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Abstract 

Federated learning is a mechanism for model training in distributed systems, aiming to protect data privacy 
while achieving collective intelligence. In traditional synchronous federated learning, all participants must update 
the model synchronously, which may result in a decrease in the overall model update frequency due to lagging par-
ticipants. In order to solve this problem, asynchronous federated learning introduces an asynchronous aggregation 
mechanism, allowing participants to update models at their own time and rate, and then aggregate each updated 
edge model on the cloud, thus speeding up the training process. However, under the asynchronous aggregation 
mechanism, federated learning faces new challenges such as convergence difficulties and unfair model accuracy. This 
paper first proposes a fairness-based asynchronous federated learning mechanism, which reduces the adverse effects 
of device and data heterogeneity on the convergence process by using outdatedness and interference-aware weight 
aggregation, and promotes model personalization and fairness through an early exit mechanism. Mathematical analy-
sis derives the upper bound of convergence speed and the necessary conditions for hyperparameters. Experimental 
results demonstrate the advantages of the proposed method compared to baseline algorithms, indicating the effec-
tiveness of the proposed method in promoting convergence speed and fairness in federated learning.

Keywords Federated learning, AISecurity, Edge computing

Introduction
In the context of edge computing, edge devices use local 
data to train local models and upload them to the cloud 
to aggregate and update the global model. A lot of prac-
tice has found that data is not independent and identi-
cally distributed [1–4]. Federated learning and traditional 
distributed machine learning share a common research 
objective: minimizing training time, as measured by the 
clock time needed to achieve the desired accuracy. It is 
important to mention that in most existing literature on 

federated learning, including the pioneering work on the 
FedAveraging algorithm, the assumption is made that 
communication between clients and the server is fully 
synchronous. This means that the server waits for all 
selected clients to finish their local training and report 
their trained models before aggregation takes place [5]. 
This straightforward and efficient design has been widely 
adopted by many existing studies and bears resemblance 
to the batch synchronous parallel mechanism used in dis-
tributed machine learning within a single cluster. How-
ever, it should be noted that in the case of heterogeneous 
clients, where different edge devices act as clients with 
varying computing abilities, there can be significant dif-
ferences in their local training performance. In fact, the 
training time for the same amount of computation may 
exhibit a heavy-tailed distribution. If some clients per-
form their local training at a much slower pace than oth-
ers, the performance of this synchronous communication 
mechanism may be compromised, as the server has to 
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wait for these stragglers, significantly reducing system 
parallelism.

In this scenario, introducing an asynchronous com-
munication mechanism is an effective solution [6, 7]. 
In asynchronous federated learning, the server is not 
required to wait for all selected clients to report their 
model updates; instead, it continues the aggregation pro-
cess immediately when a client’s model update arrives. 
The asynchronous mechanism has advantages over syn-
chronous FL. In synchronous federated learning, the 
number of active clients fluctuates throughout each 
round as clients join and leave the queue, with a decrease 
towards the end due to stragglers. In contrast, asynchro-
nous federated learning maintains a relatively stable 
number of active clients over time. As clients complete 
their training and upload their model updates, their posi-
tions are replaced by newly selected clients, increasing 
the parallelism of the asynchronous system.

Although the asynchronous mechanism enhances sys-
tem parallelism, when the client computing speeds follow 
a heavy-tailed distribution, potential issues can arise. In 
a problematic scenario, fast clients can quickly update 
the global model by completing their local training, while 
slower clients make minimal progress based on outdated 
global models. In traditional distributed machine learn-
ing with parameter servers, the pathological scenario is 
prevented by introducing bounded staleness in the out-
dated synchronous parallel (SSP) mechanism [8]. In 
FedAsync, a staleness function is proposed to compute 
a mixed hyperparameter α for model aggregation. Intui-
tively, the weight assigned to a client’s model updates 
when aggregating into the global model decreases as the 
client becomes more "stale". Through this simple design, 
FedAsync demonstrates its ability to address the issue 
of localized regularization to ensure convergence, and 
a similar approach is introduced in the asynchronous 
aggregation mechanism proposed in this paper.

Another potential issue arising from this process is 
fairness [9]. It is evident that fast clients are selected for 
local training far more frequently throughout the entire 
federated learning process, as they can quickly complete 
their local model training and enter the waiting-to-be-
selected state. However, this process is undoubtedly 
unfair for fast clients. Specifically, fast clients may expend 
much more computational power throughout the process 
than slow clients, only to end up with the same model as 
slow clients. What’s worse is that the models obtained 
by fast clients, who contribute more, may have lower 
accuracy on their local test sets compared to the mod-
els contributed by less contributing clients. The fairness 
issue arising from this situation deserves further investi-
gation, as unfair mechanisms designed in federated sys-
tems may discourage clients from joining the federation 

for distributed training, especially for fast clients. This, in 
turn, may result in a reduction of fast clients in the entire 
system, thereby decreasing the overall performance of 
the federation.

In summary, the heterogeneity of clients and the intro-
duction of asynchronous mechanisms make the entire 
system more complex and complicate the trade-off 
between fairness and model performance. To address 
this, this paper proposes an adaptive asynchronous feder-
ated learning aggregation mechanism, referred to as Fed-
Eem , with the following two main improvements.

• Propose an aggregation algorithm to judge the obso-
lescence degree and gradient drift degree of client 
models, effectively reducing the impact of system 
failures, and allowing clients to perform local updates 
in different rounds, instead of using globally synchro-
nized rounds of local updates commonly used.

• Propose an early exit mechanism to reduce the fair-
ness issue caused by the over-selection of fast clients 
while ensuring that the convergence speed of the sys-
tem does not significantly decrease.

This paper first introduces and analyzes the necessity and 
effectiveness of these two mechanisms in detail. Then, 
through experiments, the superiority of the proposed 
method compared to Fedbuff, FedAsync, and FedAvg 
methods is demonstrated. Finally, detailed mathematical 
analysis of the convergence is provided.

Related work
The related work can be summarized into the following 
three points: Asynchronous Federated Learning, Person-
alized Federated Learning and Fairness Issues in Feder-
ated Learning.

Asynchronous federated learning
In the classical federated learning paradigm, synchro-
nous aggregation strategies face challenges in effectively 
utilizing limited resources, particularly on heterogene-
ous devices. This is because they have to wait for slower 
devices to complete their computations before aggregat-
ing in each training round. Additionally, the heterogene-
ity of data distribution, known as data heterogeneity, in 
real-world mobile edge computing scenarios can signifi-
cantly impact the accuracy of the model. Hence, some 
research works have attempted to use asynchronous 
model updates to improve efficiency, performance, pri-
vacy, and security. Xie et  al. proposed the paradigm 
of asynchronous federated learning called FedAsync, 
which solves the regularized local problem to ensure 
convergence, and then updates the global model using 
stale-weighted averaging, demonstrating the proposed 



Page 3 of 13Gu and Zhang  Journal of Cloud Computing          (2023) 12:154  

method’s near-linear convergence for both strongly 
convex and constrained non-convex problem families. 
Chen et  al. introduced Asynchronous Online Federated 
Learning (ASO Fed) as an extension of FedAsync. They 
proposed online optimization policies to tackle three 
potential training challenges: 1) the data on local devices 
can increase over time, leading to changing correlations 
among clients in an online setting; 2) due to network 
constraints, mobile devices may frequently go offline or 
have poor communication bandwidth, making synchro-
nous federated learning frameworks highly sluggish; 3) In 
the context of federated learning, edge devices may expe-
rience delays or even drop out of the training process due 
to various factors such as data heterogeneity or system 
heterogeneity. These factors can introduce inconsist-
encies and hinder the smooth progress of the federated 
learning process [10]. Nguyen introduced a model aggre-
gation scheme called FedBuff, which aims to leverage the 
benefits of both synchronous federated learning (FL) and 
asynchronous FL. In FedBuff, the server aggregates client 
updates in a dedicated buffer, allowing for more flexible 
and efficient aggregation [11]. This approach demon-
strates improved convergence speed compared to Fed-
Async and is compatible with existing secure aggregation 
and privacy techniques. It offers a promising solution for 
achieving efficient and secure federated learning. Su et al. 
enhanced FedBuff by dynamically adjusting aggrega-
tion weights considering the staleness and divergence of 
model updates. They carefully selected operating points 
in each dimension of the design space and ensured veri-
fied convergence guarantees [12].

Personalized federated learning
Data heterogeneity poses a significant challenge in cur-
rent federated learning approaches.Research findings 
suggest that the accuracy of FedAvg experiences a sig-
nificant decrease when trained on non-identically and 
independently distributed data [13]. Additionally, the 
updates of completely synchronized models result in a 
lack of personalized solutions. Users from diverse sce-
narios may exhibit varying usage patterns due to subtle 
distinctions in their environments and requirements [14]. 
In such scenarios, the need for more personalized predic-
tions arises to provide users with more meaningful word 
suggestions. This challenge not only affects the training 
of the global model but also impacts its performance on 
local data of specific clients. Consequently, this may dis-
courage the participation of affected clients in the feder-
ated learning process.

Personalized federated learning offers a promising 
solution to tackle the issue at hand. By training custom-
ized local models for each user, it effectively addresses 
the data heterogeneity among clients [15]. Presently, 

personalized federated learning methods primarily con-
centrate on optimizing from both data-based and model-
based standpoints. Data-based approaches strive to 
minimize the statistical heterogeneity of client data dis-
tribution through techniques such as data augmentation 
[14] and node selection [16]. Model-based approaches, 
on the other hand, focus on learning a robust global 
model that can be further personalized for each client 
or enhance the adaptability of local models. Common 
practices include adding regularization terms [17], meta-
learning [18], and transfer learning [19]. Some research 
attempts to enhance the robustness and generalization of 
federated learning through methods like clustering [20], 
multitask learning [21], model interpolation, and knowl-
edge distillation [22]. In this paper, we utilize meta-learn-
ing for client initialization during training.

Fairness issues in federated learning
In the federated learning system, when clients participate 
in federated learning, they inevitably consume resources 
on their devices, including computational resources, 
communication resources, and power resources. Without 
sufficient rewards, clients may be unwilling to partici-
pate or share their trained models. Hence, creating a fair, 
rewarding, and secure environment for federated learn-
ing becomes imperative to encourage a substantial client 
participation.

Zhou et  al. classify fairness in federated learning into 
three categories: performance fairness, collaboration 
fairness, and model fairness [23]. For performance fair-
ness, most schemes aim to promote a consistent accuracy 
distribution among participants and achieve reasonable 
resource allocation in heterogeneous systems through 
joint optimization. In terms of collaboration fairness, 
current research primarily focuses on ensuring that each 
participant receives a fair representation of the rewards 
they contribute to the federated system [24], thus estab-
lishing a sound incentive mechanism. Incentive mecha-
nisms in federated learning mainly attempt to construct a 
contribution model for each participant and provide cor-
responding rewards. Currently, contribution models are 
mainly based on the value of client data, which is evalu-
ated from the perspectives of data quality and data quan-
tity. Evaluation methods based on data quality employ 
metrics such as Shapley value [25], auction mechanisms 
[26], contractual theory, etc. Evaluation methods based 
on data quantity adjust the size of participating data to 
fully consider the rewards and energy costs obtained by 
each client. Furthermore, Zhan et  al. introduce a novel 
approach that integrates game theory and deep rein-
forcement learning. In this approach, the parameter 
server functions as a deep reinforcement learning agent, 
enabling it to determine optimal payments without the 
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requirement of accurately assessing each client’s contri-
butions or obtaining their private information before-
hand [27].

Regarding model fairness, Du et al. proposed reweight-
ing the objective function under fairness constraints [28]. 
Liang et al. attempts to reduce the impact of variance in 
data distribution by locally learning representations on 
each client while jointly learning the global model [29]. 
It is important to acknowledge the trade-off between 
performance fairness and model fairness. Performance 
fairness prioritizes achieving a balanced accuracy of 
the global model, whereas model fairness focuses on 
the performance of the model on local data. Collabora-
tion fairness relies on an executable and sound incentive 
mechanism. In the context of mobile edge computing, 
most traditional federated incentive mechanisms are 
ineffective because most clients (such as mobile phone 
users and IoT devices [30–34]) do not expect to gain eco-
nomic benefits through federated learning. Their primary 
concern lies in determining whether federated learning 
can enhance the accuracy of the model on their respec-
tive local data, which is known as model fairness.

In summary, the existing work has the following short-
comings: 1) The heterogeneity of the clients and the 
introduction of asynchronous mechanisms make the 
entire system more complex. This may lead to imbal-
anced resource utilization and slower model convergence 
speed. 2) Balancing fairness and model performance in 
federated learning is often challenging. This paper aims 
to improve the fairness of the model while ensuring that 
the convergence speed of the model does not signifi-
cantly decrease.

FedEem
In order to address the issue of slow model updates, an 
increasing number of federated learning approaches have 
adopted asynchronous aggregation patterns in recent 
years. FedEem also utilizes this asynchronous aggrega-
tion mechanism, which allows clients to upload models 
at different time points and update the global model by 
merging these models. However, FedEem has made cer-
tain innovations in the aggregation mechanism by intro-
ducing obsolescence discount, diversity discount, and 
early stopping mechanism.

Asynchronous aggregation mechanism
In an asynchronous federated learning system, clients 
that receive the global model from the server several 
rounds ago may become outdated, resulting in lower 
quality model updates during the aggregation process. 
This can disrupt the approximate consensus of the 
majority of other clients and impede the convergence 
process. It is intuitive to reduce the weight assigned to 

these outdated clients during the aggregation process 
[6]. To measure these effects, the following evaluation 
metrics are proposed in this section.

Obsolescence Discount refers to the concept of quan-
tifying the obsolescence of a client in an asynchronous 
federated learning system. The obsolescence of a client 
is determined by the number of global update rounds 
that have passed since the client last received the global 
model from the server. It is reasonable to assume that 
the more obsolete a client is, the lower its aggregation 
weight should be. According to [11], the obsolescence 
of clients must be bounded, otherwise the convergence 
of the model cannot be guaranteed. Let τ represent the 
current training round on the server, and let τk repre-
sent the training round corresponding to the last time 
client k received the global model from the server. The 
obsolescence sk of client k can be calculated as τ − τk . 
The following obsolescence function is used to calcu-
late the obsolescence discount, which discounts the 
aggregation weight:

Where � is used to represent the upper bound of 
obsolescence. Clearly, the upper bound of skτ  is 0.5α , 
where α is a hyperparameter that controls the impor-
tance of obsolescence discount in the aggregation 
process.

To measure the staleness of client updates, the differ-
ence between local accumulated gradients and global 
aggregated gradients can be utilized. Let wi − wi−1 repre-
sent the disparity between the models obtained from the 
most recent two rounds of server aggregation. Here, wi 
denotes the parameters of the global model in i-th round. 
In round i, client k uploads its weight updates obtained 
from training, denoted as δik . If δik significantly dis-
rupts the general consensus wi − wi−1 , it implies that the 
update from client k may not contribute to global optimi-
zation and should be discounted during the aggregation 
process. The interference can be quantitatively assessed 
by calculating the cosine similarity θki  between δik and 
wi − wi−1 . A lower θki  indicates less similarity between 
the two vectors. Consequently, the dissimilarity discount 
can be defined as follows:

Where Similarity(X, Y) represents the cosine similarity 
between vectors X and Y. Similar to the obsolescence dis-
count, a hyperparameter β is introduced here to control 
the magnitude of the dissimilarity discount. Taking these 
two influencing factors into account, the aggregation 
weight can be defined as follows:

(1)skτ = α ·
�

Sk +�
,

(2)θki = β · Similarity �k
i ,wi − wi−1 + 1,
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Where T represents the dataset of client k.

Early exit mechanism
Another mechanism introduced in this chapter is the 
early exit mechanism. In previous works such as FedAvg 
and FedAsync, clients were not allowed to stop early dur-
ing the training process and were required to complete all 
training rounds. This requirement is reasonable in syn-
chronous federated learning, where clients are sampled 
with equal probability, resulting in consistent expected 
rounds E(nk) = ST/K  for all clients sampled in total 
training rounds T. However, the introduction of asyn-
chronous mechanism breaks this balanced expectation. 
Clearly, in an asynchronous federated learning system, if 
clients are still sampled with equal probability per round, 
the expected rounds mathcalE(nk) for fast clients and 
slow clients required to perform local training are not 
consistent, and this difference increases with the increase 
in computational speed differences among clients. This 
unfairness is problematic for fast clients because it dis-
courages their participation in federated learning. While 
the concept of federated learning promotes collaboration 
among clients in a distributed manner, the unequal treat-
ment of fast clients would deter users with high-perfor-
mance computing devices from engaging in federated 
learning.

Furthermore, it is important to acknowledge that the 
non-independent and non-identically distributed data 
introduces variations in objectives among different cli-
ents. In traditional federated learning, the objective is to 
achieve optimal performance of the global model across 

(3)pki =
|Tk |

|T |

(

ski + θki

)

,
all clients. However, from an individual client’s perspec-
tive, the objective is to attain excellent local performance. 
Please note the difference between these two objectives, 
as the latter allows for inconsistent models across differ-
ent local clients.

If a client has achieved sufficient performance in its 
local training after participating in several rounds of 
federated updates, it naturally tries to exit the federated 
system. However, it is important to note that allowing 
quick client exits may potentially cause issues. After a cli-
ent is selected, it undergoes local training and uploads its 
model for aggregation. In return, the client receives the 
global model. While this global model may exhibit good 
performance on the client’s local dataset, it may suffer 
from poor generalization performance. This is because 
the global model tends to optimize towards the cli-
ent’s objectives based on the previous round of updates. 
Therefore, it may result in the global model not hav-
ing good generalization performance yet.Another more 
critical reason is that when the aggregation of the global 
model reaches a high position (e.g., 92% ), there is a high 
probability that the client immediately achieves its local 
training goal (e.g., 95% ). If the clients are allowed to exit 
at this time, a large number of clients may withdraw 
within a few rounds. The problem with this is that only a 
few clients are left and continuously selected, leading to 
a severe deviation between their optimization direction 
and the global optimum. Consequently, it may result in a 
global model with poor generalization performance.

As shown in Fig.  1, clients a,b,c are participating in 
asynchronous federated learning. In rounds t and t + 
1, client b is performing gradient descent with clients a 
and b. At this point, client b is overly involved, and the 
global parameter wt+2 is already sufficiently close to the 

Fig. 1 Simulation results for the network
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global optimum w∗ and its local target w∗
b , while the local 

optima of clients a and c are relatively far away.If we 
insist on client b’s participation in the federated learning 
process at this stage, it may lead to a significant devia-
tion in the global gradient update direction compared 
to the dominant client’s gradient direction, and affect 
the convergence process. Additionally, some clients may 
be unwilling to continue contributing computational 
resources due to being selected too many times.

This article explores a reliable early exit mechanism: (1) 
setting a lower bound on the number of training rounds 
for all clients, tbnd , which requires clients to be selected at 
least tbnd times before being allowed to exit early; (2) set-
ting an additional number of training rounds for all cli-
ents, text , which requires clients to be selected at least text 
times after the model reaches an accuracy target before 
being allowed to exit early; (3) setting a lower bound 
on the number of remaining rounds for all clients, tstay , 
which requires clients to remain in the client pool for at 
least tstay rounds after achieving the target accuracy on 
their own dataset before being allowed to exit early.

Convergence analysis
In order to analyze the convergence performance of 
FedEem , in combination with previous convergence 
proof methods for federated learning, the following set-
tings are considered.In each round of global update 
τ ∈ T ,where T represents the total number of rounds of 
global updates, the server selects k clients from the cli-
ent pool.Each client first receives the global model wk

τ k
 

from the server, and then performs ǫ rounds of training 
based on its own data. For the j-th round of local train-
ing, with a data size of B and a learning rate of ηjl , the 
local model is optimized using SGD. This can be formu-
lated as wk

τ k ,j+1
= w

k
τ k ,j

− η
j
lg
(

w
k
τ k ,j

)

 , where the gradient 

g
(

w
k
τ k ,j

)

= ∇fk

(

w
k
τ k ,j

,Dk
)

 . Once all selected clients 

have reported, the server starts the aggregation process. 
To provide a better explanation, we have made use of 
some common assumptions and listed all the parame-
ters used in Table 1 [11].

Assumption 1 The objective function fk of each client 
k is L−smooth, which means its derivative is L−Lipschitz 
continuous, resulting in 

∥
∥∇fk(w)− ∇fk(w)

∥
∥ ≤ L

∥
∥w − w′

∥
∥.

Assumption 2 Eξ [fk(w, ξ)] = ∇fk(w) , where w repre-
sents the trainable parameters.

Assumption 3 The expected square norm of 
the stochastic gradient is uniformly bounded, 
i.e.,E

∥
∥∇fk(w, ξ)

∥
∥2 ≤ G2 for k = 1, . . . ,K .

Assumption 4 Assuming ξ is uniformly sampled from 
the local data of the k-th client device. The variance of 
the stochastic gradient in each device is bounded, i.e., for 
Eξ

∥
∥fk(w, ξ)− fk(w)

∥
∥2 ≤ σ 2

k  for k = 1, . . . ,K  . Then, we 

define σ 2
l :=

∑K
k=1

∣
∣
∣Dk

∣
∣
∣

|D| σ
2
k .

Assumption 5 For any client k and parameter w, we define 
δk as the upper bound of the local objective function with the 
global objective function, which is 

∥
∥fk(w)− f (w)

∥
∥2 ≤ δ2k . 

Furthermore, we define δ2g :=
∑K

k=1

∣
∣
∣Dk

∣
∣
∣

|D| δ
2
k.

Based on adaptive weight gradient aggregation, Lemma 1 
can be obtained.

Lemma 1 Given hyperparameters α and β for outdated-
ness and interference discount, the aggregation weight pkτ for 
each gradient has an upper bound pkτ ∈

[
α
2dk , (α + β)dk

]
 , 

where dk =

∣
∣
∣Dk

∣
∣
∣

|D| .

Table 1 Experimental parameters

Symbol Description

T, t Server update frequency, server update index

S
t Server updates the selected subset of client in time t

Q, q, ǫ Local step count per round, round index

wt The model after t updates

gi(w; ζi) := gi(w) Random gradient

ηgηl Global and local learning rate

K The number of clients selected for a single aggregation

σ 2
g , σ

2
ℓ

Global and Local gradient variance

τi(t) Outdatedness of client i  ’s model after t  rounds of global updates

τmax Obsolete upper bound
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Lemma 2 E

[∥
∥gk

∥
∥2
]

≤ 3
(

σ 2
l + σ 2

g + G
)

 , where the 
expectation E[·] takes into account the random participa-
tion of clients and the client’s random gradient.

To simplify the analysis without compromising the 
proof of convergence, we can disregard the denominator 
term in Lemma 1. Based on this, we can derive the con-
vergence rate of FedEem as follows:

Theorem  1 Based on Assumptions  1, 2, 3  and 4 
and Lemma  1, the convergence rate of FedEem can be 
expressed as:

Where �(d) =
∑K

i=1 d
2
i ,φ(E) =

∑E
j=1 η

j
l ,ψ(E) =

∑E
j=1

(

η
j
l

)2.
In addition, to simplify the expression, let 
σ 2 = (α + β)σ 2

l + (α + β)δ2g + G2.In addition, in order 
to ensure the convergence upper bound, K and ηl must 
satisfy the following relationship:

Proof

The update process of FedEem can be described as: �

Where St represents selected clients in the t-th global 
update.

Specifically, unlike previous federated learning proof, 
due to data heterogeneity and device heterogeneity, it 
cannot be simply assumed that St is a unified subset 
because the possibility of clients participating is not the 
same in different rounds. Specifically, in the early rounds, 
fast clients are more likely to participate in more rounds 
due to faster updates, while in the later rounds, the situa-
tion is reversed as fast clients drop out early.

(4)

1

T

T−1∑

τ=0

E
∥
∥∇f (wτ )

∥
∥2 ≤ 2

(
f (w0)− f (w∗)

)

φ(E)TK
+ 6K (α + β)2�(d)L2Eψ(E)

(

K 2�2 + 1
)

σ 2

+ L
ψ(E)

Kφ(E)
(α + β)σ 2

l ,

(5)
4(α + β)

α2�(d)
Kη

j
l ≤

1

L
.

(6)

wt+1 = wt + ηg �̄
t = wt + ηg

1

K

�

k∈St



−ηl

ǫk�

q=1

gk

�

y
t−τk (t)
k ,q

�



,

Following the common convergence proof procedure 
used in federated learning methods, the proof of conver-
gence rate for the non-convex objective function proposed 
in [35] starts by utilizing smoothness Assumption 1. There-
fore, it follows that :

Where �t−τk
k  is the parameter update made by the client 

after receiving global model parameters before the t − τk 
global update. ∇ f̃

(
wt

)
 is the global gradient at global 

update round t. Then, upper bounds are computed for T1 
and T2

By utilizing conditional expectations, it is possible to 
represent the expectation operator in a more concise 
manner:

Where Eπ is the expectation with respect to all client pol-
icies,π = {π1, . . . ,πN } represents the collection of all client 
policies participating in federated learning, Ei∼[mt ] is the 
evaluation over the randomness of selecting client i ∼ [mt ] 

(7)f
(

wt+1
)

≤ f
(
wt

)
+ T1(t)+ T2(t),

(8)T1(t) = −ηq
∑

k∈Sk

ptk

〈

∇ f̃
(
wt

)
,�

t−τk
k

〉

(9)T2(t) =
Lη2g

2

∥
∥
∥
∥
∥
∥

∑

k∈Sk

ptk�
t−τk
k

∥
∥
∥
∥
∥
∥

2

(10)

T1(t) = −ηg
∑

k∈St

ptk

〈

∇f
(
wt

)
·

ǫk∑

q=1

η
(q)
t gk

(

y
t−τk
k ,q

)
〉

= −
ηg

K

∑

k∈St

ǫk∑

q=1

η
(q)
t ptk

〈

∇f
(
wt

)
, gk

(

y
t−τk
k ,q

)〉

.

(11)E[·] := EπEi∼[mt ]Egi ,p
t
i |i,π

[·],
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from the distribution at the global round t. Please note 
that mt is not a fixed value due to the presence of dropout 
mechanism. The inner expectation refers to one-step of 
random gradient descent on the client. Therefore, under 
the unbiased estimation assumption, we have

Furthermore,E[T1(t)] can be written as:

For T3 , it can be derived from the definition of f (wt)

By defining γi(t) =
∑ǫi

q=1 p
k
i  , further, T3 can be expressed 

as the error caused by obsolescence and local drift.

(12)

E[T1(t)] = −E




ηg

K

�

k∈Si

ǫk�

q=1

ηlp
t
k

�

∇ f̃
�
wt

�
, gk

�

y
t−τk
k ,q

��





= −ηgEπ




1

m

m�

i=1

ǫi�

q=1

η
(q)
l Egi |i∼[m]

�

∇ f̃
�
wt

�
, gi

�

y
t−τi
i,q

��





= −
ηg

mt
Eπ





mt�

i=1

ǫk�

q=1

ηl

�

∇ f̃
�
wt

�
, pti∇Fi

�

y
t−τi
i,q

��





= −ηg η̄lEπ





�

∇ f̃
�
wt

�
,
1

mt

mt�

i=1

ǫk�

q=1

pti∇Fi

�

y
t−τi
i,q

�
�

.

(13)
E[T1(t)] = −

ηgηl

2
E

��
�
�∇ f̃

�
wt

�
�
�
�

2
�

+
ηg η̄l

2




−Eπ

�
�
�
�
�
�

1

mt

mt�

i=1

ǫi�

q=1

η
(q)
l pki ∇Fi

�

y
t−τi
i,q

�

�
�
�
�
�
�

2

+ Eπ

�
�
�
�
�
�

∇ f̃
�
wt

�
−

1

mt

mt�

i=1

ǫi�

q=1

pki ∇Fi

�

y
t−τi
i,q

�

�
�
�
�
�
�

2

� �� �

T3(t)

.

(14)

Eπ [T3(t)] = Eπ

∥
∥
∥
∥
∥
∥

1

mt

mt∑

i=1

∇Fi
(
wt

)
−

1

mt

mt∑

i=1

ǫi∑

q=1

pki ∇Fi

(

y
t−ri
i,q

)

∥
∥
∥
∥
∥
∥

2

≤
1

mt

mt∑

i=1

Eπ

∥
∥
∥
∥
∥
∥

ǫi∑

q=1

pki

[

∇Fi
(
wt

)
−∇Fi

(

y
t−τi
i,q

)]

∥
∥
∥
∥
∥
∥

2

≤
1

mt

mt∑

i=1

Eπ

ǫi∑

q=1

pki

∥
∥
∥

[

∇Fi
(
wt

)
−∇Fi

(

y
t−τi
i,q

)]∥
∥
∥

2

.

(15)

E[T3(t)] ≤
2

m

m∑

i=1

Eπ γi(t)(Oe + Cd )

≤
2

m

m∑

i=1

(

L2Eπ γi(t)
∥
∥wt − wt−τi

∥
∥
2
+ L2Eπ γi(t)

∥
∥
∥wt−τi − y

t−τi
i,q

∥
∥
∥

2
)

.

Where,Oe is the Obsolescence error, and Cd is the client 
drift.

The errors caused by obsolescence can be mitigated 
by accumulating them as model updates between 
rounds

The upper bound for computing its expectation can be 
obtained

The second inequality utilizes Lemma  2 for bound-
ing, and the last inequality utilizes E(X)2 ≤ E

(
x2
)
 . The 

expected error caused by local drift can be similarly con-
strained as:

(16)Oe =
∥
∥∇Fi

(
wt

)
− ∇Fi

(
wt−τi

)∥
∥
2

(17)Cd =

∥
∥
∥∇Fi

(
wt−τi

)
−∇Fi

(

y
t−τi
t,q

)∥
∥
∥

2

(18)

∥
∥wt − wt−τi

∥
∥
2
=

∥
∥
∥
∥
∥
∥

t−1∑

ρ=t−τi

(

wρ+1 − wρ
)

∥
∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥
∥

t−1∑

ρ=t−τi

ηg

K

∑

jρ∈Sρ

�
ρ
jρ

∥
∥
∥
∥
∥
∥

2

=
η2g

K 2

∥
∥
∥
∥
∥
∥

t−1∑

ρ=t−τi

∑

jρ∈Sρ

Q−1
∑

l=0

η
(l)
l gjρ

(

y
ρ

jρ ,l

)

∥
∥
∥
∥
∥
∥

2

.

(19)

γi(t)Eπ

∥
∥wt − wt−τi

∥
∥
2
≤

η2g τi

K
Eπ (γi(t)ǫi)

∑

ρ=t−τi

∑

jρ∈Sρ

ǫ∑

l=0

(

η
(l)
l

)2

E

∥
∥
∥gjρ

(

y
p
jρ ,l

)∥
∥
∥

2

≤ 3η2gEπ (γi(t)ǫi)max
τi

τ 2i

(
ǫl∑

l=1

(

η
(l)
l

)2

)
(

σ 2
l + σ 2

g + G
)

≤ 3η2g η
2
l Eπ

(

γi(t)ǫ
2
)

τ 2max,K

(

σ 2
l + σ 2

g + G
)

,
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Substituting the constraint of T3 back into T1 yields:

Let β(Q) :=
∑Q−1

q=0

(

η
(q)
ℓ

)2
 . Therefore, we have:

For the constraint on the expected value of T2 , we have:

(20)

E[T3] ≤ 6



L2η2gη
2
l Eπ

�

γi(t)ǫ
2
�

τ 2max,K

�

σ 2
l + σ 2

g + G
�

+ L2q





g−1
�

i=0

�

η
(i)
l

�2





�

σ 2
l + σ 2

g + G
�





≤ 6L2Eπ

�

γi(t)ǫ
2
��

η2g τ
2
max,K +

1

2

��

σ 2
l + σ 2

g + G
�

,

(21)E[T1] ≤ −
ηgηl

2

∥
∥∇f

(
wt

)∥
∥
2
+

ηgηl

2
E[T3]− Eπ

∥
∥
∥
∥
∥
∥

1

mt

mt∑

i=1

ǫi∑

q=1

η
(q)
l pki ∇Fi

(

y
t−τi
i,q

)

∥
∥
∥
∥
∥
∥

2

.

(22)

E[Tt ] ≤ −
ηgηl

2

∥
∥∇f

(
wt

)∥
∥
2
+ 3L2Eπ

(

γi(t)ǫ
2
)(

η2g τ
2
max,K +

1

2

)(

σ 2
l + σ 2

g + G
)

− Eπ

∥
∥
∥
∥
∥
∥

1

mt

mt∑

i=1

ǫi∑

q=1

η
(q)
l pki ∇Fi

(

y
t−τi
i,q

)

∥
∥
∥
∥
∥
∥

2

︸ ︷︷ ︸

T4

.

(23)

E[T2(t)] = E






Lη2g

2K2

�
�
�
�
�
�

�

k∈St

ǫk�

q=0

η
(q)
ℓ ptkgk

�

y
t−τk
k,q

�

�
�
�
�
�
�

2





= E






Lη2g

2K 2

�
�
�
�
�
�

�

k∈Sk

ǫk�

q=1

η
(q)
k ptk

�

gk

�

y
t−τk
k ,q

�

−∇Fk

�

y
t−τk
k ,q

��

+
�

k∈Sk

ǫk�

q=1

η
(q)
k ptk∇Fk

�

y
t−τk
k ,q

�

�
�
�
�
�
�

2





=
Lη2q

2K 2
E

�
�
�
�
�
�

�

k∈S,

ǫk�

q=1

η
(q)
ℓ ptk

�

gk

�

y
t−rk
k ,q

�

−∇Fk

�

y
t−rk
k ,q

��

�
�
�
�
�
�

2

+
Lη2g

2K 2
E

�
�
�
�
�
�

�

k∈S

ǫk�

q=1

η
(q)
ℓ ptk∇Fk

�

y
t−rk
k ,q

�

�
�
�
�
�
�

2

=
Lη2g

2

�

k∈S

ǫk�

q=1

�

η
(q)
ℓ ptk

�2
E

�
�
�

�

qk

�

y
t−τk
k ,q

�

−∇Fk

�

y
t−τk
k ,q

���
�
�

2

+
Lη2g

2K 2
Eπ ǭE

ǫk�

k∈S,q=1

�
�
�η

(q)
ℓ ptk∇Fk

�

y
t−τk
k ,q

��
�
�

2

≤
Lη2g η

2
l ζ(t)σ

2
ℓ

2
+

Lη2gEπ ǭ

2K

�

k∈Sk

�

η
(q)
ℓ

�2
EπEk∼[mt ]πp

t
k�

ǫk�

q=1

∇Fk

�

y
t−τk )

k ,q �2

=
Lη2g η

2
l ζ(t)σ

2
ℓ

2
+

Lη2gEπ ǭ

2K

�

k∈Si

�

η
(q)
ℓ

�2
Eπ




pti
mt

mt�

i=1

ǫk�

q=1

�
�
�∇Fi

�

y
t−τi
i,q

��
�
�

2





� �� �

T5,

Where, the definition ζ(t) = Eπ

∑ǫk
q=1 p

t
k is given. In 

order to ensure that an upper bound exists on E[T1 + T2] , 
it is necessary to ensure that T4 + T5 ≤ 0:

Therefore, in order to ensure that T4 + T5 ≤ 0 , it 
is required that for all local gradient descent steps, 
ηgηℓEπ ǭ ≤ 1

L . Finally, combiningT1,  T2 provides the 
expected improvement in performance between two 
adjacent global models:

(24)

(T4 + T5) = −Eπ
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�
�
�

1

mt

mt�

i=1

ǫi�

q=1

η
(q)
l pki ∇Fi

�

y
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�
�
�
�
�
�
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+
Lη2gEπ ǭ
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�

k∈Si

�

η
(q)
ℓ
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�
�
�∇Fi

�

y
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�
�
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≤ −Eπ

�
�
�
�
�
�

mt�

i=1

ǫi�

q=1

η
(q)
l

pki
mt

∇Fi

�
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�
�
�
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�
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+
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After nested summation from t = 1, · · · ,T  , the above 
equation can be obtained.

Therefore, Theorem 1 can be obtained.

Proof

Lemma 2 �

Experiment and analysis
To understand the impact of various hyperparameters 
in the convergence process and computational resource 
consumption in federated learning, this study conducted 
an analysis from two perspectives: the influence of hyper-
parameters on the performance of FedEem and the com-
putational speed. By controlling variables and conducting 
a series of comparative experiments, we demonstrated 
the efficiency and fairness of FedEem .

(25)

E

[

f
(

wt+1
)]

≤ E
[
f
(
wt

)]
−

ηgγ (t

2

∥
∥∇f

(
wt

)∥
∥
2

+ 3φg L
2Qγ (t)ζ(t)

(

η2gπmax,K 2 +
1

2

)(
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l + σ 2

g + G
)

+
L

2
η2g ζ(t)σ

2
l

(26)
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∥
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(
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Eπ ǭγ (t)ζ(t)

(

η2g τ
2
max,K + 1

)(

σ 2
t + σ 2

g + G
)

+
L

2
η2g ζ(t)σ
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Experimental setup
To ensure fairness in the experimental comparison, this 
paper primarily focuses on comparing the number of 
rounds required for the global model to achieve a spe-
cific accuracy threshold (e.g., 95% accuracy on the MNIST 
dataset). The experiments involve a fixed total of 20 clients. 

The federated learning process is simulated using FLsim, a 
simulator specifically designed for experimental research 
[36]. FLsim utilizes JSON files to manage the configuration 
parameters of federated learning simulations and provides 
a general template along with three pre-configured simu-
lation files for the CIFAR-10, FashionMNIST, and MNIST 
datasets. In this study, we implemented federated learning 
algorithms such as FedBuff for conducting comparative 
experiments.

All simulation experiments were performed on a 
PC server running Ubuntu Linux 21.1.0. The server is 
equipped with an Intel i5-10600KF (4.10GHz) processor, 
64GB RAM, and 4 NVIDIA TITAN-V GPUs. The experi-
mental environment utilizes Python 3.9.5 and PyTorch 
1.8.1.

Analysis of experimental results
Figures  2 and 3 show the performance comparison of 
FedEem with other state-of-the-art algorithms under the 
scenarios of uniform and randomly independent distri-
butions. Due to the presence of the early exit mechanism, 
FedEem has a significant advantage in terms of conver-
gence speed compared to other asynchronous federated 
learning algorithms. In addition, the aggregation mecha-
nism optimized by FedEem allows for a more stable con-
vergence process, as it is less affected by the obsolescence 
of model updates and interference caused by large gradi-
ent differences.
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Figure  4 illustrates the convergence process of Fed-
Eem under different choices of regularization weights, 
with 30 clients and four repetitions of experiments. It 
can be observed that different hyperparameter choices 
have significant differences in terms of time and round 
consumption, but are not consistent in terms of vari-
ance. Therefore, making intelligent decisions regarding 

hyperparameters in the asynchronous federated learn-
ing process is necessary.

Conclusion
This paper investigates an optimized mechanism for 
asynchronous federated learning in the context of 
edge computing scenarios. Firstly, the necessity of the 

Fig. 2 Concurrency level is 10, with each client having 120 data samples. The data is uniformly distributed with a Non-IID pattern

Fig. 3 The concurrent number is 10, and each client has 120 data, with data randomly distributed in a Non-IID manner
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asynchronous mechanism in highly heterogeneous fed-
erated learning is analyzed. The paper also addresses 
the fairness issues in previous asynchronous feder-
ated learning algorithms and proposes an optimized 
mechanism called FedEem . This mechanism includes a 
weight aggregation mechanism that incorporates time-
liness and fairness considerations, as well as an early 
exit mechanism. Experimental results demonstrate that 
the proposed algorithm achieves significant improve-
ments in both convergence time and fairness under 
various data distributions and device heterogeneity.
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