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Abstract 

Timed-release encryption (TRE) is a cryptographic primitive that can control the decryption time and has significant 
application value in time-sensitive scenarios. To solve the reliability issue of nodes in existing TRE anonymous interac-
tion schemes, we propose a blockchain-based TRE protocol for anonymous query time trapdoors. In our protocol, 
the recipient divides the encrypted trapdoor request information into n ciphertext fragments using secret sharing 
technology near the decryption time, and employs the idea of onion routing to perform layer-by-layer encryp-
tion, creating onion-type data transmitted through middlemen selected from the smart contract. After receiving 
the ciphertext fragments, the time server integrates them to obtain the trapdoor request information and returns 
the corresponding time trapdoor to the recipient. This allows the recipient to query any time trapdoor anonymously. 
Our protocol provides a normative design for the smart contract and specific constraints on the participants’ behavior. 
Compared with the related anonymous query trapdoor schemes, our protocol improves the probability of success-
ful queries. Security analysis shows that our protocol can resist release-ahead attack, interruption attack, eavesdrop-
ping attack, and replacement attack. Performance analysis shows that our protocol outperforms related protocols 
regarding anonymity, efficiency, and flexibility, achieving highly efficient anonymous interactions. Finally, we con-
ducted an experiment in the Ethereum Rinkeby test network. For the settings of ciphertext fragment number n = 3 
and ciphertext fragment threshold t = 2 , the gas consumption for a user to execute the contract was $5.66, which 
was higher than the contract cost of related schemes, but the contract execution cost was within an acceptable 
range.
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Introduction
Timed-release encryption (TRE) [1] is essential for releas-
ing sensitive data at a predetermined time. It has many 
application scenarios in real life, such as timing the release 
of online exam papers and timing the acquisition of confi-
dential data in the cloud. The original TRE scheme relied 
on time-lock puzzles (TLP) [2, 3], which linked information 

decryption with a computation puzzle that could only 
be solved at a specific time. However, new methods have 
replaced this method because it is difficult to precisely 
control the decryption time due to the varying computa-
tional capabilities of different devices. Methods based on 
interactive time server [4] involve the recipient interacting 
with the server to obtain the trapdoor and decrypt the mes-
sage. Methods based on non-interactive time server [5–9] 
involve the time server periodically broadcasting time trap-
doors. As the current demand shifts towards the anony-
mous query of time trapdoors at any time, researchers aim 
to construct a secure and efficient time trapdoor query 
scheme. Reliability issues with intermediate transmission 
nodes may arise when querying time trapdoors in tradi-
tional wired networks [10]. Such intermediate nodes may 
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drop information transmission due to bribery by attackers 
or may be unable to transmit information for their own 
reasons. In addition, the time server may generate dishon-
est time trapdoors. This can result in users losing benefits 
due to the inability to transmit interactive information on 
time. Therefore, if a protocol restricts participants’ behav-
ior and rewards honest behavior while punishing dishonest 
behavior, it can greatly improve the stability and security of 
information transmission.

We consider using blockchain-based smart contract tech-
nology to solve the problems mentioned above. Applying 
blockchain technology [11, 12] can ensure the integrity of 
trapdoor requests and information during transmission. 
Furthermore, since all transactions in the blockchain are 
verified and backed up by all nodes in the network, this 
can increase the probability of successful trapdoor queries. 
Smart contracts [13, 14] was first proposed by Nick Szabo 
in 1994, and it is a blockchain-based, tamper-proof digital 
contract. Smart contracts automatically execute contract 
terms on the blockchain, greatly reducing disputes and con-
troversies that may arise during contract execution due to 
its decentralized nature. These contracts are transparent to 
all participants, regulate their behavior, and provide strong 
support for the implementation of reward and punishment 
systems. In the scenario described in this article, users need 
to pay a certain amount to initiate the smart contract, which 
will allocate a private contract to each participant. During 
the execution process, the contract will determine whether 
each participant has committed a breach of contract and 
reward or punish them accordingly. Through contract con-
straints, the honesty and reliability of contract participants 
are guaranteed, reducing the probability of query failure. 
(t, n) secret sharing refers to the process of breaking down a 
piece of information into n shares, with only t of the n shares 
required to recover the information, but if there are only 
t − 1 or fewer shares, the information cannot be recovered. 
We can use this property to solve the problem of unreliable 
intermediate transmission nodes. In the scenario of this 
article, the sender can divide the trapdoor request informa-
tion into n paths for transmission. As long as t shares are 
successfully transmitted, the trapdoor request information 
can be recovered, improving the practicality of the scheme.

We have proposed a protocol for TRE called TAISC (TRE 
anonymous interaction based on smart contract), which uti-
lizes smart contracts in a blockchain network to implement 
anonymous query time trapdoors. Our protocol operates in 
a wired environment. Users can hide their identities through 
our protocol when performing query time trapdoors. Under 
the constraints of the contract, participants cannot obtain 
the user’s identity information and must honestly execute 
the protocol until the query is completed.

Our contribution
In this paper, we propose a scheme to solve the issues 
of low node reliability and user identity privacy during 
query time trapdoors. This paper introduces the TAISC 
protocol and its smart contract implementation, accom-
panied by security and performance analyses.

We propose a smart contract on the blockchain net-
work that satisfies users’ need for anonymous query time 
trapdoors using onion routing technology [15] and secret 
sharing technology [16]. The main contributions of our 
scheme are as follows:

•	 We use the idea of onion routing for information trans-
mission to achieve anonymous query any time trapdoor.

•	 We use (t, n) secret sharing to transmit information 
through multiple paths, resolving the issue of path 
failure caused by node failure.

•	 We leverage the contract’s constraining effect to 
ensure each participant’s honesty and reliability, 
thereby reducing the probability of query failure.

Related works
The existing TRE schemes based on blockchain smart con-
tracts [17–20] mainly utilize the blockchain to control the 
time of obtaining the decryption key. In 2018, Li et al. [18] 
proposed using a smart contract in the Ethereum blockchain 
to achieve timed decrypt confidential data. This approach 
designs an executable smart contract that uses a set of peers 
to transmit the decryption key to achieve timed decryp-
tion of confidential data without needing a third party time 
server to provide time trapdoors. In the same year, Ning 
et al. [19] proposed an incentive-based approach that com-
bines threshold secret sharing with the blockchain-based 
smart contract to pre-distribute the secret to participants 
and reconstruct the secret at a designated time to achieve 
time-released cryptographic protocol. The protocol is based 
on the time-sequenced block generation of the blockchain 
to achieve timing control and uses the smart contract to 
enforce the contractual obligations of relevant parties. The 
above scheme does not involve trusted third parties such as 
time servers. However, the above scheme requires users to 
directly select middlemen and interact directly with them, 
which cannot protect the identity privacy of both parties. In 
addition, the scheme does not fully consider the additional 
query overhead caused by node failure, resulting in a certain 
impact on its efficiency. Secondly, the scheme requires the 
use of block generation time trapdoor, which is relatively 
less flexible. In 2022, Yuan Ke et al. proposed a scheme for 
anonymous querying of time trapdoors based on onion 
routing. The scheme is based on onion routing technology 
and broadcast encryption technology [21] and improves the 
original TRE scheme by ensuring user identity privacy when 
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querying time trapdoors. However, the onion routing net-
work is currently composed of voluntary Internet users and 
has shortcomings in reliability.

TAISC protocol overview
This section will present the TAISC protocol model and 
briefly describe the involved participants, the objective, 
workflow, and potential attacks.

Participants
The TAISC protocol involves three participating entities: 
a sender, a middleman cluster, and a time server. Middle-
man refers to the blockchain peer(node) that provides 
services and registers to the contract.

Sender(Bob). Bob is the data recipient in the TRE pro-
tocol but is referred to as the sender in the following text 
for ease of exposition. To initiate the contract, Bob sub-
mits middleman selection criteria to the smart contract 
and pays the remuneration. Bob uses the public key of the 
time server TS to encrypt the trapdoor request informa-
tion T and obtains the ciphertext C. Then, Bob divides C 
into n fragments and sends them simultaneously through 
n different paths.

Middleman cluster(Peers). A new peer(node) can reg-
ister as a middleman by paying a security deposit to the 
smart contract to be added into the registration list main-
tained by the contract. The middleman cluster Peers is a 
collection of peers selected by the smart contract from the 
registration list according to Bob’s selection criteria. After 
Bob initiates the smart contract, they will receive tasks and 
obtain the corresponding rewards after completing tasks.

Time server(TS). The time server TS is the TAISC pro-
tocol’s recipient. After receiving the ciphertext fragments 
of the trapdoor request, TS combines them to obtain the 
complete trapdoor request ciphertext C, decrypts it to 
obtain the time T, and generates the corresponding time 
trapdoor. The time trapdoor is encrypted using its private 
key and returned to Bob.

Protocol objective and workflow
The objective of the TAISC protocol model is to enable 
users to anonymously query time trapdoors. Namely, 
authorized users can anonymously request time trap-
doors from the time server through the protocol. During 
the protocol execution, the time server cannot obtain the 
user’s identity information, and third parties cannot obtain 
the user’s identity information or transmitted content. We 
propose implementing the protocol by designing an anon-
ymous query time trapdoor smart contract CTAISC.

First, a blockchain peer(node) must register as a mid-
dleman by submitting its public key and other infor-
mation to the contract CTAISC . This information is 

maintained in the registration list maintained by CTAISC . 
Close to the designated decryption time, the sender Bob 
pays the remuneration to the contract CTAISC to initi-
ate CTAISC and sends a trapdoor request to the time 
server through the middlemen. After the participants 
in the CTAISC contract execute the contract, Bob obtains 
the requested time trapdoor ST . The process is as fol-
lows: Bob submits the middleman selection criteria to 
the contract CTAISC to obtain the required middlemen 
information. Then, Bob divides the trapdoor request 
ciphertext C = ETS_pub(T ) into n ciphertext fragments 
< C1,C2, ...,Cn > and divides the middlemen into n 
groups. Finally, Bob based on the middlemen’s informa-
tion to construct n onion-type data:
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transformations encrypted using the public keys of the 
middlemen at each layer; IPORi2

 , IPORi3
 , and IPTS repre-

sent the addresses of the next layer middlemen; Ci repre-
sents the ciphertext fragment. After Bob pays the 
remuneration to the contract CTAISC , CTAISC allocates its 
private contract modules to the selected middlemen. 
After receiving the onion message, each middleman exe-
cutes its private contract module. The time server com-
bines the ciphertext fragments into the original 
ciphertext, then decrypts the ciphertext to obtain the 
decryption time T, generates the corresponding time 
trapdoor, and returns to Bob. This protocol for anony-
mous interaction between a user and a time server based 
on the smart contract is referred to as the TAISC proto-
col in this paper, as shown in Fig. 1.

The TAISC protocol involves four stages: peer regis-
tration, service setup, middleman private contract allo-
cation, and service execution. In the following, we will 
briefly introduce each stage.

Peer registration. Any peer on the blockchain network 
can register as a middleman by paying a security deposit 
to the contract CTAISC at any time. By submitting a regis-
tration request, the peer indicates that it can provide ser-
vices to execute the contract and submits its public key, 
IP address and work window. After successful registra-
tion, CTAISC adds the peer to the registration list and can 
be selected to execute the contract CTAISC . Upon comple-
tion, the peer can get the reward.

Service setup. The sender Bob specifies the expected 
service execution time interval [Tf ,Te] , the required 
security deposit for each middleman, and the reward 
each middleman can get upon completing the contract 
CTAISC . CTAISC selects suitable middlemen from the regis-
tration list based on their work window and security 
deposit. Then, CTAISC sends Bob the middleman cluster 
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Peers = IPi ,OR
(i)
pub , i = 1, 2, . . . , n . IPi represents the IP 

address and OR(i)
pub represents the public key of the ith 

middleman in the cluster.
Middleman private contract allocation. After the 

sender Bob submits the middleman selection criteria 
to the contract CTAISC , CTAISC assigns suitable middle-
men and allocates each middleman with a private con-
tract Pi . The middleman executes the contract based 
on Pi.

Service execution. Before the expected service execu-
tion time interval [Tf ,Te] , namely before time Tf  , the 
sender Bob needs to divide the trapdoor request cipher-
text and encrypt ciphertext fragments layer by layer using 
the public keys of the selected middlemen, generating n 
onions. After executing their respective private contracts, 
each middleman receives a reward distributed accord-
ing to its private contract. These rewards are allocated in 
advance for each private contract by the contract CTAISC . 
If a middleman fails to complete its private contract, its 
deposit will be confiscated.

Figure  2 shows the contract CTAISC designed for 
implementing the TAISC protocol. In this figure, Px1 , 
Py1 , Pz1 , and so on are the private contracts of the 
middlemen.

Users can initiate the smart contract CTAISC with legal 
authorization. When the sender Bob initiates CTAISC , a 
specific remuneration must be paid.

Protocol assumptions
In the TAISC protocol, we make the following assump-
tions regarding the participants and the protocol execu-
tion process:

•	 We assume that the sender Bob wants his trapdoor 
request information transmitted quickly and on time 
and is willing to pay remuneration. Meanwhile, we 
assume that the reward that Bob may obtain upon 
successful information transmission is R.

•	 We assume that there are enough peers registered as 
middlemen.

•	 We assume that any adversary among the contract-
ing parties who engage in dishonest behavior by 
accepting bribes is rational, and there are no costless 
attacks.

Attack models
In our work, we have considered four possible attacks 
assuming the attacker is rational: release-ahead attack, 
interruption attack, eavesdropping attack, and replace-
ment attack. We will provide a detailed account of 
whether the TAISC protocol can withstand these 
attacks in Security analysis section.

Release-ahead attack: The release-ahead attack means 
the middleman transmits the message before the time 
specified by the sender Bob. The attacker aims to complete 

Fig. 1  The TAISC Protocol for anonymous query time trapdoors based on smart contract
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the information transmission and obtain the time trapdoor 
before Bob receives the response from the time server TS.

Interruption attack: The interruption attack means 
the middleman fails to transmit the message success-
fully. Interruption attacks typically occur when the mid-
dleman is bribed and refuses to transmit the obtained 
message. Since the middleman provides a security 
deposit at registration, one reason for the middleman to 
launch an interruption attack is when the bribe offered 
by the attacker exceeds its security deposit.

Eavesdropping attack: The eavesdropping attack 
means the attacker attempts to obtain the information’s 
content or source through eavesdropping.

Replacement attack: The replacement attack means 
the attacker bribes the middlemen to tamper with the 

content of the information and cause the information 
to be incorrectly transmitted, thereby disrupting the 
transmission of the information.

Detail of the smart contract CTAISC
We utilize the smart contract CTAISC to implement the 
anonymous query time trapdoors TAISC protocol. This 
section describes the four modules of the proposed 
contract CTAISC in detail.

Peer Registration Module
The Peer Registration Module is designed for any 
blockchain peer that can provide services. With this 
module, any peer on the blockchain network can regis-
ter as a middleman to the contract CTAISC.

Fig. 2  The contract CTAISC
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When applying to register as a middleman, each peer 
is required to provide the following information to the 
contract CTAISC.

After verifying the submitted information, CTAISC 
adds the qualified peers to the middleman registration 
list. A middleman’s information in the registration list 
includes its public key, IP, and working window.

Service Setup module
The Service Setup module defines the tasks the sender 
Bob must complete before executing the contract CTAISC.

Before service setup, Bob uses the time server’s pub-
lic key to encrypt the trapdoor request information and 
decompose the ciphertext C obtained into n ciphertext 
fragments < C1,C2, ...,Cn > . After service setup, Bob 
divides the middlemen into three groups and uses their 
public keys to encrypt n ciphertext fragments layer-by-
layer, creating n onions. As an example, the onion con-
structed for the first path is as follows:

The TAISC protocol uses the (t, n) secret sharing method 
to decompose the ciphertext into n fragments. The origi-
nal ciphertext can be recovered by transmitting t or more 
of these fragments. The protocol transmits the trapdoor 
request information through n paths, and the time server 
TS can reconstruct the trapdoor request when t or more of 
these paths have been successfully transmitted.
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Assuming the sender’s ciphertext value is v, the reward 
generated upon successful transmission is R, and the remu-
neration paid to each middleman is r. The attacker’s bribe 

to each middleman is br > 0 . Given n transmission paths, 
the attacker should pay a total bribe amount of br_sum < R . 
If a middleman accepts the bribe, its deposit dp will be con-
fiscated. Bribery can only be successful if the bribe amount 
exceeds the middleman’s deposit dp , namely dp > br.

When an attacker wants to replace the sender to obtain 
the reward through an attack, the attacker should bribe 
all middlemen on at least n− t + 1 paths, and the bribe 
that the attacker should pay is 3× br × (n− t + 1) < R . 

Therefore, the deposit of the middleman only needs to 
meet dp > R

3×(n−t+1)
 to ensure dp > br . It is known that 

the smaller t is, the less deposit is required. However, 
if t is too small, it will make it easier for the attacker to 
launch a release-ahead attack. At this time, the attacker 
needs to bribe all middlemen on at least t paths, and the 
bribery that the attacker needs to pay is 3× br × t < R . 
Therefore, the deposit of each middleman should meet 
dp > R

3t . In summary, t should satisfy t = n+1
2

 , and the 
deposit dp should satisfy dp = R

3t.

Middleman private contract allocation module
The TAISC protocol designs a private contract for each 
middleman’s behavior, with the public contract CTAISC 
ensuring the proper execution of each private contract. 
After receiving the message from the previous hop, the 
middleman will execute its private contract Pi , which 
consists of both forward and backward algorithms.
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Service execution module
During the execution of the contract CTAISC , after the 
middlemen on each path decrypt the correspond-
ing ciphertext fragments, they need to submit the cor-
responding hash values to CTAISC , which will use this 
information to screen for problem paths after the service 
ends. The service execution module provides constraint 
items that all participants must comply with.

The specific default judgment process during contract 
execution is as follows: 

a)	 Each middleman or TS has an operation time To . 
While decrypting and transmitting the message, the 
middleman will generate two certificates and submits 
them to the contract. The contract compares the dif-
ference between the submission times of the two cer-
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tificates, if the difference is greater than To , the mid-
dleman is judged to be in violation.

b)	 The contract detects replacement attacks in the path 
by comparing the hash values of the ciphertexts sub-
mitted by the third layer middlemen with the hash 
values of the ciphertext fragments submitted by 
Bob. If the hash value of a certain path differs from 
what Bob provided, the contract judges that there is 
a replacement attack on that path. The contract will 
compare the message hash values provided by the 
middlemen from the back to the front to find the vio-
lating middlemen and punish them.

For dishonest middlemen, the contract will add them to a 
blacklist, making them unable to receive any subsequent 
tasks from the contract.

The TAISC protocol analysis
This section first conducts a security analysis of the 
TAISC protocol, then analyzes the impact of participant 
behavior on the TAISC protocol, and finally analyzes the 
performance of the TAISC protocol.

Security analysis
Firstly, we present the security model underlying the 
TAISC protocol. The TAISC protocol assumes that the 
selected middlemen and the time server are “curious 
but rational,” meaning that while executing the contract 
according to the predetermined requirements, they will 
attempt to infer the transmitted messages and their 
source and destination within their capabilities. However, 
it is assumed that they will not intentionally alter, destroy 
or refuse to transmit the messages, as doing so would 
confiscate their security deposits.

Next, we will conduct a security analysis of the attack 
models in Attack models section to demonstrate that the 
protocol’s security is sufficient to ensure that Bob can 
successfully perform a time trapdoor query while main-
taining anonymity. In our security analysis, we assume 
that all attackers are launching attacks to disrupt the 
TAISC protocol, that is, to break the sender’s anonymity 
or to prevent the sender from successfully querying the 
time trapdoor. We also assume that m peers are regis-
tered as middlemen in the contract.

Release‑ahead attack
Each middleman must authenticate its action by submit-
ting a signed certificate generated with its private key to 
the contract during the decryption and transmission of 
the message.If a middleman transmits the information 
prematurely, it will be judged as a breach of the contract, 
and its deposit will be confiscated during the final set-
tlement.If the attacker wants to bribe the middleman to 

transmit the information prematurely, he would need to 
bribe the third layer middlemen on at least t paths. Since 
the attacker does not know the locations of the mid-
dlemen in the path, he would need to bribe a total of 3t 
middlemen on at least t paths, paying each middleman a 
bribe greater than its security deposit. The probability of 
successfully bribing middlemen for a release-ahead attack 
is Ct

n × C3t
m .

Interruption attack
If a middleman, designated as A, fails to transmit the 
message to the next hop middleman within the time 
Tn + To , or if the next hop middleman reports an attack 
to the contract, it will be considered a failure to trans-
mit the message properly. Whether active or passive, it 
is considered an interruption attack. The contract will 
verify whether middleman A has been bribed to refuse 
to transmit the message to the next hop and whether its 
previous middleman has launched a replacement attack 
to prevent it from executing its private contract and 
transmitting the message.

Suppose an attacker wants to bribe the middlemen 
to abandon transmitting the information to achieve 
the information transmission failure. In that case, the 
attacker must successfully bribe at least one middleman 
in each of the n− t + 1 paths. The success probability of 
an interruption attack is Cn−t+1

n × Cn
m.

Eavesdropping attack
This scheme can prevent eavesdropping attacks. In the 
trapdoor request stage, first use the time server public 
key to encrypt the trapdoor request information T to 
obtain the ciphertext, then divide the resulting cipher-
text into ciphertext fragments, and finally encrypt the 
ciphertext fragments layer by layer according to the pub-
lic key information of the middleman to construct the 
onion, that is, the data transmitted inside the network 
by T has been encrypted at least once. Without knowing 
the time server private key, the attacker cannot construct 
the requested time trapdoor. In the time trapdoor return 
stage, the time server generates the corresponding time 
trapdoor based on the request time T and encrypts it 
using the public key of the trapdoor requester, and then 
chooses one of the paths, and according to the public 
key information of the middlemen on this path, layers 
of encryption are constructed to construct an onion and 
return it. Therefore, similar to the trapdoor request stage, 
it is impossible to decrypt the message without the user’s 
private key.

For attackers who want to eavesdrop on the informa-
tion source, because each middleman only knows its 
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previous and next hop middlemen and does not know 
its position in the path, they need to bribe all middlemen 
on the same path. The probability of successful bribery is 
Cn
m × C1

n × C1
n−1 × C1

n−2 .

Replacement attack
Before the ciphertext fragments are transmitted through 
each path, they are submitted to the contract with their 
hash values. At the end of the path, the last layer middle-
men submit their hash values to the contract for verifica-
tion before transmitting to the time server. If the contract 
detects that the number of correctly transmitted cipher-
text fragments is greater than or equal to t, it continues to 
execute. Failed paths are judged and processed after the 
information is successfully transmitted. If the contract 
detects that the number of correctly transmitted cipher-
text fragments is less than t, it stops and confiscates the 
deposits of the paths and middlemen with transmission 
errors. For honest middlemen, they will receive deposit 
refunds and reward payments. Therefore, unbribed 
middlemen will execute their contracts rationally and 
correctly.

If an attacker wants to disrupt the message transmis-
sion by a replacement attack, he must successfully bribe 
at least one middleman in each of the n− t + 1 paths. 
The probability of success of the attack is the same as that 
of the interruption attack.

In summary, the closer m and n are, the higher the 
probability of the attacker’s success, but it isn’t easy to 
achieve in real life. Therefore, the TAISC protocol can 
resist the above attacks.

Participant behavior tree
The participant behavior tree for the contract CTAISC is 
shown in Fig. 3. This behavior tree provides a detailed 
explanation of the different outcomes resulting from 
the different behaviors of middlemen and the corre-
sponding gains for both middlemen and the attacker. 
This behavior tree assumes that the attacker can suc-
cessfully bribe the middleman, ignoring the probability 
issues described in Security analysis section. Because 
the middleman behavior is consistent across all paths 
in the contract CTAISC , only the behavior tree of a single 
path is shown. Let Y represents the middleman’s honest 
execution of the contract, and N represents the middle-
man’s acceptance of the attacker’s bribe. N8 ∼ N15 rep-
resent different outcomes resulting from the different 
choices of each middleman. At this point, the deposit 
dp > R

3t and bribe br < 1
3
kR can be calculated using for-

mula (2), where k = 1
n . We take t = 2 and n = 3 obtain 

dp > 1
6
R and br < 1

9
R.

Among them, N8 represents that all middlemen hon-
estly execute the contract and receive the rewards. 
N9 ∼ N14 represent one or two middlemen accepting 
bribes. In this case, the profit of the middleman is br − dp . 
It can be inferred from dp > 1

6
R > br that the bribe the 

middleman accepts is less than its deposit. Therefore, a 
rational middleman would not accept the bribe. N15 rep-
resents three middlemen that all accept bribes. Suppose 
the deposit is set higher than the expected profit from 
the attack. In that case, a rational attacker will not launch 
an attack because the cost of the bribe is higher than the 
potential profit from the attack.

Fig. 3  The participant behavior tree for the contract CTAISC
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Experiment and performance analysis
The program execution environment for the con-
tract CTAISC is an Intel(R) Core(TM) i7-8550U CPU @ 
1.80GHz processor with 8GB of memory. The contract 
was tested in the Ethereum Rinkeby test network using 
Solidity language. As of June 19, 2022, the exchange rate 
between the test currency of Ethereum and the US dol-
lar was 1 ETH = $949.76 [22], and the exchange rate 
between Ether and Gas was 1 ETH = 1× 109 Gas [23]. 
Based on these exchange rates, the execution cost of the 
functions involved in the TAISC protocol and their con-
version to US dollars are shown in Table 1.
Bob uses setUp() to set up the service, while a peer 

can register as a middleman through newPeer(). The 
contract CTAISC offers incentives or penalties to middle-
men through award(), while protocol participants sub-
mit signed certificates via setCert() and hash values of 
exchanged messages through hash().

In the contract CTAISC , conducting one trapdoor query 
requires each middleman to call setCert() twice and 
hash() twice. Additionally, the user Bob needs to invoke 
one setUp(), (n+ 1)hash() , and one setCert(). The time 
server also calls hash(). Upon returning, each middleman 
consumes one setCert(). Overall, this process consumes 
(6n+ 4)× setCert()+ (7n+ 2)× hash()+ setup()+ award() . In this 
paper, we set n = 3 and t = 2 , and the gas consumption 
cost is $5.66.

Since no blockchain-based anonymous interactive TRE 
scheme exists, both DRSD [18] and TTSD [24] imple-
ment timed data encryption based on blockchain. There-
fore, this paper compares the TAISC protocol with DRSD 
and TTSD protocols, as shown in Table 2.

Regarding the anonymity of communication, when select-
ing participating middlemen, users do not interact directly 
with them but choose from a registration list maintained by 
the contract. Since the contract behavior of each layer mid-
dlemen is the same, when the user distributes the trapdoor 
query ciphertext fragments to the first layer middlemen, the 
middleman cannot distinguish whether the user or other 
middlemen are sending the message. However, in DRSD 
and TTSD protocols, users cannot hide their identities 
because they interact directly with all middlemen. There-
fore, the TAISC protocol achieves anonymous querying.

Regarding implementation efficiency, the TAISC proto-
col performs preprocessing for potential problems such 
as node failures during transmission. Once the behavior 
of trapdoor querying starts, users do not need to perform 
additional calculations. The trapdoor request informa-
tion is constructed as a multi-layered onion, and mid-
dlemen cannot obtain specific information. In the DRSD 
protocol, there is only one transmission path. If a node 
fails, the user must reconstruct the onion for transmis-
sion, increasing the query time and possibly resulting 
in trapdoor information not being obtained promptly. 
Therefore, the TAISC protocol is more practical regard-
ing trapdoor querying efficiency.

Regarding flexibility, different users can specify the 
deposit amount according to the value of the information 
they transmit. The computational complexity of the pro-
tocol is linearly related to the number of selected middle-
men. In the TAISC protocol, the recipient can interact 
with the time server based on the chosen time rather 
than relying on block generation time, resulting in higher 
flexibility.

In encrypted communication, the transmitted cipher-
text size can be used as a measure of communication cost, 
so we have counted the total ciphertext size required for 
transmission in the TAISC, DRSD, and TTSD protocols 
as communication cost. None of the TAISC, DRSD, and 
TTSD protocols specify specific encryption algorithms. 
To compare the communication costs of the three pro-
tocols more clearly, we assume that the ciphertext sizes 
required for transmission are all X bits. Additionally, 
because the main content transmitted by the TAISC pro-
tocol is the time T and time trapdoor information cipher-
text, their sizes are very small, so for TAISC, DRSD, and 
TTSD, we uniformly ignore any changes in ciphertext 
size caused by encrypting or decrypting the ciphertext 
multiple times during transmission. For the TAISC pro-
tocol proposed in this article (n = 3, t = 2) , in the trap-
door request stage, the trapdoor requester first encrypts 
the time T using the time server’s public key to obtain 
a ciphertext of size X bits, and then divides the result-
ing ciphertext into three fragments of size X bits. Finally, 
each ciphertext fragment is transmitted to the time 
server through three middlemen nodes. Therefore, the 

Table 1  Function execution cost

Functions Gas cost/item ETH cost/unit USD ($)

newPeer 800000 0.0008 0.76

setUp 1500000 0.0015 1.42

setCert 100000 0.0001 0.09

hash 100000 0.0001 0.09

award 200000 0.0002 0.19

Table 2  Performance comparison

TAISC DRSD TTSD

Anonymity H N N

Efficiency H L H

Flexibility H L L

Gas cost H L L

Communication cost H L L
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communication cost required for this stage can be rep-
resented as 12X bits. In the trapdoor return stage, only 
one path needs to be chosen to return the trapdoor infor-
mation, so the communication cost is 4X bits. The total 
communication cost of TAISC is 16X bits. For DRSD 
protocol, the data sender needs to transmit a cipher-
text of size X bits, and then pass it to the data receiver 
through three middlemen nodes successively. Therefore, 
the communication cost of DRSD is 4X bits. For TTSD 
protocol, the ciphertext size to be transmitted is X bits. 
The data sender first splits the ciphertext into fragments 
to obtain a total of 2X bits ciphertext fragments, and then 
sends it to the data receiver through a middleman cluster. 
Therefore, the communication cost of TTSD is 4Xbits. 
Therefore, compared to DRSD and TTSD protocols, the 
communication cost of TAISC is higher.

However, since the TAISC protocol uses more middle-
men for trapdoor querying, it incurs higher gas costs and 
communication costs, which require further optimization.

Summary and future work
This paper proposes the TAISC protocol based on the 
smart contract for anonymous query time trapdoors, 
which aims to improve the reliability and stability of user 
query time trapdoors. Users can forcibly transmit the 
trapdoor request through middlemen to the time server 
and receive the corresponding trapdoor from the time 
server by executing the smart contract on Ethereum. The 
protocol uses onion routing technology to achieve anon-
ymous query time trapdoors. Using secret sharing tech-
nology, the time trapdoor request information is divided 
into n transmission paths for transmission, increasing 
the probability of successful time trapdoor requests and 
making trap requests more stable. Using smart contracts 
to constrain the behavior and norms of participants 
improves the reliability of participants.The paper pre-
sents the protocol model, the smart contract for anony-
mous querying of time trapdoors, and conducts security 
and performance analyses for the protocol.

However, since users can anonymously interact with the 
time server to obtain trapdoors at any time, many users 
may choose to interact with the time server at their pre-
ferred times, leading to an excessive load on the time server 
and causing it to be unresponsive. Therefore, designing a 
time server enhancement scheme for anonymous query 
time trapdoors that can avoid denial-of-service attacks on 
the time server is an area for further research.
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