
Gu and Zhang ﻿Journal of Cloud Computing (2023) 12:154
https://doi.org/10.1186/s13677-023-00535-2

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

FedEem: a fairness‑based asynchronous
federated learning mechanism
Wei Gu1 and Yifan Zhang2* 

Abstract 

Federated learning is a mechanism for model training in distributed systems, aiming to protect data privacy
while achieving collective intelligence. In traditional synchronous federated learning, all participants must update
the model synchronously, which may result in a decrease in the overall model update frequency due to lagging par-
ticipants. In order to solve this problem, asynchronous federated learning introduces an asynchronous aggregation
mechanism, allowing participants to update models at their own time and rate, and then aggregate each updated
edge model on the cloud, thus speeding up the training process. However, under the asynchronous aggregation
mechanism, federated learning faces new challenges such as convergence difficulties and unfair model accuracy. This
paper first proposes a fairness-based asynchronous federated learning mechanism, which reduces the adverse effects
of device and data heterogeneity on the convergence process by using outdatedness and interference-aware weight
aggregation, and promotes model personalization and fairness through an early exit mechanism. Mathematical analy-
sis derives the upper bound of convergence speed and the necessary conditions for hyperparameters. Experimental
results demonstrate the advantages of the proposed method compared to baseline algorithms, indicating the effec-
tiveness of the proposed method in promoting convergence speed and fairness in federated learning.

Keywords  Federated learning, AISecurity, Edge computing

Introduction
In the context of edge computing, edge devices use local
data to train local models and upload them to the cloud
to aggregate and update the global model. A lot of prac-
tice has found that data is not independent and identi-
cally distributed [1–4]. Federated learning and traditional
distributed machine learning share a common research
objective: minimizing training time, as measured by the
clock time needed to achieve the desired accuracy. It is
important to mention that in most existing literature on

federated learning, including the pioneering work on the
FedAveraging algorithm, the assumption is made that
communication between clients and the server is fully
synchronous. This means that the server waits for all
selected clients to finish their local training and report
their trained models before aggregation takes place [5].
This straightforward and efficient design has been widely
adopted by many existing studies and bears resemblance
to the batch synchronous parallel mechanism used in dis-
tributed machine learning within a single cluster. How-
ever, it should be noted that in the case of heterogeneous
clients, where different edge devices act as clients with
varying computing abilities, there can be significant dif-
ferences in their local training performance. In fact, the
training time for the same amount of computation may
exhibit a heavy-tailed distribution. If some clients per-
form their local training at a much slower pace than oth-
ers, the performance of this synchronous communication
mechanism may be compromised, as the server has to

*Correspondence:
Yifan Zhang
yifan_zhang_2001@163.com
1 School of Computer Science, Nanjing University of Information Science
and Technology, 210044 Nanjing, China
2 School of Software, Nanjing University of Information Science
and Technology, 210044 Nanjing, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00535-2&domain=pdf

Page 2 of 13Gu and Zhang ﻿Journal of Cloud Computing (2023) 12:154

wait for these stragglers, significantly reducing system
parallelism.

In this scenario, introducing an asynchronous com-
munication mechanism is an effective solution [6, 7].
In asynchronous federated learning, the server is not
required to wait for all selected clients to report their
model updates; instead, it continues the aggregation pro-
cess immediately when a client’s model update arrives.
The asynchronous mechanism has advantages over syn-
chronous FL. In synchronous federated learning, the
number of active clients fluctuates throughout each
round as clients join and leave the queue, with a decrease
towards the end due to stragglers. In contrast, asynchro-
nous federated learning maintains a relatively stable
number of active clients over time. As clients complete
their training and upload their model updates, their posi-
tions are replaced by newly selected clients, increasing
the parallelism of the asynchronous system.

Although the asynchronous mechanism enhances sys-
tem parallelism, when the client computing speeds follow
a heavy-tailed distribution, potential issues can arise. In
a problematic scenario, fast clients can quickly update
the global model by completing their local training, while
slower clients make minimal progress based on outdated
global models. In traditional distributed machine learn-
ing with parameter servers, the pathological scenario is
prevented by introducing bounded staleness in the out-
dated synchronous parallel (SSP) mechanism [8]. In
FedAsync, a staleness function is proposed to compute
a mixed hyperparameter α for model aggregation. Intui-
tively, the weight assigned to a client’s model updates
when aggregating into the global model decreases as the
client becomes more "stale". Through this simple design,
FedAsync demonstrates its ability to address the issue
of localized regularization to ensure convergence, and
a similar approach is introduced in the asynchronous
aggregation mechanism proposed in this paper.

Another potential issue arising from this process is
fairness [9]. It is evident that fast clients are selected for
local training far more frequently throughout the entire
federated learning process, as they can quickly complete
their local model training and enter the waiting-to-be-
selected state. However, this process is undoubtedly
unfair for fast clients. Specifically, fast clients may expend
much more computational power throughout the process
than slow clients, only to end up with the same model as
slow clients. What’s worse is that the models obtained
by fast clients, who contribute more, may have lower
accuracy on their local test sets compared to the mod-
els contributed by less contributing clients. The fairness
issue arising from this situation deserves further investi-
gation, as unfair mechanisms designed in federated sys-
tems may discourage clients from joining the federation

for distributed training, especially for fast clients. This, in
turn, may result in a reduction of fast clients in the entire
system, thereby decreasing the overall performance of
the federation.

In summary, the heterogeneity of clients and the intro-
duction of asynchronous mechanisms make the entire
system more complex and complicate the trade-off
between fairness and model performance. To address
this, this paper proposes an adaptive asynchronous feder-
ated learning aggregation mechanism, referred to as Fed-
Eem , with the following two main improvements.

•	 Propose an aggregation algorithm to judge the obso-
lescence degree and gradient drift degree of client
models, effectively reducing the impact of system
failures, and allowing clients to perform local updates
in different rounds, instead of using globally synchro-
nized rounds of local updates commonly used.

•	 Propose an early exit mechanism to reduce the fair-
ness issue caused by the over-selection of fast clients
while ensuring that the convergence speed of the sys-
tem does not significantly decrease.

This paper first introduces and analyzes the necessity and
effectiveness of these two mechanisms in detail. Then,
through experiments, the superiority of the proposed
method compared to Fedbuff, FedAsync, and FedAvg
methods is demonstrated. Finally, detailed mathematical
analysis of the convergence is provided.

Related work
The related work can be summarized into the following
three points: Asynchronous Federated Learning, Person-
alized Federated Learning and Fairness Issues in Feder-
ated Learning.

Asynchronous federated learning
In the classical federated learning paradigm, synchro-
nous aggregation strategies face challenges in effectively
utilizing limited resources, particularly on heterogene-
ous devices. This is because they have to wait for slower
devices to complete their computations before aggregat-
ing in each training round. Additionally, the heterogene-
ity of data distribution, known as data heterogeneity, in
real-world mobile edge computing scenarios can signifi-
cantly impact the accuracy of the model. Hence, some
research works have attempted to use asynchronous
model updates to improve efficiency, performance, pri-
vacy, and security. Xie et al. proposed the paradigm
of asynchronous federated learning called FedAsync,
which solves the regularized local problem to ensure
convergence, and then updates the global model using
stale-weighted averaging, demonstrating the proposed

Page 3 of 13Gu and Zhang ﻿Journal of Cloud Computing (2023) 12:154 	

method’s near-linear convergence for both strongly
convex and constrained non-convex problem families.
Chen et al. introduced Asynchronous Online Federated
Learning (ASO Fed) as an extension of FedAsync. They
proposed online optimization policies to tackle three
potential training challenges: 1) the data on local devices
can increase over time, leading to changing correlations
among clients in an online setting; 2) due to network
constraints, mobile devices may frequently go offline or
have poor communication bandwidth, making synchro-
nous federated learning frameworks highly sluggish; 3) In
the context of federated learning, edge devices may expe-
rience delays or even drop out of the training process due
to various factors such as data heterogeneity or system
heterogeneity. These factors can introduce inconsist-
encies and hinder the smooth progress of the federated
learning process [10]. Nguyen introduced a model aggre-
gation scheme called FedBuff, which aims to leverage the
benefits of both synchronous federated learning (FL) and
asynchronous FL. In FedBuff, the server aggregates client
updates in a dedicated buffer, allowing for more flexible
and efficient aggregation [11]. This approach demon-
strates improved convergence speed compared to Fed-
Async and is compatible with existing secure aggregation
and privacy techniques. It offers a promising solution for
achieving efficient and secure federated learning. Su et al.
enhanced FedBuff by dynamically adjusting aggrega-
tion weights considering the staleness and divergence of
model updates. They carefully selected operating points
in each dimension of the design space and ensured veri-
fied convergence guarantees [12].

Personalized federated learning
Data heterogeneity poses a significant challenge in cur-
rent federated learning approaches.Research findings
suggest that the accuracy of FedAvg experiences a sig-
nificant decrease when trained on non-identically and
independently distributed data [13]. Additionally, the
updates of completely synchronized models result in a
lack of personalized solutions. Users from diverse sce-
narios may exhibit varying usage patterns due to subtle
distinctions in their environments and requirements [14].
In such scenarios, the need for more personalized predic-
tions arises to provide users with more meaningful word
suggestions. This challenge not only affects the training
of the global model but also impacts its performance on
local data of specific clients. Consequently, this may dis-
courage the participation of affected clients in the feder-
ated learning process.

Personalized federated learning offers a promising
solution to tackle the issue at hand. By training custom-
ized local models for each user, it effectively addresses
the data heterogeneity among clients [15]. Presently,

personalized federated learning methods primarily con-
centrate on optimizing from both data-based and model-
based standpoints. Data-based approaches strive to
minimize the statistical heterogeneity of client data dis-
tribution through techniques such as data augmentation
[14] and node selection [16]. Model-based approaches,
on the other hand, focus on learning a robust global
model that can be further personalized for each client
or enhance the adaptability of local models. Common
practices include adding regularization terms [17], meta-
learning [18], and transfer learning [19]. Some research
attempts to enhance the robustness and generalization of
federated learning through methods like clustering [20],
multitask learning [21], model interpolation, and knowl-
edge distillation [22]. In this paper, we utilize meta-learn-
ing for client initialization during training.

Fairness issues in federated learning
In the federated learning system, when clients participate
in federated learning, they inevitably consume resources
on their devices, including computational resources,
communication resources, and power resources. Without
sufficient rewards, clients may be unwilling to partici-
pate or share their trained models. Hence, creating a fair,
rewarding, and secure environment for federated learn-
ing becomes imperative to encourage a substantial client
participation.

Zhou et al. classify fairness in federated learning into
three categories: performance fairness, collaboration
fairness, and model fairness [23]. For performance fair-
ness, most schemes aim to promote a consistent accuracy
distribution among participants and achieve reasonable
resource allocation in heterogeneous systems through
joint optimization. In terms of collaboration fairness,
current research primarily focuses on ensuring that each
participant receives a fair representation of the rewards
they contribute to the federated system [24], thus estab-
lishing a sound incentive mechanism. Incentive mecha-
nisms in federated learning mainly attempt to construct a
contribution model for each participant and provide cor-
responding rewards. Currently, contribution models are
mainly based on the value of client data, which is evalu-
ated from the perspectives of data quality and data quan-
tity. Evaluation methods based on data quality employ
metrics such as Shapley value [25], auction mechanisms
[26], contractual theory, etc. Evaluation methods based
on data quantity adjust the size of participating data to
fully consider the rewards and energy costs obtained by
each client. Furthermore, Zhan et al. introduce a novel
approach that integrates game theory and deep rein-
forcement learning. In this approach, the parameter
server functions as a deep reinforcement learning agent,
enabling it to determine optimal payments without the

Page 4 of 13Gu and Zhang ﻿Journal of Cloud Computing (2023) 12:154

requirement of accurately assessing each client’s contri-
butions or obtaining their private information before-
hand [27].

Regarding model fairness, Du et al. proposed reweight-
ing the objective function under fairness constraints [28].
Liang et al. attempts to reduce the impact of variance in
data distribution by locally learning representations on
each client while jointly learning the global model [29].
It is important to acknowledge the trade-off between
performance fairness and model fairness. Performance
fairness prioritizes achieving a balanced accuracy of
the global model, whereas model fairness focuses on
the performance of the model on local data. Collabora-
tion fairness relies on an executable and sound incentive
mechanism. In the context of mobile edge computing,
most traditional federated incentive mechanisms are
ineffective because most clients (such as mobile phone
users and IoT devices [30–34]) do not expect to gain eco-
nomic benefits through federated learning. Their primary
concern lies in determining whether federated learning
can enhance the accuracy of the model on their respec-
tive local data, which is known as model fairness.

In summary, the existing work has the following short-
comings: 1) The heterogeneity of the clients and the
introduction of asynchronous mechanisms make the
entire system more complex. This may lead to imbal-
anced resource utilization and slower model convergence
speed. 2) Balancing fairness and model performance in
federated learning is often challenging. This paper aims
to improve the fairness of the model while ensuring that
the convergence speed of the model does not signifi-
cantly decrease.

FedEem
In order to address the issue of slow model updates, an
increasing number of federated learning approaches have
adopted asynchronous aggregation patterns in recent
years. FedEem also utilizes this asynchronous aggrega-
tion mechanism, which allows clients to upload models
at different time points and update the global model by
merging these models. However, FedEem has made cer-
tain innovations in the aggregation mechanism by intro-
ducing obsolescence discount, diversity discount, and
early stopping mechanism.

Asynchronous aggregation mechanism
In an asynchronous federated learning system, clients
that receive the global model from the server several
rounds ago may become outdated, resulting in lower
quality model updates during the aggregation process.
This can disrupt the approximate consensus of the
majority of other clients and impede the convergence
process. It is intuitive to reduce the weight assigned to

these outdated clients during the aggregation process
[6]. To measure these effects, the following evaluation
metrics are proposed in this section.

Obsolescence Discount refers to the concept of quan-
tifying the obsolescence of a client in an asynchronous
federated learning system. The obsolescence of a client
is determined by the number of global update rounds
that have passed since the client last received the global
model from the server. It is reasonable to assume that
the more obsolete a client is, the lower its aggregation
weight should be. According to [11], the obsolescence
of clients must be bounded, otherwise the convergence
of the model cannot be guaranteed. Let τ represent the
current training round on the server, and let τk repre-
sent the training round corresponding to the last time
client k received the global model from the server. The
obsolescence sk of client k can be calculated as τ − τk .
The following obsolescence function is used to calcu-
late the obsolescence discount, which discounts the
aggregation weight:

Where � is used to represent the upper bound of
obsolescence. Clearly, the upper bound of skτ is 0.5α ,
where α is a hyperparameter that controls the impor-
tance of obsolescence discount in the aggregation
process.

To measure the staleness of client updates, the differ-
ence between local accumulated gradients and global
aggregated gradients can be utilized. Let wi − wi−1 repre-
sent the disparity between the models obtained from the
most recent two rounds of server aggregation. Here, wi
denotes the parameters of the global model in i-th round.
In round i, client k uploads its weight updates obtained
from training, denoted as δik . If δik significantly dis-
rupts the general consensus wi − wi−1 , it implies that the
update from client k may not contribute to global optimi-
zation and should be discounted during the aggregation
process. The interference can be quantitatively assessed
by calculating the cosine similarity θki between δik and
wi − wi−1 . A lower θki indicates less similarity between
the two vectors. Consequently, the dissimilarity discount
can be defined as follows:

Where Similarity(X, Y) represents the cosine similarity
between vectors X and Y. Similar to the obsolescence dis-
count, a hyperparameter β is introduced here to control
the magnitude of the dissimilarity discount. Taking these
two influencing factors into account, the aggregation
weight can be defined as follows:

(1)skτ = α ·
�

Sk +�
,

(2)θki = β · Similarity �k
i ,wi − wi−1 + 1,

Page 5 of 13Gu and Zhang ﻿Journal of Cloud Computing (2023) 12:154 	

Where T represents the dataset of client k.

Early exit mechanism
Another mechanism introduced in this chapter is the
early exit mechanism. In previous works such as FedAvg
and FedAsync, clients were not allowed to stop early dur-
ing the training process and were required to complete all
training rounds. This requirement is reasonable in syn-
chronous federated learning, where clients are sampled
with equal probability, resulting in consistent expected
rounds E(nk) = ST/K for all clients sampled in total
training rounds T. However, the introduction of asyn-
chronous mechanism breaks this balanced expectation.
Clearly, in an asynchronous federated learning system, if
clients are still sampled with equal probability per round,
the expected rounds mathcalE(nk) for fast clients and
slow clients required to perform local training are not
consistent, and this difference increases with the increase
in computational speed differences among clients. This
unfairness is problematic for fast clients because it dis-
courages their participation in federated learning. While
the concept of federated learning promotes collaboration
among clients in a distributed manner, the unequal treat-
ment of fast clients would deter users with high-perfor-
mance computing devices from engaging in federated
learning.

Furthermore, it is important to acknowledge that the
non-independent and non-identically distributed data
introduces variations in objectives among different cli-
ents. In traditional federated learning, the objective is to
achieve optimal performance of the global model across

(3)pki =
|Tk |

|T |

(

ski + θki

)

,
all clients. However, from an individual client’s perspec-
tive, the objective is to attain excellent local performance.
Please note the difference between these two objectives,
as the latter allows for inconsistent models across differ-
ent local clients.

If a client has achieved sufficient performance in its
local training after participating in several rounds of
federated updates, it naturally tries to exit the federated
system. However, it is important to note that allowing
quick client exits may potentially cause issues. After a cli-
ent is selected, it undergoes local training and uploads its
model for aggregation. In return, the client receives the
global model. While this global model may exhibit good
performance on the client’s local dataset, it may suffer
from poor generalization performance. This is because
the global model tends to optimize towards the cli-
ent’s objectives based on the previous round of updates.
Therefore, it may result in the global model not hav-
ing good generalization performance yet.Another more
critical reason is that when the aggregation of the global
model reaches a high position (e.g., 92% ), there is a high
probability that the client immediately achieves its local
training goal (e.g., 95% ). If the clients are allowed to exit
at this time, a large number of clients may withdraw
within a few rounds. The problem with this is that only a
few clients are left and continuously selected, leading to
a severe deviation between their optimization direction
and the global optimum. Consequently, it may result in a
global model with poor generalization performance.

As shown in Fig. 1, clients a,b,c are participating in
asynchronous federated learning. In rounds t and t +
1, client b is performing gradient descent with clients a
and b. At this point, client b is overly involved, and the
global parameter wt+2 is already sufficiently close to the

Fig. 1  Simulation results for the network

Page 6 of 13Gu and Zhang ﻿Journal of Cloud Computing (2023) 12:154

global optimum w∗ and its local target w∗
b , while the local

optima of clients a and c are relatively far away.If we
insist on client b’s participation in the federated learning
process at this stage, it may lead to a significant devia-
tion in the global gradient update direction compared
to the dominant client’s gradient direction, and affect
the convergence process. Additionally, some clients may
be unwilling to continue contributing computational
resources due to being selected too many times.

This article explores a reliable early exit mechanism: (1)
setting a lower bound on the number of training rounds
for all clients, tbnd , which requires clients to be selected at
least tbnd times before being allowed to exit early; (2) set-
ting an additional number of training rounds for all cli-
ents, text , which requires clients to be selected at least text
times after the model reaches an accuracy target before
being allowed to exit early; (3) setting a lower bound
on the number of remaining rounds for all clients, tstay ,
which requires clients to remain in the client pool for at
least tstay rounds after achieving the target accuracy on
their own dataset before being allowed to exit early.

Convergence analysis
In order to analyze the convergence performance of
FedEem , in combination with previous convergence
proof methods for federated learning, the following set-
tings are considered.In each round of global update
τ ∈ T ,where T represents the total number of rounds of
global updates, the server selects k clients from the cli-
ent pool.Each client first receives the global model wk

τ k

from the server, and then performs ǫ rounds of training
based on its own data. For the j-th round of local train-
ing, with a data size of B and a learning rate of ηjl , the
local model is optimized using SGD. This can be formu-
lated as wk

τ k ,j+1
= w

k
τ k ,j

− η
j
lg
(

w
k
τ k ,j

)

 , where the gradient

g
(

w
k
τ k ,j

)

= ∇fk

(

w
k
τ k ,j

,Dk
)

 . Once all selected clients

have reported, the server starts the aggregation process.
To provide a better explanation, we have made use of
some common assumptions and listed all the parame-
ters used in Table 1 [11].

Assumption 1  The objective function fk of each client
k is L−smooth, which means its derivative is L−Lipschitz
continuous, resulting in

∥
∥∇fk(w)− ∇fk(w)

∥
∥ ≤ L

∥
∥w − w′

∥
∥.

Assumption 2  Eξ [fk(w, ξ)] = ∇fk(w) , where w repre-
sents the trainable parameters.

Assumption 3  The expected square norm of
the stochastic gradient is uniformly bounded,
i.e.,E

∥
∥∇fk(w, ξ)

∥
∥2 ≤ G2 for k = 1, . . . ,K .

Assumption 4  Assuming ξ is uniformly sampled from
the local data of the k-th client device. The variance of
the stochastic gradient in each device is bounded, i.e., for
Eξ

∥
∥fk(w, ξ)− fk(w)

∥
∥2 ≤ σ 2

k for k = 1, . . . ,K  . Then, we

define σ 2
l :=

∑K
k=1

∣
∣
∣Dk

∣
∣
∣

|D| σ
2
k .

Assumption 5  For any client k and parameter w, we define
δk as the upper bound of the local objective function with the
global objective function, which is

∥
∥fk(w)− f (w)

∥
∥2 ≤ δ2k .

Furthermore, we define δ2g :=
∑K

k=1

∣
∣
∣Dk

∣
∣
∣

|D| δ
2
k.

Based on adaptive weight gradient aggregation, Lemma 1
can be obtained.

Lemma 1  Given hyperparameters α and β for outdated-
ness and interference discount, the aggregation weight pkτ for
each gradient has an upper bound pkτ ∈

[
α
2dk , (α + β)dk

]
 ,

where dk =

∣
∣
∣Dk

∣
∣
∣

|D| .

Table 1  Experimental parameters

Symbol Description

T, t Server update frequency, server update index

S
t Server updates the selected subset of client in time t

Q, q, ǫ Local step count per round, round index

wt The model after t updates

gi(w; ζi) := gi(w) Random gradient

ηgηl Global and local learning rate

K The number of clients selected for a single aggregation

σ 2
g , σ

2
ℓ

Global and Local gradient variance

τi(t) Outdatedness of client i  ’s model after t rounds of global updates

τmax Obsolete upper bound

Page 7 of 13Gu and Zhang ﻿Journal of Cloud Computing (2023) 12:154 	

Lemma 2  E

[∥
∥gk

∥
∥2
]

≤ 3
(

σ 2
l + σ 2

g + G
)

 , where the
expectation E[·] takes into account the random participa-
tion of clients and the client’s random gradient.

To simplify the analysis without compromising the
proof of convergence, we can disregard the denominator
term in Lemma 1. Based on this, we can derive the con-
vergence rate of FedEem as follows:

Theorem 1  Based on Assumptions 1, 2, 3 and 4
and Lemma 1, the convergence rate of FedEem can be
expressed as:

Where �(d) =
∑K

i=1 d
2
i ,φ(E) =

∑E
j=1 η

j
l ,ψ(E) =

∑E
j=1

(

η
j
l

)2.
In addition, to simplify the expression, let
σ 2 = (α + β)σ 2

l + (α + β)δ2g + G2.In addition, in order
to ensure the convergence upper bound, K and ηl must
satisfy the following relationship:

Proof

The update process of FedEem can be described as: �

Where St represents selected clients in the t-th global
update.

Specifically, unlike previous federated learning proof,
due to data heterogeneity and device heterogeneity, it
cannot be simply assumed that St is a unified subset
because the possibility of clients participating is not the
same in different rounds. Specifically, in the early rounds,
fast clients are more likely to participate in more rounds
due to faster updates, while in the later rounds, the situa-
tion is reversed as fast clients drop out early.

(4)

1

T

T−1∑

τ=0

E
∥
∥∇f (wτ)

∥
∥2 ≤ 2

(
f (w0)− f (w∗)

)

φ(E)TK
+ 6K (α + β)2�(d)L2Eψ(E)

(

K 2�2 + 1
)

σ 2

+ L
ψ(E)

Kφ(E)
(α + β)σ 2

l ,

(5)
4(α + β)

α2�(d)
Kη

j
l ≤

1

L
.

(6)

wt+1 = wt + ηg �̄
t = wt + ηg

1

K

�

k∈St



−ηl

ǫk�

q=1

gk

�

y
t−τk (t)
k ,q

�



,

Following the common convergence proof procedure
used in federated learning methods, the proof of conver-
gence rate for the non-convex objective function proposed
in [35] starts by utilizing smoothness Assumption 1. There-
fore, it follows that :

Where �t−τk
k is the parameter update made by the client

after receiving global model parameters before the t − τk
global update. ∇ f̃

(
wt

)
 is the global gradient at global

update round t. Then, upper bounds are computed for T1
and T2

By utilizing conditional expectations, it is possible to
represent the expectation operator in a more concise
manner:

Where Eπ is the expectation with respect to all client pol-
icies,π = {π1, . . . ,πN } represents the collection of all client
policies participating in federated learning, Ei∼[mt] is the
evaluation over the randomness of selecting client i ∼ [mt]

(7)f
(

wt+1
)

≤ f
(
wt

)
+ T1(t)+ T2(t),

(8)T1(t) = −ηq
∑

k∈Sk

ptk

〈

∇ f̃
(
wt

)
,�

t−τk
k

〉

(9)T2(t) =
Lη2g

2

∥
∥
∥
∥
∥
∥

∑

k∈Sk

ptk�
t−τk
k

∥
∥
∥
∥
∥
∥

2

(10)

T1(t) = −ηg
∑

k∈St

ptk

〈

∇f
(
wt

)
·

ǫk∑

q=1

η
(q)
t gk

(

y
t−τk
k ,q

)
〉

= −
ηg

K

∑

k∈St

ǫk∑

q=1

η
(q)
t ptk

〈

∇f
(
wt

)
, gk

(

y
t−τk
k ,q

)〉

.

(11)E[·] := EπEi∼[mt]Egi ,p
t
i |i,π

[·],

Page 8 of 13Gu and Zhang ﻿Journal of Cloud Computing (2023) 12:154

from the distribution at the global round t. Please note
that mt is not a fixed value due to the presence of dropout
mechanism. The inner expectation refers to one-step of
random gradient descent on the client. Therefore, under
the unbiased estimation assumption, we have

Furthermore,E[T1(t)] can be written as:

For T3 , it can be derived from the definition of f (wt)

By defining γi(t) =
∑ǫi

q=1 p
k
i  , further, T3 can be expressed

as the error caused by obsolescence and local drift.

(12)

E[T1(t)] = −E




ηg

K

�

k∈Si

ǫk�

q=1

ηlp
t
k

�

∇ f̃
�
wt

�
, gk

�

y
t−τk
k ,q

��





= −ηgEπ




1

m

m�

i=1

ǫi�

q=1

η
(q)
l Egi |i∼[m]

�

∇ f̃
�
wt

�
, gi

�

y
t−τi
i,q

��





= −
ηg

mt
Eπ





mt�

i=1

ǫk�

q=1

ηl

�

∇ f̃
�
wt

�
, pti∇Fi

�

y
t−τi
i,q

��





= −ηg η̄lEπ





�

∇ f̃
�
wt

�
,
1

mt

mt�

i=1

ǫk�

q=1

pti∇Fi

�

y
t−τi
i,q

�
�

.

(13)
E[T1(t)] = −

ηgηl

2
E

��
�
�∇ f̃

�
wt

�
�
�
�

2
�

+
ηg η̄l

2




−Eπ

�
�
�
�
�
�

1

mt

mt�

i=1

ǫi�

q=1

η
(q)
l pki ∇Fi

�

y
t−τi
i,q

�

�
�
�
�
�
�

2

+ Eπ

�
�
�
�
�
�

∇ f̃
�
wt

�
−

1

mt

mt�

i=1

ǫi�

q=1

pki ∇Fi

�

y
t−τi
i,q

�

�
�
�
�
�
�

2

� �� �

T3(t)

.

(14)

Eπ [T3(t)] = Eπ

∥
∥
∥
∥
∥
∥

1

mt

mt∑

i=1

∇Fi
(
wt

)
−

1

mt

mt∑

i=1

ǫi∑

q=1

pki ∇Fi

(

y
t−ri
i,q

)

∥
∥
∥
∥
∥
∥

2

≤
1

mt

mt∑

i=1

Eπ

∥
∥
∥
∥
∥
∥

ǫi∑

q=1

pki

[

∇Fi
(
wt

)
−∇Fi

(

y
t−τi
i,q

)]

∥
∥
∥
∥
∥
∥

2

≤
1

mt

mt∑

i=1

Eπ

ǫi∑

q=1

pki

∥
∥
∥

[

∇Fi
(
wt

)
−∇Fi

(

y
t−τi
i,q

)]∥
∥
∥

2

.

(15)

E[T3(t)] ≤
2

m

m∑

i=1

Eπ γi(t)(Oe + Cd)

≤
2

m

m∑

i=1

(

L2Eπ γi(t)
∥
∥wt − wt−τi

∥
∥
2
+ L2Eπ γi(t)

∥
∥
∥wt−τi − y

t−τi
i,q

∥
∥
∥

2
)

.

Where,Oe is the Obsolescence error, and Cd is the client
drift.

The errors caused by obsolescence can be mitigated
by accumulating them as model updates between
rounds

The upper bound for computing its expectation can be
obtained

The second inequality utilizes Lemma 2 for bound-
ing, and the last inequality utilizes E(X)2 ≤ E

(
x2
)
 . The

expected error caused by local drift can be similarly con-
strained as:

(16)Oe =
∥
∥∇Fi

(
wt

)
− ∇Fi

(
wt−τi

)∥
∥
2

(17)Cd =

∥
∥
∥∇Fi

(
wt−τi

)
−∇Fi

(

y
t−τi
t,q

)∥
∥
∥

2

(18)

∥
∥wt − wt−τi

∥
∥
2
=

∥
∥
∥
∥
∥
∥

t−1∑

ρ=t−τi

(

wρ+1 − wρ
)

∥
∥
∥
∥
∥
∥

2

=

∥
∥
∥
∥
∥
∥

t−1∑

ρ=t−τi

ηg

K

∑

jρ∈Sρ

�
ρ
jρ

∥
∥
∥
∥
∥
∥

2

=
η2g

K 2

∥
∥
∥
∥
∥
∥

t−1∑

ρ=t−τi

∑

jρ∈Sρ

Q−1
∑

l=0

η
(l)
l gjρ

(

y
ρ

jρ ,l

)

∥
∥
∥
∥
∥
∥

2

.

(19)

γi(t)Eπ

∥
∥wt − wt−τi

∥
∥
2
≤

η2g τi

K
Eπ (γi(t)ǫi)

∑

ρ=t−τi

∑

jρ∈Sρ

ǫ∑

l=0

(

η
(l)
l

)2

E

∥
∥
∥gjρ

(

y
p
jρ ,l

)∥
∥
∥

2

≤ 3η2gEπ (γi(t)ǫi)max
τi

τ 2i

(
ǫl∑

l=1

(

η
(l)
l

)2

)
(

σ 2
l + σ 2

g + G
)

≤ 3η2g η
2
l Eπ

(

γi(t)ǫ
2
)

τ 2max,K

(

σ 2
l + σ 2

g + G
)

,

Page 9 of 13Gu and Zhang ﻿Journal of Cloud Computing (2023) 12:154 	

Substituting the constraint of T3 back into T1 yields:

Let β(Q) :=
∑Q−1

q=0

(

η
(q)
ℓ

)2
 . Therefore, we have:

For the constraint on the expected value of T2 , we have:

(20)

E[T3] ≤ 6



L2η2gη
2
l Eπ

�

γi(t)ǫ
2
�

τ 2max,K

�

σ 2
l + σ 2

g + G
�

+ L2q





g−1
�

i=0

�

η
(i)
l

�2





�

σ 2
l + σ 2

g + G
�





≤ 6L2Eπ

�

γi(t)ǫ
2
��

η2g τ
2
max,K +

1

2

��

σ 2
l + σ 2

g + G
�

,

(21)E[T1] ≤ −
ηgηl

2

∥
∥∇f

(
wt

)∥
∥
2
+

ηgηl

2
E[T3]− Eπ

∥
∥
∥
∥
∥
∥

1

mt

mt∑

i=1

ǫi∑

q=1

η
(q)
l pki ∇Fi

(

y
t−τi
i,q

)

∥
∥
∥
∥
∥
∥

2

.

(22)

E[Tt] ≤ −
ηgηl

2

∥
∥∇f

(
wt

)∥
∥
2
+ 3L2Eπ

(

γi(t)ǫ
2
)(

η2g τ
2
max,K +

1

2

)(

σ 2
l + σ 2

g + G
)

− Eπ

∥
∥
∥
∥
∥
∥

1

mt

mt∑

i=1

ǫi∑

q=1

η
(q)
l pki ∇Fi

(

y
t−τi
i,q

)

∥
∥
∥
∥
∥
∥

2

︸ ︷︷ ︸

T4

.

(23)

E[T2(t)] = E






Lη2g

2K2

�
�
�
�
�
�

�

k∈St

ǫk�

q=0

η
(q)
ℓ ptkgk

�

y
t−τk
k,q

�

�
�
�
�
�
�

2





= E






Lη2g

2K 2

�
�
�
�
�
�

�

k∈Sk

ǫk�

q=1

η
(q)
k ptk

�

gk

�

y
t−τk
k ,q

�

−∇Fk

�

y
t−τk
k ,q

��

+
�

k∈Sk

ǫk�

q=1

η
(q)
k ptk∇Fk

�

y
t−τk
k ,q

�

�
�
�
�
�
�

2





=
Lη2q

2K 2
E

�
�
�
�
�
�

�

k∈S,

ǫk�

q=1

η
(q)
ℓ ptk

�

gk

�

y
t−rk
k ,q

�

−∇Fk

�

y
t−rk
k ,q

��

�
�
�
�
�
�

2

+
Lη2g

2K 2
E

�
�
�
�
�
�

�

k∈S

ǫk�

q=1

η
(q)
ℓ ptk∇Fk

�

y
t−rk
k ,q

�

�
�
�
�
�
�

2

=
Lη2g

2

�

k∈S

ǫk�

q=1

�

η
(q)
ℓ ptk

�2
E

�
�
�

�

qk

�

y
t−τk
k ,q

�

−∇Fk

�

y
t−τk
k ,q

���
�
�

2

+
Lη2g

2K 2
Eπ ǭE

ǫk�

k∈S,q=1

�
�
�η

(q)
ℓ ptk∇Fk

�

y
t−τk
k ,q

��
�
�

2

≤
Lη2g η

2
l ζ(t)σ

2
ℓ

2
+

Lη2gEπ ǭ

2K

�

k∈Sk

�

η
(q)
ℓ

�2
EπEk∼[mt]πp

t
k�

ǫk�

q=1

∇Fk

�

y
t−τk)

k ,q �2

=
Lη2g η

2
l ζ(t)σ

2
ℓ

2
+

Lη2gEπ ǭ

2K

�

k∈Si

�

η
(q)
ℓ

�2
Eπ




pti
mt

mt�

i=1

ǫk�

q=1

�
�
�∇Fi

�

y
t−τi
i,q

��
�
�

2





� �� �

T5,

Where, the definition ζ(t) = Eπ

∑ǫk
q=1 p

t
k is given. In

order to ensure that an upper bound exists on E[T1 + T2] ,
it is necessary to ensure that T4 + T5 ≤ 0:

Therefore, in order to ensure that T4 + T5 ≤ 0 , it
is required that for all local gradient descent steps,
ηgηℓEπ ǭ ≤ 1

L . Finally, combiningT1, T2 provides the
expected improvement in performance between two
adjacent global models:

(24)

(T4 + T5) = −Eπ

�
�
�
�
�
�

1

mt

mt�

i=1

ǫi�

q=1

η
(q)
l pki ∇Fi

�

y
t−τi
i,q

�

�
�
�
�
�
�

2

+
Lη2gEπ ǭ

2K

�

k∈Si

�

η
(q)
ℓ

�2

Eπ




pti
mt

mt�

i=1

ǫk�

q=1

�
�
�∇Fi

�

y
t−τi
i,q

��
�
�

2





≤ −Eπ

�
�
�
�
�
�

mt�

i=1

ǫi�

q=1

η
(q)
l

pki
mt

∇Fi

�

y
t−τi
i,q

�

�
�
�
�
�
�

2

+
Lη2gEπ ǭ

2K

�

k∈Si

�

η
(q)
ℓ

�2

Eπ




pti
mt

mt�

i=1

ǫk�

q=1

�
�
�∇Fi

�

y
t−τi
i,q

��
�
�

2





=

�

−ηg − LEπ ǭη
2
gη

2
l

�

Eπ

�
�
�
�
�
�

mt�

i=1

ǫi�

q=1

η
(q)
l

pki
mt

∇Fi

�

y
t−τi
i,q

�

�
�
�
�
�
�

2

.

Page 10 of 13Gu and Zhang ﻿Journal of Cloud Computing (2023) 12:154

After nested summation from t = 1, · · · ,T , the above
equation can be obtained.

Therefore, Theorem 1 can be obtained.

Proof

Lemma 2 �

Experiment and analysis
To understand the impact of various hyperparameters
in the convergence process and computational resource
consumption in federated learning, this study conducted
an analysis from two perspectives: the influence of hyper-
parameters on the performance of FedEem and the com-
putational speed. By controlling variables and conducting
a series of comparative experiments, we demonstrated
the efficiency and fairness of FedEem .

(25)

E

[

f
(

wt+1
)]

≤ E
[
f
(
wt

)]
−

ηgγ (t

2

∥
∥∇f

(
wt

)∥
∥
2

+ 3φg L
2Qγ (t)ζ(t)

(

η2gπmax,K 2 +
1

2

)(

σ 2
l + σ 2

g + G
)

+
L

2
η2g ζ(t)σ

2
l

(26)

T−1∑

t=0

ηgγ (t)
∥
∥∇f

(
wt

)∥
∥
2

≤

T−1∑

t=0

2

(

E
[
f
(
wt

)]
− E

[

f
(

wt+1
)])

+ 3

T−1∑

t=0

ηgL
2
Eπ ǭγ (t)ζ(t)

(

η2g τ
2
max,K + 1

)(

σ 2
t + σ 2

g + G
)

+
L

2
η2g ζ(t)σ

2
l

≤ 2

(

f
(

w0
)

− f
(
wn

))

+ 3

T−1∑

s=0

ηgL
2γ (t)ζ(t)

(

η2g τ
2
max,K + 1/2

)(

σ 2
l + σ 2

g + G
)

+
L

2
η2g ζ(t)σ

2
ℓ

(27)

1

T

T−1∑

t=0

∥
∥∇f

(
wt

)∥
∥
2
≤

2
(
f
(
w0

)
− f (w∗)

)

ηg · α(Q)T

+ 3L2Qβ(Q)

(

η2g τ
2
max,K + 1

)(

σ 2
l + σ 2

g + G
)

+
L

2

ηgβ(Q)

α(Q)
σ 2
l

(28)

�
�wt+1 − w

⋆
�
�2 = �wt + ηg

�

k∈St

pk



−ηℓ

Q
�

q=1

gk

�

y
t−τk (t)
k ,q

�





= �wt − w
⋆
�
�2 + T1 + T2

(29)T1 = 2ηt(wt − w
⋆
,+ηg

�

k∈St

pk



−ηℓ

Q
�

q=1

gk

�

y
t−τk (t)
k ,q

�





(30)T2 = η2g

�
�
�
�
�
�

�

k∈St

pk



−ηℓ

Q
�

q=1

gk

�

y
t−τk (t)
k ,q

�





�
�
�
�
�
�

2

Experimental setup
To ensure fairness in the experimental comparison, this
paper primarily focuses on comparing the number of
rounds required for the global model to achieve a spe-
cific accuracy threshold (e.g., 95% accuracy on the MNIST
dataset). The experiments involve a fixed total of 20 clients.

The federated learning process is simulated using FLsim, a
simulator specifically designed for experimental research
[36]. FLsim utilizes JSON files to manage the configuration
parameters of federated learning simulations and provides
a general template along with three pre-configured simu-
lation files for the CIFAR-10, FashionMNIST, and MNIST
datasets. In this study, we implemented federated learning
algorithms such as FedBuff for conducting comparative
experiments.

All simulation experiments were performed on a
PC server running Ubuntu Linux 21.1.0. The server is
equipped with an Intel i5-10600KF (4.10GHz) processor,
64GB RAM, and 4 NVIDIA TITAN-V GPUs. The experi-
mental environment utilizes Python 3.9.5 and PyTorch
1.8.1.

Analysis of experimental results
Figures 2 and 3 show the performance comparison of
FedEem with other state-of-the-art algorithms under the
scenarios of uniform and randomly independent distri-
butions. Due to the presence of the early exit mechanism,
FedEem has a significant advantage in terms of conver-
gence speed compared to other asynchronous federated
learning algorithms. In addition, the aggregation mecha-
nism optimized by FedEem allows for a more stable con-
vergence process, as it is less affected by the obsolescence
of model updates and interference caused by large gradi-
ent differences.

Page 11 of 13Gu and Zhang ﻿Journal of Cloud Computing (2023) 12:154 	

Figure 4 illustrates the convergence process of Fed-
Eem under different choices of regularization weights,
with 30 clients and four repetitions of experiments. It
can be observed that different hyperparameter choices
have significant differences in terms of time and round
consumption, but are not consistent in terms of vari-
ance. Therefore, making intelligent decisions regarding

hyperparameters in the asynchronous federated learn-
ing process is necessary.

Conclusion
This paper investigates an optimized mechanism for
asynchronous federated learning in the context of
edge computing scenarios. Firstly, the necessity of the

Fig. 2  Concurrency level is 10, with each client having 120 data samples. The data is uniformly distributed with a Non-IID pattern

Fig. 3  The concurrent number is 10, and each client has 120 data, with data randomly distributed in a Non-IID manner

Page 12 of 13Gu and Zhang ﻿Journal of Cloud Computing (2023) 12:154

asynchronous mechanism in highly heterogeneous fed-
erated learning is analyzed. The paper also addresses
the fairness issues in previous asynchronous feder-
ated learning algorithms and proposes an optimized
mechanism called FedEem . This mechanism includes a
weight aggregation mechanism that incorporates time-
liness and fairness considerations, as well as an early
exit mechanism. Experimental results demonstrate that
the proposed algorithm achieves significant improve-
ments in both convergence time and fairness under
various data distributions and device heterogeneity.

Acknowledgements
We would like to express our sincere gratitude to the editors and reviewers for
their invaluable feedback and comments on this paper.

Authors’ contributions
Author Contributions Statement: Each author has made significant contribu-
tions to the research and preparation of this manuscript. [G.] conceived the
research idea, designed the experiments, and conducted the data analysis.
Additionally, [G.] contributed to the literature review, data collection, and
manuscript writing. [Z.] provided technical guidance, reviewed and revised
the manuscript. [Z.] also contributed to the experimental design, conducted
the experiments, and analyzed the results. Furthermore, [Z.] provided critical
feedback and contributed to the interpretation of the findings. All authors
have read and approved the final version of the manuscript and take full
responsibility for its content.

Funding
Not applicable.

Availability of data and materials
All code used to support this work is available from the authors upon request.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 21 August 2023 Accepted: 25 October 2023

References
	1.	 Gong B, Xing T, Liu Z, Wang J, Liu X (2022) Adaptive clustered federated

learning for heterogeneous data in edge computing. Mob Netw Appl
27(4):1520–1530

	2.	 Xu X, Li H, Li Z, Zhou X (2022) Safe: Synergic data filtering for fed-
erated learning in cloud-edge computing. IEEE Trans Ind Inform
19(2):1655–1665

	3.	 Wu S, Shen S, Xu X, Chen Y, Zhou X, Liu D, Xue X, Qi L (2022) Popularity-
aware and diverse web apis recommendation based on correlation
graph. IEEE Trans Comput Soc Syst 10(2):771–782

	4.	 Wang F, Zhu H, Srivastava G, Li S, Khosravi MR, Qi L (2021) Robust collabo-
rative filtering recommendation with user-item-trust records. IEEE Trans
Comput Soc Syst 9(4):986–996

	5.	 Liang F, Yang Q, Liu R, Wang J, Sato K, Guo J (2022) Semi-synchronous
federated learning protocol with dynamic aggregation in internet of
vehicles. IEEE Trans Veh Technol 71(5):4677–4691

	6.	 You L, Liu S, Chang Y, Yuen C (2022) A triple-step asynchronous federated
learning mechanism for client activation, interaction optimization, and
aggregation enhancement. IEEE Internet Things J 9(23):24199–24211

	7.	 Hu CH, Chen Z, Larsson EG (2023) Scheduling and aggregation design for
asynchronous federated learning over wireless networks. IEEE J Sel Areas
Commun 41(4):874–886

	8.	 Liu Y, Zhou X, Kou H, Zhao Y, Xu X, Zhang X, Qi L (2023) Privacy-pre-
serving point-of-interest recommendation based on simplified graph

Fig. 4  Performance comparison of asynchronous federated learning under different numbers of clients

Page 13 of 13Gu and Zhang ﻿Journal of Cloud Computing (2023) 12:154 	

convolutional network for geological traveling. ACM Trans Intell Syst
Technol. https://​doi.​org/​10.​1145/​36206​77

	9.	 Hosseini SM, Sikaroudi M, Babaie M, Tizhoosh H (2023) Proportionally fair
hospital collaborations in federated learning of histopathology images.
IEEE Trans Med Imaging 42(7):1982–1995

	10.	 Chen Y, Ning Y, Slawski M, Rangwala H (2020) Asynchronous online
federated learning for edge devices with non-iid data. In: 2020 IEEE
International Conference on Big Data (Big Data). IEEE, Piscataway, p 15–24

	11.	 Nguyen J, Malik K, Zhan H, Yousefpour A, Rabbat M, Malek M, Huba D
(2022) Federated learning with buffered asynchronous aggregation. In:
International Conference on Artificial Intelligence and Statistics. PMLR,
NY, p 3581–3607

	12.	 Su N, Li B (2022) How asynchronous can federated learning be? In: 2022
IEEE/ACM 30th International Symposium on Quality of Service (IWQoS).
IEEE, Piscataway, p 1–11

	13.	 Tan AZ, Yu H, Cui L, Yang Q (2022) Towards personalized federated learn-
ing. IEEE Trans Neural Netw Learn Syst. https://​doi.​org/​10.​1109/​TNNLS.​
2022.​31606​99

	14.	 Li Q, Diao Y, Chen Q, He B (2022) Federated learning on non-iid data silos:
An experimental study. In: 2022 IEEE 38th International Conference on
Data Engineering (ICDE). IEEE, Piscataway, p 965–978

	15.	 Qi L, Lin W, Zhang X, Dou W, Xu X, Chen J (2022) A correlation graph
based approach for personalized and compatible web apis recom-
mendation in mobile app development. IEEE Trans Knowl Data Eng
35(6):5444–5457

	16.	 Chai Z, Ali A, Zawad S, Truex S, Anwar A, Baracaldo N, Zhou Y, Ludwig
H, Yan F, Cheng Y (2020) Tifl: A tier-based federated learning system. In:
Proceedings of the 29th international symposium on high-performance
parallel and distributed computing. ACM, New York, p 125–136

	17.	 Li T, Sahu AK, Zaheer M, Sanjabi M, Talwalkar A, Smith V (2020) Feder-
ated optimization in heterogeneous networks. Proc Mach Learn Syst
2:429–450

	18.	 Jiang Y, Konečnỳ J, Rush K, Kannan S (2019) Improving federated learning
personalization via model agnostic meta learning. arXiv preprint arXiv:​
1909.​12488. https://​doi.​org/​10.​48550/​arXiv.​1909.​12488

	19.	 Yang H, He H, Zhang W, Cao X (2020) Fedsteg: A federated transfer learn-
ing framework for secure image steganalysis. IEEE Trans Netw Sci Eng
8(2):1084–1094

	20.	 Duan M, Liu D, Ji X, Liu R, Liang L, Chen X, Tan Y (2021) Fedgroup: Efficient
federated learning via decomposed similarity-based clustering. In: 2021
IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big
Data & Cloud Computing, Sustainable Computing & Communications,
Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom).
IEEE, Piscataway, p 228–237

	21.	 Huang Y, Chu L, Zhou Z, Wang L, Liu J, Pei J, Zhang Y (2021) Personalized
cross-silo federated learning on non-iid data. In: Proceedings of the AAAI
conference on artificial intelligence. Menlo Park, 35:7865–7873

	22.	 Li D, Wang J (2019) Fedmd: Heterogenous federated learning via model
distillation. arXiv preprint arXiv:​1910.​03581. https://​doi.​org/​10.​48550/​
arXiv.​1910.​03581

	23.	 Zhou Z, Chu L, Liu C, Wang L, Pei J, Zhang Y (2021) Towards fair federated
learning. In: Proceedings of the 27th ACM SIGKDD Conference on Knowl-
edge Discovery & Data Mining. ACM, New York, p 4100–4101

	24.	 Lyu L, Xu X, Wang Q, Yu H (2020) Collaborative fairness in federated learn-
ing. Federated Learn Priv Incent 12500:189–204

	25.	 Lim WYB, Xiong Z, Miao C, Niyato D, Yang Q, Leung C, Poor HV (2020)
Hierarchical incentive mechanism design for federated machine learning
in mobile networks. IEEE Internet Things J 7(10):9575–9588

	26.	 Zhan Y, Li P, Wang K, Guo S, Xia Y (2020) Big data analytics by crowdlearn-
ing: Architecture and mechanism design. IEEE Netw 34(3):143–147

	27.	 Zhan Y, Zhang J, Li P, Xia Y (2019) Crowdtraining: Architecture and incen-
tive mechanism for deep learning training in the internet of things. IEEE
Netw 33(5):89–95

	28.	 Du W, Xu D, Wu X, Tong H (2021) Fairness-aware agnostic federated learn-
ing. In: Proceedings of the 2021 SIAM International Conference on Data
Mining (SDM). SIAM, p 181–189

	29.	 Liang PP, Liu T, Ziyin L, Allen NB, Auerbach RP, Brent D, Salakhutdinov R,
Morency LP (2020) Think locally, act globally: Federated learning with
local and global representations. arXiv preprint arXiv:​2001.​01523. https://​
doi.​org/​10.​48550/​arXiv.​2001.​01523

	30.	 Xu X, Tang S, Qi L, Zhou X, Dai F, Dou W (2023) Cnn partitioning and
offloading for vehicular edge networks in web3. IEEE Commun Mag
61(8):36–42

	31.	 Zhou X, Bilal M, Dou R, Rodrigues JJ, Zhao Q, Dai J, Xu X (2023) Edge
computation offloading with content caching in 6g-enabled iov. IEEE
Trans Intell Transp Syst. https://​doi.​org/​10.​1109/​TITS.​2023.​32395​99

	32.	 Xu X, Yang C, Bilal M, Li W, Wang H (2022) Computation offloading
for energy and delay trade-offs with traffic flow prediction in edge
computing-enabled iov. IEEE Trans Intell Transp Syst. https://​doi.​org/​10.​
1109/​TITS.​2022.​32219​75

	33.	 Wu J, Zhang J, Zhang Y, Wen Y (2023) Constraint-aware and multi-
objective optimization for micro-service composition in mobile edge
computing. Softw Pract Exp. https://​doi.​org/​10.​1002/​spe.​3217

	34.	 Qi L, Xu X, Wu X, Ni Q, Yuan Y, Zhang X (2023) Digital-twin-enabled 6g
mobile network video streaming using mobile crowdsourcing. IEEE J Sel
Areas Commun. https://​doi.​org/​10.​1109/​JSAC.​2023.​33100​77

	35.	 Zhan Y, Zhang J, Hong Z, Wu L, Li P, Guo S (2021) A survey of incentive
mechanism design for federated learning. IEEE Trans Emerg Top Comput
10(2):1035–1044

	36.	 Wang H, Kaplan Z, Niu D, Li B (2020) Optimizing federated learning on
non-iid data with reinforcement learning. In: IEEE INFOCOM 2020-
IEEE Conference on Computer Communications. IEEE, Piscataway,
p 1698–1707

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1145/3620677
https://doi.org/10.1109/TNNLS.2022.3160699
https://doi.org/10.1109/TNNLS.2022.3160699
http://arxiv.org/abs/1909.12488
http://arxiv.org/abs/1909.12488
https://doi.org/10.48550/arXiv.1909.12488
http://arxiv.org/abs/1910.03581
https://doi.org/10.48550/arXiv.1910.03581
https://doi.org/10.48550/arXiv.1910.03581
http://arxiv.org/abs/2001.01523
https://doi.org/10.48550/arXiv.2001.01523
https://doi.org/10.48550/arXiv.2001.01523
https://doi.org/10.1109/TITS.2023.3239599
https://doi.org/10.1109/TITS.2022.3221975
https://doi.org/10.1109/TITS.2022.3221975
https://doi.org/10.1002/spe.3217
https://doi.org/10.1109/JSAC.2023.3310077

	FedEem: a fairness-based asynchronous federated learning mechanism
	Abstract
	Introduction
	Related work
	Asynchronous federated learning
	Personalized federated learning
	Fairness issues in federated learning

	FedEem
	Asynchronous aggregation mechanism
	Early exit mechanism
	Convergence analysis

	Experiment and analysis
	Experimental setup
	Analysis of experimental results

	Conclusion
	Acknowledgements
	References

