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Abstract 

Recently, the development of Low Earth Orbit (LEO) satellites and the advancement of the Mobile Edge Computing 
(MEC) paradigm have driven the emergence of the Satellite Mobile Edge Computing (Sat-MEC). Sat-MEC has been 
developed to support communication and task computation for Internet of Things (IoT) Mobile Devices (IMDs) 
in the absence of terrestrial networks. However, due to the heterogeneity of tasks and Sat-MEC servers, it is still 
a great challenge to efficiently schedule tasks in Sat-MEC servers. Here, we propose a scheduling algorithm based 
on the Deep Reinforcement Learning (DRL) method in the Sat-MEC architecture to minimize the average task process-
ing time. We consider multiple factors, including the cooperation between LEO satellites, the concurrency and hetero-
geneity of tasks, the dynamics of LEO satellites, the heterogeneity of the computational capacity of Sat-MEC servers, 
and the heterogeneity of the initial queue for task computation. Further, we use the self-attention mechanism to act 
as a Q-network to extract high-dimensional dynamic information of tasks and Sat-MEC servers. In this work, we model 
the Sat-MEC environment simulation at the application level and propose a DRL-based task scheduling algorithm. 
The simulation results confirm the effectiveness of our proposed scheduling algorithm, which reduces the average 
task processing time by 22.1% , 30.6% , and 41.3% , compared to the genetic algorithm(GA), the greedy algorithm, 
and the random algorithm, respectively.

Keywords  Satellite Mobile Edge Computing (Sat-MEC), Deep Reinforcement Learning (DRL), Task scheduling, 
Minimize task processing time

Introduction
Cloud Computing has become one of the key drivers 
of modern business and technology development [1]. 
Cloud computing can provide organizations and indi-
viduals with efficient, cost-effective, flexible, scalable, 
and secure computing resources and services, including 
services such as storage, databases, servers, and software. 

However, cloud computing faces challenges such as 
latency, security, bandwidth, and availability in some spe-
cific application scenarios. To overcome these challenges, 
Fog Computing and Edge Computing are emerging [2]. 
Fog computing extends the concept of cloud comput-
ing. It is closer to the place where the data is generated 
than cloud computing. The data, data-related processing 
and applications are centralized in devices at the edge of 
the network, instead of being stored almost entirely in 
the cloud. Edge computing further promotes Fog Com-
puting’s concept of “local network processing power” by 
enabling sensitive data to be processed on local devices 
or edge nodes, reducing reliance on remote data transfers 
and thus increasing privacy and security [3]. In addition, 
the edge computing paradigm sinks computing capability 
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to the edge, where data from IMDs can be processed 
faster through edge computing, thus increasing availabil-
ity in remote or unstable network environments [4].

By combining edge computing with LEO satellite to 
form the Sat-MEC architecture, we can not only over-
come the limitations of cloud computing but also provide 
a feasible and efficient solution for the realization of 6G 
[5]. This integrated approach promises to provide fast, 
reliable services on a global scale to meet future com-
munications need. We begin by introducing the readers 
to the difference between task offloading and task sched-
uling: task scheduling is deciding which tasks should be 
executed by which edge/fog devices in a edge/fog net-
work. It involves determining the most suitable edge/
fog device for each task based on device capabilities, 
compute capacity, network conditions, and task require-
ments. Task offloading, on the other hand, refers to trans-
ferring computational tasks from IoT devices to more 
powerful edge/fog devices in the network [6, 7].

In the Sat-MEC architecture, the terrestrial tasks can 
offload from IMDs to the Sat-MEC servers in the absence 
of terrestrial network services or in specific areas. In our 
Sat-MEC scenario, when tasks are offloaded from the 
ground to the over-the-top satellite, it is difficult for the 
limited computational resources to compute multiple ter-
restrial tasks at a single satellite. However, with the devel-
opment of LEO satellite constellations in recent years, 
LEO satellites can communicate directly with each other 
by Inner Satellite Link(ISL). The computational resources 
of the satellites can be shared by ISL. Task scheduling can 
be performed in the Sat-MEC servers resource pool to 
balance the computational load and futher to minimize 
latency, reduce network congestion, and ensure efficient 
use of resources [8].

Our objective in this work is to reduce the average 
processing time of tasks from ground-based IMDs by 
pursuing a reasonable task scheduling strategy. In our 
Sat-MEC scenario, we consider multiple ground IMDs 
simultaneously, and multiple tasks generated at the exact 
moment can be processed locally by the ground IMDs 
and collaboratively by the resource pool of the Sat-MEC 
servers. In our research, we found that for the simulta-
neous scheduling of multiple tasks in complex dynamic 
environments, the sequential order of the task schedul-
ing also affects the average processing time of the tasks, 
Therefore, the simultaneous scheduling problem of 
simultaneous scheduling of multiple tasks, not only the 
problem of matching tasks with Sat-MEC servers but also 
the problem of task scheduling sequence should be con-
sidered. To solve this NP-hard problem, we are searching 
for a method to schedule tasks that can find an optimal 
solution in the high-dimensional feature space of the 
problem.

Swarm intelligence algorithms, such as GA and Particle 
Swarm Optimization(PSO), are efficient in finding global 
or near-global optimal solutions in the domain of high-
dimensional and nonlinear problems [9]. However, in 
our scenario, the diversity of tasks on the ground and the 
heterogeneity of resources on Sat-MEC servers lead to 
complexity in the solution space. GA and PSO are chal-
lenging in complex and dynamic offloading or scheduling 
problems. Therefore we need find an algorithm that has 
the strong ability to explore the huge problem space and 
obtain a near-global optimal solution.

The stochastic process model provides a practical 
perspective when considering different approaches for 
scheduling algorithms. In particular, Markov properties 
provide an essential framework for understanding deci-
sion-making in task scheduling. Markov property means 
that the probability distribution of a stochastic process 
for a future state depends only on the current state, given 
the present state and all past states [10]. A Markov chain 
is a collection of discrete random variables with the 
Markov property, and a Markov Decision Process(MDP) 
introduces the concepts of decision, action, reward, 
and debriefing based on the Markov chain. As we have 
already discussed, Markov attributes and MDP provide 
a robust framework for describing decision-making in 
uncertain environments. Intelligence must continually 
learn how to make the best decisions in such environ-
ments by interacting with the environment. Reinforce-
ment learning is specifically designed to address this 
aspect. Traditional reinforcement learning techniques 
have difficulty when dealing with complex environments 
and large state spaces. This is where DRL comes in, com-
bining the capabilities of deep learning with the princi-
ples of reinforcement learning to handle more complex 
scenarios [11].

Through continuous experimentation and exploration, 
the agent learns to find the optimal strategy that maxi-
mizes cumulative rewards. In the task scheduling process 
in our Sat-MEC scenarios, the over-the-top LEO satel-
lite receives tasks and the characteristics of tasks, col-
lects the characteristics information of Sat-MEC servers 
from neighboring satellites by ISL, and makes the task 
scheduling process accordingly, which consistents with 
the Markov chain and reinforcement learning model. 
Therefore, we use DRL, a combination of deep and rein-
forcement learning as the model for our scheduling algo-
rithm. Furthermore, we use the self-attention mechanism 
as a Q-network for extracting complex dynamic features. 
Ultimately, the exploration strategy under high-dimen-
sional space is obtained through continuous interaction 
with the environment, and ultimately, task scheduling in 
dynamic and complex environments is realized [12]. The 
main contributions in this paper are fourfold.
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•	 We formalize the task offloading issue in the Sat-
MEC scenario as a MDP, using the Satellite Tool Kit 
(STK) to model the spatial information of the LEO 
satellite. Additionally, we used Python to model the 
simulation of the Sat-MEC environment, where we 
consider task heterogeneity and server computa-
tional resource heterogeneity.

•	 To address the challenge of finding solutions in a 
high-dimensional state space, we resort to function 
approximators based on deep neural networks and 
integrate the self-attention mechanism into the Q-net-
work. We proposed a DRL-based on the Double Deep 
Q-Network (DDQN) [13], i.e., SATDRL. This algo-
rithm thoroughly considers the global information of 
tasks and servers and enables simultaneous offloading 
decisions for multiple tasks arriving at the same time. 
Thus, it facilitates learning the optimal computation 
offloading strategy within the Sat-MEC scenario.

•	 We have performed numerical experiments based on 
PyTorch 1.9 [14] to verify the theoretical research of 
this paper. The results show that our proposed off-
loading algorithm outperforms the three basic meth-
ods, which could reduce the average task processing 
time by 22.1% , 30.6% , and 41.3% , compared to the 
GA, the greedy algorithm, and the random algorithm, 
respectively. Whcih the SATDRL algorithm achieves 
the best computational scheduling performance and 
is capable of making good scheduling decision action 
in a high-dimensional space under different environ-
mental constraints..

Related works
In recent years, the Sat-MEC scenarios has received a lot 
of attention with the rapid development of LEO satel-
lite related technologies and artificial intelligence. Some 
works considered different approaches such as numeri-
cal computation, game theory, genetic algorithms, and 
deep learning to achieve their different goals, including 
channel transmission stability, minimizing task execution 
energy consumption, minimizing task processing time, 
and improving computational resource utilization. In 
this section, we will introduce the relevant literature and 
methods below.

Wang et al. [15] modeled a game-theoretic-based com-
putational offload system in a satellite edge computing 
scenario. Intermittent ground satellite communication 
due to satellite orbit is considered in their system model. 
And proposed an iterative algorithm to search for the 
Nash equilibrium of the game to reduce the average cost 
of the device. Li et  al. [16] introduce a concept termed 
’LEO-MEC’, which involves the installation of edge servers 
on LEO satellites, they addressed two main issues in their 
research, the issue of service request scheduling decisions, 

which directly affects the system’s resource utilization, 
and the problem of service placement, which has an inti-
mate correlation with the scheduling decisions. They have 
attained superior outcomes by utilizing the OPTI tool-
box to tackle these issues compared to other benchmark 
algorithms. Wang et  al. [17]developed a computational 
latency model for transmission delay and computational 
delay for a scenario where a task set consisting of multi-
ple independent tasks with high quality of service Qual-
ity of Service (QoS) requirements is offloaded to a satellite 
edge computing cluster. The satellite edge computing sce-
nario is proposed using a GA-based offloading algorithm 
for QoS enhancement. Tang et al. [18] proposed a hybrid 
cloud and edge computing low-orbiting satellite (CECLS) 
network with a three-tier computing architecture and 
investigated computational offloading decisions in this 
framework to minimize the total energy consumption 
of ground users, and using a binary variable relaxation 
method to transform the original nonconvex problem into 
a linear programming problem, they propose a distrib-
uted algorithm based on Alternating Direction Multiplier 
Method (ADMM) to approximate the optimal solution 
with low computational complexity. The network can pro-
vide heterogeneous computing resources for ground users 
and enable ground users to access computing services 
worldwide. Zhu et  al. [19] consider a satellite-ground 
cooperative edge computing architecture where tasks can 
be performed by SatEC servers or urban TCs (ground sta-
tions). The offload location decision and bandwidth allo-
cation is a MIP (certificate linear programming) problem 
model-free learning, they propose a DRTO algorithm 
based on the current channel state to make the offload 
decision. Meanwhile, DRTO can improve its offloading 
strategy by learning the real-time trend of channel state 
to adapt to the high dynamic time complexity of satellite-
terrestrial networks. Yu et al. [20] present a context that 
integrates edge computing within the structure of Edge 
Computing-enabled Satellite-Aerial-Ground Integrated 
Networks (EC-SAGINs). Particularly in exceptional sce-
narios, this can offer Internet of Vehicles services to users 
in remote regions. Furthermore, the authors propose an 
advanced scheme of pre-classification alongside a deci-
sion-making algorithm predicated on Deep Imitation 
Learning (DIL). This enables the satellite to execute tasks 
as rapidly as feasible while ensuring minimal utilization of 
resources. Mao, et al. [21]also consider combining SAGIN 
with edge computing to achieve rational resource alloca-
tion and task offloading. Cassar et  al. [22]proposed an 
edge computing platform that leverages the computing-
as-a-service capabilities of low-orbiting satellites to imple-
ment an in-orbit computing continuum for equal access 
to computing, thoroughly improving the utilization of 
computing resources.
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There has also been a lot of excellent work in recent 
years on task scheduling and offloading of for MEC 
sysytem with using Device-to-Device(D2D) or broker 
approach. He et  al. [23] maximize the number of D2D-
enabled devices by integrating D2D-MEC techniques in 
order to further increase the computational power of cel-
lular networks. Seng et al. [24] proposed a GS-based user 
matching algorithm in a D2D-enabled MEC system to 
find a match between an offloading requester’s compu-
tational task and an edge server or user. Zanzi et al. [25] 
proposed a smart online aggregated reservation (SOAR) 
framework for MEC brokers to minimize their cost of 
reserving resources in a MEC environment that supports 
brokers for multiple users without the knowledge of future 
demands. Zhang et al. [26] considered inseparable tasks in 
their considered Sat-MEC system. They proposed a greedy 
algorithm for task allocation and designed different task 
allocation strategies for different kinds of tasks to reduce 
the average cost of task computation. Chai et al. [27]con-
sidered task dependencies in their considered Sat-MEC 
scenario formed a DAG-directed acyclic graph of tasks 
with dependency properties, and provided a low-complex-
ity multi-task dynamic offloading framework. They pro-
posed an RNN-based offloading algorithm that achieves 
a lower long-term cost of the offloading system. Liu et al. 
[28]proposed a new support wireless power transmission 
(WPT) in Space-Air-Ground Power Internet of Things 
(SAG -PIoT) architecture to solve the problem of limited 
battery capacity and difficulty in replacing the IoT devices, 
and based on this, combined with Liapunov optimization 
method proposed a joint online optimization algorithm for 
task allocation and system multiple resource allocation to 
minimize the long term time averaged network operation 
cost. Hussein et al. [29]considered two different scheduling 
algorithms based on two swarm intelligence algorithms, 
Ant Colony Optimisation (ACO) and PSO, to balance the 
IoT tasks on the fog nodes efficiently and to improve the 
QoS of the IoT applications and the utilization of the fog 
nodes, taking into account the cost of communication 
and the response time. Javanmardi et al.[30], in their pro-
posed offloading problem in an IoT scenario, considered 
multiple characteristics of fog nodes and tasks such as 
CPU processing power, memory size and bandwidth, and 
CPU requirements. They proposed a Particle Swarm Opti-
misation (PSO) algorithm combined with fuzzy logic to 
improve global search capability. Zhang et al. [31]designed 
a satellite peer offloading scheme that defines the multi-
hop satellite peer offloading (MHSPO) problem as a global 
optimization problem and transforms the Lyapunov-based 
entire network cost minimization problem into several 
sub-problems carried out on individual satellites. Their 
scheme efficiently balances the imbalanced workloads and 
improves the resource utilization of the satellite network. 

Matrouk et  al. [32]. proposed a mobile-aware proximal 
policy optimization algorithm (MAPPO) deployed at 
the gateway to perform the history-aware switching pro-
cess, which improves network performance and accuracy 
and reduces latency. The tasks are classified and sched-
uled through a two-process modular neural network. The 
authors’ approach reduces latency and offload time and 
improves system throughput. Chen et  al. in [33], employ 
DRL to address the co-optimization problem of computa-
tion offloading and resource allocation within MEC sys-
tems. Similarly. Seid et al. [34] propose an optimal system 
performance achieving model-free collaborative com-
puting offloading and resource allocation strategy based 
on DRL. Also, zheng et  al. [35]proposed a LEO network 
architecture using centralized resource pooling based on 
satellite resource pooling, and designed a combined alloca-
tion of fixed channel pre-allocation and dynamic channel 
scheduling based on reinforcement learning. The system 
allocates the channel resources by Q-learning algorithm 
and trains the optimal channel allocation strategy. Sha-
karami et  al. [12] consider modeling the offloading deci-
sion problem between different execution environments in 
a multi-user/multi-server environment with heterogene-
ous services and edge/cloud platforms, using multivariate 
linear regression and DNN modeling as a hybrid model to 
obtain optimal offloading results.

Liu et  al. [36] conducted an in-depth study and found 
the optimal offloading probability and optimal transmis-
sion rate based on M/M/1 queueing theory to minimize 
energy consumption, execution delay, execution delay, and 
price cost. Li et al. [37] developed a system model consist-
ing of M/M/1 and M/M/c queues to capture the task exe-
cution process of an IMD, an MEC server, and a remote 
cloud server, respectively, and solved a joint optimization 
problem regarding task offloading delay and energy con-
sumption. Chen et  al. [38] considered the emergent task 
computation queue idleness in edge servers. They pro-
posed a computation task mechanism consisting of edge 
servers, cloud centers, and edge devices based on task co-
scheduling. Sharif et  al. [39] assigned different priorities 
to different tasks, performed priority-based task sched-
uling and resource allocation according to the urgency 
of the task, and decided the priority of each task. Zhou 
et al. [40] investigated the joint impact of task prioritiza-
tion and mobile computing services on MEC networks 
by measuring system performance through the computa-
tional utility of multiple users, where the effect of a wide 
range of task prioritization was considered. A DRL algo-
rithm was used to learn practical solutions through con-
tinuous interactions between the AGENT and the system 
environment. Guo et  al. [41] optimize system bandwidth 
and computational power resources based on federated 
learning and DRL to ensure that higher priority tasks are 
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allocated higher bandwidth and computational resources. 
Wang et al. [42] identified the task type as energy sensitive 
task. They adopted the idea and method of the matching 
game to task offloading and matching problems based on 
minimizing energy consumption. Additionally, there are 
some papers that do not take into account task prioritiza-
tion or the nature of the task, for example, Chen et al. [33]
studied the QoS-aware computation offloading problem 
for IoT devices in low-orbit satellite edge computing based 
on non-cooperative competition among IoT devices, they 
proposed a distributed QoS-aware computation offloading 
algorithm to improve the QoS of IoT devices.

As shown in Table  1 below, we have integrated some 
of the literature and explored their research methods, 
in which the modeling algorithms in the deep reinforce-
ment learning/deep learning category have speedy and 
accurate reasoning capabilities after training is completed 
and deployed. On the one hand, the time complexity of 
the training process is very high, which makes them hard 
to train. On the other hand, its compelling solution space 
exploration capability performs well for complex scenar-
ios and dynamic scheduling and offloading problems.

System model and problem description
In this section, we established the system architecture 
model for Sat-MEC scenarios. Subsequently, we deline-
ated the communication conditions between satellites 
and ground stations, followed by developing the commu-
nication, task queue, and task computation models. Our 
proposed DRL-based approach is used to address the 
problem at hand (Table 2).

As shown in Fig. 1, in our work, we consider the Sat-
MEC scenarios with a terrestrial satellite terminal (TST), 
multiple terrestrial IMDs, and an over-the-top satellite 
during the current time slot. Each LEO satellite, equipped 
with MEC server, provides computing capability for task 
computation. The TST serves as the access point for sev-
eral IMDs, supporting TST-satellite link transmission on 
the Ka-band and achieving small cell coverage to facili-
tate the IMD-TST link on the C-band, which is divided 
into orthogonal sub-carriers.

We assume that the tasks generated by each IMD on the 
ground terminal within a timestamp are related. The tasks 
of the same IMDs are intelligently offloaded to the same Sat-
MEC server. When tasks start executing, terrestrial IMDs 
often face the problem of limitations in computing power 
and electrical power, especially in those scenarios where 
satellite access is required. In some harsh environments, for 
example, the electrical power and computing resources of 
IMDs are very scarce and valuable. Therefore, we only allow 
terrestrial IMDs to perform partial task computation within 
the electrical power constraint, and the remaining tasks 
will be sent via the Ka-band to the over-the-top satellite at 

that moment for further processing. We use a prior hyper-
parameter θ to simulate the offloading and local execu-
tion ratio under different environments. The computation 
scheduling process consists of two stages. In the first stage, 
corresponding to the ground segment, IMD offloads tasks 
to the TST through OFDMA. After collecting the tasks 
from the relevant IMDs, the TST equipped with an inde-
pendent antenna aperture offloads tasks to the over-the-top 
LEO satellite in the space segment. Those tasks that have yet 
to be offloaded to the MEC server are executed locally by 
IMDs. In addition, in the second stage, for each LEO satel-
lite, we regard it as an agent with a data forwarding function. 
In the scenarios of this paper, we assume that when there are 
multiple LEO satellites within the TST line-of-sight trans-
mission range, only the closest satellite is selected for data 
transmission. Due to ISL between LEO satellites, the tasks 
received by the over-the-top LEO satellite can be forwarded 
to the neighboring LEO satellites through ISL for coopera-
tive processing. Therefore, the MEC servers deployed on 
these LEO satellites can simultaneously perform compu-
tational tasks from the ground-based IMD through our 
scheduling algorithms deployed at the agent level.

Communication model
Due to the obstruction of the Earth and its atmosphere on 
the satellite-terrestrial link, communication is not always 
possible. Considering that the offloading action of terres-
trial tasks must be established in a communicable environ-
ment, the communication model will be discussed first.

The establishment of effective satellite communication 
links depends on two critical factors. The first factor is the 
unobstructed line-of-sight visibility between LEO satel-
lites or between LEO satellites and ground stations. The 
second factor is sufficient transmission power for satellite 
communication or between satellites and ground stations.

Line‑of‑sight visibility
The line-of-sight visibility between communication satel-
lites depends on the relative geometric position between 
the satellites and the Earth, as communication can only 
occur within the line-of-sight range. If the Earth blocks 
the line of sight between two satellites, their communica-
tion link is considered unavailable. Two satellites orbiting 
around the Earth, regardless of whether they are in the 
same or different orbits, can only communicate with each 
other when they are both above a horizontal plane tan-
gent to the Earth’s surface. The critical condition occurs 
when the connecting line between the two satellites is 
tangent to the Earth’s surface (Fig. 2).

To perform line-of-sight visibility analysis, two critical 
angles, α1 and α2 , can be defined as follows:

(1)α1 = arccos(Re/r1L),
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Table 2  Symbol interpretation

α1 and α2 two critical angles Re Earth radius

(τ1, γ1) the longitude and latitude (τ2, γ2) the geodetic coordinates

dc the inter-satellite distance Pr the received signal power

di the input data size of task i �m IMD task arrival rate

θ the offloading rate(a prior parameter) � Sat Sat-MEC server initial task arrival rate

γ the discount factor Ls the signal path loss

� tasks scheduling policy χ j the environment’s state

�∗ tasks scheduling policy χ ′ the next environment state

B0 the bandwidth on C-band σ 2 Gaussian white noise power

f m computational capacity of IMD w(χ , a) the utility function

V(χ) the optimal value of the state χ BTST the bandwidth on the Ka-band

ci the number of CPU cycles for task i  computation f s the number of cpu cycles per second

EIRP equivalent isotropically radiated power Gr the gain of satellite receiving antenna

b
up
i  and b down

i
the data size of taski uplink and downlink V(χ ,�) the state value function of the Agent

STST the signal power from TST to satellite Gt the gain of the satellite transmitting antenna

Qs the initial task queue backlog at current time T
up
i  and T down

i
transmission time for task i  uplink and downlink

�(a) the corresponding tasks scheduling methods an(t) the action of taski being scheduled to satellite s.

f s the number of cpu cycles per second for processing 
tasks on LEO satellite s

NTST the interference experienced by the over-the-
top satellite on the sub-carrier

Fig. 1  Sat-MEC system architecture
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where Re represents the Earth’s radius, r1L and r2L denote 
the respective distances between the Earth’s center and 
the two satellites as they simultaneously pass through 
the tangent horizontal plane. The angle between the lines 
connecting the two communication satellites and the 
Earth’s center can be denoted as φ1:

The spatial coordinates of the two LEO satellites can 
be calculated by utilizing (X1,Y1,Z1) and (X2,Y2,Z2) . 
The calculated distances from the two LEO satellites to 
the Earth’s center are r1 and r2 , respectively. The inter-
satellite distance is denoted as dc , and the visibility 
function determining whether the two LEO satellites 
are mutually visible can be expressed as:

The fact that ϕ1 is present indicates that the two LEO 
satellites are visible and meet the line-of-sight visibility 
requirement for link communication. Otherwise, it sig-
nifies they are not visible.

Figure  3 illustrates the analysis of the satellite-to-
ground link, where the distance from the satellite to 

(2)α2 = arccos(Re/r2L),

(3)φ1 = arccos r21 + r22 − d2c /2 ∗ r1 ∗ r2 .

(4)ϕ1 = α1 + α2 − φ1,

the center of the Earth can be determined through the 
calculation of the satellite and Earth center coordi-
nates. The negative impact of terrain, ground objects, 
and ground noise on effective communication cannot 
be established when the antenna elevation angle is zero, 
according to empirical evidence. Moreover, the mini-
mum elevation angle required for effective commu-
nication can vary significantly among different Earth 
stations due to their location, topography, and envi-
ronmental factors. As a consequence, the geographi-
cal region delimited by the boundary line defined by 
the antenna’s minimum elevation angle ξ is commonly 
referred to as the communication coverage area of the 
satellite. The maximum angle of visibility α1 can be 
expressed as:

Given the longitude and latitude (τ1, γ1) of a ground 
station and the orbital six elements, the geodetic coordi-
nates (τ2, γ2) of the sub-satellite point can be calculated 
for a certain time. Based on this, the angle φ2 between the 
line connecting the satellite and the center of the Earth 
and the line connecting the center of the Earth and the 
ground station can be donated as:

(5)α1 = 90◦ − ξ − arcsin ((Re/r1)cos ξ).

(6)φ2 = arccos[cos (τ2 − τ1)cos γ1cos γ2 + sin γ1 sin γ2]

Fig. 2  Link transport capability evaluation-1
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The visibility function of the satellite-to-ground link is 
expressed as:

For the ground station, when ϕ2 >0 indicates the sat-
ellite is visible from the station. The instance of ϕ2 = 0 
signifies either the satellite’s rise or set from time, with a 
change from negative to positive indicating rise and vice 
versa indicating set. Based on this, the visibility time of 
a LEO satellite to the ground station can be calculated, 
and by performing similar calculations for each satellite 
in the constellation, the coverage time of LEO satellites 
to the ground station can be obtained. In the Sat-MEC 
scenarios, we give the definition of an over-the top sat-
ellite: a satellite that establishes communication with the 
TST at the current moment. There are three scenarios in 
which the TST establishes communication with the over-
the-top satellite. 1. The TST is covered by the service 
range of only one LEO satellite, then the TST establishes 
communication with this satellite. 2. The TST is covered 
by several LEO satellites, and we choose the LEO satellite 
that is closest to the TST. 3. The ground TST is covered 
by multiple satellites, and the ground TST is the clos-
est to multiple LEO satellites at an equal radius. At this 
time, we can calculate the coverage time (service time) of 
the satellites and select the LEO satellite with the longest 
coverage time (service time) for communication.

(7)ϕ2 = 2(α1 − φ2)

Transmission power passability
Establishing a communication link is necessary to have 
line-of-sight visibility. The power requirements for signal 
transmission and reception must be met by the distance 
between inter-satellites or between satellites and ground 
stations. Suppose the distance is too great. Even if line-of-
sight visibility exists between them, the signal loss from 
satellite transmission may be too significant for the receiv-
ing antenna to pick up the signal correctly, thus rendering 
the communication impossible. To demonstrate, consider 
inter-satellite links as an illustration. The free-space elec-
tromagnetic wave propagation model is the basic model 
for the inter-satellite link channel, where the received sig-
nal power by the satellite antenna can be expressed as:

Where Gt is the gain of the satellite transmitting 
antenna in the direction of the communication satellite, 
Pt is the signal power emitted by the antenna, EIRP is the 
effective omni-directional radiated power of the satel-
lite transmitting system, and Gr is the gain of the satellite 
receiving antenna in the direction of the communication 
satellite. LAs is the signal atmospheric loss between the 
links, Ls is the signal path loss, so the free space propaga-
tion loss formula [50]:

(8)Pr = EIRP + Gr − Ls − LAs(dBW ),

(9)EIRP = Pt(dBW )+ Gt(dB),

Fig. 3  Link transport capability evaluation-2
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where f denotes the operating frequency of the commu-
nication signal, measured in GHz, dc refers to the dis-
tance between the communication satellites, measured 
in kilometers. r1 and r2 represent the distances from the 
two satellites to the center of the earth, measured in km, 
which can be determined based on the three-dimensional 
coordinates of the two satellites. The angle between the 
line connecting the two communication satellites and 
the earth’s center can be calculated using Eq. (6), which 
denotes φ1 . Equations (8), (9), and (10) demonstrate that, 
under constant gain of the satellite receiving antenna and 
system losses, as the propagation distance and frequency 
increase, the propagation path loss will also increase, 
leading to a rapid reduction in received power. Satellite 
communication requires that the received signal power 
Pr exceed the sensitivity of the receiver Prmin , which can 
be expressed as:

Data transmission model
Tasks generated by ground IMDs cannot be communi-
cated directly with LEO satellites due to different frequency 
bands. Ground IMDs need to rely on the TST to offload 
data to the over-the-top satellite at the current time. Ground 
IMDs have three stages for offloading and scheduling tasks: 

(1)	 IMDs to the TST data transmission During the first 
stage of computational offloading, the data trans-
mission rate of the task from IMD to TST can be 
expressed through Shannon’s formula [51] as below: 

 where Si is signal power from IMDi to TST on sub-
carrier k, B0 is the bandwidth of each sub-carrier on 
C-band, and σ 2 is the additive Gaussian white noise 
power.

(2)	 TST to over-the-top LEO satellite data transmission 
In this stage, the data transmission rate of the task 
generated by IMDi from the TST to the over-the-top 
satellite can be expressed by Shannon’s formula as: 

 where STST is the signal power from TST to satel-
lite, BTST is the bandwidth of each sub-carrier on 
the Ka-band. NTST is the interference experienced 
by the over-the-top satellite on the sub-carrier 
.When tasks are offloading in the Ka-band, the 

(10)Ls = 32.45+ 20 log dc + 20 log f ,

(11)Pr � Prmin(dBW )

(12)rIMD−TST
i = B0 log2

(
1+

Si

N0

)
,

(13)rTST−Sat
i = BTST log2

(
1+

STST

NTST

)
,

antenna of TST usually has good directivity. There-
fore, TST can ensure low off-axis antenna gain and 
tolerate co-channel interference when it chooses an 
over-the-top satellite to offload tasks [52].

(3)	 Scheduling by ISL The ISL for LEO satellites utilizes 
ka-band point beam inter-satellite antennas with 
4 point beams per satellite. The link between two 
satellites is established by scanning and aligning the 
point beams. In this work, a mesh link is used for 
the space network of the LEO satellite constellation, 
and the mesh link allocation method is to establish 
four links for each satellite, with two satellites in the 
same orbit and one satellite in each of two adjacent 
different orbits, Each LEO satellite is an agent,the 
ISL shown in Fig. 4 below.

ISL uses point-beam inter-satellite antennas, with each 
point-beam antenna employing TDMA for data trans-
mission. We still use electromagnetic waves for commu-
nication modeling of ISL, and the transmission rate of the 
ISL link is given by the Shannon formula:

Task queue model
In the scenarios of the Sat-MEC, we considered two dis-
tinct task queues, including the task queue designated for 
IMDs and the initial task queue for Sat-MEC servers.

In this paper, tasks are generated by IMDs. Our approach 
involves a stochastic task arrival model, in which only a few 
tasks arrive at this moment and the number of arrivals fol-
lows a Poisson distribution [53]. However, considering the 
correlation of tasks generated by the same IMD, we assume 
that tasks generated by the same IMD can only be offloaded 
to the same Sat-MEC server. We, therefore, consider the 
same IMD-generated offloading task as a whole task when 
it is scheduled in Sat-MEC’s agent.

We let taski denote the tasks arriving at IMDi at the 
current moment, as we defined above, treat the tasks gen-
erated by the same IMD as a whole task for scheduling 
in Sat-MEC, and represent the whole task generated by 
IMDi as a 3-tuple set 

{
t, di, ci

}
 denotes the time slot when 

taski arrives [42]. di is the input data size of Taski [54], 
which is independently generated and satisfies a random 
distribution with the arriving rate �m , a practical constraint 
of the problem, especially for those delay-sensitive tasks. In 
addition, ci is the number of CPU cycles needed to process 
input data bits and assume it obeys a random distribution 
within a specific range [55, 56], which can better represent 
the heterogeneity of the taks. Note that the system con-
troller quickly obtains di and ci . In addition, we consider 

(14)rSat−Sat∗

i = BSat log2

(
1+

SSat

NSat

)
.
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the initial task computing queue of the Sat-MEC servers. 
When tasks are offloaded to LEO satellites at time t, some 
satellites may already have tasks in their task computation 
queue, and there is an initial task computing queue back-

log for LEO satellites [57]. We use a Poisson distribution 
with an immediate arrival rate of �Sat to simulate the initial 
queue backlog for each LEO satellite Sat-MEC server.

Notably, task transmission waiting time and Sat-MEC 
server waiting time occur during the transmission of 
tasks by ISL and during the processing of tasks on the 
Sat-MEC server, which we simulate in detail below.

As shown in Fig. 5 above, tasks are sent from an over-the-
top LEO satellite via ISL to a target LEO satellite for task 

processing. In the above Fig. 5 example, three tasks are off-
loading from the over-the-top LEO satellite MEC server to 
the Sat*-MEC server in order: Task1, Task2, and Task3. The 
following equation gives their required offloading time:

In the equation above, we compute an instance where 
three tasks are delegated to the Sat*-MEC server. Here, θ 
represents the offloading ratio, denoting the proportion 
of tasks offloaded. In this particular case, we presume the 
initial task computation queue of the Sat*-MEC server to 
be empty. The notation ()+ implies that if the value within 
the parentheses falls below 0, it should be considered 0.

In our proposed scenario, we introduce an algorithm for 
concurrently scheduling decisions for multiple tasks. The 

(15)

TTask1+Task2+Task3 =
θd1

RSat−Sat∗
i

+
θc1

fSat∗
+

θd1

RSat−Sat∗

i

+
θd2

RSat−Sat∗

i

+

(
θc1

fSat∗
−

θd2

RSat−Sat∗

i

)+

+
θc2

fSat∗
+

θd1

RSat−Sat∗

i

+
θd2

RSat−Sat∗

i

+
θd3

RSat−Sat∗

i

+

{((
θc1

fSat∗
−

θd2

RSat−Sat∗

i

)+

+
θc2

fSat∗
−

θd3

RSat−Sat∗

i

)+

+
θc3

fSat∗

}
.

Fig. 4  The construction of ISL between LEO satellites
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scheduling decision involves determining the sequence of 
tasks to be scheduled to the same server. As an example, 
Task 2 is scheduled to be the second task scheduled to the 
Sat*-MEC server. Before it can be transmitted, it needs to 
wait for Task 1. Upon Task 2’s arrival at the Sat*-MEC server 
and assuming an initial task computation server queue 
backlog of zero, the waiting duration for Task 2 at the Sat*-

MEC server is calculated to be 
(

θc1
fSat∗

−
θd2

RSat−Sat∗

i

)+

.

The objective of our work here is to show the reader 
that in the case of scheduling multiple tasks to the server 
at the same time, especially in the transmission mode of 
TDMA, the scheduling order of the multi-task sched-
uling server affects the average processing time of the 
tasks due to the heterogeneity of the tasks. Therefore, 
when we make decisions on task scheduling, we need to 
consider not only the characteristics of the current task 
and the characteristics of the servers, but also the char-
acteristics of other tasks arriving at the same time, and 
only by considering the characteristics of multiple serv-
ers and multiple tasks arriving at the same time can we 
theoretically realize the optimal scheduling solution.

Here we define the time expended, excluding task trans-
mission time and computation time, during the execution 

of taski as Twaste
i  , where Twaste

i =

(
θc1
fSat∗

−
θd2

RSat−Sat∗

i

)+

 . In 

our work, the total goal is to minimize the average task 
scheduling time, therefore, it is very important for our ulti-
mate objective to analyze the characteristics of multi-task-
ing and multi-Sat-MEC servers simultaneously.

Task computing model
Due to the heterogeneity of the ground environment, when 
the terminal IMDs are in a city or a region with sufficient 
power and computing capability, tasks should primarily rely 
on local execution; however, when the terminal device is in a 
desert, hilly, or natural disaster area, the harsh environment 
of the terminal region, which makes the tasks more pro-
cessed on the Sat-MEC server. The ratio of tasks offloaded 
to the LEO is set as the task offloading rate θ,θ is a priori 

hyper-parameter, which we aim to model the differences in 
task scheduling in different situations by varying its value in 
our work. When the IMD computation capability is lacking, 
the task prefers to offload to the Sat-MEC server. In some 
work [58], solar-wind hybrid energy system is utilized in 
non-urban areas to generate electricity to feed the IMD and 
TST to ensure that their power is available for transmitting 
data, Our work is still more in the search for an algorithm 
with high exploratory capability in a high-dimensional 
dynamic feature space, focusing on the problem of average 
latency of tasks and realizing an optimal scheduling algo-
rithm. Therefore, we assume in our work that IMD and TST 
will not fail to work due to lack of electrical energy. In this 
work, the processing tasks include two cases: non-offloaded 
local computation and offloaded Sat-MEC computation.

Local computing:
Fm denotes the maximum computational capacity of 
IMD and f m denotes the number of CPU cycles per sec-
ond for processing tasks on IMD, non-offloading sub-
tasks of taski executed on IMD with task CPU cycles 
needed (1− θ) · ci . For each task, the processing latency 
incurred on IMD, which is calculated in Eq. (16):

Sat‑MEC computing:
The offloaded tasks are received by the over-the-top sat-
ellite in the current region and further distributed by ISL 
to other adjacent LEO satellites (in the same or a differ-
ent orbit) for co-processing according to our proposed 
scheduling algorithm. f s denotes the number of CPU 
cycles per second for processing tasks on LEO satellite 
s, θ · di denotes the size of the mission data offloaded 
to the satellite, and θ · ci denotes the computing load 
of taski  , which is the necessary central processing unit 
CPU cycles for executing taski  . The processing time of a 
taski  on a LEO satellite is calculated by:

(16)Tloc
i =

(1− θ)ci

f m

Fig. 5  Tasks processing waiting model
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where Tup
i  and Tdown

i  denote transmission time for taski 
uplink and downlink. let Tqueue

i  denote the waiting and 
processing time for taski in the Sat-MEC task compu-
tation queue, Qs is the initial task queue backlog at the 
current time in the Sat-MEC server of satellite s, and 
fs donates CPU clock frequency of LEO satellite s. bupi  
and bdowni  denote data size of taski uplink and down-
link , where we assume bupi = di . RIMD−TST

i  , RTST−Sat
i  , 

RSat−Sat∗

i  denote the transmission rates from the IMDs to 
the TST, the TST to the overhead satellite, and the over-
the-top satellite to the target satellite respectively. Sat∗
donates target satellite,which means the satellite which 
the task transfers through ISL and finally reaches, the 
task will be offloaded and compute on Sat∗-MEC server.

Problem description
In the proposed Sat-MEC Scenario, our objective is to 
minimize the average tasks processing time of all IMDs 
generated. According to the Communication Model and 
the Task Computing Model, the optimization problem 
can be formulated as (P1), where Tloc

i  denotes the time 
when the taski is executed locally. Tsat

i  denotes the time 
when the task is offloaded from the local via TST to the 
over-the-top satellite and execute at Sat*-MEC at the cur-
rent moment. The scheduling decision is executed via 
the over-the-top satellite, and the task is processed in the 
Sat∗-MEC server. Therefore, for each taski generated by 
IMDi , we take the maximum value of local execution and 
task offload execution as the task processing time at the 

(17)Tsat
i = T

up
i + T

queue
i + Tdown

i ,

(18)T
up
i =

θ · ci

RIMD−TST
i

+
θ · ci

RTST−Sat
i

+
θ · ci

RSat−Sat∗

i

(19)Tdown
i =

bdowni

RIMD−TST
i

+
bdowni

RTST−Sat
i

+
bdowni

RSat−Sat∗

i

,

(20)T
queue
i =

Qs + θ · ci

f s
,

current moment of IMD. The steps of task offloading exe-
cution are divided into task offloading from IMD to over-
the-top LEO satellite, over-the-top LEO satellite executing 
scheduling according to our scheduling policy for select-
ing LEO satellite for scheduling purposes for task execu-
tion, and the waiting and execution time of the task in the 
Sat*-MEC server, as well as the time of the backhaul. 

Since the above optimization problem in (P1) is non-con-
vex and NP-hard, we use a DRL-based approach to achieve 
a feasible solution. In the next section, we model the for-
mulated optimization problem as a MDP problem [59], 
where the action selection aims to maximize the reward 
function. In the Sat-MEC scenario, the over-the-top satel-
lite acts as an agent to select an action to schedule tasks and 
then receive a reward at time slot t. The state space, action 
space, and reward function will described in next section.

Methods
State space
In this paper, as depicted in Fig. 6, the system controller 
is installed at the broker level and is responsible for the 
communication and coordination between the Sat-MEC 
servers. It receives task requests from the ground and 
analyzes other neighboring Sat-MEC servers’ resource 
availability and computational capacity. Integrating the 
DRL into the broker can enhance decision-making and 
optimize the task schedule.

We set the sensorial information of the over-the-top LEO 
satellite at moment t as the state Sn(t) ∈ S . The compo-
nents of Sn(t) including tasks state and Sat-MEC servers 
state, the task state indicated by the data size of the task 
and the number of CPU cycles required for the task com-
putation, which received from the TST, the Sat-MEC server 
states indicated by Sat-MEC server computation capacity 
and Sat-MEC server initial task computation queue back-
log, that information could receive from Control Channel 

(21a)
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+
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))
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(21c)s.t.θ ∈ (0, 1]

(21d)Sat∗ ∈ [Sat0, Sat1, · · · , Sats]
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and make scheduling decision at over-the-top LEO satellite 
as shown in Fig. 6. We have the task state matrix and the 
Sat-MEC server state matrix below for further discussion.

The i-th line of s(t)Task is s(t)Taski  , which is the character-
istic of the arrival taski , d(t)i is the size of the arrival task 
i, and c(t)i is the number of CPU cycles required to com-
pute the taski . The line of s(t)Sat is s(t)Sats  , let s donates 
the satellite number, where each of them has four feature 
values. Sat(t)qs  denotes the initial backlog of the task com-
putation queue at time t for Sat(t)s , Sat(t)cs denotes the 

(22)S(t) =
{
S(t)Task , S(t)Sat

}

(23)S(t)Task =




S(t)Task1

S(t)Task2
...

S(t)Taski
...

S(t)Taskn




=




d(t)1, c(t)1
d(t)2, c(t)2

...
d(t)i, c(t)i

...
d(t)n, c(t)n




n×2

(24)S(t)Sat =




Sat(t)
q
1
, Sat(t)c

1
, Sat(t)loc

1
, Sat(t)trans

1

Sat(t)
q
2
, Sat(t)c

2
, Sat(t)loc

2
, Sat(t)trans

2

Sat(t)
q
3
, Sat(t)c

3
, Sat(t)loc

3
, Sat(t)trans

3

Sat(t)
q
4
, Sat(t)c

4
, Sat(t)loc

4
, Sat(t)trans

4

Sat(t)
q
5
, Sat(t)c

5
, Sat(t)loc

5
, Sat(t)trans

5




5×4

computational capacity of Sat-MEC server n (number of 
CPU cycles/second), Sat(t)locs  denotes the euclidean dis-
tance of satellite n from the receiving satellite (over-the-top 
satellite), Sat(t)transs  denotes the channel capacity of the ISL 
transmission between satellite n and over-the-top satellite.

Action space
Based on the current moment t, the over-the-top LEO 
satellite as the agent senses the environment infor-
mation at the current moment t and processes the 
tasks from the ground based on the agent scheduling 
algorithm, choosing tasks to schedule to other sat-
ellites connected through the ISL or to processing 
them at the over-the-top satellite, as the transmission 
queue shown in Fig.  6. Formally, we define the vector 
an(t) = {xsi(t),∀s ∈ S, ∀i ∈ N} , which represents the 
action of task i  being scheduled to satellite s.

Computation task scheduling
In this section, we combine deep reinforcement learn-
ing and the self-attention mechanism to form practical 
and feasible algorithms to approach the optimal task 
scheduling algorithm using the the self-attention mech-
anism to represent the Q-network.

The task scheduling policy � can be defined as : 
� : X → Y . More precisely, the Agent identifies an action 
�
(
χ j
)
= �(a)

(
χ j
)
= an(t) ∈ Y according to � after 

Fig. 6  Tasks scheduling decision process on LEO satellites
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observing environment’s state χ j ∈ X  at the onset of the 
scheduling desicion epoch j, where � = (�(a)), with �(a) 
as the corresponding tasks scheduling methods.

Given the tasks scheduling desicion policy � , the {
χ j : j ∈ N+

}
 is a controlled Markov chain character-

ized by the next enviroment state transition probability:

Moreover, we establish the utility linked to each 
epoch. 

{
w
(
χ j ,�(χ j

)
) : j ∈ N+

}
over the series of envi-

ronment states
{
χ j : j ∈ N+

}
 , The Agent’s anticipated 

utility over the extended duration, given the initial 
environment state, χ1 could be formulated as follows.

Here, we denote the environment state as 
χ = S(t) ∈ X  , the discount factor as γ ∈ [0, 1) , and 
(γ )j−1 represents the discount factor of the (j − 1) th 
order. The function V (χ ,�) is also referred to as the 
state value function of the Agent, corresponding to 
environment state χ under strategy �.

The objective of the agent is to develop a task 
scheduling methods. �∗ = �(a)∗ , which Optimal the 
extended-term utility V (χ ,�) for any starting environ-
ment state χ , leading to the following formalization:

The function V (χ) represents the optimal value of the 
state χ under the policy �∗ . This function applies to all 
environment states χ belonging to the set X .

The optimal method to achieve the environment state 
value function can be derived by solving the Bellman 
equation [60] for:

(25)

Pr
{
χ j+1 | χ j ,�

(
χ j
)}

= Pr
{
d(t + 1)i | d(t)i ,�

(
χ j
)}

· Pr
{
c(t + 1)i | c(t)i ,�

(
χ j
)}

·
∏

n∈N

Pr
{
Sat(t + 1)qn | Sat(t)qn,�

(
χ j
)}

· Pr
{
Sat(t + 1)cn | Sat(t)cn,�

(
χ j
)}

· Pr
{
Sat(t + 1)transn | Sat(t)transn ,�

(
χ j
)}

· Pr
{
Sat(t + 1)locn | Sat(t)locn ,�

(
χ j
)}

(26)V (χ ,�) = E�


(1− γ ) ·

∞�

j=1

(γ )j−1 · w

�
χ j ,�

�
χ j
��

| χ1 = χ


,

(27)�∗ = arg max
�

V (χ ,�), ∀χ ∈ X .

(28)

V (χ) = max
a

{(1− γ ) · w(χ , a)+ γ ·
∑

χ ′

Pr
{
χ ′ | χ , a

}
· V

(
{χ ′

)
}

where w(χ , a) denotes the utility obtained when executing 
the action a from the current network state χ resulting in 
the next environment state χ ′ . Here, χ ′ = S(t + 1) ∈ X .

However, the conventional approach to solving the 
equation above is typically based on value iteration 
or policy iteration [61], which requires comprehen-

sive knowledge of statistics such as computational task 
arrivals, initial server queue backlogs, and channel state 
transitions. We can use a non-policy learning approach 
which means useing Q values instead of using V values. 
One advantage of non-policy Q-learning is its agnosti-
cism towards an existing knowledge of environment 
state transition statistics [61]. ∀χ ∈ X  , so, the state-value 
function V (χ) can be derived directly from

where

Replacing Eq. (29) in Eq. (28) gives the following:

In the above equation, we let a′ ∈ Y donate the task 
scheduling action under the environment state χ ′ . In a 
practical environment, the number of computed tasks 
arrival and the number of cpu cycles required for com-
putation per task is not available in advance. By employ-
ing the Q-learning technique, the agent endeavors to 
acquire knowledge about Q(χ , a) , iteratively, based on 
a review of the environment state χ = χ j at the current 
decision epoch j, the executed scheduling action a = aj , 
the utility achieved w(χ , a) , and the environment state 
χ ′ obtained at the subsequent epoch j + 1 . The updated 
rules are as follows:

(29)V (χ) = max
a

Q(χ , a),

(30)Q(χ , a) = (1− γ ) · w(χ , a)+ γ ·
∑

χ ′

Pr
{
χ ′ | χ , a

}
· V

(
χ ′
)
.

(31)

Q(χ , a) = (1− γ ) · w(χ , a)+ γ ·
∑

χ ′

Pr
{
χ ′ | χ , a

}
·max

(a′)
Q
(
χ ′,

(
a′
))
.

(32),Qj+1(χ , a) = Qj(χ , a)+ αj

(
(1− γ ) · w(χ , a)+ γ ·max

a′
Qj

(
χ ′, a′

)
− Qj(χ , a)

)
,
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where αj denotes the dynamically adjusting learning rate, 
it can be observed that Eq. (32) reveals the limited scal-
ability of the traditional Q-learning rule. Given the dis-
crete nature of the Q function representation, Q-learning 
encounters challenges when applied to high-dimensional 
scenarios characterized by significantly large network 
states or action spaces, as the traditional Q-table learn-
ing process becomes prohibitively slow. In the scenarios 
of our work, the composition of the environmental states 
has a very high dimensionality. As a result, the conver-
gence of the Q-learning process within a fixed number of 
scheduling decision periods becomes unattainable.

Therefore, we proposed the tasks scheduling method to 
optimize with a DRL-based framework.

As Fig. 7 illustrates, we use the self-attention mechanism 
as the Q-network, and the Q-network input is the total 
number of tokens of tasks and Sat-MEC servers. First, the 
tasks and servers form a set of tokens by embedding two 
different kinds of tokens. Then, the self-attention mecha-
nism operation between tokens is performed to output the 
matching score between tasks and servers, and the selec-
tion of task scheduling solution is performed.

For example, if 20 tasks reach the over-the-top satellite 
at time t, 20 tasks will be offloaded to 5 Sat-MEC serv-
ers. Firstly, tasks characteristics are mapped to the token 
by W1, servers characteristics are mapped to the token 
by W2, and the 25 tokens mapped into the task-server 
similarity score matrix are formed by the self-attention 

mechanism. At this time, the dimension of the similarity 
matrix should be 25*25*number of channels [62].

Further, the similarity matrix is embedded and down-
scaled to form a matrix of 25*25*1. In our 25*25*1 matrix, 
the ith task’s destination is the ith row, and the maximum 
value of the 21st-25th columns is the ith task’s destina-
tion. When multiple tasks are selected to offload to the 
same server, the maximum value of the number of rows 
of tasks corresponding to that server column in the com-
parison matrix is used as the priority offload, and the 
offload solution for 20 tasks is output at once.

In addition, inspired by the successful modeling of opti-
mal state action Q-functions using deep neural networks 
[63], we used a double DQN to solve the large-scale network 
state space X [13]. Specifically, the Q function expressed in 
Eq. (30) is approximated as Q(χ , a) ≈ Q((χ , a); �) , where 
(χ , a) ∈ X × Y and � denotes the vector of parameters asso-
ciated with the DQN.During this time, the DQN parameters 
� can be learned iteratively rather than finding the optimal Q 
function. In the Sat-MEC system we are considering, the SAT-
DRL for stochastic computational scheduling is shown in Fig. 7.

It is assumed that the Sat-MEC server employs a replay 
memory of a limited capacity M for storing past experiences 
m

j = (χ j , aj ,w(χ j , aj),χ j+1) During the learning process 
of SATDRL, the transition between two consecutive deci-
sion epochs j and j + 1 involves the occurrence of events 
that are crucial for the system’s experience accumulation. 
where (χ j , χ j+1) ∈ X  and aj ∈ Y . The collection of 

Fig. 7  Our proposed DRL framework in the Sat-MEC scenario
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experiences, denoted as Mj =
{
m

j−M+1, . . . ,mj
}
 , repre-

sents the experience pool. The Agent utilizes both a DQN 
and a target DQN to optimize its learning process, 
Q
(
χ , a; �j

)
 and Q

(
χ , a; �

j
target

)
 , with parameters �j at the 

tasks scheduling decision epoch j and �jtarget at a past epoch 
before decision epoch j, ∀(χ , a) ∈ X × Y . Based on the 
experience replay method proposed by [64], the Agent 
employs a strategy known as mini-batch sampling. During 
each decision epoch j, the Agent randomly selects a subset 
M̃j ⊆ Mj from the historical experience pool Mj to per-
form online training of the DQN. In other words, the 
parameters �j are adjusted to minimize the loss function, as 
specified by Eq. (33), with the condition that a′ ∈ Y.

The loss function L(SATDRL)(�j) represents the mean-squared 
error of the Bellman equation at the tasks scheduling 
decision epoch j. It replaces Qj(χ , a) and its correspond-
ing target (1− γ ) · w(χ , a)+ γ ·maxa′ Q

j(χ ′, a′) with 
Q(χ , a; �j) and (1− γ ) · w(χ , a)+ γ · Q(χ ′ , arg maxa′ Q(χ ′ , a′; �j); �

j
target)

 , 
respectively.

By computing the derivative of the loss function 
L(SATDRL)(�

j) in relation to the DQN parameters �j , we 
can derive the gradient following the expression pre-
sented in Eq. (34). Algorithm 1 provides a comprehensive 
overview of the implementation of the SATDRL algo-
rithm by the Agent for the purpose of task scheduling in 
our proposed Sat-MEC scenarios.

 

 

Algorithm 1 SATDRL algorithm for minimizing average tasks processing time in proposed Sat-MEC framework 

(33)L
(
�
j
)
= E

[(
(1− γ ) · w(χ , a)+ γ ·Q

(
χ ′, arg max

a′
Q
(
χ ′, a′; �j

)
; �

j
target

)
−Q

(
χ , a; �j

))2
]

(34)∇
j
�
L(�j) = E

[(
(1− γ ) · w(χ , a)+ γ · Q(χ ′, arg max

a′
Q(χ ′, a′; �j); �

j
target

)
− Q(χ , a; �j)) · ∇�jQ(χ , (c, e); �j)

]
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Experiment results
Experimental settings
In this section, we will evaluate the performance of our 
proposed algorithm, i.e., SATDRL, in the context of task 
scheduling. We will also verify the superiority of our 
proposed algorithm through various experiments. These 
include a convergence analysis, a comparative analysis 
with the utility function values of other algorithms, and a 
discussion on the offloading ratio θ.

We modeled the LEO satellites and the ground IMDs 
environment using Python and modeled the satellite in 
STK software. We did this to derive the time-series 3D 
coordinates of the satellites and to use them as a vehicle 
for the simulation environment, but not to implement the 
satellite’s functionality, such as orbital dynamics signal 
fading. In the process of simulation, considering that our 
approach does not add or change the packet or header 
information at the network, there is practically no actual 
medium and protocol stack involved, including the delays 
brought by the broker approach, such as the time to exe-
cute scheduling decisions, the time for protocol conver-
sion, and the time for data transcoding and classification. 
Therefore, we chose to perform the simulation at the 
application level without going deeper into the TCP/IP 
layers or modifying the underlying network parameters. 
The results of generating packet requests using any net-
work do not differ significantly from the reported results, 
so we can focus on the scheduling algorithms themselves 
and the performance and effectiveness of the scheduling 
algorithms at the application level. In the experimental 
phase of the simulation, we use the self-attention mecha-
nism to act as a Q-network for extracting the tasks and 
Sat-MEC servers characters in the high-dimensional 
space for training the SATDRL better.

Within the Sat-MEC scenario, where terrestrial IMDs 
generate tasks that can be processed by both local and 
Sat-MEC servers co-processing, we default to satellites 
in the same or in different orbits that could connect to 
the over-the-top satellite via ISL, with other settings as 
shown in the System Model and described in the Table 3: 
Simulation Parameters. Simultaneously, we consider var-
iations in the offloading rate, denoted as θ , and the num-
ber of IMDs.

To validate the effectiveness and feasibility of our pro-
posed method, we utilized STK software to generate a 
comprehensive dataset [65], simulating 636 LEO satel-
lites registered under One-Web LEO satellites. This data-
set spans over a period of 10 hours, presenting geocentric 
inertial coordinates within a 3D framework, sampled at a 
frequency of 0.05Hz. The bandwidth for satellite-ground 
and inter-satellite communications are 20 and 100 MHz, 
respectively. ISL links utilize point-beam inter-satellite 
antennas, with each satellite equipped with four point 

beams to establish inter-satellite links. ISL communi-
cation is carried out through a time division multiple 
access system [66]. For satellite to satellite communica-
tion, using a free-space path loss model (citing the pre-
vious free-space loss equation) that models small-scale 
fading on Ka-band as Rician fading, we assume that the 
expected overall atmospheric fading due to rainfall, gas 
fading, cloud fading, and scintillation is 5.2 dB when TST 
communicates with an over-the-top satellite [67]. The 
polarization loss and antenna misalignment loss are 0.1 
and 0.35 dB, respectively [68] (Fig. 8).

The attributes of our tasks and Sat-MEC servers cap-
ture multi-dimensional heterogeneity, which includes 
diversity in data size of the tasks, variability in the num-
ber of CPU cycles required for the task computation, 
differences in the computational capability of Sat-MEC 
servers, heterogeneity in the initial backlog of tasks in 
the Sat-MEC server queue, and irregularity in Sat-MEC 
temporal information. To address task scheduling deci-
sions in heterogeneous environments, we propose a 
DRL-based scheduling decision algorithm to minimize 
the average tasks execution time. To demonstrate the 
algorithm’s adaptability to diverse data, we set attribute 
values within certain boundaries for task and server fea-
ture configurations, as illustrated in the associated table.

For performance comparisons, we simulate three base-
line strategies:

Table 3  Simulation parameters

Parameters Default Values

Ka-band carrier frequency 30GHz

Number of IMDs [10,20,30,40,50,60,70]

Number of Sat-MEC server 5

di [0.2-1]MB

ci [1-4] Gcycles

f m 0.3 Gcycles/s

f s [10-15] Gcycles/s

N0 -174dBm

B0 500MHz

BTST 800MHz

BSat 100MHz

Re 6371Km

�m 5

�Sat 8

θ [0-1]

Replay memory capacities M,N 6000

Mini-batch sizes M 200

Genetic Algorithm’s Population Size 200

Genetic Algorithm’s Number of Generations 2000

Genetic Algorithm’s Crossover Probability 0.5

Genetic Algorithm’s Mutation Probability 0.1
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(1) Random Algorithm: When the overhead satellite 
receives N tasks at moment t, these tasks are randomly 
allocated to S satellites.

(2) Greedy Algorithm: For each task received by the 
overhead satellite at moment t, a greedy approach is 
employed. Each task is offloaded for computation to the 
Sat-MEC server that minimizes its execution time.

(3) GA : Before assigning tasks, a genetic algorithm is 
run to ascertain the optimal solution for task-to-service 
offloading within a certain number of iterations. Key 
parameters illustrate as Table 3.

Experiment analysis
In this subsection, we undertake a comprehensive explo-
ration of our proposed algorithm through experiments 
conducted under diverse settings, aiming to corrobo-
rate its effectiveness. We commence this section with 
an examination of the convergence performance of the 

algorithms, providing an insight into their stability and 
reliability. Subsequently, we delve into a comparative 
study where the merits of DRL are juxtaposed against 
three baseline algorithms. This comparison seeks to 
underscore the disparities in the performance of each 
algorithm concerning task scheduling. A meticulous dis-
cussion and analysis will follow, shedding light on the 
intricacies and nuances of each algorithm’s operation and 
outcomes.

Convergence performance
This experiment aims to verify the convergence of our 
proposed algorithm, SATDRL, for task scheduling in the 
Sat-MEC scenarios. Our proposed algorithm’s conver-
gence performance is demonstrated in Figs. 9 and 10 when 
the offloading ratio θ is 0.5 and the number of IMDs is 50. 
which also illustrates the change in the reward and loss 
functions as the training epochs increase in our proposed 

Fig. 8  Modeling of 636 LEO satellites under OneWeb satellite with STK
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Fig. 9  The reward of the proposed algorithm (SATDRL)

Fig. 10  The loss of the proposed scheduling algorithm (SATDRL)
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algorithm. We also used an envelope to illustrate the mag-
nitude of oscillation during the algorithm’s convergence. It 
was discovered that the algorithm’s oscillation amplitude is 
quite significant. This is due to the heterogeneity of tasks 
and servers in our environment: the heterogeneity of task 
data sizes, the number of CPU cycles required for comput-
ing tasks, the computing capability of Sat-MEC servers, and 
the initial task computation queues in the Sat-MEC server. 
The high-dimensional and unstable state space in our envi-
ronment leading to algorithm convergence and oscillations 
post-convergence difficulties. In addition to the complex-
ity of the characteristics of the data itself that makes it dif-
ficult for the model to converge, we have two more obvious 
loss decreases occurring for what the convergence image 
shows,which we explain to the readers below:

1. The initial convergence means that the model found 
a relatively good strategy at this stage, similar to the 
greedy approach, which only considers the matching 
relationship between tasks and servers and does not learn 
the effect of the task scheduling sequence on the sched-
uling result. But then, when exploring the state space 
more deeply, the model enters a re-exploration, gradually 
avoiding the idea of local optimality of the greedy algo-
rithm, leading to a rise in loss.

2. The self-attention mechanism as the Q-network of 
DDQN in DRL. In the beginning, when the weights of 
self-attention are randomized, the model may perform 

relatively well in the early stage because it only relies on 
the local characteristics of the loss function for optimiza-
tion and inevitably falls into the local optimum. However, 
as training progresses, there may be a period of oscilla-
tion as the model begins to adjust these weights to cap-
ture more complex scheduling patterns. Following this, it 
takes enough training for the weights to gradually stabi-
lize, leading to a quadratic decrease in loss.

3. The DDQN approach for training, and although 
DDQN is more stable than traditional DQN, it may still 
oscillate in high-dimensional dynamic space environments. 
When the model converges initially, it is based on the exist-
ing knowledge the target network provides. However, as 
the target network is updated, the policy may be revised 
with the new knowledge, resulting in a transient rise in loss.

The above reasons are unavoidable, and no algorithm 
can search for the global optimum in a high-dimensional 
dynamic environment and have good convergence per-
formance. Our goal in combining the self-attention 
mechanism and DRL approach is to expand the model’s 
generalization ability, try to avoid overfitting the model, 
and learn a deeper scheduling strategy.

SATDRL algorithm performance
Figure 11 shows the impact of varying numbers of IMDs 
on various algorithms when the offloading ratio θ is 0.5. 

Fig. 11  The effection of the change in the number of IMDs on the average tasks processing time
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We can observe that when the number of IMDs is rela-
tively small (10, 20), there is not a significant difference 
between the greedy algorithm, the GA, and the algorithm 
we proposed. This situation is largely because the GA 
based on pseudo-random range searching, is highly likely 
to find reasonably good sub-optimal solutions when the 
solution space isn’t particularly large. As for the greedy 
algorithm, under circumstances with fewer tasks, the 
offloading algorithm generated through the greedy strat-
egy can sometimes provide a satisfactory sub-optimal 
solution.

As the number of IMDs increases and the solution 
space grows rapidly, the DRL-based task scheduling 
algorithm, which can still find high-quality solutions in 
a high-dimensional space, outperforms the other three 
methods at all times, and as the problem characteristic 
dimension grows, DRL demonstrates its advantage even 
more. In addition, we can observe an interesting state 
from Fig.  11, the solution quality of the greedy algo-
rithm starts to outperform the genetic algorithm when 
the number of IMDs is greater than 60. According to our 
analysis, we believe that this situation is rooted in the fact 
that the two algorithms are different in their nature. The 
swarm intelligence algorithms, like GA, need to set more 
hyper-parameters in high-dimensional spaces to increase 
their explore-ability, especially in dynamically chang-
ing environments, while the greedy algorithm has been 
based on the idea of greedy strategy, although in higher 
dimensional spaces, its greedy strategy can also guaran-
tee a lower bound on the solution.

Next, we illustrate the distribution of solutions for dif-
ferent numbers of IMDs.

As depicted in Fig. 12, the boxplot represents the dis-
tribution of average task processing time following 
scheduling under various algorithmic strategies, with 
an offloading rate of 0.5 and a variable number of IMDs. 
The boxplot shows the maximum, upper quarter, median, 
lower quarter, and minimum values from top to bottom.

Additionally, the small hollow square within the box-
plot represents the mean value of the data. It is not hard 
to find out that when the number of IMD is 10, 20, and 
30, there is almost no difference between the perfor-
mance of our algorithm and the greedy algorithm, GA, 
compared to the pride, and those three scheduling algo-
rithms are able to provide good scheduling solutions. 
However, as the number of IMDs increase, the GA and 
the greedy algorithm have difficulty in searching for 
the optimal solution in the high-dimensional solution 
space. At this time, our SATDRL scheduling algorithm 
still provides a high-quality scheduling solution. In addi-
tion, the box-and-line diagram can show the quality of 
the scheduling scheme and the degree of discretization 
of the solution. In Fig. 12, it is obviously that the quality 

of our proposed SATDRL scheduling scheme is the best 
compared to the other three schemes, and the degree of 
discretization of the solution is about the same as that of 
the greedy algorithm, which indicates that our proposed 
scheduling algorithm can output high-quality scheduling 
solution with greater accuracy.

Also, we found that the greedy algorithm outperforms 
the genetic algorithm when the number of IMDs exceeds 
60. In the face of high-dimensional dynamic solution 
space, the GA must adjust or add its hyper-parameter 
to adapt. The greedy algorithm, by pursuing local opti-
mization, ensures to some extent the quality of the over-
all solution. The DRL scheduling algorithm relies on a 
large amount of training data, extensive computational 
resources, and model training time to have strong explor-
atory capability in the high-dimensional dynamic space 
to find a high-quality solution.

Under we proposed the Sat-MEC scenario, the effec-
tiveness of terrestrial IMDs often depends on geographi-
cal factors. The specific geographical context in which 
these devices are located leads to different performance 
levels and constraints. We use the offload rate to meas-
ure IMD’s computational power and electricity. In certain 
instances where the over-the-top satellite communicates 
with TST, in situations such as the interruption of ground 
communication, power failures, or the emergence of 
urgent circumstances, terrestrial IMDs are relegated to 
processing minimal tasks or not processing any tasks at 
all. Figure 13 delineates our experimentation with diverse 
θ values. When θ equals 0, all tasks are executed locally, 
while with θ equal to 1, all tasks are subjected to offload-
ing for execution. Figure  13 illustrates the average pro-
cessing time of the task as a function of the unloading 
rate when the number of IMDs is 10, 20, 30, 40, 50, 60 
and 70. As well as demonstrates the performance com-
parison of our proposed SATDRL with GA, Greedy Algo-
rithm, and Randomized Algorithm.

Figure 13 illustrates that the change of the result with 
different offloading ratio from 0.3-0.7 when we keep the 
number of IMDs at average. More specifically, we show 
the differences in results produced by changes in offload-
ing rates for different numbers of IMDs in Fig. 14.

As Fig.  14 illustrates, in the scenarios characterized 
by varying IMD quantities, the increase in the offload-
ing ratio significantly reduces the average task process-
ing duration. However, as the offloading ratio continues 
its ascent, the task processing duration in the satellite 
begins to surpass that of the terrestrial counterparts. It 
can be observed that the average processing time for fully 
offloaded tasks is shorter than that for tasks executed 
entirely locally. Nevertheless, with the increasing number 
of IMDs, the average computational time within the sat-
ellite also increases.
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Fig. 12  The effection of different number of IMDs on average tasks processing time
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By observing Fig. 14, we can easily find that when the 
number of IMDs increases to a certain number (50, 60, 
70), the feature space of tasks and servers also increases, 
which makes it difficult for the GA to effectively search 
for the optimal scheduling scheme within the high-
dimensional feature space. In contrast, the greedy algo-
rithm, relying on its local optimal strategy, can guarantee 
the lower bound of the scheduling scheme and exceeds 
the GA when the number of IMDs is 60 and 70. In the 
face of the high-dimensional dynamic solution space, the 
GA may need to artificially set more hyper-parameters to 
increase the searching capability of its algorithm in the 
solution space. it’s worth noting that, in our work, it is 
not inferred that swarm intelligence algorithms, such as 
GA and PSO, cannot solve the problem in high dimen-
sional space. Because in our baseline algorithms, we are 
not adding specific parameters to GA for the scenario 
of this problem. We believe that algorithms, such as GA 
and PSO, can theoretically achieve the same performance 
as DRL by analyzing the characteristics of a particular 
scene, adding specific hyper-parameters, and training on 
the hyper-parameters.

Our proposed SATDRL algorithm demonstrates 
remarkable exploration performance in high dimen-
sional dynamic environments, especially as the offloading 
rate varies. Our simulations and experiments, which are 

primarily conducted at the application level, found that 
the SATDRL maintains robust adaptability and superi-
ority compared to the other three scheduling decisions 
within the Sat-MEC environment. It’s noteworthy that 
our scheduling algorithms do not account for the actual 
medium and protocol stack, and we have not made alter-
ations or modifications to the TCP/IP layers to ascertain 
the impact of our approach. Furthermore, our simula-
tor does not employ precise network parameters, which 
means that the outcomes of our experiments are inde-
pendent of the nuances introduced by generating packet 
requests in any specific network environment. Hence, 
while our primary objective is to identify a competent 
scheduling approach at the application layer, there is an 
implicit indication that the DRL strategy might exhibit 
commendable stability across the broader network 
context.

When using the DRL approach to solve the task off-
loading or scheduling problem in industrial environ-
ments, first, we model the environment encapsulating 
these devices and their interconnected landscape. In this 
context, states might encompass aspects like the device’s 
battery level, the quality of network connectivity, and the 
queue of pending tasks. Informed by these states, the 
DRL agent then determines the optimal execution strat-
egy for tasks: either processing them locally on the device 

Fig. 13  The effection of different offloading rates (0.3-0.7) in keeping the number of IMDs at average on the average tasks processing time
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Fig. 14  The effection of offloading ratio θ on each algorithm for different number of IMDs
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or offloading them to adjacent IoT devices or central-
ized servers. This decision-making is driven by a reward 
mechanism meticulously designed around metrics like 
task completion speed, energy consumption, and task 
accuracy. Reward can be designed based on the speed 
of task completion, energy consumption, and task accu-
racy. For example, fast task completion and low energy 
consumption may be rewarded positively, while incorrect 
task processing or delays may be rewarded negatively. 
By adopting DRL algorithms such as DQN or PPO, we 
then train and evaluate these models using either real-
world or simulated datasets. These trained models can 
be deployed upon rigorous validation onto IoT devices, 
guiding them in real-time task offloading or schedul-
ing decisions. Given IoT devices inherent resource con-
straints, optimizing the model computational footprint 
is imperative, potentially through techniques like model 
compression or employing domain-specific neural archi-
tectures. By adhering to this paradigm, we could ensure 
the judicious use of resources and pave the way for a 
more resilient and adaptive industrial IoT ecosystem.

Conclusion
In our work, we consider the scenarios of Sat-MEC sys-
tem, where MEC servers are equipped on LEO satellites. 
The tasks generated by IMDs can be executed locally or 
offloaded to the Sat-MEC servers. In order to reduce the 
average task processing time, we emphasize the design 
of a task scheduling algorithm. This algorithm considers 
heterogeneity in the data size and the number of CPU 
cycles required for task computation generated by IMDs, 
the Sat-MEC server computational capability, and the 
task queue state of Sat-MEC servers. The task computa-
tion scheduling problem is formalized as a MDP. Further, 
we propose an online computational scheduling algo-
rithm based on double DQN, wherein a self-attention 
mechanism is the Q-network, named SATDRL.

Our scheduling algorithm aims to approximate the 
optimal scheduling decision. After our simulations at 
the application level, compared to the three benchmark 
algorithms, our proposed algorithm can rely on a large 
amount of training data and extensive computational 
resources in an environment of constant interaction and 
trial and error, depending on the network depth and 
numerous parameters, so that it can learn a better sched-
uling strategy in a complex and dynamic environment 
than other three methods, our simulation experiments 
demonstrate that SATDRL reduces the average task pro-
cessing time by 22.1% , 30.6% , and 41.3% , compared to the 
GA, the greedy algorithm, and the random algorithm, 
respectively.

DRL stands out due to its exceptional adaptability 
to dynamic environments and its capacity for abstract 

generalization in the context of task offloading within 
IoT fog computing networks. However, computational 
intensity and reliance on substantial-high-quality train-
ing data may restrict its applicability in real-time or 
resource-limited scenarios. In contrast, Swarm intelli-
gence algorithms offer computational efficiency and ease 
of implementation, typically providing rapid solutions. 
However, they may encounter challenges related to local 
optima and may not to adapt to rapidly changing envi-
ronments as fluidly as DRL. DRL is more suitable for 
complex and dynamic task offloading or scheduling prob-
lem, where large amounts of training data and computa-
tional resources are available. On the other hand, Swarm 
intelligence algorithms may be a more efficient choice for 
more straightforward problems or resource-constrained 
environments. The decision to choose between DRL and 
Swarm intelligence algorithms is based on considerations 
of computational resources, response time requirements, 
and environmental dynamism.

When using the DRL approach to solve the task off-
loading or scheduling problem in industrial environ-
ments, first, we model the environment encapsulating 
these devices and their interconnected landscape. In this 
context, states might encompass aspects like the device’s 
battery level, the quality of network connectivity, and the 
queue of pending tasks. Informed by these states, the 
DRL agent then determines the optimal execution strat-
egy for tasks: either processing them locally on the device 
or offloading them to adjacent IoT devices or central-
ized servers. This decision-making is driven by a reward 
mechanism meticulously designed around metrics like 
task completion speed, energy consumption, and task 
accuracy. Rewards can be designed based on the speed 
of task completion, energy consumption, and task accu-
racy. For example, fast task completion and low energy 
consumption may be rewarded positively, while incorrect 
task processing or delays may be rewarded negatively. 
By adopting DRL algorithms such as DQN or PPO, we 
then train and evaluate these models using either real-
world or simulated datasets. These trained models can 
be deployed upon rigorous validation onto IoT devices, 
guiding them in real-time task offloading or schedul-
ing decisions. Given IoT devices inherent resource con-
straints, optimizing the model computational footprint 
is imperative, potentially through techniques like model 
compression or employing domain-specific neural archi-
tectures. By adhering to this paradigm, we could ensure 
the judicious use of resources and pave the way for a 
more resilient and adaptive industrial IoT ecosystem.

Although DRL has good exploration ability in high 
dimensional dynamic environments and has found 
quality solutions to achieve the method of minimizing 
the task execution time, there are still many issues that 
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we need to continue to discuss and study in our future 
research.

1. For the study of the energy consumption of LEO sat-
ellites, with the development of the LEO satellite constel-
lation, the energy of LEO satellites is mainly obtained by 
solar energy, so data processing on the Sat-MEC servers’ 
resource pool must consider both the residual energy of 
LEO satellites and computational resources.

2. Regarding the examination of task queues, a por-
tion of existing research takes into account task priority 
and life-critical tasks, while another portion overlooks 
the consideration of task priority. However, integrating 
task priority is an imperative trajectory for forthcoming 
research endeavors, as it can exemplify the actual envi-
ronment with notable fidelity. In our subsequent work, 
we intend to incorporate considerations of task prior-
ity to render our scenarios more reflective of real-world 
conditions, thereby enhancing the realism and applica-
bility of our research outcomes.

3. In light of the discussed research, our other objective 
is to investigate optimal solutions in cloud computing 
capability in scheduling, especially considering the con-
straints experienced at the IMD and LEO satellite levels. 
When faced with such conditions, Our future work will 
explore avenues where tasks can be strategically relayed 
to ground-based cloud stations with robust computing 
capabilities, utilizing LEO satellite constellations. We 
will sharpen efficient routing algorithms for LEO satellite 
constellations, which will involve meticulously exploring 
the delicate balance between resource utilization, com-
putational efficiency, and data transfer latency. We aim 
to construct adaptable and resilient models capable of 
efficiently operating within environments with limited 
computational resources. By refining the interaction 
between terrestrial stations and satellite constellations, 
endeavor to optimize both task executions and the over-
all performance of the system.

4.In our simulation experiments, we have considered 
more strategies for fine-grained task scheduling and 
verified them at the application level, however, consid-
ering the maturity of LEO satellite technology and the 
further development of cloud computing technology in 
the future, we will propose more comprehensive mod-
eling environments to adapt to the changes in the types 
of tasks, as well as the realism and comprehensiveness 
of the communication links in our subsequent work.
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