resource allocation and optimization is necessary to 
meet system requirements and ensure efficient resource 
utilization [49]. Cost constraints are a significant factor 

to be reckoned with in the context of distribution auto-
mation intelligent acceptance systems. The application of 
artificial intelligence technology often incurs substantial 
costs in research and development, implementation, and 
maintenance. This includes costs associated with algo-
rithm development and optimization, data collection and 
processing, system integration and deployment, among 
other aspects [139]. Moreover, hardware and software 
expenses, human resources, and training costs also need 
to be taken into account. When applying artificial intel-
ligence technology, a comprehensive consideration of 
system performance, feasibility, and cost-effectiveness is 
crucial to make sure that the application of the technol-
ogy remains within an acceptable cost range [140, 141] .

In summary, addressing the challenges and limita-
tions in the field of distribution automation systems is to 
ensure a reliable, efficient and sustainable power supply 
to meet the needs of modern society and the economy 
and to prepare for future energy demands. This also helps 
make the power system more resilient, allowing it to cope 
with changing demand and environmental conditions.

Conclusion
This paper presents a thorough examination of how 
artificial intelligence algorithms are utilized in the field 
of intelligent acceptance systems for distribution auto-
mation terminals. By employing artificial intelligence 
techniques, intelligent validation and monitoring of 
distribution automation terminals can be achieved, 
enhancing system security and reliability while reducing 
operational and maintenance costs of the power system. 
Through researchers’ endeavors, methods and algorithms 
based on artificial intelligence for intelligent acceptance 
systems of distribution automation terminals have been 
continuously developed and explored, such as machine 
learning, deep learning, and expert systems. These stud-
ies have made significant progress and demonstrated the 
immense potential of artificial intelligence technology in 
distribution automation terminal intelligent acceptance 
systems.

The paper primarily reviews the existing research on 
artificial intelligence technology in distribution automa-
tion systems, encompassing areas like fault detection, 
network reconfiguration, load forecasting, and network 
security. Concurrently, it discusses the challenges and 
limitations that artificial intelligence still faces in distribu-
tion automation terminal intelligent acceptance systems. 
Among these challenges, data quality and reliability, algo-
rithm precision and interpretability, security and privacy 
preservation, as well as resource and cost constraints 
stand out as the most crucial. Addressing these chal-
lenges necessitates bolstering fundamental research and 
technological innovation to elevate the application level 
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and effectiveness of artificial intelligence in distribution 
automation terminal intelligent acceptance systems.

In conclusion, this paper offers a comprehensive and 
thorough perspective, elucidating the significant role 
and current applications of artificial intelligence algo-
rithms in distribution automation terminal intelligent 
acceptance systems. It serves as a pivotal reference for 
researchers and professionals engaged in power system 
intelligence and automation, while also providing insights 
for the future development and enhancement of distribu-
tion automation terminal intelligent acceptance systems. 
Moving forward, sustained research and innovation are 
imperative to confront the encountered challenges and 
propel the widespread application of artificial intelligence 
in the field of distribution automation.
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