
Yuan et al. Journal of Cloud Computing (2024) 13:3
https://doi.org/10.1186/s13677-023-00536-1

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Timed‑release encryption anonymous
interaction protocol based on smart contract
Ke Yuan1,2, Zilin Wang1, Keyan Chen1, Bingcai Zhou1, Zheng Li1* and Chunfu Jia1,3 

Abstract 

Timed-release encryption (TRE) is a cryptographic primitive that can control the decryption time and has significant
application value in time-sensitive scenarios. To solve the reliability issue of nodes in existing TRE anonymous interac-
tion schemes, we propose a blockchain-based TRE protocol for anonymous query time trapdoors. In our protocol,
the recipient divides the encrypted trapdoor request information into n ciphertext fragments using secret sharing
technology near the decryption time, and employs the idea of onion routing to perform layer-by-layer encryp-
tion, creating onion-type data transmitted through middlemen selected from the smart contract. After receiving
the ciphertext fragments, the time server integrates them to obtain the trapdoor request information and returns
the corresponding time trapdoor to the recipient. This allows the recipient to query any time trapdoor anonymously.
Our protocol provides a normative design for the smart contract and specific constraints on the participants’ behavior.
Compared with the related anonymous query trapdoor schemes, our protocol improves the probability of success-
ful queries. Security analysis shows that our protocol can resist release-ahead attack, interruption attack, eavesdrop-
ping attack, and replacement attack. Performance analysis shows that our protocol outperforms related protocols
regarding anonymity, efficiency, and flexibility, achieving highly efficient anonymous interactions. Finally, we con-
ducted an experiment in the Ethereum Rinkeby test network. For the settings of ciphertext fragment number n = 3
and ciphertext fragment threshold t = 2 , the gas consumption for a user to execute the contract was $5.66, which
was higher than the contract cost of related schemes, but the contract execution cost was within an acceptable
range.

Keywords  Timed-release encryption, Anonymous interaction, Blockchain, Smart contract, Onion routing

Introduction
Timed-release encryption (TRE) [1] is essential for releas-
ing sensitive data at a predetermined time. It has many
application scenarios in real life, such as timing the release
of online exam papers and timing the acquisition of confi-
dential data in the cloud. The original TRE scheme relied
on time-lock puzzles (TLP) [2, 3], which linked information

decryption with a computation puzzle that could only
be solved at a specific time. However, new methods have
replaced this method because it is difficult to precisely
control the decryption time due to the varying computa-
tional capabilities of different devices. Methods based on
interactive time server [4] involve the recipient interacting
with the server to obtain the trapdoor and decrypt the mes-
sage. Methods based on non-interactive time server [5–9]
involve the time server periodically broadcasting time trap-
doors. As the current demand shifts towards the anony-
mous query of time trapdoors at any time, researchers aim
to construct a secure and efficient time trapdoor query
scheme. Reliability issues with intermediate transmission
nodes may arise when querying time trapdoors in tradi-
tional wired networks [10]. Such intermediate nodes may

*Correspondence:
Zheng Li
lizheng@henu.edu.cn
1 School of Computer and Information Engineering, Henan University,
Kaifeng 475004, Henan, China
2 Henan Province Engineering Research Center of Spatial Information
Processing, Henan University, Kaifeng 475004, Henan, China
3 College of Cybersecurity, Nankai University, Tianjing 300350, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00536-1&domain=pdf

Page 2 of 12Yuan et al. Journal of Cloud Computing (2024) 13:3

drop information transmission due to bribery by attackers
or may be unable to transmit information for their own
reasons. In addition, the time server may generate dishon-
est time trapdoors. This can result in users losing benefits
due to the inability to transmit interactive information on
time. Therefore, if a protocol restricts participants’ behav-
ior and rewards honest behavior while punishing dishonest
behavior, it can greatly improve the stability and security of
information transmission.

We consider using blockchain-based smart contract tech-
nology to solve the problems mentioned above. Applying
blockchain technology [11, 12] can ensure the integrity of
trapdoor requests and information during transmission.
Furthermore, since all transactions in the blockchain are
verified and backed up by all nodes in the network, this
can increase the probability of successful trapdoor queries.
Smart contracts [13, 14] was first proposed by Nick Szabo
in 1994, and it is a blockchain-based, tamper-proof digital
contract. Smart contracts automatically execute contract
terms on the blockchain, greatly reducing disputes and con-
troversies that may arise during contract execution due to
its decentralized nature. These contracts are transparent to
all participants, regulate their behavior, and provide strong
support for the implementation of reward and punishment
systems. In the scenario described in this article, users need
to pay a certain amount to initiate the smart contract, which
will allocate a private contract to each participant. During
the execution process, the contract will determine whether
each participant has committed a breach of contract and
reward or punish them accordingly. Through contract con-
straints, the honesty and reliability of contract participants
are guaranteed, reducing the probability of query failure.
(t, n) secret sharing refers to the process of breaking down a
piece of information into n shares, with only t of the n shares
required to recover the information, but if there are only
t − 1 or fewer shares, the information cannot be recovered.
We can use this property to solve the problem of unreliable
intermediate transmission nodes. In the scenario of this
article, the sender can divide the trapdoor request informa-
tion into n paths for transmission. As long as t shares are
successfully transmitted, the trapdoor request information
can be recovered, improving the practicality of the scheme.

We have proposed a protocol for TRE called TAISC (TRE
anonymous interaction based on smart contract), which uti-
lizes smart contracts in a blockchain network to implement
anonymous query time trapdoors. Our protocol operates in
a wired environment. Users can hide their identities through
our protocol when performing query time trapdoors. Under
the constraints of the contract, participants cannot obtain
the user’s identity information and must honestly execute
the protocol until the query is completed.

Our contribution
In this paper, we propose a scheme to solve the issues
of low node reliability and user identity privacy during
query time trapdoors. This paper introduces the TAISC
protocol and its smart contract implementation, accom-
panied by security and performance analyses.

We propose a smart contract on the blockchain net-
work that satisfies users’ need for anonymous query time
trapdoors using onion routing technology [15] and secret
sharing technology [16]. The main contributions of our
scheme are as follows:

•	 We use the idea of onion routing for information trans-
mission to achieve anonymous query any time trapdoor.

•	 We use (t, n) secret sharing to transmit information
through multiple paths, resolving the issue of path
failure caused by node failure.

•	 We leverage the contract’s constraining effect to
ensure each participant’s honesty and reliability,
thereby reducing the probability of query failure.

Related works
The existing TRE schemes based on blockchain smart con-
tracts [17–20] mainly utilize the blockchain to control the
time of obtaining the decryption key. In 2018, Li et al. [18]
proposed using a smart contract in the Ethereum blockchain
to achieve timed decrypt confidential data. This approach
designs an executable smart contract that uses a set of peers
to transmit the decryption key to achieve timed decryp-
tion of confidential data without needing a third party time
server to provide time trapdoors. In the same year, Ning
et al. [19] proposed an incentive-based approach that com-
bines threshold secret sharing with the blockchain-based
smart contract to pre-distribute the secret to participants
and reconstruct the secret at a designated time to achieve
time-released cryptographic protocol. The protocol is based
on the time-sequenced block generation of the blockchain
to achieve timing control and uses the smart contract to
enforce the contractual obligations of relevant parties. The
above scheme does not involve trusted third parties such as
time servers. However, the above scheme requires users to
directly select middlemen and interact directly with them,
which cannot protect the identity privacy of both parties. In
addition, the scheme does not fully consider the additional
query overhead caused by node failure, resulting in a certain
impact on its efficiency. Secondly, the scheme requires the
use of block generation time trapdoor, which is relatively
less flexible. In 2022, Yuan Ke et al. proposed a scheme for
anonymous querying of time trapdoors based on onion
routing. The scheme is based on onion routing technology
and broadcast encryption technology [21] and improves the
original TRE scheme by ensuring user identity privacy when

Page 3 of 12Yuan et al. Journal of Cloud Computing (2024) 13:3 	

querying time trapdoors. However, the onion routing net-
work is currently composed of voluntary Internet users and
has shortcomings in reliability.

TAISC protocol overview
This section will present the TAISC protocol model and
briefly describe the involved participants, the objective,
workflow, and potential attacks.

Participants
The TAISC protocol involves three participating entities:
a sender, a middleman cluster, and a time server. Middle-
man refers to the blockchain peer(node) that provides
services and registers to the contract.

Sender(Bob). Bob is the data recipient in the TRE pro-
tocol but is referred to as the sender in the following text
for ease of exposition. To initiate the contract, Bob sub-
mits middleman selection criteria to the smart contract
and pays the remuneration. Bob uses the public key of the
time server TS to encrypt the trapdoor request informa-
tion T and obtains the ciphertext C. Then, Bob divides C
into n fragments and sends them simultaneously through
n different paths.

Middleman cluster(Peers). A new peer(node) can reg-
ister as a middleman by paying a security deposit to the
smart contract to be added into the registration list main-
tained by the contract. The middleman cluster Peers is a
collection of peers selected by the smart contract from the
registration list according to Bob’s selection criteria. After
Bob initiates the smart contract, they will receive tasks and
obtain the corresponding rewards after completing tasks.

Time server(TS). The time server TS is the TAISC pro-
tocol’s recipient. After receiving the ciphertext fragments
of the trapdoor request, TS combines them to obtain the
complete trapdoor request ciphertext C, decrypts it to
obtain the time T, and generates the corresponding time
trapdoor. The time trapdoor is encrypted using its private
key and returned to Bob.

Protocol objective and workflow
The objective of the TAISC protocol model is to enable
users to anonymously query time trapdoors. Namely,
authorized users can anonymously request time trap-
doors from the time server through the protocol. During
the protocol execution, the time server cannot obtain the
user’s identity information, and third parties cannot obtain
the user’s identity information or transmitted content. We
propose implementing the protocol by designing an anon-
ymous query time trapdoor smart contract CTAISC.

First, a blockchain peer(node) must register as a mid-
dleman by submitting its public key and other infor-
mation to the contract CTAISC . This information is

maintained in the registration list maintained by CTAISC .
Close to the designated decryption time, the sender Bob
pays the remuneration to the contract CTAISC to initi-
ate CTAISC and sends a trapdoor request to the time
server through the middlemen. After the participants
in the CTAISC contract execute the contract, Bob obtains
the requested time trapdoor ST . The process is as fol-
lows: Bob submits the middleman selection criteria to
the contract CTAISC to obtain the required middlemen
information. Then, Bob divides the trapdoor request
ciphertext C = ETS_pub(T) into n ciphertext fragments
< C1,C2, ...,Cn > and divides the middlemen into n
groups. Finally, Bob based on the middlemen’s informa-
tion to construct n onion-type data:

Here, E
OR

(i1)

pub

 , E
OR

(i2)

pub

 , and E
OR

(i3)

pub

 represent the cipher

transformations encrypted using the public keys of the
middlemen at each layer; IPORi2

 , IPORi3
 , and IPTS repre-

sent the addresses of the next layer middlemen; Ci repre-
sents the ciphertext fragment. After Bob pays the
remuneration to the contract CTAISC , CTAISC allocates its
private contract modules to the selected middlemen.
After receiving the onion message, each middleman exe-
cutes its private contract module. The time server com-
bines the ciphertext fragments into the original
ciphertext, then decrypts the ciphertext to obtain the
decryption time T, generates the corresponding time
trapdoor, and returns to Bob. This protocol for anony-
mous interaction between a user and a time server based
on the smart contract is referred to as the TAISC proto-
col in this paper, as shown in Fig. 1.

The TAISC protocol involves four stages: peer regis-
tration, service setup, middleman private contract allo-
cation, and service execution. In the following, we will
briefly introduce each stage.

Peer registration. Any peer on the blockchain network
can register as a middleman by paying a security deposit
to the contract CTAISC at any time. By submitting a regis-
tration request, the peer indicates that it can provide ser-
vices to execute the contract and submits its public key,
IP address and work window. After successful registra-
tion, CTAISC adds the peer to the registration list and can
be selected to execute the contract CTAISC . Upon comple-
tion, the peer can get the reward.

Service setup. The sender Bob specifies the expected
service execution time interval [Tf ,Te] , the required
security deposit for each middleman, and the reward
each middleman can get upon completing the contract
CTAISC . CTAISC selects suitable middlemen from the regis-
tration list based on their work window and security
deposit. Then, CTAISC sends Bob the middleman cluster

(1)Oi = E
OR

(i1)

pub

(E
OR

(i2)

pub

(E
OR

(i3)

pub

(Ci , IPTS), IPORi3
), IPORi2

), i = 1, 2, ..., n

Page 4 of 12Yuan et al. Journal of Cloud Computing (2024) 13:3

Peers = IPi ,OR
(i)
pub , i = 1, 2, . . . , n . IPi represents the IP

address and OR(i)
pub represents the public key of the ith

middleman in the cluster.
Middleman private contract allocation. After the

sender Bob submits the middleman selection criteria
to the contract CTAISC , CTAISC assigns suitable middle-
men and allocates each middleman with a private con-
tract Pi . The middleman executes the contract based
on Pi.

Service execution. Before the expected service execu-
tion time interval [Tf ,Te] , namely before time Tf  , the
sender Bob needs to divide the trapdoor request cipher-
text and encrypt ciphertext fragments layer by layer using
the public keys of the selected middlemen, generating n
onions. After executing their respective private contracts,
each middleman receives a reward distributed accord-
ing to its private contract. These rewards are allocated in
advance for each private contract by the contract CTAISC .
If a middleman fails to complete its private contract, its
deposit will be confiscated.

Figure 2 shows the contract CTAISC designed for
implementing the TAISC protocol. In this figure, Px1 ,
Py1 , Pz1 , and so on are the private contracts of the
middlemen.

Users can initiate the smart contract CTAISC with legal
authorization. When the sender Bob initiates CTAISC , a
specific remuneration must be paid.

Protocol assumptions
In the TAISC protocol, we make the following assump-
tions regarding the participants and the protocol execu-
tion process:

•	 We assume that the sender Bob wants his trapdoor
request information transmitted quickly and on time
and is willing to pay remuneration. Meanwhile, we
assume that the reward that Bob may obtain upon
successful information transmission is R.

•	 We assume that there are enough peers registered as
middlemen.

•	 We assume that any adversary among the contract-
ing parties who engage in dishonest behavior by
accepting bribes is rational, and there are no costless
attacks.

Attack models
In our work, we have considered four possible attacks
assuming the attacker is rational: release-ahead attack,
interruption attack, eavesdropping attack, and replace-
ment attack. We will provide a detailed account of
whether the TAISC protocol can withstand these
attacks in Security analysis section.

Release-ahead attack: The release-ahead attack means
the middleman transmits the message before the time
specified by the sender Bob. The attacker aims to complete

Fig. 1  The TAISC Protocol for anonymous query time trapdoors based on smart contract

Page 5 of 12Yuan et al. Journal of Cloud Computing (2024) 13:3 	

the information transmission and obtain the time trapdoor
before Bob receives the response from the time server TS.

Interruption attack: The interruption attack means
the middleman fails to transmit the message success-
fully. Interruption attacks typically occur when the mid-
dleman is bribed and refuses to transmit the obtained
message. Since the middleman provides a security
deposit at registration, one reason for the middleman to
launch an interruption attack is when the bribe offered
by the attacker exceeds its security deposit.

Eavesdropping attack: The eavesdropping attack
means the attacker attempts to obtain the information’s
content or source through eavesdropping.

Replacement attack: The replacement attack means
the attacker bribes the middlemen to tamper with the

content of the information and cause the information
to be incorrectly transmitted, thereby disrupting the
transmission of the information.

Detail of the smart contract CTAISC
We utilize the smart contract CTAISC to implement the
anonymous query time trapdoors TAISC protocol. This
section describes the four modules of the proposed
contract CTAISC in detail.

Peer Registration Module
The Peer Registration Module is designed for any
blockchain peer that can provide services. With this
module, any peer on the blockchain network can regis-
ter as a middleman to the contract CTAISC.

Fig. 2  The contract CTAISC

Page 6 of 12Yuan et al. Journal of Cloud Computing (2024) 13:3

When applying to register as a middleman, each peer
is required to provide the following information to the
contract CTAISC.

After verifying the submitted information, CTAISC
adds the qualified peers to the middleman registration
list. A middleman’s information in the registration list
includes its public key, IP, and working window.

Service Setup module
The Service Setup module defines the tasks the sender
Bob must complete before executing the contract CTAISC.

Before service setup, Bob uses the time server’s pub-
lic key to encrypt the trapdoor request information and
decompose the ciphertext C obtained into n ciphertext
fragments < C1,C2, ...,Cn > . After service setup, Bob
divides the middlemen into three groups and uses their
public keys to encrypt n ciphertext fragments layer-by-
layer, creating n onions. As an example, the onion con-
structed for the first path is as follows:

The TAISC protocol uses the (t, n) secret sharing method
to decompose the ciphertext into n fragments. The origi-
nal ciphertext can be recovered by transmitting t or more
of these fragments. The protocol transmits the trapdoor
request information through n paths, and the time server
TS can reconstruct the trapdoor request when t or more of
these paths have been successfully transmitted.

(2)O1 = E
OR

(11)

pub

(E
OR

(12)

pub

(E
OR

(13)

pub

(C1, IPTS), IPOR13
), IPOR12

)

Assuming the sender’s ciphertext value is v, the reward
generated upon successful transmission is R, and the remu-
neration paid to each middleman is r. The attacker’s bribe

to each middleman is br > 0 . Given n transmission paths,
the attacker should pay a total bribe amount of br_sum < R .
If a middleman accepts the bribe, its deposit dp will be con-
fiscated. Bribery can only be successful if the bribe amount
exceeds the middleman’s deposit dp , namely dp > br.

When an attacker wants to replace the sender to obtain
the reward through an attack, the attacker should bribe
all middlemen on at least n− t + 1 paths, and the bribe
that the attacker should pay is 3× br × (n− t + 1) < R .

Therefore, the deposit of the middleman only needs to
meet dp > R

3×(n−t+1)
 to ensure dp > br . It is known that

the smaller t is, the less deposit is required. However,
if t is too small, it will make it easier for the attacker to
launch a release-ahead attack. At this time, the attacker
needs to bribe all middlemen on at least t paths, and the
bribery that the attacker needs to pay is 3× br × t < R .
Therefore, the deposit of each middleman should meet
dp > R

3t . In summary, t should satisfy t = n+1
2

 , and the
deposit dp should satisfy dp = R

3t.

Middleman private contract allocation module
The TAISC protocol designs a private contract for each
middleman’s behavior, with the public contract CTAISC
ensuring the proper execution of each private contract.
After receiving the message from the previous hop, the
middleman will execute its private contract Pi , which
consists of both forward and backward algorithms.

Page 7 of 12Yuan et al. Journal of Cloud Computing (2024) 13:3 	

Service execution module
During the execution of the contract CTAISC , after the
middlemen on each path decrypt the correspond-
ing ciphertext fragments, they need to submit the cor-
responding hash values to CTAISC , which will use this
information to screen for problem paths after the service
ends. The service execution module provides constraint
items that all participants must comply with.

The specific default judgment process during contract
execution is as follows:

a)	 Each middleman or TS has an operation time To .
While decrypting and transmitting the message, the
middleman will generate two certificates and submits
them to the contract. The contract compares the dif-
ference between the submission times of the two cer-

Page 8 of 12Yuan et al. Journal of Cloud Computing (2024) 13:3

tificates, if the difference is greater than To , the mid-
dleman is judged to be in violation.

b)	 The contract detects replacement attacks in the path
by comparing the hash values of the ciphertexts sub-
mitted by the third layer middlemen with the hash
values of the ciphertext fragments submitted by
Bob. If the hash value of a certain path differs from
what Bob provided, the contract judges that there is
a replacement attack on that path. The contract will
compare the message hash values provided by the
middlemen from the back to the front to find the vio-
lating middlemen and punish them.

For dishonest middlemen, the contract will add them to a
blacklist, making them unable to receive any subsequent
tasks from the contract.

The TAISC protocol analysis
This section first conducts a security analysis of the
TAISC protocol, then analyzes the impact of participant
behavior on the TAISC protocol, and finally analyzes the
performance of the TAISC protocol.

Security analysis
Firstly, we present the security model underlying the
TAISC protocol. The TAISC protocol assumes that the
selected middlemen and the time server are “curious
but rational,” meaning that while executing the contract
according to the predetermined requirements, they will
attempt to infer the transmitted messages and their
source and destination within their capabilities. However,
it is assumed that they will not intentionally alter, destroy
or refuse to transmit the messages, as doing so would
confiscate their security deposits.

Next, we will conduct a security analysis of the attack
models in Attack models section to demonstrate that the
protocol’s security is sufficient to ensure that Bob can
successfully perform a time trapdoor query while main-
taining anonymity. In our security analysis, we assume
that all attackers are launching attacks to disrupt the
TAISC protocol, that is, to break the sender’s anonymity
or to prevent the sender from successfully querying the
time trapdoor. We also assume that m peers are regis-
tered as middlemen in the contract.

Release‑ahead attack
Each middleman must authenticate its action by submit-
ting a signed certificate generated with its private key to
the contract during the decryption and transmission of
the message.If a middleman transmits the information
prematurely, it will be judged as a breach of the contract,
and its deposit will be confiscated during the final set-
tlement.If the attacker wants to bribe the middleman to

transmit the information prematurely, he would need to
bribe the third layer middlemen on at least t paths. Since
the attacker does not know the locations of the mid-
dlemen in the path, he would need to bribe a total of 3t
middlemen on at least t paths, paying each middleman a
bribe greater than its security deposit. The probability of
successfully bribing middlemen for a release-ahead attack
is Ct

n × C3t
m .

Interruption attack
If a middleman, designated as A, fails to transmit the
message to the next hop middleman within the time
Tn + To , or if the next hop middleman reports an attack
to the contract, it will be considered a failure to trans-
mit the message properly. Whether active or passive, it
is considered an interruption attack. The contract will
verify whether middleman A has been bribed to refuse
to transmit the message to the next hop and whether its
previous middleman has launched a replacement attack
to prevent it from executing its private contract and
transmitting the message.

Suppose an attacker wants to bribe the middlemen
to abandon transmitting the information to achieve
the information transmission failure. In that case, the
attacker must successfully bribe at least one middleman
in each of the n− t + 1 paths. The success probability of
an interruption attack is Cn−t+1

n × Cn
m.

Eavesdropping attack
This scheme can prevent eavesdropping attacks. In the
trapdoor request stage, first use the time server public
key to encrypt the trapdoor request information T to
obtain the ciphertext, then divide the resulting cipher-
text into ciphertext fragments, and finally encrypt the
ciphertext fragments layer by layer according to the pub-
lic key information of the middleman to construct the
onion, that is, the data transmitted inside the network
by T has been encrypted at least once. Without knowing
the time server private key, the attacker cannot construct
the requested time trapdoor. In the time trapdoor return
stage, the time server generates the corresponding time
trapdoor based on the request time T and encrypts it
using the public key of the trapdoor requester, and then
chooses one of the paths, and according to the public
key information of the middlemen on this path, layers
of encryption are constructed to construct an onion and
return it. Therefore, similar to the trapdoor request stage,
it is impossible to decrypt the message without the user’s
private key.

For attackers who want to eavesdrop on the informa-
tion source, because each middleman only knows its

Page 9 of 12Yuan et al. Journal of Cloud Computing (2024) 13:3 	

previous and next hop middlemen and does not know
its position in the path, they need to bribe all middlemen
on the same path. The probability of successful bribery is
Cn
m × C1

n × C1
n−1 × C1

n−2 .

Replacement attack
Before the ciphertext fragments are transmitted through
each path, they are submitted to the contract with their
hash values. At the end of the path, the last layer middle-
men submit their hash values to the contract for verifica-
tion before transmitting to the time server. If the contract
detects that the number of correctly transmitted cipher-
text fragments is greater than or equal to t, it continues to
execute. Failed paths are judged and processed after the
information is successfully transmitted. If the contract
detects that the number of correctly transmitted cipher-
text fragments is less than t, it stops and confiscates the
deposits of the paths and middlemen with transmission
errors. For honest middlemen, they will receive deposit
refunds and reward payments. Therefore, unbribed
middlemen will execute their contracts rationally and
correctly.

If an attacker wants to disrupt the message transmis-
sion by a replacement attack, he must successfully bribe
at least one middleman in each of the n− t + 1 paths.
The probability of success of the attack is the same as that
of the interruption attack.

In summary, the closer m and n are, the higher the
probability of the attacker’s success, but it isn’t easy to
achieve in real life. Therefore, the TAISC protocol can
resist the above attacks.

Participant behavior tree
The participant behavior tree for the contract CTAISC is
shown in Fig. 3. This behavior tree provides a detailed
explanation of the different outcomes resulting from
the different behaviors of middlemen and the corre-
sponding gains for both middlemen and the attacker.
This behavior tree assumes that the attacker can suc-
cessfully bribe the middleman, ignoring the probability
issues described in Security analysis section. Because
the middleman behavior is consistent across all paths
in the contract CTAISC , only the behavior tree of a single
path is shown. Let Y represents the middleman’s honest
execution of the contract, and N represents the middle-
man’s acceptance of the attacker’s bribe. N8 ∼ N15 rep-
resent different outcomes resulting from the different
choices of each middleman. At this point, the deposit
dp > R

3t and bribe br < 1
3
kR can be calculated using for-

mula (2), where k = 1
n . We take t = 2 and n = 3 obtain

dp > 1
6
R and br < 1

9
R.

Among them, N8 represents that all middlemen hon-
estly execute the contract and receive the rewards.
N9 ∼ N14 represent one or two middlemen accepting
bribes. In this case, the profit of the middleman is br − dp .
It can be inferred from dp > 1

6
R > br that the bribe the

middleman accepts is less than its deposit. Therefore, a
rational middleman would not accept the bribe. N15 rep-
resents three middlemen that all accept bribes. Suppose
the deposit is set higher than the expected profit from
the attack. In that case, a rational attacker will not launch
an attack because the cost of the bribe is higher than the
potential profit from the attack.

Fig. 3  The participant behavior tree for the contract CTAISC

Page 10 of 12Yuan et al. Journal of Cloud Computing (2024) 13:3

Experiment and performance analysis
The program execution environment for the con-
tract CTAISC is an Intel(R) Core(TM) i7-8550U CPU @
1.80GHz processor with 8GB of memory. The contract
was tested in the Ethereum Rinkeby test network using
Solidity language. As of June 19, 2022, the exchange rate
between the test currency of Ethereum and the US dol-
lar was 1 ETH = $949.76 [22], and the exchange rate
between Ether and Gas was 1 ETH = 1× 109 Gas [23].
Based on these exchange rates, the execution cost of the
functions involved in the TAISC protocol and their con-
version to US dollars are shown in Table 1.
Bob uses setUp() to set up the service, while a peer

can register as a middleman through newPeer(). The
contract CTAISC offers incentives or penalties to middle-
men through award(), while protocol participants sub-
mit signed certificates via setCert() and hash values of
exchanged messages through hash().

In the contract CTAISC , conducting one trapdoor query
requires each middleman to call setCert() twice and
hash() twice. Additionally, the user Bob needs to invoke
one setUp(), (n+ 1)hash() , and one setCert(). The time
server also calls hash(). Upon returning, each middleman
consumes one setCert(). Overall, this process consumes
(6n+ 4)× setCert()+ (7n+ 2)× hash()+ setup()+ award() . In this
paper, we set n = 3 and t = 2 , and the gas consumption
cost is $5.66.

Since no blockchain-based anonymous interactive TRE
scheme exists, both DRSD [18] and TTSD [24] imple-
ment timed data encryption based on blockchain. There-
fore, this paper compares the TAISC protocol with DRSD
and TTSD protocols, as shown in Table 2.

Regarding the anonymity of communication, when select-
ing participating middlemen, users do not interact directly
with them but choose from a registration list maintained by
the contract. Since the contract behavior of each layer mid-
dlemen is the same, when the user distributes the trapdoor
query ciphertext fragments to the first layer middlemen, the
middleman cannot distinguish whether the user or other
middlemen are sending the message. However, in DRSD
and TTSD protocols, users cannot hide their identities
because they interact directly with all middlemen. There-
fore, the TAISC protocol achieves anonymous querying.

Regarding implementation efficiency, the TAISC proto-
col performs preprocessing for potential problems such
as node failures during transmission. Once the behavior
of trapdoor querying starts, users do not need to perform
additional calculations. The trapdoor request informa-
tion is constructed as a multi-layered onion, and mid-
dlemen cannot obtain specific information. In the DRSD
protocol, there is only one transmission path. If a node
fails, the user must reconstruct the onion for transmis-
sion, increasing the query time and possibly resulting
in trapdoor information not being obtained promptly.
Therefore, the TAISC protocol is more practical regard-
ing trapdoor querying efficiency.

Regarding flexibility, different users can specify the
deposit amount according to the value of the information
they transmit. The computational complexity of the pro-
tocol is linearly related to the number of selected middle-
men. In the TAISC protocol, the recipient can interact
with the time server based on the chosen time rather
than relying on block generation time, resulting in higher
flexibility.

In encrypted communication, the transmitted cipher-
text size can be used as a measure of communication cost,
so we have counted the total ciphertext size required for
transmission in the TAISC, DRSD, and TTSD protocols
as communication cost. None of the TAISC, DRSD, and
TTSD protocols specify specific encryption algorithms.
To compare the communication costs of the three pro-
tocols more clearly, we assume that the ciphertext sizes
required for transmission are all X bits. Additionally,
because the main content transmitted by the TAISC pro-
tocol is the time T and time trapdoor information cipher-
text, their sizes are very small, so for TAISC, DRSD, and
TTSD, we uniformly ignore any changes in ciphertext
size caused by encrypting or decrypting the ciphertext
multiple times during transmission. For the TAISC pro-
tocol proposed in this article (n = 3, t = 2) , in the trap-
door request stage, the trapdoor requester first encrypts
the time T using the time server’s public key to obtain
a ciphertext of size X bits, and then divides the result-
ing ciphertext into three fragments of size X bits. Finally,
each ciphertext fragment is transmitted to the time
server through three middlemen nodes. Therefore, the

Table 1  Function execution cost

Functions Gas cost/item ETH cost/unit USD ($)

newPeer 800000 0.0008 0.76

setUp 1500000 0.0015 1.42

setCert 100000 0.0001 0.09

hash 100000 0.0001 0.09

award 200000 0.0002 0.19

Table 2  Performance comparison

TAISC DRSD TTSD

Anonymity H N N

Efficiency H L H

Flexibility H L L

Gas cost H L L

Communication cost H L L

Page 11 of 12Yuan et al. Journal of Cloud Computing (2024) 13:3 	

communication cost required for this stage can be rep-
resented as 12X bits. In the trapdoor return stage, only
one path needs to be chosen to return the trapdoor infor-
mation, so the communication cost is 4X bits. The total
communication cost of TAISC is 16X bits. For DRSD
protocol, the data sender needs to transmit a cipher-
text of size X bits, and then pass it to the data receiver
through three middlemen nodes successively. Therefore,
the communication cost of DRSD is 4X bits. For TTSD
protocol, the ciphertext size to be transmitted is X bits.
The data sender first splits the ciphertext into fragments
to obtain a total of 2X bits ciphertext fragments, and then
sends it to the data receiver through a middleman cluster.
Therefore, the communication cost of TTSD is 4Xbits.
Therefore, compared to DRSD and TTSD protocols, the
communication cost of TAISC is higher.

However, since the TAISC protocol uses more middle-
men for trapdoor querying, it incurs higher gas costs and
communication costs, which require further optimization.

Summary and future work
This paper proposes the TAISC protocol based on the
smart contract for anonymous query time trapdoors,
which aims to improve the reliability and stability of user
query time trapdoors. Users can forcibly transmit the
trapdoor request through middlemen to the time server
and receive the corresponding trapdoor from the time
server by executing the smart contract on Ethereum. The
protocol uses onion routing technology to achieve anon-
ymous query time trapdoors. Using secret sharing tech-
nology, the time trapdoor request information is divided
into n transmission paths for transmission, increasing
the probability of successful time trapdoor requests and
making trap requests more stable. Using smart contracts
to constrain the behavior and norms of participants
improves the reliability of participants.The paper pre-
sents the protocol model, the smart contract for anony-
mous querying of time trapdoors, and conducts security
and performance analyses for the protocol.

However, since users can anonymously interact with the
time server to obtain trapdoors at any time, many users
may choose to interact with the time server at their pre-
ferred times, leading to an excessive load on the time server
and causing it to be unresponsive. Therefore, designing a
time server enhancement scheme for anonymous query
time trapdoors that can avoid denial-of-service attacks on
the time server is an area for further research.

Acknowledgements
The authors express their appreciation to the National Key Research and
Development Program, the National Natural Science Foundation of China,the
Fundamental Research Funds for the Central Universities of China, the Natural
Science Foundation of Tianjin, the Key Specialized Research and Develop-
ment Program of Henan Province, the Basic Higher Educational Key Scientific
Research Program of Henan Province.

Authors’ contributions
Ke Yuan conceived and designed the experiments, analyzed the data,
authored or reviewed drafts of the article, and approved the final draft. Zilin
Wang performed the experiments, analyzed the data, performed the compu-
tation work, authored or reviewed drafts of the article, and approved the final
draft. Keyan Chen conceived and designed the experiments,prepared figures
and tables, authored or reviewed drafts of the article, and approved the final
draft. Bingcai Zhou performed the experiments, performed the computation
work, prepared figures and tables. Zheng Li put forward the main idea of the
schemes, and approved the final draft. Chunfu Jia analyzed the data, authored
or reviewed drafts of the article, and approved the final draft.

Funding
This work was supported by the National Key Research and Development Pro-
gram under Grant 2018YFA0704703, the National Natural Science Foundation
of China under Grant 61972073, 61972215 and 62172238, the Fundamental
Research Funds for the Central Universities of China, the Natural Science Foun-
dation of Tianjin under Grant 20JCZDJC00640, the Key Specialized Research
and Development Program of Henan Province under Grant 222102210062
and 222102210052, the Basic Higher Educational Key Scientific Research
Program of Henan Province under Grant 22A413004, the Innovation Training
Program for College Students of Henan province under Grant 202310475143.

Availability of data and materials
The datasets used and/or analysed during the current study available from the
corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
The research has consent by all authors and there is no conflict.

Competing interests
The authors declare no competing interests.

Received: 11 July 2023 Accepted: 28 October 2023

References
	1.	 Rivest RL, Shamir A, Wagner DA (2001) Time-lock puzzles and timed-

release crypto. Massachusetts Institute of Technology
	2.	 May T (1993) Timed-release crypto. http://​cyphe​rpunks.​venona.​com/​

date/​1993/​02/​msg00​129.​html. Accessed date 10 Feb 1993
	3.	 Jia L, Jager T, Kakvi SA, Warinschi B (2018) How to build time-lock encryp-

tion. Des Codes Cryptogr 86(2):1–38
	4.	 Yang Y, Ma M (2016) Conjunctive keyword search with designated tester

and timing enabled proxy re-encryption function for e-health clouds.
IEEE Trans Inf Forensic Secur 11(4):746–759

	5.	 Yuan K, Liu Z, Jia C, Yang J, and Lv S (2013) Multi-user public key timed-
release searchable encryption. 2013 Fourth international conference on
emerging intelligent data and web technologies. p. 363–370. https://​doi.​
org/​10.​1109/​EIDWT.​2013.​69

	6.	 Chan A, Blake IF (2005) Scalable, server-passive, user-anonymous timed
release cryptography. In: IEEE International Conference on Distributed
Computing Systems. p 504-513. IEEE, Columbus

	7.	 Paterson KG, Quaglia EA (2010) Time-specific encryption. In: Security and
Cryptography for Networks, 7th International Conference, SCN 2010, p
1-16. Amalfi, Italy, September 13-15, 2010. Proceedings. Springer-Verlag,
Berlin

	8.	 Xiong J, Li F, Ma J, Liu X, Yao Z, Chen PS (2015) A full lifecycle privacy
protection scheme for sensitive data in cloud computing. Peer-to-peer
Netw Appl 8(8-6):1025–1037

http://cypherpunks.venona.com/date/1993/02/msg00129
http://cypherpunks.venona.com/date/1993/02/msg00129
https://doi.org/10.1109/EIDWT.2013.69
https://doi.org/10.1109/EIDWT.2013.69

Page 12 of 12Yuan et al. Journal of Cloud Computing (2024) 13:3

	9.	 Yuan K, Wang Y, Zeng Y, Ouyang W, Li Z, Jia C (2021) Provably secure
security-enhanced timed-release encryption in the random oracle
model. Secur Commun Netw 2021(3):1-10

	10.	 Kuhn C, Hofheinz D, Rupp A, Strufe T (2021) Onion routing with replies. In:
Tibouchi M, Wang, H (eds) Advances in Cryptology - ASIACRYPT 2021, p
573-604. Springer, Cham

	11.	 Ayaz F, Sheng Z, Tian D, Guan YL (2022) A blockchain based federated
learning for message dissemination in vehicular networks. IEEE Trans Veh
Technol 71(2):1927-1940

	12.	 Huang J, He D, Obaidat MS, Vijayakumar P, Choo K (2021) The application
of the blockchain technology in voting systems: A review. ACM Comput
Surv 54(3):1–28

	13.	 Wang J, Lu N, Cheng Q, Zhou L, Shi W (2021) A secure spectrum auction
scheme without the trusted party based on the smart contract. Dig Users
Dig Commun 7(2):223-234

	14.	 Ma A, Mm A, Am A, Skk B (2021) Automatic smart contract generation for
internet of media things - sciencedirect. ICT Express 7(3):274-277

	15.	 Catalano D, Fiore D, Gennaro R (2016) A certificateless approach to onion
routing. Int J Inf Secur 16(3):1–17

	16.	 Yuan J, Yang J, Wang C, Jia X, Fu FW, Xu G (2022) A new efficient hierarchi-
cal multi-secret sharing scheme based on linear homogeneous recur-
rence relations. Inf Sci Int J 592:36-49

	17.	 Liu J, Garcia F, Ryan M (2015) Time-release protocol from bitcoin and wit-
ness encryption for sat. Korean Circ J 40(10):530–5

	18.	 Chao L, Palanisamy B (2018) Decentralized release of self-emerging data
using smart contracts. In: 2018 IEEE 37th Symposium on Reliable Distrib-
uted Systems (SRDS), p 213-220. IEEE, Salvador

	19.	 Ning J, Dang H, Hou R, Chang EC (2018) Keeping time-release secrets
through smart contracts. IACR Cryptol ePrint Arch 2018:1166. https://​api.​
seman​ticsc​holar.​org/​Corpu​sID:​54200​316.

	20.	 Lai WJ, Hsueh CW, Wu JL (2019) A fully decentralized time-lock encryp-
tion system on blockchain. In: 2019 IEEE International Conference on
Blockchain (Blockchain), p 302-307. IEEE, Atlanta

	21.	 Wu Q, Qin B, Zhang L, Domingo-Ferrer J, Farras O, Manjon JA (2016)
Contributory broadcast encryption with efficient encryption and short
ciphertexts. IEEE Trans Comput 65(2):466–479

	22.	 Msn. currency converter. [EB/OL]. https://​www.​msn.​cn/​zh-​cn/​money/​
tools/​curre​ncyco​nvert​er/​fi-​brjcfr?​ocid=​ansMS​NMone​y11&​durat​ion=​1D.
Accessed 19 June - 01 July 2022

	23.	 Etherscan. transaction information. [EB/OL], https://​ether​scan.​io/​block/​
12965​263. Accessed 19 June - 01 July 2022

	24.	 Yuan K, Cao H, Zhang S, et al (2023) A tamper-resistant timed secure data
transmission protocol based on smart contract[J]. Scie Rep 13(1):11510

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://api.semanticscholar.org/CorpusID:54200316
https://api.semanticscholar.org/CorpusID:54200316
https://www.msn.cn/zh-cn/money/tools/currencyconverter/fi-brjcfr?ocid=ansMSNMoney11&duration=1D
https://www.msn.cn/zh-cn/money/tools/currencyconverter/fi-brjcfr?ocid=ansMSNMoney11&duration=1D
https://etherscan.io/block/12965263
https://etherscan.io/block/12965263

	Timed-release encryption anonymous interaction protocol based on smart contract
	Abstract
	Introduction
	Our contribution
	Related works

	TAISC protocol overview
	Participants
	Protocol objective and workflow
	Protocol assumptions
	Attack models

	Detail of the smart contract
	Peer Registration Module
	Service Setup module
	Middleman private contract allocation module
	Service execution module

	The TAISC protocol analysis
	Security analysis
	Release-ahead attack
	Interruption attack
	Eavesdropping attack
	Replacement attack

	Participant behavior tree
	Experiment and performance analysis

	Summary and future work
	Acknowledgements
	References

