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Abstract 

With the development of cloud computing and deep learning, an increasing number of artificial intelligence mod-
els have been applied to reality. Such as videos on cell phones can be uploaded to the cloud for storage, which 
is detected by cloud arithmetic. Nevertheless, achieving this goal requires frequent consideration of the security 
of the model, since videos or images that go to the cloud, it is very likely to receive an adversarial attack. Regarding 
object detection, there has however been slow advancement in robustness research in this area. This is because train-
ing a target detection model requires a lot of arithmetic and time. Moreover, the current research has only slightly 
reduced the gap between clean and adversarial samples. To alleviate this problem, we propose a uniform perspec-
tive object detection robustness model based on bilinear interpolation that can accurately identify clean and adver-
sarial samples. We propose the robustness optimization based on uniform metric perspective (RPU) for feature 
learning of clean and adversarial samples, drawing on the fine-grained idea. Following this, we analyze the fragility 
of the adversarial samples and consequently use the proposed perturbation filtering verification (PVB) based on bilin-
ear interpolation. With slightly degraded clean sample detection performance, it substantially improves the robust-
ness of object detection. Extensive experiments on PASCAL VOC and MS COCO show that our model guarantees 
the detection performance of clean samples and increases the detection performance of adversarial samples. The 
work we did has been open-sourced on GitHub: https:// github. com/ Kujou Riu/ RPU- PVB.

Introduction
Object detection [1], which is a core task in the field 
of computer vision, aims at identifying specific tar-
gets in images or videos and determining their loca-
tions. With the rapid development of deep learning, 
object detection has made significant progress and has 
been widely applied. Cloud computing [2], with a pow-
erful way of centralized management of computing 
and storage resources, provides strong support for the 

implementation and application of object detection. 
While cloud computing provides powerful computing 
support for object detection, security [3] is also a con-
cern. Adversarial perturbation is a perturbation attack 
based on the gradient of features generated by the image 
entry model. Moreover, the attacker can target the attack 
model accurately and imperceptibly. In other words, it is 
difficult to make correct predictions for this attack model 
where the attacker already knows the model structure or 
generates migratory counterattack samples. Currently, 
adversarial defense for image classification has received a 
lot of attention, and as a result, a large number of adver-
sarial defense models [4, 5] have been created. There is 
a lack of research in this area for object detection tasks. 
This is because the datasets for object detection are rich 
in variety and complex in context, such as PASCAL VOC 
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[6], and Microsoft Common Objects in Context (MS 
COCO) [7]. Therefore, training robust object detection 
models also costs more resources than image classifica-
tion models. In the blockchain arena [8], a great deal of 
security research [9–12] has been conducted. The traffic 
prediction for example uses blockchain [13, 14] to secure 
the model, and blockchain is used to evaluate the more 
sensitive reputation data in industry [15] to ensure fair-
ness and security. For edge computing [16], there is also a 
great deal of research [17] to ensure security.

Although research on the defense of object detection 
models has progressed slowly, some scholars are trying 
hard for it. MTD [18] improves the robustness of object 
detectors against different types of attacks by general-
izing the adversarial training framework from classifi-
cation to detection. Meanwhile, CWAT [19] generates 
more reasonable adversarial samples by balancing the 
selection of attack categories. RobustDet [20] points 
out the drawbacks of the first two approaches, namely, 
introducing adversarial samples into training makes the 
model choose and compromise between the accuracy of 
clean samples and that of adversarial samples. A robust 
detection model with adversarial-aware convolution is 
proposed to learn the robust features of both clean and 
adversarial images, thus greatly improving the detection 
ability of the model for adversarial samples.

Throughout this paper, we first build a reasonable loss 
by controlling the distance before clean samples and 
adversarial samples, drawing on the study of loss func-
tions in fine-grained classification. In detail, fine-grained 
image classification is based on distinguishing the basic 
classes and performing finer subclasses. Whereas, for the 
adversarial samples, the features extracted by the model 
are used to build a finer division between adversarial 
and normal samples, which is used to guide the model 

to generate dynamic convolution parameters with dif-
ferent weights. The distance features are established by 
aggregating the features in the samples with the cosine 
similarity between the clean and adversarial samples, 
which are used as supervisory information to control the 
model optimization parameters by minimizing the dis-
tance features of positive samples while maximizing the 
distance features of negative samples to further gener-
ate more reasonable weights. Furthermore, we propose a 
reconstructed image method based on bilinear interpo-
lation with perturbation filtering verification, by which 
we enhance the correct labeling features of the image by 
sampling and filtering out the attack perturbations of the 
image to obtain a more robust object detection model. 
With the combination of the two methods, we obtain the 
lowest performance gap, as shown in Fig.  1 . Extensive 
experiments on PASCAL VOC and MS-COCO datasets 
demonstrate that our proposed method has excellent 
detection capability and also achieves a high level of per-
formance in dealing with attacks from different adversar-
ial samples.

• We propose a metric-based dynamic convolutional 
parameter update method by targeting fine-grained 
studies to migrate to a model for object detec-
tion against the defense, by measuring the distance 
between clean and adversarial samples by the feature 
gradient of the input image, which greatly improves 
the robustness of the object detection model.

• By analyzing the correlation between the pixels of the 
adversarial samples, we provide a basis for enhancing 
the adversarial robustness by analyzing the fragility 
of the adversarial samples.

• With a reconstruction image method based on 
bilinear interpolation for perturbation filtering 

Fig. 1 The left shows a comparison of the model’s detection performance when subjected to different samples (clean vs. adversarial), in which 
we can see that there is almost no degradation in our accuracy for clean samples. In addition, we achieve the best detection performance 
against adversarial samples, realizing the smallest performance gap (highest vs. lowest performance difference). While the right figure shows a more 
intuitive comparison of the sum of performance detection, which shows that our proposed method achieves the highest performance
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verification, we propose to filter the well-designed 
adversarial perturbations by up and downsampling 
to obtain better robustness of the object detection 
model.

• Our experiments test the performance of the model 
on top of the PASCAL VOC and MS-COCO data-
sets, where not only the detection ability of the object 
detection model for clean samples is not significantly 
degraded, but also the detection ability of the model 
for adversarial samples is improved, and the state-of-
the-art performance is achieved in comparison with 
previous methods.

Related work
Image classification adversarial offensive and defensive 
development
Since the creation of adversarial perturbations against 
deep neural networks, more and more attack methods 
have been investigated. For example, a white-box attack 
where the attacker knows the target model information, 
i.e., the input image is perturbed to a certain limit, forc-
ing the gradient obtained by the model to rise, resulting 
in a larger loss function. Common white-box attacks such 
as I-FGSM [21], PGD [21], DeepFool [22] etc.

While for black box attacks, the attacker only needs to 
generate adversarial samples with generalization through 
one or more neural networks. These adversarial samples 
are powerful for different models, such as MI-FGSM 
[23], SI-NI-FGSM [24], V 2MHI-FGSM [25], etc. Precisely 
because of the large number of attack methods studied in 
depth, numerous adversarial defenses have been gener-
ated to fight against them. Mostly, the approaches force 
the model to learn the information about the features 
brought by the adversarial samples and thus reduce the 
influence of the adversarial samples on the network.

Adversarial Training (AT) [26] is a technique applied in 
machine learning with the idea of improving the robust-
ness of a model by adding samples with perturbative 
properties to the model. This technique can effectively 
counter attacks and improve the reliability and security 
of the model. The technique was first proposed by Good-
fellow et al. The main idea is to add some artificially gen-
erated adversarial samples to the training data, which can 
deceive the model and thus force it to learn a more robust 
feature representation. Adversarial training is effective 
against various types of attacks, including input pertur-
bation, target misdirection, etc. Several developments in 
adversarial training include defenses based on generative 
adversarial networks (GANs) [26], label-free adversarial 
training [27], to further improve the robustness of mod-
els using methods such as self-supervised learning [28].

Adversarial attack and defense development based 
on object detection
The development of object detection has received great 
attention and models with different structures have been 
proposed one after another. For example, based on the 
first stage YOLO [1], SSD [29], RetinaNet [30], etc., these 
models perform regression and classification predic-
tion on the prediction frame directly, which has a strong 
advantage in speed. The most representative of the two-
stage models is Fast R-CNN [31], which first extracts 
the candidate frames for secondary correction based on 
images and then performs output prediction. And the 
transformer-based approach introduces the attention 
mechanism into the field of object detection, hoping to 
incorporate relational information in the features and 
achieve feature enhancement. The most representative 
models are Relation Net [32], DETR [33], etc.

Even though scholars continue to improve and enhance 
the models, the security of the models cannot be ignored. 
Adversarial attacks against object detection have also 
been proposed, and these methods can attack the models 
efficiently. Such as DAG [34], UEA [35], and GLH [36], 
the attacks on the model are achieved by adding to the 
image through computational perturbation for the fea-
tures. Whereas Dpatch [37] and AdvTexture [38] affect 
the model output by training patches and making the 
model predict incorrectly by modifying the pixel points 
of the patches. Each of these attack methods without 
exception defeats the model judgment.

In comparison to attack methods, defense methods for 
object detection have been slow to develop. Although 
various methods have been proposed to improve model 
robustness, these models only mitigate the weaknesses of 
the models. The MTD [18] adversarial defense method 
proposed by Zhang et  al. uses a multi-task supervised 
source for adversarial training, treating object detection 
as multi-task learning to train parameters. The CWAT 
[19] proposed by Chen et al. improves the sample quality 
of adversarial training by generating a generic adversarial 
attack to simultaneously attack all of the targets, jointly 
maximizing the respective loss of each object to improve 
the sample quality of adversarial training. RobustDet 
[20], on the other hand, uses another idea to improve 
model robustness by first using triple loss de-supervised 
dynamic convolution to learn the features of clean and 
adversarial samples, followed by enhancing the detection 
of adversarial samples by the distance between the VAE 
[39] reconstructed image and the clean samples.

Regarding the above object detection adversarial 
defense methods, none of them analyze the nature of the 
features of the adversarial samples, we detail our stronger 
dynamic convolution loss to obtain a more robust model 
in Method section, and we detail the comparison of 
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experiments and ablation experiments in Experiment 
section. And in Visualization section we will understand 
our method from a visualization perspective, and finally, 
in Conclusions section we conclude and look ahead.

Method
Adversarial attack settings for object detection
The adversarial attack for object detection and the adver-
sarial attack for image classification share the same prin-
ciple of adding noise to maximize the loss. The difference 
is that an adversarial attack for object detection requires 
targeting multiple objects in the image at the same time 
and is substantially more challenging to attack. While 
the targets of the attack are classification attack(Acls ) and 
boundary regression box attack(Aloc ). We want to obtain 
the classification probability Ci = {c

bg
i , c1i , c

2
i , . . . , c

bg
n } , 

where bg represents the probability of the background, 
as well as cin represents the class prediction of n targets 
in the image, under the detector f with parameter θ . The 
next obtained localization prediction Bi = {bxi , b

y
i , b

w
i , b

h
i } 

represent the bxi  and byi  coordinates of the boundary 
regression box for object detection, while bwi ,bhi  represent 
the length and width of the boundary regression box.

For the attack mode, it is defined as follows:

Where Ĉi B̂i represent the labeled classification and 
localization information of clean samples, which we want 
to maximize the classification loss or localization loss to 
attack the model, as the basic principle of object detec-
tion against attack.

Overall framework
A high-performance object detection defense model is 
proposed to address the problem that the performance 
gap between clean and adversarial samples is too large 
for object detection. Using the idea of fine-grained clas-
sification, the feature extraction of an image is first seen 
as a binary classification problem. The weights of the 
dynamic convolution are supervised through a uniform 
metric ground perspective so that the features extracted 
by the model are as similar as possible in the adversarial 
and clean samples. Furthermore, we use bilinear interpo-
lation perturbation filtering to reconstruct the image in 
the validation phase, removing unnecessary adversarial 
perturbation information in the sampling process:

During the training phase, the RPU (robust optimiza-
tion based on the perspective of uniform metrics) mod-
ule gives the images the supervised information, which 
is used by Resnet18 [40] to extract the feature informa-
tion of the model and assign different feature weights to 

(1)Acls(x) = arg max
x∈[0,255]

Lcls(f (x; θ), Ĉi), Aloc(x) = arg max
x∈[0,255]

Lcls(f (x; θ), B̂i),

the dynamic convolution to ensure that the clean image 
and the adversarial image of the same label are eventu-
ally extracted with the same features. In the validation 
phase, to obtain a more robust defense model, we use the 
PVB (Perturbation filtering verification based on bilinear 
interpolation) module to filter the adversarial noise. The 
overall process is shown in Fig. 2.

Robust optimization based on the perspective of uniform 
metrics (RPU)
While previous adversarial defenses usually use adver-
sarial training to learn the features of the adversarial sam-
ples, such an approach affects the detection accuracy of 
clean samples with little robustness improvement. Con-
sequently, most methods [18] seek a balance between the 
accuracy of clean samples and adversarial samples. On 
the contrary, we refer to the Adversarially-Aware Convo-
lution proposed by RobustDet [20] because this method 
can use a network with dynamic weights to achieve the 
same detection results for both clean and adversarial 
samples, as shown in Fig. 3:

Obtaining various weights (Conv1, Conv2, etc.) cor-
responding to different convolutional kernels ( π 1, π 2, 
etc.) from the feature extraction network, calculating the 

output of the function y by summing up the summarized 
feature information using triplet loss [41] as the supervi-
sory information. Unfortunately, this loss function does 
an inability to carefully discriminate between adversarial 
samples and clean samples.

To address this challenge, we utilize the idea of com-
parative learning for fine-grained identification, which 
in this paper, for the first time, proposes a robust opti-
mization method based on a uniform metric perspec-
tive, where the distances of samples of the same class 
(clean samples to clean samples and adversarial sam-
ples to adversarial samples) are considered as intraclass 
distances, whereas the distances of samples of different 
classes (clean samples to adversarial samples) are consid-
ered as interclass distances.

Circle loss [42] has been extensively used as a loss func-
tion for classification problems in areas such as face recog-
nition. An objective of the circle loss function is to cluster 
data points in the same category into tight clusters, but also 
keep the distance between different categories as much as 
possible. Consequently, Circle loss is a loss function based 
on margin control, which introduces two parameters, mar-
gin, and radius, where the margin is used to control the 
distance between different samples in the same category, 
and radius is used to control the size of clusters. For the 
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adversarial sample domain, we apply the circle loss func-
tion to both supervised clean samples and adversarial 
samples, so that the dynamic convolution of the defense 
model can correctly learn the features and assign different 
weights. Accordingly, our model can discriminate adver-
sarial samples more carefully, thus improving the robust 
learning ability of the model.

The supervised loss function for dynamic convolution in 
the proposed method is shown as below:

where s(cosθip +m) , denotes intra-class robustness. 
s(cos(θin) , denotes inter-class robustness. Regarding the 
sample i, Ni and yi are, separately, the respective sam-
ple size in the category in which the first i sample is 

(2)

LRcir = −
1

Ni
�Ni

yi=plog
exp{s(cosθip +m)}

exp{s(cosθip +m)} +�C
n=1,n�=pexp{s(cos(θin)}

,

located, together with the category or location to which 
it belongs. p represents the positive samples of the ith 
sample, whereas n represents the negative samples of the 
ith sample, and thus satisfies n  = p , which represents the 
total number of classes or locations, by calculating the 
intraclass cosine similarity, θip , and the interclass similar-
ity, θin , using the intraclass separation degree m to con-
trolling the distance between sample feature vectors. 
Simultaneously, s is the feature scaling factor, which we 
compute using the default value.

As opposed to Triplet loss, the circle loss function 
introduces intra-class separation, which enforces the 
distance between samples of the same class through m 
and increases the distance between samples of different 
classes through s. The circle loss function is a method for 
the network to learn the difference between samples of 
the same class and samples of a different class. Through 

Fig. 2 Overall structure: After adding perturbations to the local device, the input is fed into the cloud device for predicting the output results

Fig. 3 Dynamic Convolutional Computing Process in the Cloud
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this method, the decision boundary between adversarial 
and clean samples is delineated, further strengthening 
the control of intra-class distance and enabling the net-
work to learn their feature differences more accurately. 
The total loss function is as follows.

Ldet is the loss function of SSD, while LRcir is the loss 
function we have applied. For α and β , we use the same 
parameters to compare RobustDet as more fairest

The fragility of the decision interval against the sample
The weakness of deep learning models is that adversar-
ial samples may be intentionally created to perturb the 
input samples, which can produce incorrect classifica-
tion results or misleading outputs. Adversarial samples 
are essentially gradient ascent processes, whereas the 
procedure of generating adversarial samples is inciden-
tally the process of maximizing the model loss function. 
An example of an adversarial sample can be summa-
rized as the min-max problem. Min-max refers to the 
attacker’s attempt to find a perturbation to maximize 
the deception of the model, which expects to minimize 
the loss expectation of the entire data distribution in the 
case of adversarial samples, as shown in the following 
equation:

Among them, L denotes the loss function of the model, 
which is used to calculate the distance of the model out-
put from the label. x is the input image and δ is the addi-
tive perturbation vector. y is the target label of the attack, 
which is the direction we have to mislead. Whereas D is 
the distribution of the data (x, y), θ is the network param-
eters of the model. To minimize the human eye’s recog-
nition of the adversarial samples, the attacker wants the 
perturbation δ to be in the S range.

Consequently, we can consider the adversarial sample as 
a carefully computed image; in other words, the adversarial 
sample is equally fragile. As every pixel of the adversarial 
sample plays a crucial role in maximizing the loss of the 

model, this results in the adversarial sample also in a vul-
nerable decision interval. Accordingly, we can reduce the 
maximization of the loss function by simply altering the 
pixel values. In the adversarial sample, each pixel is highly 
connected, therefore we can destroy the effect of the attack 
on the adversarial sample by simply corrupting the correla-
tion between the adversarial samples.

(3)L = β(Ldet + αLRcir ),

(4)min
θ

ρ(θ), ρ(θ) = E(x, y)∼D[max
θ∈S

L(θ , x + δ, y)],

Perturbation filtering verification based on bilinear 
interpolation (PVB)
Disturbances for adversarial attacks are obtained based on 
gradient calculations, while the method allows the model 
to extract the wrong feature information by adding a dis-
turbance that makes the model gradient rise. Such as PGD, 
by computing against the classification loss function of 
the model to get the adversarial samples that can make 
the model misclassify, or by targeting the localization loss 
function to make the objectives lost or add false targets. 
The equivalent of the attack is as follows:

where x′

t represents the image that needs to be attacked 
iteratively, while y is the correct label of the image and θ 
is the network parameter of the model. Through deriving 
the loss L of the network, the gradient information of this 
loss function is obtained by finding the partial derivative. 
By sign function to obtain the direction of the attack and 
add the perturbation amplitude α to get the perturbation 
of one attack, in addition to changing the perturbation to 
the original image and restricting the image to the nor-
mal range. The final attack image x′

N is obtained by iterat-
ing N times.

Since the adversarial samples are carefully calculated 
images, in other words, each pixel of the adversarial sam-
ple has an essential role to fulfill. The correlation between 
individual pixels is so highly significant that we only need 
to disrupt the correlation between the adversarial samples 
to disrupt the attack’s effect on the adversarial samples. 
Around this idea, we propose a perturbation filtering veri-
fication module based on bilinear interpolation to filter 
images without significant loss of image quality. Stated 
differently, we use bilinear interpolation as an interpola-
tion method to up and down-sample the image, where the 
sampling process destroys the attacker’s carefully designed 
perturbation by losing the association information of the 
adversarial samples.

Bilinear interpolation is an image scaling method that 
estimates the value of a new pixel by taking a weighted 
average of the four neighboring pixels. We downsample the 
equation as follows

where f(i,j) represents the pixel values in the original 
image with horizontal coordinate i and vertical coordi-
nate j, ds is the scale of the image scaling, and fds(i, j, ds) 
is the pixel value of the (i, j) coordinate of the image after 
downsampling. By downsampling we lose some of the 
pixel values of the image, but this affects the model accu-
racy, therefore we need to upsample the image again to 

(5)x
′

t+1 = Clip(0,255)(x
′

t + αsign(∇xL(x
′

t , y, θ)),

(6)fds(i, j, ds) = (1− ds)2f (i, j)+ ds · (1− ds)f (i + 1, j)+ ds · (1− ds)f (i, j + 1)+ ds2f (i + 1, j + 1),
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restore the features of the image, so we zoom in at a mag-
nification us = (1− ds) and we use the upsampling for-
mula as follows:

To simplify the formula, we specify s = ds and the sim-
plified formula is as follows:

where I equals the length of the image and J equals the 
width of the image, we control the image sampling ratio 
by controlling the hyperparameter s. Since the image has 
pixels from 0 to 255, we use ⌊⌋ to round down. The appro-
priate parameter is selected to improve the robustness 
of the model. Compared with RobustDet’s way of recon-
structing images using VAE, our proposed method is bet-
ter at destroying the adversarial perturbation of images 
since VAE [39] needs to extract the feature information 
of images, while the sampling method can destroy the 
features carefully designed by the adversarial samples. 
The overall idea is shown in Fig.  4, where we want the 
reconstructed image to be far away from the wrong deci-
sion interval.

Experiment
Experimental environment settings
To demonstrate the effectiveness of our proposed 
method, with all experiments we trained on the same 
equipment.

Experimentation on MS-COCO [7] and PASCAL VOC 
[6] datasets was performed for our done work, training 
using the COCO2017 training set and the PASCAL VOC 

(7)fus(i, j, ds) = (1− us)2f (i, j)+ us · (1− us)f (i + 1, j)+ us · (1− us)f (i, j + 1)+ us2f (i + 1, j + 1).

(8)FPVB(x
′

N ) = �
J−1
j=0�

I−1
i=0 ⌊fus[fds(i, j, s), (1/s)]⌋,

2007 and PASCAL VOC 2012 training sets. As a compar-
ison with the mainstream methods, the test sets we used 
for validation were the COCO2017 and PASCAL VOC 

2012 test sets.
Our experiments were run on CPU: Intel(R) Xeon(R) 

Gold 5318Y CPU @ 2.10GHz and graphics card NVIDIA 
A100 Tensor Core GPU. The training was performed 
using an SGD [43] gradient descent strategy with a learn-
ing rate of 1e-3 and a momentum of 0.9.

Concerning the evaluation metrics of experimental 
robustness, we first tested the metrics of mainstream 
models using CWA, DAG, and PGD attacks for locali-
zation or classification, meanwhile, we also evaluated 
the performance metrics of CON, and MTD attacks to 
demonstrate the effectiveness of our work. Regarding the 
hyperparameters α and β , we set the same parameters 
as RobustDet to reflect the superior performance of our 
proposed method. For m and s, we chose 0.85 and 0.8, for 
which we will demonstrate why this value was chosen in 
the subsequent ablation experiments.

Evaluation indicators
AP (Average Precision) is one of the common metrics 
used to evaluate the performance of target detection or 
image classification algorithms. It represents the average 
precision of the model for different confidence thresh-
olds. Suppose we have N categories, each with a different 
number of positive and negative samples. For each cat-
egory, we sort the results predicted by the model in order 
of confidence from high to low, and then based on the dif-
ferent confidence thresholds, we calculate the precision 

Fig. 4 Blue is the decision boundary, in which the left side of the decision boundary is clean labels while the right side is wrong labels. We obtained 
the adversarial samples by adding a perturbation of δ to the clean samples ( a

′
-δ , b

′
-δ , c

′
-δ , d

′
-δ ) ( a

′
 , b

′
,c
′
 , d

′
 ) are classified as mislabeled. Moreover, 

our reconstructed images by interpolation (0.5a
′
+0.5b

′
 , 0.5a

′
+0.5b

′
 , 0.5c

′
+0.5d

′
 , 0.5c

′
+0.5d

′
 ) reverted to the correct category. In other words, our 

reconstructed image increases the distance to the adversarial sample and makes its escape from the interval of the adversarial sample
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and the corresponding recall under each threshold. The 
AP under that category is then calculated based on this 
precision and recall.

Calculate the precision P and recall R for each category:

Different APs were calculated for each category based 
on different confidence thresholds and then averaged:

where n denotes the total number of recall points, P(i) 
denotes the precision at the ith recall point, and �R(i) 
denotes the difference between two recalls at the ith 
recall point. Eventually, the mAP was calculated for 
all categories. in which N denotes the total number of 
categories.

Main experiments
Our major and subsidiary experiments are validated on 
the PASCAL VOC 2007 and COCO2017 datasets, as 
shown in Tables 1 and 2.

It is observed from Table  1 that the object detection 
model SSD performs remarkably well in detecting clean 

(9)Precision = TP/(TP + FP), Recall = TP/(TP + FN ).

(10)

AP =
1

n

n

i=1

P(i) ·�R(i), mAP =
1

N

N

j=1

AP(j),

samples with 77.5% without the use of adversarial train-
ing. However, such a model lacks security as its perfor-
mance drops to 1.8% and 4.5% under the classification 
attack Acls and localization attack Aloc by PGD, while its 
performance is also extremely terrible under the CWA  
and DAG attacks. Whereas AT training involves adding 
adversarial samples to the training to improve robustness, 
this method significantly attenuates the performance 
of clean samples. As we can see in Table 1, the SSD-AT 
models trained by adding either Acls or Aloc both signifi-
cantly reduce the recognition rate of clean samples, emph 
mAP from 77.5% to 46.7% and 51.9%, although there is 
still some improvement in resistance for adversarial 
attacks. MTD is trained by selecting adversarial samples 
between Acls and Aloc according to the loss size, which 
slightly improves the robustness although it reduces the 
performance of clean samples compared to the former. 
It has excellent clean sample detection performance and 
superior robustness as for RobustDet, however, the per-
formance difference between clean samples and adver-
sarial samples of this method is still substantial.

By comparison, the detection performance of our pro-
posed method on clean samples is slightly lower than 
that of RobustDet, albeit only by 2.4%, in exchange for 
strong robustness. It is evident from Table 1 that for Acls 
and Aloc adversarial attacks, the detection performance is 

Table 1 Results of mAP evaluation against adversarial attack methods on the PASCAL VOC 2007 test set

* indicates that the model uses the CFR module

bold represents the best achievement for the indicator

Method Conference Clean Acls [21] Aloc [21] CWA [19] DAG [34]

SSD [29] ECCV2016 77.5 1.8 4.5 1.2 4.9

SSD-AT(Acls ) [29] ICCV2019 46.7-30.8 21.8+20.0 32.2+27.7 - 28.0+23.1

SSD-AT(Aloc ) [29] ICCV2019 51.9-25.6 23.7+21.8 26.5+22.0 - 17.2+12.3

MTD [18] ICCV2019 48.0-29.5 29.1+28.1 31.9+27.4 18.2+17.0 28.5+23.6

CWAT(PGD-10) [19] CVPR2021 51.3-26.2 22.4+20.6 36.7+32.2 19.9+18.7 50.3+45.4

RobustDet [20] ECCV2022 75.4-2.1 41.5+40.7 45.2+40.7 42.4+41.2 52.0 +47.1

RobustDet* [20] ECCV2022 74.8-2.7 45.9+44.1 49.1+44.6 48.0+46.8 56.6+51.7

RPU-PVB - 73.0-4.5 60.2 +58.4 57.5 +53.0 60.9 +59.7 63.2 +58.3

Table 2 Results of mAP evaluation against adversarial attack methods on the MS COCO 2017 test set

* indicates that the model uses the CFR module

bold represents the best achievement for the indicator

Method Conference Clean Acls [21] Aloc [21] CWA [19] DAG [34]

SSD [29] ECCV2016 42.0 0.4 1.8 0.1 8.1

MTD [18] ICCV2019 24.2 -17.8 13.0 +12.6 13.4+11.6 7.7+7.6 -

CWAT(PGD-10) [19] CVPR2021 23.7 -18.3 14.2 +13.8 15.5+13.7 9.2+9.1 -

RobustDet [20] ECCV2022 36.7 -5.3 20.6 +20.2 19.4+17.6 20.5+20.4 24.5 +16.4

RobustDet* [20] ECCV2022 36.0-6.0 20.0+19.6 19.0+17.2 19.9+19.8 16.6+8.5

RPU-PVB - 36.2-5.8 24.5 +24.1 27.1 +25.1 25.3 +25.2 26.6 +18.5
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almost invulnerable and is significantly similar to that of 
clean samples. Similarly, for CWAT and DAG, we obtain 
superb robustness of 60.9% and 63.2%. In summary, the 
detection difference between our clean and adversarial 
samples ranges from a minimum of only 9.8% to a maxi-
mum of only 15.5%, making our proposed method more 
valuable for real-world applications.

To demonstrate that our proposed method is not 
restrictive to a single dataset, we additionally finalized 
our experiments on the MS COCO2017 dataset, pre-
sented in Table 2:

It is observed that for larger datasets, the performance 
degradation of the attacked SSDs is more significant, 
with only a small improvement in robustness and a sig-
nificant decrease in the theoretical ability to detect clean 
samples, even when using the MTD and CWAT train-
ing methods for adversarial defense. While for Robust-
Det there is a significant improvement in the detection 
ability for both clean images and adversarial samples, for 
adversarial samples most of the detection abilities are 
still below 20%. As a comparison, the detection ability 
of our proposed method for clean samples only declines 
by 5.8%, while the overall detection ability for adversarial 
samples enhances by more than 24%, which significantly 
narrows the gap between the quality of performance of 
clean samples and adversarial samples. In other words, 
our proposed method is well-portable, i.e., it achieves 
high performance on different datasets.

Ablation experiments
As an intuitive representation of the effectiveness of our 
work, we demonstrate our conclusions by parameter and 
module ablation. At first, to show the rationality of our 
selected parameters, we set the evaluation index of the 
robustness of the adversarial sample (RA) and the overall 
robustness evaluation index that contains clean images 
(OA), which is formulated as follows:

where A1={cls, loc, con, cwat, dag, mtd} , A2={clean, cls, 
loc, con, cwat, dag, mtd} , a traverses the mAP results 
starting from the first attack, in which N is the number 

(11)RA =
1

N
�

A1

a=A1[0]
mAPa, OA =

1

N
�

A2

a=A2[0]
mAPa,

of A1 . This means that RA is the metric that reflects the 
fear of average robustness for adversarial samples, while 
OA is the average robustness metric with the addition 
of clean samples. The ablation experiments for our pro-
posed RPU, which possesses a hyperparameter m, are 
shown in Table 3.

To more visually express the reasonableness of the 
selected values, we labeled the highest results in bright 
yellow, while we used light yellow for the second-best 
results. From the table, we can see that mAP obtains the 
highest results in each indicator when the m value is 0.85 
among all parameters. The dominance of this parameter 
can be more intuitively seen in the RA and OA metrics, 
as RA and OA are the metrics that are evaluated together. 
In contrast, the model’s performance reaches sub-opti-
mal levels when the m value is 0.45. Thus the robustness 
of the model does not gradually increase as m increases.

Regarding the parameter s of the PVB module, we have 
experimented with most of the common interpolation 
methods, while s stands for the scaling multiplier, cer-
tainly, the optimal and sub-optimal results we have also 
used bright yellow and light yellow to show them more 
clearly. As shown in Table 4:

For SSD and RobustDet, where we can see that both 
achieved optimal and suboptimal performance on 
clean samples, respectively, whereas we saw an over-
all improvement in robustness after removing the PVB 
module. While we added the interpolation-based per-
turbation filtering verification method, we can see that 
different interpolations have very different effects under 
the control of scaling factors. It starts with INTER_AREA 
achieving optimal results against classification attacks 
with s equal to 0.5, and partial sub-optimal performance 
under other attack methods. The INTER_LINEAR 
method we use filters the adversarial perturbations more 
effectively and achieves the best performance for a total 
of four attack methods. Moreover, the advantages of our 
proposed method can be seen more clearly in the RA and 
OA metrics. Whereas for the other interpolation meth-
ods, the improvement is small or even inferior to the per-
formance of removing the PVB module. Therefore, the 
effectiveness of our proposed PVB method is proved.

Table 3 RPU module hyperparameter m ablation experiment
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At the same time, we performed module ablation exper-
iments, as shown in Table 5: we can see that after adding 
the RPU module, we gained a huge overall improvement 
compared to the current most advanced method Robust-
Det, except for a 0.1 performance reduction on clean 
samples. While adding the PVB module sacrifices a small 
amount of clean sample detection performance and sub-
stantially increases the robustness against all attacks. Thus 
the above experiments demonstrate the effectiveness of 
our proposed approach.

Coming from Fig. 5 we can see that the green color rep-
resents the AP performance for images that did not receive 
any attacks, while the red and blue colors represent the AP 
performance that suffered from classification and localiza-
tion. We can see that the bottled and potted plant perfor-
mance degradation is extremely significant. It is believed 
that the reason for the relatively large performance 

degradation in this category is related to the fact that both 
categories are small targets and the modification of small 
target pixels by the adversarial perturbation is evident. 
Even though we filter the adversarial samples using inter-
polation, the normal features of the objectives are filtered 
out as well. Nevertheless, overall our approach reduces the 
model performance difference (the gap between clean and 
adversarial samples) to a minimum.

Visualization
Category performance show
Training process
To the selection of epoch, we refer to the convergence 
interval of the loss function, as shown in Fig.  6: we can 
see that the loss starts to stabilize as it approaches 
100000. Therefore all our previous experiments used an 
iteration count of 100000.

Table 4 PVB module hyperparameter s ablation experiment

* indicates that the model uses the CFR module

Table 5 Module ablation experiment

� represents the addition of the module

* indicates that the model uses the CFR module

bold represents the best achievement for the indicator

Method RPU PVB Clean Acls [21] Aloc [21] CWA [19] DAG [34]

SSD [29] 77.5 1.8 4.5 1.2 4.9

RobustDet* [20] 74.8-2.7 45.9+44.1 49.1+44.6 48.0+46.8 56.6+51.7

SSD [29] � 74.7-2.8 55.5+53.7 56.7+52.2 57.1+55.9 65.5+60.6

SSD [29] � � 73.0-4.5 60.2+58.4 57.5+53.0 60.9+59.7 63.2+58.3
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Conclusions
In this paper, we propose a robust object detection 
model Based on a unified metric perspective with bilin-
ear interpolation, starting from the perspective of bilin-
ear interpolation, the fine-grained idea is first utilized to 
learn the adversary samples in comparison with the clean 
samples, thereby obtaining the correct dynamic con-
volutions parameters and a more robust model. Subse-
quently, a bilinear interpolation compression method is 
used, which, in combination with the former, drastically 
improves the robustness of the object detection model 
with an excellent performance difference (clean samples 
vs. adversarial samples). Our proposed method achieves 
the best results on different datasets, thus proving the 
relevance of the work we have done. Until now, research 
on methods for object detection against defense has been 
slow, and our future work aims to narrow the robustness 
performance difference of the model and use defense to 
facilitate the development of more advanced adversarial 
attacks.
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