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Abstract 

Intelligent reflecting surface (IRS) stands as a promising technology to revolutionize wireless communication 
by manipulating incident signal amplitudes and phases to enhance system performance. While existing research 
primarily centers around optimizing the phase shifts of IRS, the deployment of IRS on movable platforms introduces 
a new degree of freedom in the design of IRS-assisted systems. Leveraging flexible deployment strategies for IRS 
holds the potential to further amplify network throughput and extend coverage. This paper addresses the challeng-
ing non-convex joint optimization problem of the movable IRS and proposes a dynamic optimization algorithm 
based on proximal policy optimization (PPO) for dynamically optimizing the aerial position and phase configuration 
of IRS. Simulation results show the effectiveness of the proposed approach, demonstrating significant performance 
improvements compared to communication schemes without IRS assistance and conventional static IRS-assisted 
methods.
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Introduction
Intelligent reflecting surface (IRS) is a revolutionary tech-
nology that enhances wireless communication perfor-
mance [1]. Comprising numerous cost-effective, passive, 
and reflective elements arranged in a planar configura-
tion, IRS serves as a programmable surface capable of 
reshaping the entire wireless channel environment [2]. 
By accurately guiding signals to target areas, IRS effec-
tively reduces the power consumption of communication 
devices [3]. This energy-saving feature holds tremendous 
potential, especially for mobile devices within cloud com-
puting systems, where prolonged battery life is invaluable 
[4]. IRS technology boasts versatile applications across 
various domains, encompassing communication, opti-
cal communication, energy systems, military, civilian, 
and especially in high-energy-efficient communication 

scenarios such as Internet of Things [5], smart city [6], 
and industrial automation [7, 8]. Notably, IRS has the 
potential to optimize cloud computing systems from 
multiple critical perspectives, including communication 
quality [9, 10], energy efficiency [11], network perfor-
mance [12], and security [6], thereby improving the over-
all availability and reliability of the system.

Researchers have started to explore the design of the 
IRS-assisted system to address poor coverage and con-
nectivity issues that result in large uploading and down-
loading delays in cloud computing networks [13, 14]. 
The work [15] studies the phase optimization of IRS to 
improve the system sum rate performance. The refer-
ence [16] optimizes the phase shift and amplification of 
IRS to maximize the sum rate of multiple users in the 
uplink non-orthogonal multiple access system. These 
works consider deploying IRS in a fixed location, while 
the recent emergence of aerial base stations has brought 
new degrees of freedom to the IRS design. By exploiting 
a movable IRS mounted on an unmanned aerial vehicle 
(UAV), flexible 3D network coverage can be realized by 
placing an IRS wherever and whenever is needed [17]. 
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Rich literature [18–20] has shown that the deployment 
location of the UAV is an important parameter affect-
ing system communication performance. It is foreseeable 
that flexible deployment of IRS will further optimize sys-
tem network throughput and coverage range. However, 
there is still a lack of research on optimization algorithms 
for the deployment of movable IRS due to its relatively 
short development time.

Regarding the deployment of movable IRSs, traditional 
convex optimization algorithms may struggle to solve the 
non-convex problems of joint optimization of deploy-
ment location and reflection phase [21]. Though some 
algorithms such as particle swarm optimization [22] 
promise to find solutions to these complex problems, 
they still require repeated computations when the net-
work environment changes. Deep learning, an advanced 
artificial intelligence technique, harnesses multi-layered 
neural networks to model and learn complex data repre-
sentations [23]. Deep learning models promise to handle 
large-scale, high-dimensional data and autonomously 
discover data representations. This unique advantage 
enables them to perform a wide range of tasks, includ-
ing recommendation [24–26], detection [7, 8, 10, 27], 
and resource optimization [28, 29]. Deep reinforcement 
learning (DRL) harnesses the ability of deep learning to 
handle input data and discovers global optima for non-
convex problems through learning and simulating natural 
evolutionary processes without the need for strict mathe-
matical modeling [30]. Authors in Ref. [31] utilize DRL to 
jointly design the deployment location and passive beam-
forming of the IRS. Though results show that DRL can be 
used to solve the joint optimization problem of IRS, they 
consider the static deployment strategy during the ser-
vice. The work [32] considers the combination of IRS and 
UAV, and designs UAV 3D trajectory and IRS phase shift 
using DRL algorithm, but they utilize IRS to serve UAVs 
instead of using UAVs to carry IRS.

Therefore, this paper aims to propose an effective 
method based on deep reinforcement learning to design 
corresponding solutions. Specifically, this paper consid-
ers installing an IRS on a UAV to fully exploit the free-
dom of deployment and serve multiple users in a specific 
area. An algorithm based on proximal policy optimiza-
tion (PPO) is developed for the movable IRS, dynami-
cally optimizing both its position and phase to maximize 
received power at the user equipments. Simulation 
results demonstrate the effectiveness of this approach in 
enhancing network performance, outperforming com-
munication schemes without IRS assistance and tradi-
tional static IRS-assisted communication methods.

The rest of the paper is organized as follows. The sys-
tem model and problem formulation are depicted in Sys-
tem model section. Then, we present the details of our 
proposed algorithm for the joint location and phase opti-
mization for movable IRS in PPO-based joint location 
and phase optimization algorithm for movable IRS sec-
tion. Simulation results and discussions section presents 
the discussions of simulation results. Finally, Conclusion 
section concludes the paper.

System model
We consider a system where there is a single access point 
(AP), multiple user equipments (UEs), and a single mov-
able IRS mounted on a UAV, as shown in Fig. 1. In a wire-
less communication system, the IRS can offer substantial 
flexibility for data transmission, which is also an impor-
tant factor influencing the performance of cloud comput-
ing systems [13]. The AP is equipped with M antennas, 
and each antenna sends signals ω and the transmit power 
of the AP is limited to below Pmax . To reduce the com-
plexity of the problem, it is assumed that the AP transmits 
at its maximum power in our work. The AP is located in 
a fixed position and has a certain height, which allows 
it to cover a large geographical area and provide stable 
service for users within its coverage area. The movable 
IRS carried by UAV has the property of 3D coordinates, 
which allows it to move within a certain height range and 
horizontal range. Therefore, this article can dynamically 
adjust the location and direction of IRS according to the 
communication environment and needs, optimizing the 
quality of communication. It has two working modes of 
receiving signal and reflecting signal, which makes it can 
be flexibly adjusted and applied in different situations. In 
received signal mode, the IRS receives signals from wire-
less communication devices for channel estimation and 
phase adjustment. It is critical to optimize the communi-
cation effect. Because it enables the IRS to adjust the sig-
nal according to changes of the channel state, which can 
ensure the quality and stability of the signal. In reflection 
mode, the IRS will reflect the signal from the access point 
and send the signal to the client through reflection of cer-
tain phase. In this process, the IRS not only acts as a relay 
but also enhances the signal at the user by adjusting the 
phase of the reflection.

In our considered movable IRS-assisted wireless com-
munication scenario, multiple active signals are emitted 
from the AP. A portion of these signals is transmitted 
directly to multiple UEs via the AP-user channel, while 
another portion is first transmitted to the IRS via the 
AP-IRS channel, and then indirectly relayed to UEs after 
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reflection by the IRS through the IRS-user channel. This 
process enhances the received power at UEs. Simultane-
ously, the IRS is carried by a UAV, initiating movement 
from a specific location. It continuously searches for the 
optimal deployment position within a certain range and 
adjusts reflection phases to optimize the overall network 
performance of the wireless communication system. The 
IRS consists of N reflectors, Ny in the vertical direction 
and Nx in the horizontal direction, and N = NxNy . Each 
reflector can be programmed independently and has an 
independent phase. This phase angle is controlled by 
the IRS controller, which can be adjusted as needed to 
achieve the best network performance.

The channel models among AP, IRS-UAV and user 
are respectively hHd ∈ C1∗M , hHr ∈ C1∗N , G ∈ CN∗M . hHd  
represents the channel model between AP and user. hHr  
represents the channel model between IRS and user. G 
represents the channel model between IRS and AP. Ca∗b 
represents the complex valued matrix space of a ∗ b and 
H represents the conjugate transpose operation. There 
are multiple user terminal devices. The channel hHd  , hHr  
and G depend on the distance between AP and user, IRS 

and user, and IRS and AP, respectively. Denote Xirs , Xuser , 
Xap as the 3D coordinates of the IRS, UE and AP respec-
tively, these distances can calculated as:

These distances can affect the quality of the UEs’ 
received signal because the signal will have various losses 
during the propagation process.

Let θ = [θ1, . . . , θN ] � = diag(βejθ1 , . . . ,βejθN ) , where j 
represents an imaginary unit and diag represents the diag-
onal matrix. � represents the diagonal phase matrix of the 
intelligent reflector. θn ∈ [0, 2π ] and β ∈ [0, 1] respectively 
correspond to the phase and reflection coefficient. During 
the experiment, each reflector has to reflect the maximum 
signal. So the default reflection coefficient β is 1.

(1)distanceirs−user = �Xirs − Xuser�
2,

(2)distanceap−user =

√

∥

∥Xap − Xuser

∥

∥

2
,

(3)distanceirs−ap =

√

∥

∥Xirs − Xap

∥

∥

2
.

Fig. 1 A movable IRS-assisted multi-user communication network
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The signal y received by a user is

where θ represents the phase set at IRS, Sx , Sy , Sz repre-
sents the 3D coordinates of IRS-UAV, � represents the 
diagonal matrix constructed by θ , Pmax represents the 
maximum power. s is an independent and equally distrib-
uted random variable with zero mean and unit variance, 
and z represents the additional white Gaussian noise on 
the user receiver with zero mean and variance σ 2.

Thus, the signal power received by the user is:

The value of power is only related to the channel hHr  , 
G, hHd  between them, the diagonal matrix � constructed 
by the phase angle, and the signal ω at the transmitting 
point.

As indicated in the previous research [33], IRS deploy-
ment near the user side or the AP side has a good effect 
in the case of a single user. However, it was not applicable 
in the case of multi-users. Considering the coverage rela-
tionship between them, the optimization problem in the 
case of multi-users was mainly constructed. The sum of 
the power received by all users at a certain time t can be 
expressed as 

∑n
i Pti.

The optimization problem is constructed with the goal 
of maximizing the sum of the signals received by n UEs 
over a time period T:

where Xirs = (Sx, Sy, Sz) is the 3D coordinate of the IRS. 
The first constraint is the phase angle constraint of the 
IRS, and the second constraint restricts the movement 
of the IRS-UAV within a given interval S to adapt to the 
actual situation and avoid unlimited deployment.

PPO‑based joint location and phase optimization 
algorithm for movable IRS
This paper proposes a joint optimization algorithm for 
the airborne position and phase of IRS based on PPO to 
overcome the aforementioned challenges. The optimiza-
tion problem is formulated as a Markov Decision Pro-
cess (MDP), with carefully designed states, actions, and 
rewards to reduce the decision space of the algorithm. 

(4)y =
(

hHr �G + hHd
)

ωs + z,

(5)P =
∣

∣

(

hHr �G + hHd
)

ω
∣

∣

2
.

(6)

max
θ ,Sx ,Sy,Sz ,

T
∑

t

n
∑

i

Pti ,

s.t 0 ≤ θ < 2π ,
(

Sx, Sy, Sz
)

∈ S,

By leveraging the framework of deep neural networks 
(DNN), the IRS-UAV can learn from the environment 
and select appropriate strategies. Through the conver-
gence of the DNN, the optimal deployment scheme is 
ultimately obtained.

First of all, we introduce our MDP design. The defini-
tions of its state, action, and reward are as follows:
State: The state space is defined as 

S = [Sx, Sy, Sz , θ1, θ2, θ3, θ4, θ5] , where 
(

Sx, Sy, Sz
)

 repre-
sents the 3D dynamic position of the IRS-UAV which 
limited to a certain range, and θ1, θ2, θ3, θ4, θ5 are the 
discrete phase shift. Assuming that the IRS has a total 
of N reflection elements, adjusting the phase angle of 
these reflection elements independently at the same 
time will result in excessive overhead in the system 
state space and action interval. Therefore, we divide 
the N reflection elements evenly into 5 parts, (i.e., 
θ1, θ2, θ3, θ4, θ5 ), to avoid excessively large action inter-
vals and high model complexity.
Action: The action space is 

A =
(

ax, ay, az , aθ1 , aθ2 , aθ3 , aθ4 , aθ5
)

 , where (ax, ay, az) 
represents the action vectors of the IRS-UAV in the 3D 
space, (aθ1 , aθ2 , aθ3 , aθ4 , aθ5) represents the phase change 
of the corresponding reflection element in a step.
Reward: The reward is the power P received by the 

system user after executing the corresponding action in 
the current state state. The reward is the feedback sig-
nal obtained by the algorithm after the implementation 
of the action, which is used to guide the optimization of 
the model.

In addition, an end state done is also defined and 
done is set to True when the IRS motion exceeds a cer-
tain step, while the default value for others is set to 
False.

We use PPO for agent’s behavior learning, which is 
proposed in Ref. [34] and mainly consists of two parts: 
actor network and critic network. The actor network 
is designed in two parts: one part computes the mean 
and the other part computes the standard deviation. 
These two parts are combined to obtain the output of 
a Gaussian distribution. The part that computes the 
mean consists of multiple fully connected layers, each 
followed by a Tanh activation function. The purpose of 
the Tanh activation function is to introduce nonlinear-
ity and enhance the model’s expressive power and abil-
ity to fit complex nonlinear relationships. The Tanh 
activation function maps the output to a symmetric 
S-shaped curve within the range [−1, 1] , transforming 
the linear transformations of the input into a nonlinear 
space and increasing the model’s capacity for nonlinear 
fitting. The design of the critic network is similar to 
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the part of the actor network that computes the mean, 
but with a different output dimension. The final out-
put of the actor network is a vector of the same length 
as the action space, representing multiple concurrent 
actions, while the final output of the critic network is 
a single value representing the evaluation of the model.

Regarding the policy update of the algorithm net-
work, it mainly consists of the two following steps. 

1) Calculating the policy loss: First, using the current 
policy network parameters θ , the probability distri-
bution of actions is obtained based on the current 
interaction with the environment state. Then, using 
the old policy network parameters θk , the probabil-
ity distribution of actions is calculated for the same 
environment state. The two probability distributions 
are divided to obtain the probability ratio, denoted as 
rt(θ) . The policy loss function, denoted as LCLIP

θk
(θ) , 

is then defined as: 

 where Â
πk
t  represents the generalized advan-

tage estimation (GAE) of taking action at at time 
t under the old policy θk . The advantage is a meas-
ure of how much better or worse an action is com-
pared to the average action taken in that state. 

(7)L
CLIP
θk

(θ) = E
τ∼πk

[

T
∑

t=0

[

min
(

rt(θ)Â
πk
t , clip(rt(θ), 1− ε, 1+ ε)Â

πk
t

)]

]

,

clip(rt(θ), 1− ε, 1+ ε) is the clipping function 
applied to the probability ratio rt(θ) . It ensures that 
the policy update does not deviate too far from the 
old policy, and ε controls the degree of clipping. The 
overall objective is to maximize this loss function 
with respect to the new policy parameters θ while 
ensuring that the policy update remains within a cer-
tain range. If the probability ratio exceeds this range, 
the loss is truncated to limit the magnitude of policy 
updates. This is implemented to prevent significant 
changes in the policy network within a single update, 
avoiding training instability.

2) Updating the network parameters: The parameters 
of the policy network θk+1 are obtained by maximiz-
ing the clipped surrogate objective LCLIP

θk
(θ) through 

techniques like backpropagation and gradient 
descent: 

After introducing the structural design of the algorithm, 
the overall process of the PPO-based location and phase 
optimization algorithm for the movable IRS algorithm is 
shown in Algorithm 1.

(8)θk+1 = arg max
θ

L
CLIP
θk

(θ).

Algorithm 1 PPO-based location and phase optimization algorithm for movable IRS
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Simulation results and discussions
The location of the AP is set to (0,0,2), that is, the ori-
gin of the coordinates of the horizontal position. The 
intelligent reflector reflection units are divided into 5 
groups for phase adjustment. The total number of users 
is between 5 and 10, and the user locations are relatively 
clustered. In terms of channel, the intelligent reflec-
tor channel and base station channel are considered 
as uniform rectangular array and uniform linear array 

respectively. The signal attenuation of all channels is 30 
dB in the range of reference distance 1. The correspond-
ing channel matrix G has rank 1 and the row and column 
vectors are linearly dependent. The AP-user (direct) and 
AP-IRS-user channels are set to have 10 dB penetration 
losses, as well as their independent Rayleigh fading and 
path loss indices of 3. Set the signal gain at the user and 
AP to 0 dBi, and each reflector signal gain to 5 dBi. For 
all simulations, the information transmission scenario is 
considered and the power size and signal-to-noise ratio 
of the user’s receiver are used as performance indicators. 
The specific parameters are listed in Table 1.

To further optimize the model, several common opti-
mization techniques, including regularization, gradi-
ent clipping, orthogonal initialization, and learning rate 
decay, were employed in this work. Specifically, to further 
optimize the model and reduce its complexity, enhance 
generalization, reduce overfitting, and improve stabil-
ity, this study applies advantage function regularization. 
After calculating the advantages for a batch using GAE, 
the mean and standard deviation of advantages for the 
entire batch are computed, and each advantage value is 
then normalized by subtracting the mean and dividing by 
the standard deviation. State and reward regularization is 
performed to ensure that states and rewards are within 
a consistent scale, preventing large or small rewards 
from adversely affecting model training, especially when 

Table 1 Main simulation parameters

Parameters Values

Number of AP antennas 8

Number of IRS reflection units 50

Height of base station (meters) 2

actor learning rate 3× 10
−4

critic learning rate 3× 10
−4

Discount factor γ 0.99

GAE parameters � 0.95

Renewal amplitude ε 0.2

Hidden layer size 64

Maximum training times 3× 10
6

Batch size 2048

Mini batch size 64

Fig. 2 Convergence of the proposed algorithm
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computing value functions. To prevent and address gra-
dient explosion issues, gradient clipping was applied 
during practical training. Specifically, after calculating 
the loss, before updating the actor and critic networks, a 
threshold was set to control the magnitude of gradients, 
ensuring they do not become too large and preventing 
gradient explosions. This clipping ensures that gradient 
values are truncated within a reasonable range. Addi-
tionally, orthogonal initialization was introduced to fur-
ther mitigate gradient-related problems. During neural 
network training, the learning rate is gradually reduced 
as training progresses. This gradual reduction in learn-
ing rate as the total training steps increase helps reduce 
fluctuations in later stages of training, enhancing model 
stability and accelerating convergence.

Then we analyze the convergence performance of the 
proposed algorithm through simulations, paying spe-
cial attention to the impact of the optimization methods 
mentioned above on the algorithm performance. The 
result is shown in Fig.  2, and the horizontal axis is the 
number of algorithm training steps and the vertical axis is 
the real-time reward obtained after training and evaluat-
ing the current model. The curve in blue is the proposed 
PPO-based location and phase optimization algorithm 
with optimization techniques. Before 5× 105 steps, it is 
still in the exploration stage and PPO algorithm has not 
yet converged, which is highly volatile. After the execu-
tion of 5× 105 steps, the PPO algorithm basically con-
verges and only fluctuates up and down within a limited 

range, which indicates that the optimal deployment posi-
tion and phase have been reached, and the dynamic 
deployment of movable IRS has been realized. The curve 
in gray is the PPO-based algorithm without using the 
aforementioned optimization measures, and the conver-
gence rate is slow and the effect is poor, which proves 
the effectiveness of the optimization measures proposed 
above. Results show that the optimization approaches we 
adopted can significantly improve the convergence speed 
and performance of the algorithm.

To analyze the solving efficiency of the algorithm, 
we compare the proposed algorithm with the method 
based on mathematical optimization, as shown in 
Fig. 3. The horizontal axis is the number of users, that 
is, the problem size of the task being solved. The verti-
cal axis is the solution time required. As can be seen 
from the figure, it can be seen that the method based 
on mathematical solving experiences a rapid escalation 
in solving time as the number of users grows, while the 
algorithm based on PPO has little change in solving 
time for the increase in the number of users within the 
same range. It can also be noticed that for a given prob-
lem scale, the proposed PPO-based algorithm exhibits 
notable efficiency advantages compared to the math 
method. Moreover, as the problem scale expands, these 
efficiency advantages become increasingly pronounced. 
It reflects the advantages of deep reinforcement learn-
ing in dealing with complex, high-dimensional and 
nonlinear problems.

Fig. 3 Comparison of algorithm solving efficiency
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Fig. 4 Comparison of algorithm under different user number

Fig. 5 Comparison of algorithm under different AP transmission power
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The algorithm performance under different number of 
users and different AP transmit power is shown in Figs. 4 
and 5, respectively. It can be seen from the figure that 
with the increase of the number of users, the received 
power increases, and higher transmitting power leads 
to exponential growth in received power at the user end. 
We compare our proposed scheme with the other three 
schemes. In the ideal scheme, the result is obtained by 
mathematical optimization. The IRS without optimi-
zation scheme represents the case where the position 
of the IRS is not optimized but fixed in a random place 
and only the phase shift of IRS is optimized. In the with-
out IRS scheme, IRS is not employed and AP transmits 
its signal to users. It can be seen that the result of the 
proposed algorithm is very close to the result of math-
ematical optimization under various network conditions, 
which performs much better than the other two cases. It 
can also be seen from the figure that the case without IRS 
achieves the worst performance. This outcome indicates 
that IRS can enhance communication performance, with 
even greater improvements when using movable IRS, 
thanks to its flexibility in deployment, which introduces 
new performance gains.

Conclusion
This paper addresses the joint optimization problem of 
phase shift and the location of a movable IRS which is 
equipped on a UAV in an IRS-assisted multi-user wire-
less communication system. A PPO-based joint dynamic 
optimization algorithm is designed for controlling the 
aerial position and phase of IRS. The simulation results 
show that the proposed scheme can improve the network 
performance of the system compared to communication 
schemes without IRS assistance and traditional static 
IRS-assisted communication schemes. Additionally, the 
proposed algorithm also has good performance in both 
convergence and solving efficiency. In future work, we 
will consider the coordinated deployment of multiple 
movable IRSs to accommodate scenarios with dispersed 
user distributions.
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