
Pang et al. Journal of Cloud Computing (2023) 12:159
https://doi.org/10.1186/s13677-023-00538-z

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Minimize average tasks processing time
in satellite mobile edge computing systems
via a deep reinforcement learning method
Shanchen Pang1*, Jianyang Zheng1, Min Wang2, Sibo Qiao1, Xiao He1 and Changnan Gao1 

Abstract 

Recently, the development of Low Earth Orbit (LEO) satellites and the advancement of the Mobile Edge Computing
(MEC) paradigm have driven the emergence of the Satellite Mobile Edge Computing (Sat-MEC). Sat-MEC has been
developed to support communication and task computation for Internet of Things (IoT) Mobile Devices (IMDs)
in the absence of terrestrial networks. However, due to the heterogeneity of tasks and Sat-MEC servers, it is still
a great challenge to efficiently schedule tasks in Sat-MEC servers. Here, we propose a scheduling algorithm based
on the Deep Reinforcement Learning (DRL) method in the Sat-MEC architecture to minimize the average task process-
ing time. We consider multiple factors, including the cooperation between LEO satellites, the concurrency and hetero-
geneity of tasks, the dynamics of LEO satellites, the heterogeneity of the computational capacity of Sat-MEC servers,
and the heterogeneity of the initial queue for task computation. Further, we use the self-attention mechanism to act
as a Q-network to extract high-dimensional dynamic information of tasks and Sat-MEC servers. In this work, we model
the Sat-MEC environment simulation at the application level and propose a DRL-based task scheduling algorithm.
The simulation results confirm the effectiveness of our proposed scheduling algorithm, which reduces the average
task processing time by 22.1% , 30.6% , and 41.3% , compared to the genetic algorithm(GA), the greedy algorithm,
and the random algorithm, respectively.

Keywords  Satellite Mobile Edge Computing (Sat-MEC), Deep Reinforcement Learning (DRL), Task scheduling,
Minimize task processing time

Introduction
Cloud Computing has become one of the key drivers
of modern business and technology development [1].
Cloud computing can provide organizations and indi-
viduals with efficient, cost-effective, flexible, scalable,
and secure computing resources and services, including
services such as storage, databases, servers, and software.

However, cloud computing faces challenges such as
latency, security, bandwidth, and availability in some spe-
cific application scenarios. To overcome these challenges,
Fog Computing and Edge Computing are emerging [2].
Fog computing extends the concept of cloud comput-
ing. It is closer to the place where the data is generated
than cloud computing. The data, data-related processing
and applications are centralized in devices at the edge of
the network, instead of being stored almost entirely in
the cloud. Edge computing further promotes Fog Com-
puting’s concept of “local network processing power” by
enabling sensitive data to be processed on local devices
or edge nodes, reducing reliance on remote data transfers
and thus increasing privacy and security [3]. In addition,
the edge computing paradigm sinks computing capability

*Correspondence:
Shanchen Pang
pangsc@upc.edu.cn
1 College of Computer Science and Technology, China University
of Petroleum (East China), Qingdao 266580, China
2 College of Information Engineering, Yangzhou University,
Yangzhou 225127, Jiangsu, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00538-z&domain=pdf

Page 2 of 29Pang et al. Journal of Cloud Computing (2023) 12:159

to the edge, where data from IMDs can be processed
faster through edge computing, thus increasing availabil-
ity in remote or unstable network environments [4].

By combining edge computing with LEO satellite to
form the Sat-MEC architecture, we can not only over-
come the limitations of cloud computing but also provide
a feasible and efficient solution for the realization of 6G
[5]. This integrated approach promises to provide fast,
reliable services on a global scale to meet future com-
munications need. We begin by introducing the readers
to the difference between task offloading and task sched-
uling: task scheduling is deciding which tasks should be
executed by which edge/fog devices in a edge/fog net-
work. It involves determining the most suitable edge/
fog device for each task based on device capabilities,
compute capacity, network conditions, and task require-
ments. Task offloading, on the other hand, refers to trans-
ferring computational tasks from IoT devices to more
powerful edge/fog devices in the network [6, 7].

In the Sat-MEC architecture, the terrestrial tasks can
offload from IMDs to the Sat-MEC servers in the absence
of terrestrial network services or in specific areas. In our
Sat-MEC scenario, when tasks are offloaded from the
ground to the over-the-top satellite, it is difficult for the
limited computational resources to compute multiple ter-
restrial tasks at a single satellite. However, with the devel-
opment of LEO satellite constellations in recent years,
LEO satellites can communicate directly with each other
by Inner Satellite Link(ISL). The computational resources
of the satellites can be shared by ISL. Task scheduling can
be performed in the Sat-MEC servers resource pool to
balance the computational load and futher to minimize
latency, reduce network congestion, and ensure efficient
use of resources [8].

Our objective in this work is to reduce the average
processing time of tasks from ground-based IMDs by
pursuing a reasonable task scheduling strategy. In our
Sat-MEC scenario, we consider multiple ground IMDs
simultaneously, and multiple tasks generated at the exact
moment can be processed locally by the ground IMDs
and collaboratively by the resource pool of the Sat-MEC
servers. In our research, we found that for the simulta-
neous scheduling of multiple tasks in complex dynamic
environments, the sequential order of the task schedul-
ing also affects the average processing time of the tasks,
Therefore, the simultaneous scheduling problem of
simultaneous scheduling of multiple tasks, not only the
problem of matching tasks with Sat-MEC servers but also
the problem of task scheduling sequence should be con-
sidered. To solve this NP-hard problem, we are searching
for a method to schedule tasks that can find an optimal
solution in the high-dimensional feature space of the
problem.

Swarm intelligence algorithms, such as GA and Particle
Swarm Optimization(PSO), are efficient in finding global
or near-global optimal solutions in the domain of high-
dimensional and nonlinear problems [9]. However, in
our scenario, the diversity of tasks on the ground and the
heterogeneity of resources on Sat-MEC servers lead to
complexity in the solution space. GA and PSO are chal-
lenging in complex and dynamic offloading or scheduling
problems. Therefore we need find an algorithm that has
the strong ability to explore the huge problem space and
obtain a near-global optimal solution.

The stochastic process model provides a practical
perspective when considering different approaches for
scheduling algorithms. In particular, Markov properties
provide an essential framework for understanding deci-
sion-making in task scheduling. Markov property means
that the probability distribution of a stochastic process
for a future state depends only on the current state, given
the present state and all past states [10]. A Markov chain
is a collection of discrete random variables with the
Markov property, and a Markov Decision Process(MDP)
introduces the concepts of decision, action, reward,
and debriefing based on the Markov chain. As we have
already discussed, Markov attributes and MDP provide
a robust framework for describing decision-making in
uncertain environments. Intelligence must continually
learn how to make the best decisions in such environ-
ments by interacting with the environment. Reinforce-
ment learning is specifically designed to address this
aspect. Traditional reinforcement learning techniques
have difficulty when dealing with complex environments
and large state spaces. This is where DRL comes in, com-
bining the capabilities of deep learning with the princi-
ples of reinforcement learning to handle more complex
scenarios [11].

Through continuous experimentation and exploration,
the agent learns to find the optimal strategy that maxi-
mizes cumulative rewards. In the task scheduling process
in our Sat-MEC scenarios, the over-the-top LEO satel-
lite receives tasks and the characteristics of tasks, col-
lects the characteristics information of Sat-MEC servers
from neighboring satellites by ISL, and makes the task
scheduling process accordingly, which consistents with
the Markov chain and reinforcement learning model.
Therefore, we use DRL, a combination of deep and rein-
forcement learning as the model for our scheduling algo-
rithm. Furthermore, we use the self-attention mechanism
as a Q-network for extracting complex dynamic features.
Ultimately, the exploration strategy under high-dimen-
sional space is obtained through continuous interaction
with the environment, and ultimately, task scheduling in
dynamic and complex environments is realized [12]. The
main contributions in this paper are fourfold.

Page 3 of 29Pang et al. Journal of Cloud Computing (2023) 12:159 	

•	 We formalize the task offloading issue in the Sat-
MEC scenario as a MDP, using the Satellite Tool Kit
(STK) to model the spatial information of the LEO
satellite. Additionally, we used Python to model the
simulation of the Sat-MEC environment, where we
consider task heterogeneity and server computa-
tional resource heterogeneity.

•	 To address the challenge of finding solutions in a
high-dimensional state space, we resort to function
approximators based on deep neural networks and
integrate the self-attention mechanism into the Q-net-
work. We proposed a DRL-based on the Double Deep
Q-Network (DDQN) [13], i.e., SATDRL. This algo-
rithm thoroughly considers the global information of
tasks and servers and enables simultaneous offloading
decisions for multiple tasks arriving at the same time.
Thus, it facilitates learning the optimal computation
offloading strategy within the Sat-MEC scenario.

•	 We have performed numerical experiments based on
PyTorch 1.9 [14] to verify the theoretical research of
this paper. The results show that our proposed off-
loading algorithm outperforms the three basic meth-
ods, which could reduce the average task processing
time by 22.1% , 30.6% , and 41.3% , compared to the
GA, the greedy algorithm, and the random algorithm,
respectively. Whcih the SATDRL algorithm achieves
the best computational scheduling performance and
is capable of making good scheduling decision action
in a high-dimensional space under different environ-
mental constraints..

Related works
In recent years, the Sat-MEC scenarios has received a lot
of attention with the rapid development of LEO satel-
lite related technologies and artificial intelligence. Some
works considered different approaches such as numeri-
cal computation, game theory, genetic algorithms, and
deep learning to achieve their different goals, including
channel transmission stability, minimizing task execution
energy consumption, minimizing task processing time,
and improving computational resource utilization. In
this section, we will introduce the relevant literature and
methods below.

Wang et al. [15] modeled a game-theoretic-based com-
putational offload system in a satellite edge computing
scenario. Intermittent ground satellite communication
due to satellite orbit is considered in their system model.
And proposed an iterative algorithm to search for the
Nash equilibrium of the game to reduce the average cost
of the device. Li et al. [16] introduce a concept termed
’LEO-MEC’, which involves the installation of edge servers
on LEO satellites, they addressed two main issues in their
research, the issue of service request scheduling decisions,

which directly affects the system’s resource utilization,
and the problem of service placement, which has an inti-
mate correlation with the scheduling decisions. They have
attained superior outcomes by utilizing the OPTI tool-
box to tackle these issues compared to other benchmark
algorithms. Wang et al. [17]developed a computational
latency model for transmission delay and computational
delay for a scenario where a task set consisting of multi-
ple independent tasks with high quality of service Qual-
ity of Service (QoS) requirements is offloaded to a satellite
edge computing cluster. The satellite edge computing sce-
nario is proposed using a GA-based offloading algorithm
for QoS enhancement. Tang et al. [18] proposed a hybrid
cloud and edge computing low-orbiting satellite (CECLS)
network with a three-tier computing architecture and
investigated computational offloading decisions in this
framework to minimize the total energy consumption
of ground users, and using a binary variable relaxation
method to transform the original nonconvex problem into
a linear programming problem, they propose a distrib-
uted algorithm based on Alternating Direction Multiplier
Method (ADMM) to approximate the optimal solution
with low computational complexity. The network can pro-
vide heterogeneous computing resources for ground users
and enable ground users to access computing services
worldwide. Zhu et al. [19] consider a satellite-ground
cooperative edge computing architecture where tasks can
be performed by SatEC servers or urban TCs (ground sta-
tions). The offload location decision and bandwidth allo-
cation is a MIP (certificate linear programming) problem
model-free learning, they propose a DRTO algorithm
based on the current channel state to make the offload
decision. Meanwhile, DRTO can improve its offloading
strategy by learning the real-time trend of channel state
to adapt to the high dynamic time complexity of satellite-
terrestrial networks. Yu et al. [20] present a context that
integrates edge computing within the structure of Edge
Computing-enabled Satellite-Aerial-Ground Integrated
Networks (EC-SAGINs). Particularly in exceptional sce-
narios, this can offer Internet of Vehicles services to users
in remote regions. Furthermore, the authors propose an
advanced scheme of pre-classification alongside a deci-
sion-making algorithm predicated on Deep Imitation
Learning (DIL). This enables the satellite to execute tasks
as rapidly as feasible while ensuring minimal utilization of
resources. Mao, et al. [21]also consider combining SAGIN
with edge computing to achieve rational resource alloca-
tion and task offloading. Cassar et al. [22]proposed an
edge computing platform that leverages the computing-
as-a-service capabilities of low-orbiting satellites to imple-
ment an in-orbit computing continuum for equal access
to computing, thoroughly improving the utilization of
computing resources.

Page 4 of 29Pang et al. Journal of Cloud Computing (2023) 12:159

There has also been a lot of excellent work in recent
years on task scheduling and offloading of for MEC
sysytem with using Device-to-Device(D2D) or broker
approach. He et al. [23] maximize the number of D2D-
enabled devices by integrating D2D-MEC techniques in
order to further increase the computational power of cel-
lular networks. Seng et al. [24] proposed a GS-based user
matching algorithm in a D2D-enabled MEC system to
find a match between an offloading requester’s compu-
tational task and an edge server or user. Zanzi et al. [25]
proposed a smart online aggregated reservation (SOAR)
framework for MEC brokers to minimize their cost of
reserving resources in a MEC environment that supports
brokers for multiple users without the knowledge of future
demands. Zhang et al. [26] considered inseparable tasks in
their considered Sat-MEC system. They proposed a greedy
algorithm for task allocation and designed different task
allocation strategies for different kinds of tasks to reduce
the average cost of task computation. Chai et al. [27]con-
sidered task dependencies in their considered Sat-MEC
scenario formed a DAG-directed acyclic graph of tasks
with dependency properties, and provided a low-complex-
ity multi-task dynamic offloading framework. They pro-
posed an RNN-based offloading algorithm that achieves
a lower long-term cost of the offloading system. Liu et al.
[28]proposed a new support wireless power transmission
(WPT) in Space-Air-Ground Power Internet of Things
(SAG -PIoT) architecture to solve the problem of limited
battery capacity and difficulty in replacing the IoT devices,
and based on this, combined with Liapunov optimization
method proposed a joint online optimization algorithm for
task allocation and system multiple resource allocation to
minimize the long term time averaged network operation
cost. Hussein et al. [29]considered two different scheduling
algorithms based on two swarm intelligence algorithms,
Ant Colony Optimisation (ACO) and PSO, to balance the
IoT tasks on the fog nodes efficiently and to improve the
QoS of the IoT applications and the utilization of the fog
nodes, taking into account the cost of communication
and the response time. Javanmardi et al.[30], in their pro-
posed offloading problem in an IoT scenario, considered
multiple characteristics of fog nodes and tasks such as
CPU processing power, memory size and bandwidth, and
CPU requirements. They proposed a Particle Swarm Opti-
misation (PSO) algorithm combined with fuzzy logic to
improve global search capability. Zhang et al. [31]designed
a satellite peer offloading scheme that defines the multi-
hop satellite peer offloading (MHSPO) problem as a global
optimization problem and transforms the Lyapunov-based
entire network cost minimization problem into several
sub-problems carried out on individual satellites. Their
scheme efficiently balances the imbalanced workloads and
improves the resource utilization of the satellite network.

Matrouk et al. [32]. proposed a mobile-aware proximal
policy optimization algorithm (MAPPO) deployed at
the gateway to perform the history-aware switching pro-
cess, which improves network performance and accuracy
and reduces latency. The tasks are classified and sched-
uled through a two-process modular neural network. The
authors’ approach reduces latency and offload time and
improves system throughput. Chen et al. in [33], employ
DRL to address the co-optimization problem of computa-
tion offloading and resource allocation within MEC sys-
tems. Similarly. Seid et al. [34] propose an optimal system
performance achieving model-free collaborative com-
puting offloading and resource allocation strategy based
on DRL. Also, zheng et al. [35]proposed a LEO network
architecture using centralized resource pooling based on
satellite resource pooling, and designed a combined alloca-
tion of fixed channel pre-allocation and dynamic channel
scheduling based on reinforcement learning. The system
allocates the channel resources by Q-learning algorithm
and trains the optimal channel allocation strategy. Sha-
karami et al. [12] consider modeling the offloading deci-
sion problem between different execution environments in
a multi-user/multi-server environment with heterogene-
ous services and edge/cloud platforms, using multivariate
linear regression and DNN modeling as a hybrid model to
obtain optimal offloading results.

Liu et al. [36] conducted an in-depth study and found
the optimal offloading probability and optimal transmis-
sion rate based on M/M/1 queueing theory to minimize
energy consumption, execution delay, execution delay, and
price cost. Li et al. [37] developed a system model consist-
ing of M/M/1 and M/M/c queues to capture the task exe-
cution process of an IMD, an MEC server, and a remote
cloud server, respectively, and solved a joint optimization
problem regarding task offloading delay and energy con-
sumption. Chen et al. [38] considered the emergent task
computation queue idleness in edge servers. They pro-
posed a computation task mechanism consisting of edge
servers, cloud centers, and edge devices based on task co-
scheduling. Sharif et al. [39] assigned different priorities
to different tasks, performed priority-based task sched-
uling and resource allocation according to the urgency
of the task, and decided the priority of each task. Zhou
et al. [40] investigated the joint impact of task prioritiza-
tion and mobile computing services on MEC networks
by measuring system performance through the computa-
tional utility of multiple users, where the effect of a wide
range of task prioritization was considered. A DRL algo-
rithm was used to learn practical solutions through con-
tinuous interactions between the AGENT and the system
environment. Guo et al. [41] optimize system bandwidth
and computational power resources based on federated
learning and DRL to ensure that higher priority tasks are

Page 5 of 29Pang et al. Journal of Cloud Computing (2023) 12:159 	

allocated higher bandwidth and computational resources.
Wang et al. [42] identified the task type as energy sensitive
task. They adopted the idea and method of the matching
game to task offloading and matching problems based on
minimizing energy consumption. Additionally, there are
some papers that do not take into account task prioritiza-
tion or the nature of the task, for example, Chen et al. [33]
studied the QoS-aware computation offloading problem
for IoT devices in low-orbit satellite edge computing based
on non-cooperative competition among IoT devices, they
proposed a distributed QoS-aware computation offloading
algorithm to improve the QoS of IoT devices.

As shown in Table 1 below, we have integrated some
of the literature and explored their research methods,
in which the modeling algorithms in the deep reinforce-
ment learning/deep learning category have speedy and
accurate reasoning capabilities after training is completed
and deployed. On the one hand, the time complexity of
the training process is very high, which makes them hard
to train. On the other hand, its compelling solution space
exploration capability performs well for complex scenar-
ios and dynamic scheduling and offloading problems.

System model and problem description
In this section, we established the system architecture
model for Sat-MEC scenarios. Subsequently, we deline-
ated the communication conditions between satellites
and ground stations, followed by developing the commu-
nication, task queue, and task computation models. Our
proposed DRL-based approach is used to address the
problem at hand (Table 2).

As shown in Fig. 1, in our work, we consider the Sat-
MEC scenarios with a terrestrial satellite terminal (TST),
multiple terrestrial IMDs, and an over-the-top satellite
during the current time slot. Each LEO satellite, equipped
with MEC server, provides computing capability for task
computation. The TST serves as the access point for sev-
eral IMDs, supporting TST-satellite link transmission on
the Ka-band and achieving small cell coverage to facili-
tate the IMD-TST link on the C-band, which is divided
into orthogonal sub-carriers.

We assume that the tasks generated by each IMD on the
ground terminal within a timestamp are related. The tasks
of the same IMDs are intelligently offloaded to the same Sat-
MEC server. When tasks start executing, terrestrial IMDs
often face the problem of limitations in computing power
and electrical power, especially in those scenarios where
satellite access is required. In some harsh environments, for
example, the electrical power and computing resources of
IMDs are very scarce and valuable. Therefore, we only allow
terrestrial IMDs to perform partial task computation within
the electrical power constraint, and the remaining tasks
will be sent via the Ka-band to the over-the-top satellite at

that moment for further processing. We use a prior hyper-
parameter θ to simulate the offloading and local execu-
tion ratio under different environments. The computation
scheduling process consists of two stages. In the first stage,
corresponding to the ground segment, IMD offloads tasks
to the TST through OFDMA. After collecting the tasks
from the relevant IMDs, the TST equipped with an inde-
pendent antenna aperture offloads tasks to the over-the-top
LEO satellite in the space segment. Those tasks that have yet
to be offloaded to the MEC server are executed locally by
IMDs. In addition, in the second stage, for each LEO satel-
lite, we regard it as an agent with a data forwarding function.
In the scenarios of this paper, we assume that when there are
multiple LEO satellites within the TST line-of-sight trans-
mission range, only the closest satellite is selected for data
transmission. Due to ISL between LEO satellites, the tasks
received by the over-the-top LEO satellite can be forwarded
to the neighboring LEO satellites through ISL for coopera-
tive processing. Therefore, the MEC servers deployed on
these LEO satellites can simultaneously perform compu-
tational tasks from the ground-based IMD through our
scheduling algorithms deployed at the agent level.

Communication model
Due to the obstruction of the Earth and its atmosphere on
the satellite-terrestrial link, communication is not always
possible. Considering that the offloading action of terres-
trial tasks must be established in a communicable environ-
ment, the communication model will be discussed first.

The establishment of effective satellite communication
links depends on two critical factors. The first factor is the
unobstructed line-of-sight visibility between LEO satel-
lites or between LEO satellites and ground stations. The
second factor is sufficient transmission power for satellite
communication or between satellites and ground stations.

Line‑of‑sight visibility
The line-of-sight visibility between communication satel-
lites depends on the relative geometric position between
the satellites and the Earth, as communication can only
occur within the line-of-sight range. If the Earth blocks
the line of sight between two satellites, their communica-
tion link is considered unavailable. Two satellites orbiting
around the Earth, regardless of whether they are in the
same or different orbits, can only communicate with each
other when they are both above a horizontal plane tan-
gent to the Earth’s surface. The critical condition occurs
when the connecting line between the two satellites is
tangent to the Earth’s surface (Fig. 2).

To perform line-of-sight visibility analysis, two critical
angles, α1 and α2 , can be defined as follows:

(1)α1 = arccos(Re/r1L),

Page 6 of 29Pang et al. Journal of Cloud Computing (2023) 12:159

Ta
bl

e 
1 

Re
la

te
d

w
or

ks
 c

om
pa

ris
on

M
et

ho
d

Re
se

ar
ch

 A
re

a
A

dv
an

ta
ge

s
D

ra
w

ba
ck

s
Ti

m
e/

Sp
ac

e

D
ee

p
Le

ar
ni

ng
[1

9–
21

].
Th

e
m

et
ho

d
ca

n
le

ar
n

an
d

op
tim

iz
e

co
m

pl
ex

 s
tr

at
eg

ie
s

Th
e

im
pl

em
en

ta
tio

n
of

 th
e

m
et

ho
d

re
qu

ire
s

la
rg

e
am

ou
nt

s
of

 d
at

a
an

d
co

m
pu

ta
tio

na
l r

es
ou

rc
es

 a
nd

 p
oo

r i
nt

er
pr

et
ab

ili
ty

.
H

ig
h/

H
ig

h

D
ee

p
Re

in
fo

rc
em

en
t L

ea
rn

in
g

[3
3,

 3
4,

 4
3]

.
Th

e
m

et
ho

d
ca

n
le

ar
n

an
d

op
tim

iz
e

co
m

pl
ex

 s
tr

at
eg

ie
s;

it
is

 s
ui

t-
ab

le
 fo

r t
as

ks
 th

at
 a

re
 n

ot
 e

xp
lic

itl
y

la
be

le
d.

Th
e

im
pl

em
en

ta
tio

n
of

 th
e

m
et

ho
d

re
qu

ire
s

la
rg

e
am

ou
nt

s
of

 d
at

a
an

d
co

m
pu

ta
tio

na
l r

es
ou

rc
es

 a
nd

 p
oo

r i
nt

er
pr

et
ab

ili
ty

.
H

ig
h/

H
ig

h

Sw
ar

m
 In

te
lli

ge
nc

e
A

lg
or

ith
m

[1
7,

 2
9,

 3
0]

.
Th

e
m

et
ho

d
ca

n
fin

d
ap

pr
ox

im
at

e
so

lu
tio

ns
 to

 c
om

pl
ex

 o
pt

im
iz

a-
tio

n
pr

ob
le

m
s;

it
ha

s
go

od
 ro

bu
st

ne
ss

 a
nd

 a
da

pt
ab

ili
ty

.
Th

e
m

et
ho

d
m

ay
 fa

ll
in

to
 a

 lo
ca

l o
pt

im
um

; w
he

n
so

lv
in

g
co

m
pl

ex

pr
ob

le
m

s,
sp

ec
ifi

c
pa

ra
m

et
er

s
ne

ed
 to

 b
e

se
t m

an
ua

lly
 to

 o
bt

ai
n

a
be

tt
er

 s
tr

at
eg

y.

M
id

/L
ow

M
at

he
m

at
ic

al
 O

pt
im

iz
at

io
n

[1
6,

 1
8,

 4
4]

.
Th

e
m

et
ho

d
ex

is
ts

 e
ffi

ci
en

tly
 fo

r c
on

ve
x

op
tim

iz
at

io
n

pr
ob

le
m

s
an

d
pr

ov
id

es
 d

et
er

m
in

is
tic

 a
nd

 th
eo

re
tic

al
 g

ua
ra

nt
ee

s.
Th

e
m

et
ho

d
ca

n
be

 v
er

y
co

m
pl

ex
 w

he
n

de
al

in
g

w
ith

 h
ig

h-
di

m
en

-
si

on
al

 a
nd

 n
on

-c
on

ve
x

op
tim

iz
at

io
n

pr
ob

le
m

s;
th

e
so

lu
tio

n
m

ay

fa
ll

in
to

 lo
ca

l o
pt

im
al

 s
ol

ut
io

ns
 fo

r c
om

pl
ex

 p
ro

bl
em

s.

Lo
w

/M
id

D
yn

am
ic

 G
am

e
Th

eo
ry

[1
5,

 4
5,

 4
6]

.
Th

e
al

go
rit

hm
s

m
od

el
 th

e
in

te
ra

ct
io

ns
 b

et
w

ee
n

m
ul

tip
le

 d
ec

is
io

n
m

ak
er

s;
eq

ui
lib

riu
m

 c
on

ce
pt

s
(e

.g
.,

N
as

h
eq

ui
lib

riu
m

) a
re

 p
ro

vi
de

d
to

 p
re

di
ct

 th
e

pl
ay

er
s’

st
ra

te
gi

c
ch

oi
ce

s
un

de
r c

er
ta

in
 c

on
di

tio
ns

.

Th
e

m
et

ho
d

is
 m

or
e

co
m

pl
ic

at
ed

 to
 fi

nd
 c

er
ta

in
 th

eo
re

tic
al

 g
am

e
eq

ui
lib

ria
 in

 c
er

ta
in

 c
om

pl
ex

 s
itu

at
io

ns
; i

t i
s

st
ill

 a
 c

ha
lle

ng
e

to
 d

ea
l

w
ith

 ti
m

e-
va

ry
in

g
st

ra
te

gi
es

 a
nd

 d
ec

is
io

ns
 in

 c
on

te
xt

.

M
id

/L
ow

G
re

ed
y

St
ra

te
gy

[2
6,

 4
7,

 4
8]

.
Th

e
m

et
ho

d
is

 s
im

pl
e

an
d

ea
sy

 to
 im

pl
em

en
t;

op
tim

al
 s

ol
ut

io
ns

ca

n
be

 o
bt

ai
ne

d
fo

r s
om

e
pr

ob
le

m
s.

Th
e

m
et

ho
d

ca
n

on
ly

 o
bt

ai
n

ap
pr

ox
im

at
e

so
lu

tio
ns

 fo
r m

an
y

pr
ob

le
m

s;
it

is
 e

as
y

to
 fa

ll
in

to
 lo

ca
l o

pt
im

iz
at

io
n.

Lo
w

/L
ow

Ly
ap

un
ov

 M
et

ho
d

[2
8,

 3
1,

 4
9]

.
Th

e
m

et
ho

d
pr

ov
id

es
 a

n
ex

pl
ic

it
an

d
rig

or
ou

s
de

te
rm

in
at

io
n

of
 th

e
st

ab
ili

ty
 o

f a
 s

ys
te

m
; i

t a
pp

lie
s

to
 b

ot
h

lin
ea

r a
nd

 n
on

lin
ea

r
sy

st
em

s;
it

is
 c

om
m

on
ly

 u
se

d
to

 s
ta

bi
liz

e
ta

rg
et

 q
ue

ue
s.

Th
e

m
et

ho
d

ca
n

be
 c

ha
lle

ng
in

g
to

 fi
nd

 s
ui

ta
bl

e
Ly

ap
un

ov
 fu

nc
-

tio
ns

, p
ro

vi
ng

 th
e

ex
is

te
nc

e
of

 u
pp

er
 b

ou
nd

s
on

 L
ya

pu
no

v
dr

ift
.

Th
e

m
et

ho
d

m
ay

 b
e

in
ap

pl
ic

ab
le

 o
r v

er
y

di
ffi

cu
lt

fo
r s

om
e

hi
gh

ly

no
nl

in
ea

r o
r c

om
pl

ex
 s

ys
te

m
s.

M
id

/L
ow

Page 7 of 29Pang et al. Journal of Cloud Computing (2023) 12:159 	

Table 2  Symbol interpretation

α1 and α2 two critical angles Re Earth radius

(τ1, γ1) the longitude and latitude (τ2, γ2) the geodetic coordinates

dc the inter-satellite distance Pr the received signal power

di the input data size of task i �m IMD task arrival rate

θ the offloading rate(a prior parameter) � Sat Sat-MEC server initial task arrival rate

γ the discount factor Ls the signal path loss

� tasks scheduling policy χ j the environment’s state

�∗ tasks scheduling policy χ ′ the next environment state

B0 the bandwidth on C-band σ 2 Gaussian white noise power

f m computational capacity of IMD w(χ , a) the utility function

V(χ) the optimal value of the state χ BTST the bandwidth on the Ka-band

ci the number of CPU cycles for task i computation f s the number of cpu cycles per second

EIRP equivalent isotropically radiated power Gr the gain of satellite receiving antenna

b
up
i and b down

i
the data size of taski uplink and downlink V(χ ,�) the state value function of the Agent

STST the signal power from TST to satellite Gt the gain of the satellite transmitting antenna

Qs the initial task queue backlog at current time T
up
i and T down

i
transmission time for task i uplink and downlink

�(a) the corresponding tasks scheduling methods an(t) the action of taski being scheduled to satellite s.

f s the number of cpu cycles per second for processing
tasks on LEO satellite s

NTST the interference experienced by the over-the-
top satellite on the sub-carrier

Fig. 1  Sat-MEC system architecture

Page 8 of 29Pang et al. Journal of Cloud Computing (2023) 12:159

where Re represents the Earth’s radius, r1L and r2L denote
the respective distances between the Earth’s center and
the two satellites as they simultaneously pass through
the tangent horizontal plane. The angle between the lines
connecting the two communication satellites and the
Earth’s center can be denoted as φ1:

The spatial coordinates of the two LEO satellites can
be calculated by utilizing (X1,Y1,Z1) and (X2,Y2,Z2) .
The calculated distances from the two LEO satellites to
the Earth’s center are r1 and r2 , respectively. The inter-
satellite distance is denoted as dc , and the visibility
function determining whether the two LEO satellites
are mutually visible can be expressed as:

The fact that ϕ1 is present indicates that the two LEO
satellites are visible and meet the line-of-sight visibility
requirement for link communication. Otherwise, it sig-
nifies they are not visible.

Figure 3 illustrates the analysis of the satellite-to-
ground link, where the distance from the satellite to

(2)α2 = arccos(Re/r2L),

(3)φ1 = arccos r21 + r22 − d2c /2 ∗ r1 ∗ r2 .

(4)ϕ1 = α1 + α2 − φ1,

the center of the Earth can be determined through the
calculation of the satellite and Earth center coordi-
nates. The negative impact of terrain, ground objects,
and ground noise on effective communication cannot
be established when the antenna elevation angle is zero,
according to empirical evidence. Moreover, the mini-
mum elevation angle required for effective commu-
nication can vary significantly among different Earth
stations due to their location, topography, and envi-
ronmental factors. As a consequence, the geographi-
cal region delimited by the boundary line defined by
the antenna’s minimum elevation angle ξ is commonly
referred to as the communication coverage area of the
satellite. The maximum angle of visibility α1 can be
expressed as:

Given the longitude and latitude (τ1, γ1) of a ground
station and the orbital six elements, the geodetic coordi-
nates (τ2, γ2) of the sub-satellite point can be calculated
for a certain time. Based on this, the angle φ2 between the
line connecting the satellite and the center of the Earth
and the line connecting the center of the Earth and the
ground station can be donated as:

(5)α1 = 90◦ − ξ − arcsin ((Re/r1)cos ξ).

(6)φ2 = arccos[cos (τ2 − τ1)cos γ1cos γ2 + sin γ1 sin γ2]

Fig. 2  Link transport capability evaluation-1

Page 9 of 29Pang et al. Journal of Cloud Computing (2023) 12:159 	

The visibility function of the satellite-to-ground link is
expressed as:

For the ground station, when ϕ2 >0 indicates the sat-
ellite is visible from the station. The instance of ϕ2 = 0
signifies either the satellite’s rise or set from time, with a
change from negative to positive indicating rise and vice
versa indicating set. Based on this, the visibility time of
a LEO satellite to the ground station can be calculated,
and by performing similar calculations for each satellite
in the constellation, the coverage time of LEO satellites
to the ground station can be obtained. In the Sat-MEC
scenarios, we give the definition of an over-the top sat-
ellite: a satellite that establishes communication with the
TST at the current moment. There are three scenarios in
which the TST establishes communication with the over-
the-top satellite. 1. The TST is covered by the service
range of only one LEO satellite, then the TST establishes
communication with this satellite. 2. The TST is covered
by several LEO satellites, and we choose the LEO satellite
that is closest to the TST. 3. The ground TST is covered
by multiple satellites, and the ground TST is the clos-
est to multiple LEO satellites at an equal radius. At this
time, we can calculate the coverage time (service time) of
the satellites and select the LEO satellite with the longest
coverage time (service time) for communication.

(7)ϕ2 = 2(α1 − φ2)

Transmission power passability
Establishing a communication link is necessary to have
line-of-sight visibility. The power requirements for signal
transmission and reception must be met by the distance
between inter-satellites or between satellites and ground
stations. Suppose the distance is too great. Even if line-of-
sight visibility exists between them, the signal loss from
satellite transmission may be too significant for the receiv-
ing antenna to pick up the signal correctly, thus rendering
the communication impossible. To demonstrate, consider
inter-satellite links as an illustration. The free-space elec-
tromagnetic wave propagation model is the basic model
for the inter-satellite link channel, where the received sig-
nal power by the satellite antenna can be expressed as:

Where Gt is the gain of the satellite transmitting
antenna in the direction of the communication satellite,
Pt is the signal power emitted by the antenna, EIRP is the
effective omni-directional radiated power of the satel-
lite transmitting system, and Gr is the gain of the satellite
receiving antenna in the direction of the communication
satellite. LAs is the signal atmospheric loss between the
links, Ls is the signal path loss, so the free space propaga-
tion loss formula [50]:

(8)Pr = EIRP + Gr − Ls − LAs(dBW),

(9)EIRP = Pt(dBW)+ Gt(dB),

Fig. 3  Link transport capability evaluation-2

Page 10 of 29Pang et al. Journal of Cloud Computing (2023) 12:159

where f denotes the operating frequency of the commu-
nication signal, measured in GHz, dc refers to the dis-
tance between the communication satellites, measured
in kilometers. r1 and r2 represent the distances from the
two satellites to the center of the earth, measured in km,
which can be determined based on the three-dimensional
coordinates of the two satellites. The angle between the
line connecting the two communication satellites and
the earth’s center can be calculated using Eq. (6), which
denotes φ1 . Equations (8), (9), and (10) demonstrate that,
under constant gain of the satellite receiving antenna and
system losses, as the propagation distance and frequency
increase, the propagation path loss will also increase,
leading to a rapid reduction in received power. Satellite
communication requires that the received signal power
Pr exceed the sensitivity of the receiver Prmin , which can
be expressed as:

Data transmission model
Tasks generated by ground IMDs cannot be communi-
cated directly with LEO satellites due to different frequency
bands. Ground IMDs need to rely on the TST to offload
data to the over-the-top satellite at the current time. Ground
IMDs have three stages for offloading and scheduling tasks:

(1)	 IMDs to the TST data transmission During the first
stage of computational offloading, the data trans-
mission rate of the task from IMD to TST can be
expressed through Shannon’s formula [51] as below:

 where Si is signal power from IMDi to TST on sub-
carrier k, B0 is the bandwidth of each sub-carrier on
C-band, and σ 2 is the additive Gaussian white noise
power.

(2)	 TST to over-the-top LEO satellite data transmission
In this stage, the data transmission rate of the task
generated by IMDi from the TST to the over-the-top
satellite can be expressed by Shannon’s formula as:

 where STST is the signal power from TST to satel-
lite, BTST is the bandwidth of each sub-carrier on
the Ka-band. NTST is the interference experienced
by the over-the-top satellite on the sub-carrier
.When tasks are offloading in the Ka-band, the

(10)Ls = 32.45+ 20 log dc + 20 log f ,

(11)Pr � Prmin(dBW)

(12)rIMD−TST
i = B0 log2

(
1+

Si

N0

)
,

(13)rTST−Sat
i = BTST log2

(
1+

STST

NTST

)
,

antenna of TST usually has good directivity. There-
fore, TST can ensure low off-axis antenna gain and
tolerate co-channel interference when it chooses an
over-the-top satellite to offload tasks [52].

(3)	 Scheduling by ISL The ISL for LEO satellites utilizes
ka-band point beam inter-satellite antennas with
4 point beams per satellite. The link between two
satellites is established by scanning and aligning the
point beams. In this work, a mesh link is used for
the space network of the LEO satellite constellation,
and the mesh link allocation method is to establish
four links for each satellite, with two satellites in the
same orbit and one satellite in each of two adjacent
different orbits, Each LEO satellite is an agent,the
ISL shown in Fig. 4 below.

ISL uses point-beam inter-satellite antennas, with each
point-beam antenna employing TDMA for data trans-
mission. We still use electromagnetic waves for commu-
nication modeling of ISL, and the transmission rate of the
ISL link is given by the Shannon formula:

Task queue model
In the scenarios of the Sat-MEC, we considered two dis-
tinct task queues, including the task queue designated for
IMDs and the initial task queue for Sat-MEC servers.

In this paper, tasks are generated by IMDs. Our approach
involves a stochastic task arrival model, in which only a few
tasks arrive at this moment and the number of arrivals fol-
lows a Poisson distribution [53]. However, considering the
correlation of tasks generated by the same IMD, we assume
that tasks generated by the same IMD can only be offloaded
to the same Sat-MEC server. We, therefore, consider the
same IMD-generated offloading task as a whole task when
it is scheduled in Sat-MEC’s agent.

We let taski denote the tasks arriving at IMDi at the
current moment, as we defined above, treat the tasks gen-
erated by the same IMD as a whole task for scheduling
in Sat-MEC, and represent the whole task generated by
IMDi as a 3-tuple set

{
t, di, ci

}
 denotes the time slot when

taski arrives [42]. di is the input data size of Taski [54],
which is independently generated and satisfies a random
distribution with the arriving rate �m , a practical constraint
of the problem, especially for those delay-sensitive tasks. In
addition, ci is the number of CPU cycles needed to process
input data bits and assume it obeys a random distribution
within a specific range [55, 56], which can better represent
the heterogeneity of the taks. Note that the system con-
troller quickly obtains di and ci . In addition, we consider

(14)rSat−Sat∗

i = BSat log2

(
1+

SSat

NSat

)
.

Page 11 of 29Pang et al. Journal of Cloud Computing (2023) 12:159 	

the initial task computing queue of the Sat-MEC servers.
When tasks are offloaded to LEO satellites at time t, some
satellites may already have tasks in their task computation
queue, and there is an initial task computing queue back-

log for LEO satellites [57]. We use a Poisson distribution
with an immediate arrival rate of �Sat to simulate the initial
queue backlog for each LEO satellite Sat-MEC server.

Notably, task transmission waiting time and Sat-MEC
server waiting time occur during the transmission of
tasks by ISL and during the processing of tasks on the
Sat-MEC server, which we simulate in detail below.

As shown in Fig. 5 above, tasks are sent from an over-the-
top LEO satellite via ISL to a target LEO satellite for task

processing. In the above Fig. 5 example, three tasks are off-
loading from the over-the-top LEO satellite MEC server to
the Sat*-MEC server in order: Task1, Task2, and Task3. The
following equation gives their required offloading time:

In the equation above, we compute an instance where
three tasks are delegated to the Sat*-MEC server. Here, θ
represents the offloading ratio, denoting the proportion
of tasks offloaded. In this particular case, we presume the
initial task computation queue of the Sat*-MEC server to
be empty. The notation ()+ implies that if the value within
the parentheses falls below 0, it should be considered 0.

In our proposed scenario, we introduce an algorithm for
concurrently scheduling decisions for multiple tasks. The

(15)

TTask1+Task2+Task3 =
θd1

RSat−Sat∗
i

+
θc1

fSat∗
+

θd1

RSat−Sat∗

i

+
θd2

RSat−Sat∗

i

+

(
θc1

fSat∗
−

θd2

RSat−Sat∗

i

)+

+
θc2

fSat∗
+

θd1

RSat−Sat∗

i

+
θd2

RSat−Sat∗

i

+
θd3

RSat−Sat∗

i

+

{((
θc1

fSat∗
−

θd2

RSat−Sat∗

i

)+

+
θc2

fSat∗
−

θd3

RSat−Sat∗

i

)+

+
θc3

fSat∗

}
.

Fig. 4  The construction of ISL between LEO satellites

Page 12 of 29Pang et al. Journal of Cloud Computing (2023) 12:159

scheduling decision involves determining the sequence of
tasks to be scheduled to the same server. As an example,
Task 2 is scheduled to be the second task scheduled to the
Sat*-MEC server. Before it can be transmitted, it needs to
wait for Task 1. Upon Task 2’s arrival at the Sat*-MEC server
and assuming an initial task computation server queue
backlog of zero, the waiting duration for Task 2 at the Sat*-

MEC server is calculated to be
(

θc1
fSat∗

−
θd2

RSat−Sat∗

i

)+

.

The objective of our work here is to show the reader
that in the case of scheduling multiple tasks to the server
at the same time, especially in the transmission mode of
TDMA, the scheduling order of the multi-task sched-
uling server affects the average processing time of the
tasks due to the heterogeneity of the tasks. Therefore,
when we make decisions on task scheduling, we need to
consider not only the characteristics of the current task
and the characteristics of the servers, but also the char-
acteristics of other tasks arriving at the same time, and
only by considering the characteristics of multiple serv-
ers and multiple tasks arriving at the same time can we
theoretically realize the optimal scheduling solution.

Here we define the time expended, excluding task trans-
mission time and computation time, during the execution

of taski as Twaste
i  , where Twaste

i =

(
θc1
fSat∗

−
θd2

RSat−Sat∗

i

)+

 . In

our work, the total goal is to minimize the average task
scheduling time, therefore, it is very important for our ulti-
mate objective to analyze the characteristics of multi-task-
ing and multi-Sat-MEC servers simultaneously.

Task computing model
Due to the heterogeneity of the ground environment, when
the terminal IMDs are in a city or a region with sufficient
power and computing capability, tasks should primarily rely
on local execution; however, when the terminal device is in a
desert, hilly, or natural disaster area, the harsh environment
of the terminal region, which makes the tasks more pro-
cessed on the Sat-MEC server. The ratio of tasks offloaded
to the LEO is set as the task offloading rate θ,θ is a priori

hyper-parameter, which we aim to model the differences in
task scheduling in different situations by varying its value in
our work. When the IMD computation capability is lacking,
the task prefers to offload to the Sat-MEC server. In some
work [58], solar-wind hybrid energy system is utilized in
non-urban areas to generate electricity to feed the IMD and
TST to ensure that their power is available for transmitting
data, Our work is still more in the search for an algorithm
with high exploratory capability in a high-dimensional
dynamic feature space, focusing on the problem of average
latency of tasks and realizing an optimal scheduling algo-
rithm. Therefore, we assume in our work that IMD and TST
will not fail to work due to lack of electrical energy. In this
work, the processing tasks include two cases: non-offloaded
local computation and offloaded Sat-MEC computation.

Local computing:
Fm denotes the maximum computational capacity of
IMD and f m denotes the number of CPU cycles per sec-
ond for processing tasks on IMD, non-offloading sub-
tasks of taski executed on IMD with task CPU cycles
needed (1− θ) · ci . For each task, the processing latency
incurred on IMD, which is calculated in Eq. (16):

Sat‑MEC computing:
The offloaded tasks are received by the over-the-top sat-
ellite in the current region and further distributed by ISL
to other adjacent LEO satellites (in the same or a differ-
ent orbit) for co-processing according to our proposed
scheduling algorithm. f s denotes the number of CPU
cycles per second for processing tasks on LEO satellite
s, θ · di denotes the size of the mission data offloaded
to the satellite, and θ · ci denotes the computing load
of taski  , which is the necessary central processing unit
CPU cycles for executing taski  . The processing time of a
taski on a LEO satellite is calculated by:

(16)Tloc
i =

(1− θ)ci

f m

Fig. 5  Tasks processing waiting model

Page 13 of 29Pang et al. Journal of Cloud Computing (2023) 12:159 	

where Tup
i and Tdown

i denote transmission time for taski
uplink and downlink. let Tqueue

i denote the waiting and
processing time for taski in the Sat-MEC task compu-
tation queue, Qs is the initial task queue backlog at the
current time in the Sat-MEC server of satellite s, and
fs donates CPU clock frequency of LEO satellite s. bupi
and bdowni denote data size of taski uplink and down-
link , where we assume bupi = di . RIMD−TST

i  , RTST−Sat
i  ,

RSat−Sat∗

i denote the transmission rates from the IMDs to
the TST, the TST to the overhead satellite, and the over-
the-top satellite to the target satellite respectively. Sat∗
donates target satellite,which means the satellite which
the task transfers through ISL and finally reaches, the
task will be offloaded and compute on Sat∗-MEC server.

Problem description
In the proposed Sat-MEC Scenario, our objective is to
minimize the average tasks processing time of all IMDs
generated. According to the Communication Model and
the Task Computing Model, the optimization problem
can be formulated as (P1), where Tloc

i denotes the time
when the taski is executed locally. Tsat

i denotes the time
when the task is offloaded from the local via TST to the
over-the-top satellite and execute at Sat*-MEC at the cur-
rent moment. The scheduling decision is executed via
the over-the-top satellite, and the task is processed in the
Sat∗-MEC server. Therefore, for each taski generated by
IMDi , we take the maximum value of local execution and
task offload execution as the task processing time at the

(17)Tsat
i = T

up
i + T

queue
i + Tdown

i ,

(18)T
up
i =

θ · ci

RIMD−TST
i

+
θ · ci

RTST−Sat
i

+
θ · ci

RSat−Sat∗

i

(19)Tdown
i =

bdowni

RIMD−TST
i

+
bdowni

RTST−Sat
i

+
bdowni

RSat−Sat∗

i

,

(20)T
queue
i =

Qs + θ · ci

f s
,

current moment of IMD. The steps of task offloading exe-
cution are divided into task offloading from IMD to over-
the-top LEO satellite, over-the-top LEO satellite executing
scheduling according to our scheduling policy for select-
ing LEO satellite for scheduling purposes for task execu-
tion, and the waiting and execution time of the task in the
Sat*-MEC server, as well as the time of the backhaul.

Since the above optimization problem in (P1) is non-con-
vex and NP-hard, we use a DRL-based approach to achieve
a feasible solution. In the next section, we model the for-
mulated optimization problem as a MDP problem [59],
where the action selection aims to maximize the reward
function. In the Sat-MEC scenario, the over-the-top satel-
lite acts as an agent to select an action to schedule tasks and
then receive a reward at time slot t. The state space, action
space, and reward function will described in next section.

Methods
State space
In this paper, as depicted in Fig. 6, the system controller
is installed at the broker level and is responsible for the
communication and coordination between the Sat-MEC
servers. It receives task requests from the ground and
analyzes other neighboring Sat-MEC servers’ resource
availability and computational capacity. Integrating the
DRL into the broker can enhance decision-making and
optimize the task schedule.

We set the sensorial information of the over-the-top LEO
satellite at moment t as the state Sn(t) ∈ S . The compo-
nents of Sn(t) including tasks state and Sat-MEC servers
state, the task state indicated by the data size of the task
and the number of CPU cycles required for the task com-
putation, which received from the TST, the Sat-MEC server
states indicated by Sat-MEC server computation capacity
and Sat-MEC server initial task computation queue back-
log, that information could receive from Control Channel

(21a)

(P1) = min
θ ,Sat∗

I∑

i=1

max
(
Tloc
i , Tsat

i

)

= min
θ ,Sat∗

I∑

i=1

max
(
Tloc
i , T

up
i + T

queue
i + Tdown

i

)

= min
θ ,Sat∗

I∑

i=1

max

((
(1− θ)ci

fm
,

b
up
i

RIMD−TST
i

+
b
up
i

RTST−Sat
i

+
b
up
i

RSat−Sat∗

i

+
Qs + θ · ci

f s
+ Twaste

i

))

(21b)s.t.fm ∈ (0, Fm]

(21c)s.t.θ ∈ (0, 1]

(21d)Sat∗ ∈ [Sat0, Sat1, · · · , Sats]

Page 14 of 29Pang et al. Journal of Cloud Computing (2023) 12:159

and make scheduling decision at over-the-top LEO satellite
as shown in Fig. 6. We have the task state matrix and the
Sat-MEC server state matrix below for further discussion.

The i-th line of s(t)Task is s(t)Taski  , which is the character-
istic of the arrival taski , d(t)i is the size of the arrival task
i, and c(t)i is the number of CPU cycles required to com-
pute the taski . The line of s(t)Sat is s(t)Sats  , let s donates
the satellite number, where each of them has four feature
values. Sat(t)qs denotes the initial backlog of the task com-
putation queue at time t for Sat(t)s , Sat(t)cs denotes the

(22)S(t) =
{
S(t)Task , S(t)Sat

}

(23)S(t)Task =




S(t)Task1

S(t)Task2
...

S(t)Taski
...

S(t)Taskn




=




d(t)1, c(t)1
d(t)2, c(t)2

...
d(t)i, c(t)i

...
d(t)n, c(t)n




n×2

(24)S(t)Sat =




Sat(t)
q
1
, Sat(t)c

1
, Sat(t)loc

1
, Sat(t)trans

1

Sat(t)
q
2
, Sat(t)c

2
, Sat(t)loc

2
, Sat(t)trans

2

Sat(t)
q
3
, Sat(t)c

3
, Sat(t)loc

3
, Sat(t)trans

3

Sat(t)
q
4
, Sat(t)c

4
, Sat(t)loc

4
, Sat(t)trans

4

Sat(t)
q
5
, Sat(t)c

5
, Sat(t)loc

5
, Sat(t)trans

5




5×4

computational capacity of Sat-MEC server n (number of
CPU cycles/second), Sat(t)locs denotes the euclidean dis-
tance of satellite n from the receiving satellite (over-the-top
satellite), Sat(t)transs denotes the channel capacity of the ISL
transmission between satellite n and over-the-top satellite.

Action space
Based on the current moment t, the over-the-top LEO
satellite as the agent senses the environment infor-
mation at the current moment t and processes the
tasks from the ground based on the agent scheduling
algorithm, choosing tasks to schedule to other sat-
ellites connected through the ISL or to processing
them at the over-the-top satellite, as the transmission
queue shown in Fig. 6. Formally, we define the vector
an(t) = {xsi(t),∀s ∈ S, ∀i ∈ N} , which represents the
action of task i being scheduled to satellite s.

Computation task scheduling
In this section, we combine deep reinforcement learn-
ing and the self-attention mechanism to form practical
and feasible algorithms to approach the optimal task
scheduling algorithm using the the self-attention mech-
anism to represent the Q-network.

The task scheduling policy � can be defined as :
� : X → Y . More precisely, the Agent identifies an action
�
(
χ j
)
= �(a)

(
χ j
)
= an(t) ∈ Y according to � after

Fig. 6  Tasks scheduling decision process on LEO satellites

Page 15 of 29Pang et al. Journal of Cloud Computing (2023) 12:159 	

observing environment’s state χ j ∈ X at the onset of the
scheduling desicion epoch j, where � = (�(a)), with �(a)
as the corresponding tasks scheduling methods.

Given the tasks scheduling desicion policy � , the {
χ j : j ∈ N+

}
 is a controlled Markov chain character-

ized by the next enviroment state transition probability:

Moreover, we establish the utility linked to each
epoch.

{
w
(
χ j ,�(χ j

)
) : j ∈ N+

}
over the series of envi-

ronment states
{
χ j : j ∈ N+

}
 , The Agent’s anticipated

utility over the extended duration, given the initial
environment state, χ1 could be formulated as follows.

Here, we denote the environment state as
χ = S(t) ∈ X  , the discount factor as γ ∈ [0, 1) , and
(γ)j−1 represents the discount factor of the (j − 1) th
order. The function V (χ ,�) is also referred to as the
state value function of the Agent, corresponding to
environment state χ under strategy �.

The objective of the agent is to develop a task
scheduling methods. �∗ = �(a)∗ , which Optimal the
extended-term utility V (χ ,�) for any starting environ-
ment state χ , leading to the following formalization:

The function V (χ) represents the optimal value of the
state χ under the policy �∗ . This function applies to all
environment states χ belonging to the set X .

The optimal method to achieve the environment state
value function can be derived by solving the Bellman
equation [60] for:

(25)

Pr
{
χ j+1 | χ j ,�

(
χ j
)}

= Pr
{
d(t + 1)i | d(t)i ,�

(
χ j
)}

· Pr
{
c(t + 1)i | c(t)i ,�

(
χ j
)}

·
∏

n∈N

Pr
{
Sat(t + 1)qn | Sat(t)qn,�

(
χ j
)}

· Pr
{
Sat(t + 1)cn | Sat(t)cn,�

(
χ j
)}

· Pr
{
Sat(t + 1)transn | Sat(t)transn ,�

(
χ j
)}

· Pr
{
Sat(t + 1)locn | Sat(t)locn ,�

(
χ j
)}

(26)V (χ ,�) = E�


(1− γ) ·

∞�

j=1

(γ)j−1 · w

�
χ j ,�

�
χ j
��

| χ1 = χ


,

(27)�∗ = arg max
�

V (χ ,�), ∀χ ∈ X .

(28)

V (χ) = max
a

{(1− γ) · w(χ , a)+ γ ·
∑

χ ′

Pr
{
χ ′ | χ , a

}
· V

(
{χ ′

)
}

where w(χ , a) denotes the utility obtained when executing
the action a from the current network state χ resulting in
the next environment state χ ′ . Here, χ ′ = S(t + 1) ∈ X .

However, the conventional approach to solving the
equation above is typically based on value iteration
or policy iteration [61], which requires comprehen-

sive knowledge of statistics such as computational task
arrivals, initial server queue backlogs, and channel state
transitions. We can use a non-policy learning approach
which means useing Q values instead of using V values.
One advantage of non-policy Q-learning is its agnosti-
cism towards an existing knowledge of environment
state transition statistics [61]. ∀χ ∈ X  , so, the state-value
function V (χ) can be derived directly from

where

Replacing Eq. (29) in Eq. (28) gives the following:

In the above equation, we let a′ ∈ Y donate the task
scheduling action under the environment state χ ′ . In a
practical environment, the number of computed tasks
arrival and the number of cpu cycles required for com-
putation per task is not available in advance. By employ-
ing the Q-learning technique, the agent endeavors to
acquire knowledge about Q(χ , a) , iteratively, based on
a review of the environment state χ = χ j at the current
decision epoch j, the executed scheduling action a = aj ,
the utility achieved w(χ , a) , and the environment state
χ ′ obtained at the subsequent epoch j + 1 . The updated
rules are as follows:

(29)V (χ) = max
a

Q(χ , a),

(30)Q(χ , a) = (1− γ) · w(χ , a)+ γ ·
∑

χ ′

Pr
{
χ ′ | χ , a

}
· V

(
χ ′
)
.

(31)

Q(χ , a) = (1− γ) · w(χ , a)+ γ ·
∑

χ ′

Pr
{
χ ′ | χ , a

}
·max

(a′)
Q
(
χ ′,

(
a′
))
.

(32),Qj+1(χ , a) = Qj(χ , a)+ αj

(
(1− γ) · w(χ , a)+ γ ·max

a′
Qj

(
χ ′, a′

)
− Qj(χ , a)

)
,

Page 16 of 29Pang et al. Journal of Cloud Computing (2023) 12:159

where αj denotes the dynamically adjusting learning rate,
it can be observed that Eq. (32) reveals the limited scal-
ability of the traditional Q-learning rule. Given the dis-
crete nature of the Q function representation, Q-learning
encounters challenges when applied to high-dimensional
scenarios characterized by significantly large network
states or action spaces, as the traditional Q-table learn-
ing process becomes prohibitively slow. In the scenarios
of our work, the composition of the environmental states
has a very high dimensionality. As a result, the conver-
gence of the Q-learning process within a fixed number of
scheduling decision periods becomes unattainable.

Therefore, we proposed the tasks scheduling method to
optimize with a DRL-based framework.

As Fig. 7 illustrates, we use the self-attention mechanism
as the Q-network, and the Q-network input is the total
number of tokens of tasks and Sat-MEC servers. First, the
tasks and servers form a set of tokens by embedding two
different kinds of tokens. Then, the self-attention mecha-
nism operation between tokens is performed to output the
matching score between tasks and servers, and the selec-
tion of task scheduling solution is performed.

For example, if 20 tasks reach the over-the-top satellite
at time t, 20 tasks will be offloaded to 5 Sat-MEC serv-
ers. Firstly, tasks characteristics are mapped to the token
by W1, servers characteristics are mapped to the token
by W2, and the 25 tokens mapped into the task-server
similarity score matrix are formed by the self-attention

mechanism. At this time, the dimension of the similarity
matrix should be 25*25*number of channels [62].

Further, the similarity matrix is embedded and down-
scaled to form a matrix of 25*25*1. In our 25*25*1 matrix,
the ith task’s destination is the ith row, and the maximum
value of the 21st-25th columns is the ith task’s destina-
tion. When multiple tasks are selected to offload to the
same server, the maximum value of the number of rows
of tasks corresponding to that server column in the com-
parison matrix is used as the priority offload, and the
offload solution for 20 tasks is output at once.

In addition, inspired by the successful modeling of opti-
mal state action Q-functions using deep neural networks
[63], we used a double DQN to solve the large-scale network
state space X [13]. Specifically, the Q function expressed in
Eq. (30) is approximated as Q(χ , a) ≈ Q((χ , a); �) , where
(χ , a) ∈ X × Y and � denotes the vector of parameters asso-
ciated with the DQN.During this time, the DQN parameters
� can be learned iteratively rather than finding the optimal Q
function. In the Sat-MEC system we are considering, the SAT-
DRL for stochastic computational scheduling is shown in Fig. 7.

It is assumed that the Sat-MEC server employs a replay
memory of a limited capacity M for storing past experiences
m

j = (χ j , aj ,w(χ j , aj),χ j+1) During the learning process
of SATDRL, the transition between two consecutive deci-
sion epochs j and j + 1 involves the occurrence of events
that are crucial for the system’s experience accumulation.
where (χ j , χ j+1) ∈ X and aj ∈ Y . The collection of

Fig. 7  Our proposed DRL framework in the Sat-MEC scenario

Page 17 of 29Pang et al. Journal of Cloud Computing (2023) 12:159 	

experiences, denoted as Mj =
{
m

j−M+1, . . . ,mj
}
 , repre-

sents the experience pool. The Agent utilizes both a DQN
and a target DQN to optimize its learning process,
Q
(
χ , a; �j

)
 and Q

(
χ , a; �

j
target

)
 , with parameters �j at the

tasks scheduling decision epoch j and �jtarget at a past epoch
before decision epoch j, ∀(χ , a) ∈ X × Y . Based on the
experience replay method proposed by [64], the Agent
employs a strategy known as mini-batch sampling. During
each decision epoch j, the Agent randomly selects a subset
M̃j ⊆ Mj from the historical experience pool Mj to per-
form online training of the DQN. In other words, the
parameters �j are adjusted to minimize the loss function, as
specified by Eq. (33), with the condition that a′ ∈ Y.

The loss function L(SATDRL)(�j) represents the mean-squared
error of the Bellman equation at the tasks scheduling
decision epoch j. It replaces Qj(χ , a) and its correspond-
ing target (1− γ) · w(χ , a)+ γ ·maxa′ Q

j(χ ′, a′) with
Q(χ , a; �j) and (1− γ) · w(χ , a)+ γ · Q(χ ′ , arg maxa′ Q(χ ′ , a′; �j); �

j
target)

 ,
respectively.

By computing the derivative of the loss function
L(SATDRL)(�

j) in relation to the DQN parameters �j , we
can derive the gradient following the expression pre-
sented in Eq. (34). Algorithm 1 provides a comprehensive
overview of the implementation of the SATDRL algo-
rithm by the Agent for the purpose of task scheduling in
our proposed Sat-MEC scenarios.

Algorithm 1 SATDRL algorithm for minimizing average tasks processing time in proposed Sat-MEC framework

(33)L
(
�
j
)
= E

[(
(1− γ) · w(χ , a)+ γ ·Q

(
χ ′, arg max

a′
Q
(
χ ′, a′; �j

)
; �

j
target

)
−Q

(
χ , a; �j

))2
]

(34)∇
j
�
L(�j) = E

[(
(1− γ) · w(χ , a)+ γ · Q(χ ′, arg max

a′
Q(χ ′, a′; �j); �

j
target

)
− Q(χ , a; �j)) · ∇�jQ(χ , (c, e); �j)

]

Page 18 of 29Pang et al. Journal of Cloud Computing (2023) 12:159

Experiment results
Experimental settings
In this section, we will evaluate the performance of our
proposed algorithm, i.e., SATDRL, in the context of task
scheduling. We will also verify the superiority of our
proposed algorithm through various experiments. These
include a convergence analysis, a comparative analysis
with the utility function values of other algorithms, and a
discussion on the offloading ratio θ.

We modeled the LEO satellites and the ground IMDs
environment using Python and modeled the satellite in
STK software. We did this to derive the time-series 3D
coordinates of the satellites and to use them as a vehicle
for the simulation environment, but not to implement the
satellite’s functionality, such as orbital dynamics signal
fading. In the process of simulation, considering that our
approach does not add or change the packet or header
information at the network, there is practically no actual
medium and protocol stack involved, including the delays
brought by the broker approach, such as the time to exe-
cute scheduling decisions, the time for protocol conver-
sion, and the time for data transcoding and classification.
Therefore, we chose to perform the simulation at the
application level without going deeper into the TCP/IP
layers or modifying the underlying network parameters.
The results of generating packet requests using any net-
work do not differ significantly from the reported results,
so we can focus on the scheduling algorithms themselves
and the performance and effectiveness of the scheduling
algorithms at the application level. In the experimental
phase of the simulation, we use the self-attention mecha-
nism to act as a Q-network for extracting the tasks and
Sat-MEC servers characters in the high-dimensional
space for training the SATDRL better.

Within the Sat-MEC scenario, where terrestrial IMDs
generate tasks that can be processed by both local and
Sat-MEC servers co-processing, we default to satellites
in the same or in different orbits that could connect to
the over-the-top satellite via ISL, with other settings as
shown in the System Model and described in the Table 3:
Simulation Parameters. Simultaneously, we consider var-
iations in the offloading rate, denoted as θ , and the num-
ber of IMDs.

To validate the effectiveness and feasibility of our pro-
posed method, we utilized STK software to generate a
comprehensive dataset [65], simulating 636 LEO satel-
lites registered under One-Web LEO satellites. This data-
set spans over a period of 10 hours, presenting geocentric
inertial coordinates within a 3D framework, sampled at a
frequency of 0.05Hz. The bandwidth for satellite-ground
and inter-satellite communications are 20 and 100 MHz,
respectively. ISL links utilize point-beam inter-satellite
antennas, with each satellite equipped with four point

beams to establish inter-satellite links. ISL communi-
cation is carried out through a time division multiple
access system [66]. For satellite to satellite communica-
tion, using a free-space path loss model (citing the pre-
vious free-space loss equation) that models small-scale
fading on Ka-band as Rician fading, we assume that the
expected overall atmospheric fading due to rainfall, gas
fading, cloud fading, and scintillation is 5.2 dB when TST
communicates with an over-the-top satellite [67]. The
polarization loss and antenna misalignment loss are 0.1
and 0.35 dB, respectively [68] (Fig. 8).

The attributes of our tasks and Sat-MEC servers cap-
ture multi-dimensional heterogeneity, which includes
diversity in data size of the tasks, variability in the num-
ber of CPU cycles required for the task computation,
differences in the computational capability of Sat-MEC
servers, heterogeneity in the initial backlog of tasks in
the Sat-MEC server queue, and irregularity in Sat-MEC
temporal information. To address task scheduling deci-
sions in heterogeneous environments, we propose a
DRL-based scheduling decision algorithm to minimize
the average tasks execution time. To demonstrate the
algorithm’s adaptability to diverse data, we set attribute
values within certain boundaries for task and server fea-
ture configurations, as illustrated in the associated table.

For performance comparisons, we simulate three base-
line strategies:

Table 3  Simulation parameters

Parameters Default Values

Ka-band carrier frequency 30GHz

Number of IMDs [10,20,30,40,50,60,70]

Number of Sat-MEC server 5

di [0.2-1]MB

ci [1-4] Gcycles

f m 0.3 Gcycles/s

f s [10-15] Gcycles/s

N0 -174dBm

B0 500MHz

BTST 800MHz

BSat 100MHz

Re 6371Km

�m 5

�Sat 8

θ [0-1]

Replay memory capacities M,N 6000

Mini-batch sizes M 200

Genetic Algorithm’s Population Size 200

Genetic Algorithm’s Number of Generations 2000

Genetic Algorithm’s Crossover Probability 0.5

Genetic Algorithm’s Mutation Probability 0.1

Page 19 of 29Pang et al. Journal of Cloud Computing (2023) 12:159 	

(1) Random Algorithm: When the overhead satellite
receives N tasks at moment t, these tasks are randomly
allocated to S satellites.

(2) Greedy Algorithm: For each task received by the
overhead satellite at moment t, a greedy approach is
employed. Each task is offloaded for computation to the
Sat-MEC server that minimizes its execution time.

(3) GA : Before assigning tasks, a genetic algorithm is
run to ascertain the optimal solution for task-to-service
offloading within a certain number of iterations. Key
parameters illustrate as Table 3.

Experiment analysis
In this subsection, we undertake a comprehensive explo-
ration of our proposed algorithm through experiments
conducted under diverse settings, aiming to corrobo-
rate its effectiveness. We commence this section with
an examination of the convergence performance of the

algorithms, providing an insight into their stability and
reliability. Subsequently, we delve into a comparative
study where the merits of DRL are juxtaposed against
three baseline algorithms. This comparison seeks to
underscore the disparities in the performance of each
algorithm concerning task scheduling. A meticulous dis-
cussion and analysis will follow, shedding light on the
intricacies and nuances of each algorithm’s operation and
outcomes.

Convergence performance
This experiment aims to verify the convergence of our
proposed algorithm, SATDRL, for task scheduling in the
Sat-MEC scenarios. Our proposed algorithm’s conver-
gence performance is demonstrated in Figs. 9 and 10 when
the offloading ratio θ is 0.5 and the number of IMDs is 50.
which also illustrates the change in the reward and loss
functions as the training epochs increase in our proposed

Fig. 8  Modeling of 636 LEO satellites under OneWeb satellite with STK

Page 20 of 29Pang et al. Journal of Cloud Computing (2023) 12:159

Fig. 9  The reward of the proposed algorithm (SATDRL)

Fig. 10  The loss of the proposed scheduling algorithm (SATDRL)

Page 21 of 29Pang et al. Journal of Cloud Computing (2023) 12:159 	

algorithm. We also used an envelope to illustrate the mag-
nitude of oscillation during the algorithm’s convergence. It
was discovered that the algorithm’s oscillation amplitude is
quite significant. This is due to the heterogeneity of tasks
and servers in our environment: the heterogeneity of task
data sizes, the number of CPU cycles required for comput-
ing tasks, the computing capability of Sat-MEC servers, and
the initial task computation queues in the Sat-MEC server.
The high-dimensional and unstable state space in our envi-
ronment leading to algorithm convergence and oscillations
post-convergence difficulties. In addition to the complex-
ity of the characteristics of the data itself that makes it dif-
ficult for the model to converge, we have two more obvious
loss decreases occurring for what the convergence image
shows,which we explain to the readers below:

1. The initial convergence means that the model found
a relatively good strategy at this stage, similar to the
greedy approach, which only considers the matching
relationship between tasks and servers and does not learn
the effect of the task scheduling sequence on the sched-
uling result. But then, when exploring the state space
more deeply, the model enters a re-exploration, gradually
avoiding the idea of local optimality of the greedy algo-
rithm, leading to a rise in loss.

2. The self-attention mechanism as the Q-network of
DDQN in DRL. In the beginning, when the weights of
self-attention are randomized, the model may perform

relatively well in the early stage because it only relies on
the local characteristics of the loss function for optimiza-
tion and inevitably falls into the local optimum. However,
as training progresses, there may be a period of oscilla-
tion as the model begins to adjust these weights to cap-
ture more complex scheduling patterns. Following this, it
takes enough training for the weights to gradually stabi-
lize, leading to a quadratic decrease in loss.

3. The DDQN approach for training, and although
DDQN is more stable than traditional DQN, it may still
oscillate in high-dimensional dynamic space environments.
When the model converges initially, it is based on the exist-
ing knowledge the target network provides. However, as
the target network is updated, the policy may be revised
with the new knowledge, resulting in a transient rise in loss.

The above reasons are unavoidable, and no algorithm
can search for the global optimum in a high-dimensional
dynamic environment and have good convergence per-
formance. Our goal in combining the self-attention
mechanism and DRL approach is to expand the model’s
generalization ability, try to avoid overfitting the model,
and learn a deeper scheduling strategy.

SATDRL algorithm performance
Figure 11 shows the impact of varying numbers of IMDs
on various algorithms when the offloading ratio θ is 0.5.

Fig. 11  The effection of the change in the number of IMDs on the average tasks processing time

Page 22 of 29Pang et al. Journal of Cloud Computing (2023) 12:159

We can observe that when the number of IMDs is rela-
tively small (10, 20), there is not a significant difference
between the greedy algorithm, the GA, and the algorithm
we proposed. This situation is largely because the GA
based on pseudo-random range searching, is highly likely
to find reasonably good sub-optimal solutions when the
solution space isn’t particularly large. As for the greedy
algorithm, under circumstances with fewer tasks, the
offloading algorithm generated through the greedy strat-
egy can sometimes provide a satisfactory sub-optimal
solution.

As the number of IMDs increases and the solution
space grows rapidly, the DRL-based task scheduling
algorithm, which can still find high-quality solutions in
a high-dimensional space, outperforms the other three
methods at all times, and as the problem characteristic
dimension grows, DRL demonstrates its advantage even
more. In addition, we can observe an interesting state
from Fig. 11, the solution quality of the greedy algo-
rithm starts to outperform the genetic algorithm when
the number of IMDs is greater than 60. According to our
analysis, we believe that this situation is rooted in the fact
that the two algorithms are different in their nature. The
swarm intelligence algorithms, like GA, need to set more
hyper-parameters in high-dimensional spaces to increase
their explore-ability, especially in dynamically chang-
ing environments, while the greedy algorithm has been
based on the idea of greedy strategy, although in higher
dimensional spaces, its greedy strategy can also guaran-
tee a lower bound on the solution.

Next, we illustrate the distribution of solutions for dif-
ferent numbers of IMDs.

As depicted in Fig. 12, the boxplot represents the dis-
tribution of average task processing time following
scheduling under various algorithmic strategies, with
an offloading rate of 0.5 and a variable number of IMDs.
The boxplot shows the maximum, upper quarter, median,
lower quarter, and minimum values from top to bottom.

Additionally, the small hollow square within the box-
plot represents the mean value of the data. It is not hard
to find out that when the number of IMD is 10, 20, and
30, there is almost no difference between the perfor-
mance of our algorithm and the greedy algorithm, GA,
compared to the pride, and those three scheduling algo-
rithms are able to provide good scheduling solutions.
However, as the number of IMDs increase, the GA and
the greedy algorithm have difficulty in searching for
the optimal solution in the high-dimensional solution
space. At this time, our SATDRL scheduling algorithm
still provides a high-quality scheduling solution. In addi-
tion, the box-and-line diagram can show the quality of
the scheduling scheme and the degree of discretization
of the solution. In Fig. 12, it is obviously that the quality

of our proposed SATDRL scheduling scheme is the best
compared to the other three schemes, and the degree of
discretization of the solution is about the same as that of
the greedy algorithm, which indicates that our proposed
scheduling algorithm can output high-quality scheduling
solution with greater accuracy.

Also, we found that the greedy algorithm outperforms
the genetic algorithm when the number of IMDs exceeds
60. In the face of high-dimensional dynamic solution
space, the GA must adjust or add its hyper-parameter
to adapt. The greedy algorithm, by pursuing local opti-
mization, ensures to some extent the quality of the over-
all solution. The DRL scheduling algorithm relies on a
large amount of training data, extensive computational
resources, and model training time to have strong explor-
atory capability in the high-dimensional dynamic space
to find a high-quality solution.

Under we proposed the Sat-MEC scenario, the effec-
tiveness of terrestrial IMDs often depends on geographi-
cal factors. The specific geographical context in which
these devices are located leads to different performance
levels and constraints. We use the offload rate to meas-
ure IMD’s computational power and electricity. In certain
instances where the over-the-top satellite communicates
with TST, in situations such as the interruption of ground
communication, power failures, or the emergence of
urgent circumstances, terrestrial IMDs are relegated to
processing minimal tasks or not processing any tasks at
all. Figure 13 delineates our experimentation with diverse
θ values. When θ equals 0, all tasks are executed locally,
while with θ equal to 1, all tasks are subjected to offload-
ing for execution. Figure 13 illustrates the average pro-
cessing time of the task as a function of the unloading
rate when the number of IMDs is 10, 20, 30, 40, 50, 60
and 70. As well as demonstrates the performance com-
parison of our proposed SATDRL with GA, Greedy Algo-
rithm, and Randomized Algorithm.

Figure 13 illustrates that the change of the result with
different offloading ratio from 0.3-0.7 when we keep the
number of IMDs at average. More specifically, we show
the differences in results produced by changes in offload-
ing rates for different numbers of IMDs in Fig. 14.

As Fig. 14 illustrates, in the scenarios characterized
by varying IMD quantities, the increase in the offload-
ing ratio significantly reduces the average task process-
ing duration. However, as the offloading ratio continues
its ascent, the task processing duration in the satellite
begins to surpass that of the terrestrial counterparts. It
can be observed that the average processing time for fully
offloaded tasks is shorter than that for tasks executed
entirely locally. Nevertheless, with the increasing number
of IMDs, the average computational time within the sat-
ellite also increases.

Page 23 of 29Pang et al. Journal of Cloud Computing (2023) 12:159 	

Fig. 12  The effection of different number of IMDs on average tasks processing time

Page 24 of 29Pang et al. Journal of Cloud Computing (2023) 12:159

By observing Fig. 14, we can easily find that when the
number of IMDs increases to a certain number (50, 60,
70), the feature space of tasks and servers also increases,
which makes it difficult for the GA to effectively search
for the optimal scheduling scheme within the high-
dimensional feature space. In contrast, the greedy algo-
rithm, relying on its local optimal strategy, can guarantee
the lower bound of the scheduling scheme and exceeds
the GA when the number of IMDs is 60 and 70. In the
face of the high-dimensional dynamic solution space, the
GA may need to artificially set more hyper-parameters to
increase the searching capability of its algorithm in the
solution space. it’s worth noting that, in our work, it is
not inferred that swarm intelligence algorithms, such as
GA and PSO, cannot solve the problem in high dimen-
sional space. Because in our baseline algorithms, we are
not adding specific parameters to GA for the scenario
of this problem. We believe that algorithms, such as GA
and PSO, can theoretically achieve the same performance
as DRL by analyzing the characteristics of a particular
scene, adding specific hyper-parameters, and training on
the hyper-parameters.

Our proposed SATDRL algorithm demonstrates
remarkable exploration performance in high dimen-
sional dynamic environments, especially as the offloading
rate varies. Our simulations and experiments, which are

primarily conducted at the application level, found that
the SATDRL maintains robust adaptability and superi-
ority compared to the other three scheduling decisions
within the Sat-MEC environment. It’s noteworthy that
our scheduling algorithms do not account for the actual
medium and protocol stack, and we have not made alter-
ations or modifications to the TCP/IP layers to ascertain
the impact of our approach. Furthermore, our simula-
tor does not employ precise network parameters, which
means that the outcomes of our experiments are inde-
pendent of the nuances introduced by generating packet
requests in any specific network environment. Hence,
while our primary objective is to identify a competent
scheduling approach at the application layer, there is an
implicit indication that the DRL strategy might exhibit
commendable stability across the broader network
context.

When using the DRL approach to solve the task off-
loading or scheduling problem in industrial environ-
ments, first, we model the environment encapsulating
these devices and their interconnected landscape. In this
context, states might encompass aspects like the device’s
battery level, the quality of network connectivity, and the
queue of pending tasks. Informed by these states, the
DRL agent then determines the optimal execution strat-
egy for tasks: either processing them locally on the device

Fig. 13  The effection of different offloading rates (0.3-0.7) in keeping the number of IMDs at average on the average tasks processing time

Page 25 of 29Pang et al. Journal of Cloud Computing (2023) 12:159 	

Fig. 14  The effection of offloading ratio θ on each algorithm for different number of IMDs

Page 26 of 29Pang et al. Journal of Cloud Computing (2023) 12:159

or offloading them to adjacent IoT devices or central-
ized servers. This decision-making is driven by a reward
mechanism meticulously designed around metrics like
task completion speed, energy consumption, and task
accuracy. Reward can be designed based on the speed
of task completion, energy consumption, and task accu-
racy. For example, fast task completion and low energy
consumption may be rewarded positively, while incorrect
task processing or delays may be rewarded negatively.
By adopting DRL algorithms such as DQN or PPO, we
then train and evaluate these models using either real-
world or simulated datasets. These trained models can
be deployed upon rigorous validation onto IoT devices,
guiding them in real-time task offloading or schedul-
ing decisions. Given IoT devices inherent resource con-
straints, optimizing the model computational footprint
is imperative, potentially through techniques like model
compression or employing domain-specific neural archi-
tectures. By adhering to this paradigm, we could ensure
the judicious use of resources and pave the way for a
more resilient and adaptive industrial IoT ecosystem.

Conclusion
In our work, we consider the scenarios of Sat-MEC sys-
tem, where MEC servers are equipped on LEO satellites.
The tasks generated by IMDs can be executed locally or
offloaded to the Sat-MEC servers. In order to reduce the
average task processing time, we emphasize the design
of a task scheduling algorithm. This algorithm considers
heterogeneity in the data size and the number of CPU
cycles required for task computation generated by IMDs,
the Sat-MEC server computational capability, and the
task queue state of Sat-MEC servers. The task computa-
tion scheduling problem is formalized as a MDP. Further,
we propose an online computational scheduling algo-
rithm based on double DQN, wherein a self-attention
mechanism is the Q-network, named SATDRL.

Our scheduling algorithm aims to approximate the
optimal scheduling decision. After our simulations at
the application level, compared to the three benchmark
algorithms, our proposed algorithm can rely on a large
amount of training data and extensive computational
resources in an environment of constant interaction and
trial and error, depending on the network depth and
numerous parameters, so that it can learn a better sched-
uling strategy in a complex and dynamic environment
than other three methods, our simulation experiments
demonstrate that SATDRL reduces the average task pro-
cessing time by 22.1% , 30.6% , and 41.3% , compared to the
GA, the greedy algorithm, and the random algorithm,
respectively.

DRL stands out due to its exceptional adaptability
to dynamic environments and its capacity for abstract

generalization in the context of task offloading within
IoT fog computing networks. However, computational
intensity and reliance on substantial-high-quality train-
ing data may restrict its applicability in real-time or
resource-limited scenarios. In contrast, Swarm intelli-
gence algorithms offer computational efficiency and ease
of implementation, typically providing rapid solutions.
However, they may encounter challenges related to local
optima and may not to adapt to rapidly changing envi-
ronments as fluidly as DRL. DRL is more suitable for
complex and dynamic task offloading or scheduling prob-
lem, where large amounts of training data and computa-
tional resources are available. On the other hand, Swarm
intelligence algorithms may be a more efficient choice for
more straightforward problems or resource-constrained
environments. The decision to choose between DRL and
Swarm intelligence algorithms is based on considerations
of computational resources, response time requirements,
and environmental dynamism.

When using the DRL approach to solve the task off-
loading or scheduling problem in industrial environ-
ments, first, we model the environment encapsulating
these devices and their interconnected landscape. In this
context, states might encompass aspects like the device’s
battery level, the quality of network connectivity, and the
queue of pending tasks. Informed by these states, the
DRL agent then determines the optimal execution strat-
egy for tasks: either processing them locally on the device
or offloading them to adjacent IoT devices or central-
ized servers. This decision-making is driven by a reward
mechanism meticulously designed around metrics like
task completion speed, energy consumption, and task
accuracy. Rewards can be designed based on the speed
of task completion, energy consumption, and task accu-
racy. For example, fast task completion and low energy
consumption may be rewarded positively, while incorrect
task processing or delays may be rewarded negatively.
By adopting DRL algorithms such as DQN or PPO, we
then train and evaluate these models using either real-
world or simulated datasets. These trained models can
be deployed upon rigorous validation onto IoT devices,
guiding them in real-time task offloading or schedul-
ing decisions. Given IoT devices inherent resource con-
straints, optimizing the model computational footprint
is imperative, potentially through techniques like model
compression or employing domain-specific neural archi-
tectures. By adhering to this paradigm, we could ensure
the judicious use of resources and pave the way for a
more resilient and adaptive industrial IoT ecosystem.

Although DRL has good exploration ability in high
dimensional dynamic environments and has found
quality solutions to achieve the method of minimizing
the task execution time, there are still many issues that

Page 27 of 29Pang et al. Journal of Cloud Computing (2023) 12:159 	

we need to continue to discuss and study in our future
research.

1. For the study of the energy consumption of LEO sat-
ellites, with the development of the LEO satellite constel-
lation, the energy of LEO satellites is mainly obtained by
solar energy, so data processing on the Sat-MEC servers’
resource pool must consider both the residual energy of
LEO satellites and computational resources.

2. Regarding the examination of task queues, a por-
tion of existing research takes into account task priority
and life-critical tasks, while another portion overlooks
the consideration of task priority. However, integrating
task priority is an imperative trajectory for forthcoming
research endeavors, as it can exemplify the actual envi-
ronment with notable fidelity. In our subsequent work,
we intend to incorporate considerations of task prior-
ity to render our scenarios more reflective of real-world
conditions, thereby enhancing the realism and applica-
bility of our research outcomes.

3. In light of the discussed research, our other objective
is to investigate optimal solutions in cloud computing
capability in scheduling, especially considering the con-
straints experienced at the IMD and LEO satellite levels.
When faced with such conditions, Our future work will
explore avenues where tasks can be strategically relayed
to ground-based cloud stations with robust computing
capabilities, utilizing LEO satellite constellations. We
will sharpen efficient routing algorithms for LEO satellite
constellations, which will involve meticulously exploring
the delicate balance between resource utilization, com-
putational efficiency, and data transfer latency. We aim
to construct adaptable and resilient models capable of
efficiently operating within environments with limited
computational resources. By refining the interaction
between terrestrial stations and satellite constellations,
endeavor to optimize both task executions and the over-
all performance of the system.

4.In our simulation experiments, we have considered
more strategies for fine-grained task scheduling and
verified them at the application level, however, consid-
ering the maturity of LEO satellite technology and the
further development of cloud computing technology in
the future, we will propose more comprehensive mod-
eling environments to adapt to the changes in the types
of tasks, as well as the realism and comprehensiveness
of the communication links in our subsequent work.

Acknowledgements
The authors are very grateful to all those who contributed to this study in any
capacity and who have contributed to the objective of this study.

Authors’ contributions
Shanchen Pang, Jianyang Zheng wrote the main manuscript text and Min
Wang, Sibo Qiao prepare Figs. 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10. Xiao He, Changnan
Gao prepared Figs. 11, 12 and 13. All authors reviewed the manuscript.

Funding
The authors received no specific funding for this study.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
We confirm that our research does not involves a survey asking real human
participants to give opinions, or animals data to make.

Competing interests
The authors declare no competing interests.

Received: 8 July 2023 Accepted: 31 October 2023

References
	1.	 Qian L, Luo Z, Du Y, Guo L (2009) Cloud computing: An overview. In:

Cloud Computing: First International Conference, CloudCom 2009,
Beijing, China, December 1-4, 2009. Proceedings 1, Springer, pp 626–631

	2.	 Yi S, Li C, Li Q (2015) A Survey of Fog Computing: Concepts, Applications
and Issues. In Proceedings of the 2015 Workshop on Mobile Big Data (Mobi-
data ’15). Association for Computing Machinery, New York, 37–42. https://​
doi.​org/​10.​1145/​27573​84.​27573​97

	3.	 Shi W, Dustdar S (2016) The promise of edge computing. Computer
49(5):78–81

	4.	 Qi Q, Tao F (2019) A smart manufacturing service system based on
edge computing, fog computing, and cloud computing. IEEE Access
7:86769–86777

	5.	 Dao NN, Pham QV, Tu NH, Thanh TT, Bao VNQ, Lakew DS, Cho S (2021)
Survey on aerial radio access networks: Toward a comprehensive 6g
access infrastructure. IEEE Commun Surv Tutor 23(2):1193–1225

	6.	 Shakarami A, Ghobaei-Arani M, Shahidinejad A (2020) A survey on the
computation offloading approaches in mobile edge computing: A
machine learning-based perspective. Comput Netw 182(107):496

	7.	 Shakarami A, Shahidinejad A, Ghobaei-Arani M (2020) A review on the
computation offloading approaches in mobile edge computing: A g
ame-theoretic perspective. Softw Pract Experience 50(9):1719–1759

	8.	 Shakarami A, Ghobaei-Arani M, Masdari M, Hosseinzadeh M (2020) A
survey on the computation offloading approaches in mobile edge/cloud
computing environment: a stochastic-based perspective. J Grid Comput
18:639–671

	9.	 Usha Nandini D, Leni ES (2019) Efficient shadow detection by using PSO
segmentation and region-based boundary detection technique. J Super-
comput 75:3522–3533

	10.	 Das TK, Gosavi A, Mahadevan S, Marchalleck N (1999) Solving semi-
Markov decision problems using average reward reinforcement learning.
Manag Sci 45(4):560–574

	11.	 Kaelbling LP, Littman ML, Moore AW (1996) Reinforcement learning: A
survey. J Artif Intell Res 4:237–285

	12.	 Shakarami A, Shahidinejad A, Ghobaei-Arani M (2021) An autonomous
computation offloading strategy in mobile edge computing: a deep
learning-based hybrid approach. J Netw Comput Appl 178:102974

	13.	 van Hasselt H, Guez A, Silver D (2016) Deep Reinforcement Learning with
Double Q-Learning. Proceedings of the AAAI Conference on Artificial
Intelligence 30(1). https://​doi.​org/​10.​1609/​aaai.​v30i1.​10295

	14.	 Imambi S, Prakash KB, Kanagachidambaresan GR (2021) PyTorch[J]. Pro-
gramming with TensorFlow: Solution for Edge Computing Applications
87–104. https://​doi.​org/​10.​1007/​978-3-​030-​57077-4_​10

	15.	 Wang Y, Yang J, Guo X, Qu Z (2019) A game-theoretic approach to
computation offloading in satellite edge computing. IEEE Access
8:12510–12520

	16.	 Li C, Zhang Y, Hao X, Huang T (2020) Jointly optimized request dispatch-
ing and service placement for MEC in LEO network. China Commun
17(8):199–208

https://doi.org/10.1145/2757384.2757397
https://doi.org/10.1145/2757384.2757397
https://doi.org/10.1609/aaai.v30i1.10295
https://doi.org/10.1007/978-3-030-57077-4_10

Page 28 of 29Pang et al. Journal of Cloud Computing (2023) 12:159

	17.	 Wang H, Han J, Cao S, Zhang X (2021) Computation offloading strategy
of multi-satellite cooperative tasks based on genetic algorithm in satellite
edge computing. In: 2021 International Conference on Space-Air-Ground
Computing (SAGC), IEEE, pp 22–28

	18.	 Tang Q, Fei Z, Li B, Han Z (2021) Computation offloading in LEO satellite
networks with hybrid cloud and edge computing. IEEE Internet Things J
8(11):9164–9176

	19.	 Zhu D, Liu H, Li T, Sun J, Liang J, Zhang H, Geng L, Liu Y (2021) Deep
reinforcement learning-based task offloading in satellite-terrestrial edge
computing networks. In: 2021 IEEE Wireless Communications and Net-
working Conference (WCNC), IEEE, pp 1–7

	20.	 Yu S, Gong X, Shi Q, Wang X, Chen X (2021) EC-SAGINs: Edge-comput-
ing-enhanced space-air-ground-integrated networks for internet of
vehicles. IEEE Internet Things J 9(8):5742–5754

	21.	 Mao S, He S, Wu J (2020) Joint UAV position optimization and resource
scheduling in space-air-ground integrated networks with mixed cloud-
edge computing. IEEE Syst J 15(3):3992–4002

	22.	 Cassará P, Gotta A, Marchese M, Patrone F (2022) Orbital edge offload-
ing on mega-LEO satellite constellations for equal access to comput-
ing. IEEE Commun Mag 60(4):32–36

	23.	 He Y, Ren J, Yu G, Cai Y (2019) Joint computation offloading and
resource allocation in d2d enabled mec networks. In: ICC 2019-2019
IEEE International Conference on Communications (ICC), IEEE, pp 1–6

	24.	 Seng S, Li X, Luo C, Ji H, Zhang H (2019) A d2d-assisted MEC computa-
tion offloading in the blockchain-based framework for UDNs. In: ICC
2019 - 2019 IEEE International Conference on Communications (ICC),
pp 1–6. https://​doi.​org/​10.​1109/​ICC.​2019.​87620​23

	25.	 Zang S, Bao W, Yeoh PL, Vucetic B, Li Y (2023) Soar: Smart online aggregated
reservation for mobile edge computing brokerage services. IEEE Trans Mob
Comput 22(1):527–540. https://​doi.​org/​10.​1109/​TMC.​2021.​30759​47

	26.	 Zhang Y, Chen C, Liu L, Lan D, Jiang H, Wan S (2022) Aerial edge com-
puting on orbit: A task offloading and allocation scheme. IEEE Trans
Netw Sci Eng 10(1):275–285

	27.	 Chai F, Zhang Q, Yao H, Xin X, Gao R, Guizani M (2023) Joint Multi-Task
Offloading and Resource Allocation for Mobile Edge Computing Sys-
tems in Satellite IoT. IEEE Trans Veh Technol 72(6):7783–7795. https://​
doi.​org/​10.​1109/​TVT.​2023.​32387​71

	28.	 Liu J, Zhao X, Qin P, Geng S, Meng S (2021) Joint dynamic task offload-
ing and resource scheduling for WPT enabled space-air-ground power
internet of things. IEEE Trans Netw Sci Eng 9(2):660–677

	29.	 Hussein MK, Mousa MH (2020) Efficient task offloading for IoT-based
applications in fog computing using ant colony optimization. IEEE
Access 8:37191–37201

	30.	 Javanmardi S, Shojafar M, Persico V, Pescapè A (2021) FPFTS: A joint
fuzzy particle swarm optimization mobility-aware approach to fog task
scheduling algorithm for internet of things devices. Softw Pract Experi-
ence 51(12):2519–2539

	31.	 Zhang X et al. Energy-Efficient Computation Peer Offloading in Satellite
Edge Computing Networks. IEEE Trans Mob Comput. https://​doi.​org/​
10.​1109/​TMC.​2023.​32698​01

	32.	 Matrouk KM, Matrouk AD (2023) Mobility aware-task scheduling and
virtual fog for offloading in IoT-fog-cloud environment. Wirel Pers Com-
mun 130(2):801–836

	33.	 Chen J, Xing H, Xiao Z, Xu L, Tao T (2021) A DRL agent for jointly opti-
mizing computation offloading and resource allocation in MEC. IEEE
Internet Things J 8(24):17508–17524

	34.	 Seid AM, Boateng GO, Anokye S, Kwantwi T, Sun G, Liu G (2021)
Collaborative computation offloading and resource allocation in multi-
UAV-assisted IoT networks: A deep reinforcement learning approach.
IEEE Internet Things J 8(15):12203–12218

	35.	 Zheng F, Pi Z, Zhou Z, Wang K (2020) Leo satellite channel allocation
scheme based on reinforcement learning. Mob Inf Syst 2020:1–10

	36.	 Liu L, Chang Z, Guo X, Ristaniemi T (2017) Multi-objective optimization
for computation offloading in mobile-edge computing. In: 2017 IEEE
symposium on computers and communications (ISCC), IEEE, pp 832–837

	37.	 Li W, Jin S (2021) Performance evaluation and optimization of a task
offloading strategy on the mobile edge computing with edge hetero-
geneity. J Supercomput 77(11):12486–12507

	38.	 Chen S, Li Q, Zhou M, Abusorrah A (2021) Recent advances in collabo-
rative scheduling of computing tasks in an edge computing paradigm.
Sensors 21(3):779

	39.	 Sharif Z, Jung LT, Ayaz M, Yahya M, Pitafi S (2023) Priority-based task
scheduling and resource allocation in edge computing for health
monitoring system. J King Saud Univ-Comput Inf Sci 35(2):544–559

	40.	 Zhou W et al (2023) Priority-Aware Resource Scheduling for UAV-
Mounted Mobile Edge Computing Networks. IEEE Trans Veh Tech-
nol 72(7):9682–9687. https://​doi.​org/​10.​1109/​TVT.​2023.​32474​31

	41.	 Guo Y, Zhao R, Lai S, Fan L, Lei X, Karagiannidis GK (2022) Distributed
machine learning for multiuser mobile edge computing systems. IEEE J
Sel Top Signal Process 16(3):460–473

	42.	 Wang H, An J, Zhou H (2023) Task assignment strategy in LEO-muti-
access edge computing based on matching game. Computing
105:1571–1596. https://​doi.​org/​10.​1007/​s00607-​023-​01151-3

	43.	 Jain V, Kumar B (2023) Qos-aware task offloading in fog environment
using multi-agent deep reinforcement learning. J Netw Syst Manag
31(1):7

	44.	 Diao X, Zheng J, Cai Y, Wu Y, Anpalagan A (2019) Fair data allocation
and trajectory optimization for UAV-assisted mobile edge computing.
IEEE Commun Lett 23(12):2357–2361

	45.	 Pang S, He X, Yu S, Wang M, Qiao S, Gui H, Qi Y (2023) A Stackelberg
game scheme for pricing and task offloading based on idle node-
assisted edge computational model. Simul Model Pract Theory
124(102):725

	46.	 Zeng F, Chen Y, Yao L, Wu J (2021) A novel reputation incentive mecha-
nism and game theory analysis for service caching in software-defined
vehicle edge computing. Peer Peer Netw Appl 14:467–481

	47.	 Wei F, Chen S, Zou W (2018) A greedy algorithm for task offloading in
mobile edge computing system. China Commun 15(11):149–157

	48.	 Fan Y, Wang L, Wu W, Du D (2021) Cloud/edge computing resource
allocation and pricing for mobile blockchain: an iterative greedy and
search approach. IEEE Trans Comput Soc Syst 8(2):451–463

	49.	 Zhang N, Guo S, Dong Y, Liu D (2020) Joint task offloading and
data caching in mobile edge computing networks. Comput Netw
182:107446

	50.	 Phillips C, Sicker D, Grunwald D (2012) A survey of wireless path loss
prediction and coverage mapping methods. IEEE Commun Surv Tutor
15(1):255–270

	51.	 Tang Z, Zhou H, Ma T, Yu K, Shen XS (2021) Leveraging LEO assisted
cloud-edge collaboration for energy efficient computation offloading.
In: 2021 IEEE Global Communications Conference (GLOBECOM), IEEE,
pp 1–6

	52.	 Di B, Zhang H, Song L, Li Y, Li GY (2018) Ultra-dense LEO: Integrating
terrestrial-satellite networks into 5g and beyond for data offloading.
IEEE Trans Wirel Commun 18(1):47–62

	53.	 Zhou Y, Jj Yang, Huang Z (2020) Automatic design of scheduling poli-
cies for dynamic flexible job shop scheduling via surrogate-assisted
cooperative co-evolution genetic programming. Int J Prod Res
58(9):2561–2580

	54.	 Zhang S, Liu A, Han C, Liang X, Xu X, Wang G. Multi-agent Reinforce-
ment Learning-Based Orbital Edge Offloading in SAGIN Supporting
Internet of Remote Things. IEEE Internet Things J. https://​doi.​org/​10.​
1109/​JIOT.​2023.​32877​37

	55.	 Zhou C, Wu W, He H, Yang P, Lyu F, Cheng N, Shen X (2020) Deep
reinforcement learning for delay-oriented IoT task scheduling in SAGIN.
IEEE Trans Wirel Commun 20(2):911–925

	56.	 Liu Y, Jiang L, Qi Q, Xie K, Xie S. Online Computation Offloading for
Collaborative Space/Aerial-Aided Edge Computing Toward 6G Sys-
tem. IEEE Trans Veh Technol. https://​doi.​org/​10.​1109/​TVT.​2023.​33126​76

	57.	 Liao H, Wang Z, Zhou Z, Wang Y, Zhang H, Mumtaz S, Guizani M (2021)
Blockchain and semi-distributed learning-based secure and low-
latency computation offloading in space-air-ground-integrated power
IoT. IEEE J Sel Top Signal Process 16(3):381–394

	58.	 Li W, Yang T, Delicato FC, Pires PF, Tari Z, Khan SU, Zomaya AY (2018)
On enabling sustainable edge computing with renewable energy
resources. IEEE Commun Mag 56(5):94–101

	59.	 Li S, Huang J (2017) Energy efficient resource management and task
scheduling for IoT services in edge computing paradigm. In: 2017 IEEE
International Symposium on Parallel and Distributed Processing with
Applications and 2017 IEEE International Conference on Ubiquitous
Computing and Communications (ISPA/IUCC), IEEE, pp 846–851

	60.	 Bardi M, Dolcetta IC et al (1997) Optimal control and viscosity solutions
of Hamilton-Jacobi-Bellman equations, vol 12. Springer

https://doi.org/10.1109/ICC.2019.8762023
https://doi.org/10.1109/TMC.2021.3075947
https://doi.org/10.1109/TVT.2023.3238771
https://doi.org/10.1109/TVT.2023.3238771
https://doi.org/10.1109/TMC.2023.3269801
https://doi.org/10.1109/TMC.2023.3269801
https://doi.org/10.1109/TVT.2023.3247431
https://doi.org/10.1007/s00607-023-01151-3
https://doi.org/10.1109/JIOT.2023.3287737
https://doi.org/10.1109/JIOT.2023.3287737
https://doi.org/10.1109/TVT.2023.3312676

Page 29 of 29Pang et al. Journal of Cloud Computing (2023) 12:159 	

	61.	 Sutton RS, Barto AG (1998) Reinforcement learning: an introduction,
vol 22447. MIT press, Cambridge

	62.	 Zhang X, Wang G, Meng X, Wang S, Zhang Y, Rodriguez-Paton A, Wang
J, Wang X (2022) Molormer: a lightweight self-attention-based method
focused on spatial structure of molecular graph for drug–drug interac-
tions prediction. Brief Bioinform 23(5):bbac296

	63.	 Mnih V, Kavukcuoglu K, Silver D, Rusu AA, Veness J, Bellemare
MG, Graves A, Riedmiller M, Fidjeland AK, Ostrovski G et al (2015)
Human-level control through deep reinforcement learning. Nature
518(7540):529–533

	64.	 Lin LJ (1992) Reinforcement learning for robots using neural networks.
Carnegie Mellon University

	65.	 Version SUM (2000) 4.2. 1 for pcs. Analytical Graphics, INC (AGI)
	66.	 Rajan JA (2002) Highlights of GPS II-R Autonomous Navigation.

Proceedings of the 58th Annual Meeting of The Institute of Navigation
and CIGTF 21st Guidance Test Symposium (2002), Albuquerque, NM,
pp. 354–363

	67.	 Petranovich J (2012) Mitigating the effect of weather on ka-band high-
capacity satellites. ViaSat Inc, Carlsbad

	68.	 Saeed N, Elzanaty A, Almorad H, Dahrouj H, Al-Naffouri TY, Alouini MS
(2020) Cubesat communications: Recent advances and future challenges.
IEEE Commun Surv Tutor 22(3):1839–1862

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	Minimize average tasks processing time in satellite mobile edge computing systems via a deep reinforcement learning method
	Abstract
	Introduction
	Related works
	System model and problem description
	Communication model
	Line-of-sight visibility
	Transmission power passability
	Data transmission model

	Task queue model
	Task computing model
	Local computing:
	Sat-MEC computing:

	Problem description

	Methods
	State space
	Action space
	Computation task scheduling

	Experiment results
	Experimental settings
	Experiment analysis
	Convergence performance
	SATDRL algorithm performance

	Conclusion
	Acknowledgements
	References

