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Abstract 

Driven by the successful service model and growing demand, cloud computing has evolved from a moderate-sized 
data center consisting of homogeneous resources to a heterogeneous hyper-scale computing ecosystem. This 
evolution has made the modern cloud environment increasingly complex. Large-scale empirical studies of essential 
concepts such as resource allocation, virtual machine migration, and operational cost reduction have typically been 
conducted using simulations. This paper presents an agent-based cloud simulation model for resource management. 
The focus is on how service placement strategies, service migration, and server consolidation affect the overall perfor-
mance of homogeneous and heterogeneous clouds, in terms of energy consumption, resource utilization, and viola-
tion of service-level agreements. The main cloud elements are modeled as autonomous agents whose properties are 
encapsulated. The complex relationships between components are realized through asynchronous agent-to-agent 
interactions. Operating states and statistics are displayed in real time. In the evaluation, the efficiency of the simulator 
is studied empirically. The performance of various resource management algorithms is assessed using statistical meth-
ods, and the accuracy of server energy consumption models is examined. The results show that agent-based models 
can accurately reflect cloud status at a fine-grained level.
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Introduction
The widespread adoption of cloud services and the 
advancement of cloud-enabling technologies have driven 
the development of cloud computing into a heteroge-
neous hyper-scale computing ecosystem, and with it, 
reducing operational costs and improving user experi-
ence have become two of the most concerning aspects 
for cloud service providers. Software-based solutions 
typically focus on developing and applying optimization 
algorithms to address specific system objectives, such as 
minimizing energy consumption, maximizing resource 
utilization, and preventing violations of service-level 
agreements. These objectives are often formulated as 

multi-objective optimization problems. Experiments and 
evaluations in production environments can be challeng-
ing for current software-based solutions. Instead, cloud 
resource management studies have primarily been con-
ducted using simulators or analytical methods.

Current simulation methods used in cloud resource 
management span a range of abstraction levels, including 
system dynamic modeling, agent-based modeling, and 
discrete-event modeling [1]. System dynamic modeling 
is considered a strategic method suitable for simulating 
macro-level phenomena in social networks, economies, 
and ecosystems. In contrast, discrete-event simulation 
deals with detailed models where the state of the system 
changes when an event occurs (i.e., next-event temporal 
advance approach) or at a fixed interval (fixed-increment 
temporal advance approach) [2]. Several modern cloud 
simulators such as CloudSim [3] and CloudSim Plus [4], 
are implementations of discrete-event models. Despite 
this complexity, creating viable cloud models remains 

*Correspondence:
Dapeng Dong
Dapeng.Dong@xjtlu.edu.cn; Dapeng.Dong@liverpool.ac.uk
1 Department of Communications and Networking, Xi’an Jiaotong-
Liverpool University, Suzhou, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00540-5&domain=pdf


Page 2 of 24Dong  Journal of Cloud Computing          (2023) 12:156 

crucial for the success of any simulation. As abstract rep-
resentations of actual systems, these models can only 
provide approximations and generate statistical insights. 
Cloud modeling has become increasingly challenging due 
to the growing number of elements, functions, and com-
plexity of interactions among functional components. 
Additionally, for certain problems, there may be no effec-
tive analytical solution, such as systems with Poisson 
arrival rates, general distributions of service times, and K 
servers ( K > 1 ), i.e., the M/G/K model [1].

In comparison, agent-based models are able to account 
for the emergence of complex systems through simple 
rules for interaction between agents and between agent 
and environment [5, 6]. If elements of clouds such as ser-
vices, servers, and other functional components are con-
sidered as agents, an agent-based model of clouds can be 
created.

This paper presents an alternative to existing cloud 
models by employing agent-based modeling techniques. 
Agent-based models are widely used in social sciences 
to study population dynamics resulting from collective 
behavior among individuals with diverse traits, enabling 
the model to effectively manage a large number of het-
erogeneous elements, which is essential for simulating 
complex and diverse clouds. For instance, this approach 
can account for varying resource utilization patterns, 
deployment methods, and configurations for each service 
or server within the cloud infrastructure. Unlike other 
models that rely on prior knowledge of system trends 
(as required by equation-based methods) or predicting 
system states for the next step (as demanded by discrete-
event simulation techniques), agent-based modeling 
focuses on describing individuals without imposing such 
constraints. This enables a more flexible and adaptive 
representation of complex systems, allowing researchers 
to examine both individual and collective behaviors in 
real time. Furthermore, as agent interactions with their 
environment are continuously recorded during the exe-
cution of these models, it becomes possible to perform 
comprehensive analyses using statistical methods, rather 
than relying on a single set of final results.

The main contributions of this study are summarized 
as follows.

• Cross-platform simulation model: A highly config-
urable agent-based simulation model for clouds was 
developed. The source code can be viewed at [7]. 
This model allows researchers and practitioners to 
experiment with different cloud management strate-
gies across various configurations of environments, 
providing valuable insights into the performance and 
efficiency of different approaches in a simulated envi-
ronment.

• Balanced-fit algorithm: A new balanced-fit algo-
rithm was developed and evaluated. The algorithm is 
designed to optimize resource allocation in dynamic, 
heterogeneous cloud environments by minimizing 
both underprovisioning (balancing) and overprovi-
sioning (fitting).

• Quantification and allocation strategy for SLA viola-
tions: A strategy for penalizing violations of service-
level agreements was proposed and evaluated. This 
approach introduces a novel method for measuring 
and redistributing penalties among services operat-
ing on servers experiencing excessive load.

• Effects of server migration and consolidation: The 
study also investigated the effects of service migra-
tion and server consolidation in both homogeneous 
and heterogeneous cloud environments. By analyz-
ing these scenarios, researchers can gain valuable 
insights into how different configurations of servers 
and workloads can impact overall system perfor-
mance, efficiency, and cost-effectiveness.

The organization of the remainder of the paper is as fol-
lows. Related work section discusses related work and 
several representative developments in the field. Archi-
tecture section presents the architecture and design of 
the simulator. Resource optimization algorithms section 
discusses important resource optimization algorithms 
and management strategies. Evaluation section presents 
evaluations of the algorithms and the simulator. Discus-
sion section discusses the potentials and limitations of 
the work. Finally, Conclusion section concludes this 
study.

Related work
As consumer needs continue to drive innovation in 
modern cloud computing, the landscape has evolved 
significantly from its early days when sharing com-
pute resources using the Xen hypervisor was a primary 
method [8, 9]. Today’s clouds encompass an array of het-
erogeneous hardware and software components, plat-
forms, services, and management frameworks that have 
collectively contributed to their increasing complexity. 
This complexity has propagated interest among research-
ers who are tackling almost every aspect of cloud com-
puting, such as service reliability [10], predicting resource 
utilization based on time-series data [11, 12], and devel-
oping cost-effective scheduling algorithms [13]. As widely 
acknowledged in the community, one of the most effec-
tive methods for studying clouds is through simulation. 
In this section, several representative cloud simulators 
that have contributed significantly to our understanding 
of these complex systems are discussed.
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CloudSim [3] is an influential cloud simulator. Since its 
first publication, its functionality has been enhanced to 
include support for simple energy-aware virtual machine 
placement as well as more advanced features such as 
federated data centers with customized networking 
topologies, message-passing applications, and automatic 
scaling. It has been used in many studies investigating 
resource allocation [14], energy efficiency [15] and opera-
tional costs algorithms [16, 17]. Many simulators have 
been derived from CloudSim with extended features, 
such as the CloudAnalyst, which offers a graphical user 
interface, high degrees of flexibility for simulation defi-
nition, and replay mechanisms [18]. CloudSim Plus is a 
re-engineered and refactored version of CloudSim, pro-
viding better code clarity and improved accuracy [4]. It 
is important to note that when using CloudSim Plus, the 
sampled state values may not always align well with the 
current status of the simulated system. Achieving statisti-
cal soundness in results typically requires long-run sim-
ulations. In contrast, the proposed cloud model in this 
work can output more accurate system states in real time. 
This is particularly important for machine learning-based 
resource optimization algorithms. For example, deep 
reinforcement learning has been used to study cloud 
resource management [19–21]. One of the fundamental 
requirements is that the system states should accurately 
reflect the effects after applying policies (such as a vir-
tual machine placement schema or server consolidation 
interval adjustment) to the system.

In addition to discrete-event simulators that emphasize 
simulation scalability and speed, fine-grained cloud mod-
els such as GreenCloud [22] and iCanCloud [23] provide 
detailed analysis of energy consumption in data center IT 
equipment (e.g., servers and switches) with higher accu-
racy. GreenCloud integrates the NS-2 network simula-
tor [24], allowing for an analysis of energy consumption 
associated with communication patterns at packet-level, 
as well as the effectiveness of low-level power manage-
ment mechanisms such as voltage scaling and frequency 
scaling. iCanCloud was built on top of the OMNeT++ 
platform [25]. The simulator facilitates the evaluation of 
various cloud architectures, storage systems, and virtual 
machine configurations using trace logs of real applica-
tions. Certainly, with many details included, simulation 
speed has to be sacrificed.

On the other hand, several studies have been con-
ducted in real-world environments. For instance, authors 
in [26] proposed a workload-aware performance model 
for serverless computing and evaluated it on Amazon 
Lambda platform. A machine learning-based prediction 
algorithm for workflow execution time was introduced 
in [27]. The algorithm was assessed within an inter-
nal OpenStack cloud consisting of eight servers [28]. 

Although using real environments may produce more 
trustworthy results, integrating new algorithms into 
existing systems can be technically challenging, espe-
cially when working with public clouds. There are also 
studies conducted purely analytically. A general issue 
with an analytical approach is that studies often concen-
trate on specific aspects, which may not fully capture the 
complex interactions within a heterogeneous computing 
ecosystem like modern clouds. As summarized in [29], 
cloud infrastructures have evolved from providing simple 
shared hardware resources (e.g., CPU time, storage space, 
and network bandwidth) to more sophisticated environ-
ments that include various featured services, platforms, 
and hardware components. To comprehensively study 
the overall effects resulting from the interactions of inter-
leaving components within such ecosystems, an extensi-
ble and flexible cloud model is necessary. An agent-based 
cloud model offers maximum flexibility for adding, modi-
fying, or removing functional/conceptual components. 
As Edge and Fog computing begin to gain popularity in 
the community [30–32], using an agent-based cloud-
edge/fog model can better capture the distributed nature 
and geographic location of Edge/Fog devices. The follow-
ing section focuses on a high-level design of the proposed 
cloud model.

Architecture
The cloud model is written in NetLogo-specific language 
and runs on the NetLogo platform [33]. The model con-
sists of three main elements including Service, Server, and 
Scheduler, and they are modeled as agents. Operations 
of cloud elements are realized as agent interactions. For 
example, the deployment of services is modeled as mov-
ing services to servers. When a service is in the vicinity 
of its designated server, it will be captured by the server, 
and the server changes the service’s status accordingly. 
Each type of agent has a set of attributes that reflect the 
characteristics and operations of its real-world counter-
part. For example, a service agent has a set of resource 
requirements, a lifetime, its hosting server information, 
memory access ratio, and migration status. The concep-
tual architecture of the system is shown in Fig.  1. The 
detailed implementation of agents and functional com-
ponents can be found at [7].

A simulation is started from establishing an envi-
ronment that contains a set of servers and schedulers. 
Servers are conceptually grouped in racks. Each rack 
contains a dedicated scheduler and a set of servers. Serv-
ers are characterized by hardware models, which differ 
from resource capacity and energy consumption mod-
els. Each rack may contain different servers of various 
models that simulate a heterogeneous environment. All 
properties of servers will be initialized when created. 
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The corresponding scheduler of servers in the same rack 
is responsible for switching on/idle/off of servers, based 
on a selected server standby strategy. During a simula-
tion, servers will update their status solely based on their 
current resource utilization level, as depicted in Fig.  2 
(Server).

Once an environment is created, services carrying 
workloads will be generated in accordance with simula-
tion plans. To reflect the dynamics of real-world cloud 
environments, services are randomly placed in a sub-
mission zone with a default random moving speed when 
created. This allows services to arrive at their designated 

schedulers at different times. The scheduler is responsi-
ble for managing and coordinating the placement of ser-
vices and consolidation of servers. When services arrive 
at schedulers, they are scheduled to run on servers that 
meet resource requirements based on a selected algo-
rithm for service placement (described in Resource opti-
mization algorithms section). Thereafter, services move 
toward their designated servers with updated moving 
speeds. The new moving speeds are calculated partially 
based on services’ deployment methods, which account 
for the delays associated with deployment initializa-
tion processes. Three deployment methods are currently 

Fig. 1 The conceptual architecture of the agent-based cloud model
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supported: virtual machine, container, and bare-metal. 
Each has a fixed delay associated with it during deploy-
ment initialization processes.

Once a service arrives at its hosting server, it will have 
an “RUNNING” status that was set by the server itself. 
The state transitions are illustrated through the use of 
finite state machines for services, as depicted in Fig.  2 
(Service). A service agent does not carry out any actual 
computation, but rather draws a portion of resources 
from its underlying server based on the resource utili-
zation models assigned to it. The resource usage model 
for each service is characterized by tuning the α and β 
parameters in beta distributions, R ∼ Beta(α,β) . For 
example:

• Setting α = β = 1 , a uniform distribution of resource 
usage can be obtained;

• Setting α = 2 and β = 1 , a linear distribution can be 
achieved;

• Setting α = β = 2 , a normal distribution can be gen-
erated;

• Setting α = 2 and β = 3 , a right-tailed normal distri-
bution can be obtained.

These distributions can simulate various types of ser-
vice workloads as summarized in [29]. Furthermore, to 
maximize the flexibility, resource usage models can be 
adjusted for different kinds of resources on a per-service 
basis. For example, a communication-intensive service 
may have a normal distribution for CPU usage, a uni-
form distribution for memory usage, and a left-tailed 
distribution for network usage. Note that three kinds of 

resources are considered including computation power 
(measured in Server-side Java Operations per Second, 
ssj_ops), memory (measured in MB), and network band-
width (measured in Mbps). In future work, resource 
usage models with seasonal effect will also be incorpo-
rated into the simulator to further enhance its versatility 
in modeling various service workloads.

When a service completes its tasks, i.e., reaches the end 
of its lifetime, it will be terminated and removed from 
its hosting server. In another case, if a service experi-
ences performance degradation due to resource scarcity 
occurred on its underlying hosting server, the service’s 
lifetime may be extended. The extension of a service’s life-
time reflects the amount of violation of SLA. Calculation 
of the lifetime extension is detailed in Penalty for perfor-
mance degradation section. An overview of the workflow 
and agent interactions is depicted in Fig. 3. Additionally, 
the simulator also provides several real time plots includ-
ing accumulated resource usage, average resource usage, 
server status, energy consumption, number of migrating 
services triggered by auto-migration and server consoli-
dation, accumulated lifetime extension (SLA violation), 
and service rejection rate when the system is overloaded. 
Figure 4 shows a screenshot of the user interface for the 
simulator. Other types of real time plots and parameter 
configuration widgets can be easily added, facilitated by 
the NetLogo platform.

Resource optimization algorithms
Service migration algorithms
There are two primary scenarios for service migration in 
cloud computing environments:

Fig. 2 State transition models of Service and Server Agent
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• Under-utilization. When a hosting server experi-
ences low resource usage due to falling below a speci-
fied under-utilization threshold. The practice is to 
move all running services to other more active serv-
ers. This process of relocating services from the less 
utilized host is referred to as server consolidation. 
Server consolidation is a recurring activity that opti-
mizes resource allocation and improve overall system 
efficiency.

• Over-utilization. When a hosting server exhibits 
high resource usage due to surpassing a specified 

over-utilization threshold, some or all of the run-
ning services may need to be relocated to other less 
busy servers. In this situation, service migration is 
referred to as auto-migration. Auto-migration is 
a response mechanism that operates on an event-
triggered basis. Auto-migration aims to minimize 
SLA violation.

The following sections discuss the algorithms and strat-
egies implemented in the model in addressing both sce-
narios: server consolidation and auto-migration.

Fig. 3 Agents and system operating model

Fig. 4 User interface of the cloud simulator
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Server consolidation
The migration of services will lead to an overall increase 
in resource utilization while minimizing potential frag-
mentation within the cloud infrastructure. As a result, 
server consolidation efforts may be necessary. This pro-
cess is typically performed periodically and involves 
either relocating all services from a particular hosting 
server or leaving them where they are. Current research 
in server consolidation or service placement has focused 
on designing algorithms for identifying suitable servers 
to host services based on various system-level objec-
tives, such as energy minimization, resource utilization 
maximization, and scheduling efficiency. Examples of 
these approaches include the implementation of greedy 
algorithms, statistical & prediction-based methods, and 
meta-heuristics within a simulator environment. The 
implemented algorithms in the simulator are diverse: 
random, first-fit, balanced-fit, max-utilization, and 
energy minimization (min-energy). The first two algo-
rithms are self-explanatory, while a best-fit algorithm has 
been implemented in two distinct flavors: balanced-fit 
and max-utilization. To facilitate understanding, the fol-
lowing notation conventions are used within this context.

Consider a list of services, denoted as aj = {aj0, aj1, ..., ajn} , 
running on a server sj ∈ s , where s is a set containing serv-
ers s0 , s1 , ..., and sm . Each service requesting specific types 
of resources at runtime denoted by an n-tuple Rr(aji) . Simi-
larly, each service has provisioned resources at deployment 
time represented as the configured resource tuple Rc(aji) ; 
Ro(aji) and Rp(aji) denote the resources that aji is currently 
occupied and previously occupied, respectively. For instance, 
consider a DNS service is to be deployed in the cloud. When 
deploying a new service to the cloud, users must estimate or 
specify the amounts of resources based on past experience 
or other factors, known as the provisioned resources. For 
example, the DNS service might be provisioned with an esti-
mated configuration: Rc = {CPU: 5000ssj_ops, MEM: 4GB, 
NetBW: 100Mbps}. A placement algorithm will search for 
available hosting servers that can accommodate the service 
with the specified resources. Once deployed and running on 
a server sj , the service will consume actual resource usage 
over time following a beta distribution per type of resource, 
at each simulation tick. For instance, let’s consider two con-
secutive timestamps: 

1. At time t0 : The current state is represented by the 
observed (or occupied) resource tuple Ro(t0) for the 
DNS service running on server sj . This might be 

updated from its provisioned resources Rc to Ro(t0) = 
{CPU: 2354ssj_ops, MEM: 1.8GB, NetBW: 67Mbps} 
at this point in time.

2. At time t1 : The observed resource tuple for the ser-
vice Ro(t1) might be updated to {CPU: 3054ssj_ops, 
MEM: 2.8GB, NetBW: 97Mbps}, and the previously 
occupied resources Ro(t0) becomes Rp(t1) at this 
point in time.

It is also important to emphasize the distinctions between 
Rr(aji) and Ro(aji) under the following circumstances. 

1. When the total requested resources is not greater 
than the physical capacity of the underlying server, 
i.e., n

i=0 Rr(aji) ≤ Rc(sj) , then Ro(aji) = Rr(aji).
2. In case where the total requested resources exceed 

the physical capacity of the underlying server, 
resulting in triggering of SLA violation events, then 
Ro(aji) = Rr(aji)− ζ(

∑n
i=0 Rr(aji)− Rc(sj)) , where ζ 

is a distribution factor explained in Penalty for per-
formance degradation section.

Using the same notation style, Ro(sj) and Rc(sj) represent 
the currently used resources and the physical capacity of sj . 
|R(·)| denotes the number of types of resources considered. 
The main idea behind the balanced-fit algorithm is to 
maintain a similar resource utilization level across different 
kinds of resources. For example, Rc(aji)+Ro(sj)

Rc(sj)
 calculates 

resource utilization ratios of computing, memory, and net-
work bandwidth of sj given that if service ai is placed on sj . 
Calculating ratios of computing, memory, and network 
bandwidth of sj is necessary because different kinds of 
resources might be measured in different units. The bal-
anced-fit algorithm favors placing service ai on server sj 
with the minimum difference across all kinds of resources 
to avoid situations where some kinds of resources are heav-
ily used but others are lightly used, leading to waste of 
resources or resource fragmentation. For instance, if a serv-
er’s compute, memory, and networking resource utilization 
averages are {80%, 50%, 10%} respectively, the algorithm 
will try to place a computation-light, memory-neutral, and 
communication-intensive service on the server. The max-
utilization algorithm tries to minimize the overall resource 
fragment of servers with an assumption that the resource 
requirements of services and resource configuration of 
servers are relatively balanced across different kinds. Pseu-
docode of the balanced-fit and max-utilization algorithms 
are shown in Algorithm 1.
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Algorithm 1 The balanced-fit algorithm focuses on maintaining balanced resource occupancy levels across various types of resources for a given 
server; meanwhile, the max-utilization approach is dedicated to minimizing the overall residual resources available on a server

An energy minimization algorithm is also implemented 
in a similar manner to the algorithms shown in Algo-
rithm  1. A notable aspect is how the energy consump-
tion of servers is modeled. In the simulator, eight types of 
recently manufactured servers are considered. The speci-
fications of the servers were collected from spec.org1 and 
details are listed in Table 6. Relationships between energy 
consumption, system workload, and CPU utilization 
are shown in Fig.  5. Observing that server performance 
varies greatly, and the energy consumption of servers 
does not align well with the system performance meas-
ured in ssj_ops , i.e., server-side Java workload in opera-
tions per second. For example, the system performance 
of RS700A-E9-RS4V2 increases much faster with a rela-
tively slow increase in energy consumption. In compari-
son, the energy consumption and system performance of 
the Inspur NF8480M6 and ProLiant DL110 Gen10 Plus 
increase at a similar pace. Different models of servers 
were usually built with varying computational capacities, 
as shown in Fig.  7. Although some servers have a rela-
tively higher baseline energy consumption, for example, 
the UniServer R4900 G5, but their Active Average Power 
increases sub-linearly with the increase of performance, 
which makes them suitable candidates for minimizing 
overall energy consumption. Generally, packing more 
services on a server will increase the level of the serv-
er’s resource utilization, but it may not yield an optimal 

overall energy efficiency of the cloud. This apparently 
presents an opportunity for optimization when clouds 
consist of heterogeneous hardware.

Energy consumption plays a significant role in calcu-
lating cloud operational costs, with various models pro-
posed to estimate energy usage. For instance, researchers 
have developed methods such as additive models, linear/
non-linear regression, and polynomial models (e.g., [34]). 
In order to provide an unbiased evaluation, several mod-
eling techniques were used to understand server energy 
consumption patterns. These include the Simple Linear 
Regression, Quadratic Polynomial, Cubic Polynomial, 
and Step-wise Linear Regression methods. The Step-
wise method serves as a baseline for comparison since 
it closely aligns with the raw data. Among these models, 
the cubic polynomial model demonstrates the best fit for 
the energy consumption data but comes at an increased 
computational complexity. A detailed breakdown of 
model parameters and accuracy measured by R-squared 
values can be found in Table 6.

Auto‑migration
In the second scenario, service migration becomes nec-
essary when occupied resources approach the physical 
capacity limit of a server, which is defined by an over-
utilization threshold. In such cases, some services must 
be moved to other servers so that the original server can 
maintain sufficient resources to prevent potential per-
formance degradation caused by resource scarcity. This 1 http:// www. spec. org/ power_ ssj20 08/ resul ts/

http://www.spec.org/power_ssj2008/results/
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process is typically event-driven and involves migrat-
ing only selected services in order to keep the affected 
server running smoothly. The selection of these ser-
vices should be strategic, based on system-level objec-
tives. Two strategies have been implemented in order to 
optimize resource utilization and minimize disruption 
caused by service migration: minimum number of migra-
tions (MNM) and least migration time (LMT). The pri-
mary goal of the MNM strategy is to reduce network 
congestion resulting from migrating aggressive services 
that consume a large portion of limited resources. An 
aggressive service, as defined in this context, refers to the 
one that consumes the most significant share of scarce 
resources. However, it’s important to note that the impact 
on the network also depends on the memory footprint of 
potential migration candidates. Nevertheless, the simula-
tor remains open to more advanced strategies. The LMT 
strategy focuses on minimizing service disruption caused 
by the migration process. Technically, estimating the 
delay involves considering factors such as available point-
to-point network bandwidth between source and desti-
nation servers, memory footprint of candidate services, 
and memory dirtying rates [35]. After identifying poten-
tial candidate services, target server selection follows the 
same algorithms employed during the server consolida-
tion process.

Penalty for performance degradation
When a hosting server cannot provide sufficient resources 
for its services, their performance may degrade. In such 
cases, all services hosted by that server will experience penal-
ties in terms of extended lifetimes. If 

∑n
i=0 Rr(aji) > Rc(sj) , 

the resource allocation vector aj receives penalties Pj , which 
are calculated based on three factors: 

1. The total unsatisfied resources required by the ser-
vices, 

∑n
i=0 Rr(aji)− Rc(sj);

2. A distribution factor ζ that is applied across all ser-
vices running on the same server;

3. A local factor specific to each individual service.

Denoting each simulation tick, representing the amounts 
of real-time elapsed, τ , in minutes, the total amount of 
penalty is quantified as τ ·

∑n
i=0 Rr (aji)−Rc(sj)

Rc(sj)
 . Since services 

are very likely requesting different amounts of resources, 
either less or more, than their previously occupied, the 
distribution of penalty is therefore calculated based on 
the relative difference between currently requested 
resources and previously occupied resources. Let 
δ(aji) = Rr(aji)− Rp(aji) , and δ(aj) = {δ(aj0), δ(aj1), ..., δ(ajn)} , 
furthermore, let δ′(aj) denotes a scaled δ(aj) , i.e., 
δ′(aj) = {δ′(aj0), δ

′(aj1), ..., δ
′(ajn)} , where δ′(aji) = α+

abs(min{δ(aj)})+ δ(aji) , and α is a positive number. The 

Fig. 5 Runtime energy consumption and system performance (measured in ssj_ops ) under different CPU loads. The results show that energy 
consumption varies among servers, whereas system performance generally increases in a linear manner with increasing CPU loads
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distribution factor for penalty allocation is expressed as 
ζ(aji) =

δ′(aji)∑n
i=0 δ′(aji)

 . The scaling process is necessary 
because the ratio cannot be zero or a negative value. This 
ensures that the total amount of penalty can fairly be dis-
tributed across all services running on sj . It’s important to 
note that some services might need fewer resources than 
their previously occupied, but regardless, those services 
will still receive penalties as resource scarcity occurs at 
the physical server level. This impact is captured by the 
distribution factor above, emphasizing that all services 
will be affected, albeit with varying degrees of influence 
due to the constraints imposed on the shared resources.

Moreover, a local factor is essential. When a service 
encounters resource scarcity, its impact can vary depend-
ing on the proportion of resources requested compared 
to the provisioned resources of the service. For instance, 
if a service requests substantial amounts of resources rel-
ative to both its previously occupied and provisioned 
resources, the effect will be relatively stronger; con-
versely, if the service requests fewer resources than its 
previously occupied, the impact shall be weaker. The 
local factor captures this variability. It is expressed as 
(1+

δ(aji)

Rc(aji)
) . Note that δ(aji) can also be a negative value. 

Finally, the extended lifetime for each service is presented 
in Eq. 1.

Recall that R(·) represents an n-tuple, and the calcula-
tion is performed separately for each type of resources. In 
the simulation, the impact of resource scarcity accumu-
lates across different types of resources. The formula can 
also be applied to other scenarios where quantifying SLA 
violations might be necessary.

Evaluation
The evaluation and analysis center around assess-
ing the performance of algorithms and strategies 
employed within the simulator, with specific emphasis 

(1)pji =
τ · δ′(aji) · (

∑n
i=0 Rr(aji)− Rc(aji)) · (Rc(aji)+ δ(aji))

Rc(sj) · Rc(aji) ·
∑n

i=0 δ
′(aji)

on energy efficiency, the effectiveness of penalty allo-
cation, service migration, and server consolidation, as 
well as the accuracy of the servers’ energy consump-
tion model.

The global parameters for the configurations of the 
experiments are outlined in Table  1. These parameters 
govern various aspects of service deployment and man-
agement within a cloud environment. One of the key 
parameters is the “service generation speed”, which deter-
mines how many services will be submitted to the cloud 
at any given time, ensuring that a specified number of 
services remain active in the service submission zone. 
Each new service has a uniformly drawn lifetime from 
the range specified by the “service lifetime” parameter. 
For consistency across experiments, all services were 
configured with the same length of lifetime, i.e., “service 
lifetime” [300, 300]. The resource usages of each service, 
such as compute, memory, and network bandwidth, are 
drawn from beta distributions. The “server utilization 
threshold” parameter specifies the under- and over-
utilization thresholds for server consolidation and auto-
migration, respectively. These thresholds help maintain 
optimal server performance while managing resource 
allocation in a cloud environment with dynamic service 
demands. Throughout Energy efficiency – Resource uti-
lization sections, the Step-wise Linear Regression model 
was employed for calculating energy consumption. In 
order to study the behaviors of heterogeneous clouds, 
all server models were utilized in the relevant experi-
ments. Specifications of the servers are listed in Table 2. 
The servers were mixed either within a rack or across 
the entire data center, as specified by the parameter 
“heterogeneity”.

To ensure reproducibility and facilitate further inves-
tigation, random seeds were used. Each experiment 
was repeated 100 times with different random seeds. 
All experiments were conducted using NetLogo v6.3 on 
a Windows 10 Enterprise LTSC (64-bit) Dell OptiPlex 
5090 workstation featuring an Intel Hexa-Core i5-1150 
@2.70GHz processor.

Table 1 Global configurations for the experiments

Note that the total number of servers can be determined jointly by the parameters “number of rack” and “servers per rack”. Services are submitted at various points 
throughout the simulation, which can be partially adjusted using the parameter “service generation speed”. The server code corresponds to the models of servers 
listed in Table 2

num of rack = 12; server per rack = 8; simulation unit time = 5 (min)

service generation speed = 300; service lifetime = [300, 300]

service cpu, memory, and network bandwidth runtime usage distribution: beta(2, 4)

memory dirtying rate: beta(2, 4); server models = [1 - 8]

server cpu, memoryt, and network bandwidth under-/over-utilization threshold = {20, 90}

consolidation interval = 12; heterogeneity: {data center, rack}
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Energy efficiency
Energy consumption is a significant concern in cloud man-
agement. While higher resource utilization may not always 
lead to lower overall energy usage, Fig.  6 illustrates how 
different placement strategies impacted the performance 
of the cloud with respect to energy consumption and SLA 
violations. It becomes evident that when clouds contain 
heterogeneous hardware, there are more opportunities 
for optimization. However, it is crucial not to discuss algo-
rithm effectiveness in isolation as their associated SLA vio-
lations can vary significantly from case to case.

Server status (on, idle, or off) and specifications (e.g., 
energy consumption patterns and resource capacity) are 
key factors in optimization efforts. The algorithms imple-
mented within the simulator can be further categorized 
into three-staged evaluations, denoted as {1, 2, 3}SE. In 
the 1-staged evaluation (1SE), no consideration is given 
to server status when placing services; in the 2-staged 
evaluation (2SE), priority is given to placing services on 
servers that are either on or idle; finally, in the 3-staged 
evaluation (3SE), services are placed according to the 
order of {on} → {idle} → {off}.

Table 2 Server specifications

Note that specifications of the servers were collected from spec.org, published in 2020 and 2021

Code Manufacturer and Model Processor (GHz) Memory Release Date

1 HP ProLiant DL110 Gen10 Plus Intel Xeon Gold 6314U @2.30GHz 64 GB Aug-2021

2 Lenovo ThinkSystem SR655 AMD EPYC 7763 @2.45GHz 128 GB Jun-2021

3 Fujitsu PRIMERGY RX2530M6 Intel Xeon Platinum 8380 @2.30GHz 256 GB May-2021

4 New H3C Tech. UniServer R4900 G5 Intel Xeon Platinum 8380 @2.30GHz 256 GB May-2021

5 Inspur Corp. NF8480M6 Intel Xeon Platinum 8380HL @2.90GHz 384 GB Nov-2020

6 DellEMC PowerEdge R6515 AMD EPYC 7702P @2.00GHz 64 GB Jul-2020

7 LSDtech L224S-D/F/V-1 Intel Xeon Gold 6136 @3.00GHz 196 GB Jul-2020

8 ASUSTeK Inc. RS700A-E9-RS4V2 AMD EPYC 7742 @2.25GHz 256 GB Feb-2020
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Fig. 6 A comparison of energy consumption and SLA violation between homogeneous and heterogeneous environments with auto-migration 
and server consolidation features disabled is presented. In heterogeneous clouds, the level of heterogeneity was set to rack level. SE indicates 
the staged evaluation strategy, as explained in Energy efficiency section. Energy usage is measured in units of kWh, while SLA violations are 
calculated according to the equation discussed in Penalty for performance degradation section
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When using both the random and balanced-fit algo-
rithms with the 1SE approach, there is a higher prob-
ability of placing services on servers that are currently in 
an {off} status. Due to the baseline electricity consump-
tion associated with turning on such servers (as shown 
in Fig.  7), the two algorithms resulted in significantly 
increased energy consumption over time, as demon-
strated in Fig. 6. Despite these outliers, mean differences 
for each individual algorithm configured with the set 
of {1, 2, 3}SE were found to be statistically insignificant 
when evaluated independently in both homogeneous and 
heterogeneous cloud environments, as shown in Table 3. 

However, there was a slight difference observed in energy 
consumption across algorithms assessed within homoge-
neous clouds, but statistically insignificant, as suggested 
by Kruskal tests {*2SE: p=0.129, *3SE: p=0.221}, where 
the * indicates all the algorithms configured with 2SE or 
3SE, respectively. It is important to note that consider-
ing the energy consumption and SLA violations shown 
in Fig. 6, it becomes evident that the balanced-fit, max-
utilization, and min-energy algorithms outperform other 
strategies such as random and first-fit approaches in 
homogeneous cloud environments. In contrast, when 
operating within heterogeneous cloud environments, the 
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Fig. 7 Runtime energy consumption and system performance ( ssj_ops ) at various levels of CPU load

Table 3 Statistical mean differences observed between the staged evaluations of each algorithm, conducted independently within 
both homogeneous and heterogeneous cloud environments

The performance difference between the algorithms were tested using either ANOVA (parametric) or Kruskal-Wallis (non-parametric) methods, depending on 
whether the Levene’s test for homogeneity of variance and Shapiro-Wilk method for normality residuals passed (p > 0.05 indicates no violation). If both tests pass, 
ANOVA results are more trustworthy; otherwise, Kruskal-Wallis results prevail. In all cases, p-values were above the significance threshold (0.05) from both ANOVA and 
Kruskal-Wallis tests, accepting the null hypothesis and suggesting no significant differences between evaluation stages for each algorithm in both homogeneous and 
heterogeneous cloud environments

Test Methods Levene Shapiro ANOVA Kruskal Environment

random (rnd) p>0.999 (W=0.992, p=0.326) p>0.999 p>0.999 Homogeneous, {1, 2, 3}SE

p=0.961 (W=0.986, p=0.041) p=0.997 p=0.976 Heterogeneous, {1, 2, 3}SE

first-fit (ff ) p=0.996 (W=0.988, p=0.013) p=0.999 p>0.999 Homogeneous, {1, 2, 3}SE

p=0.976 (W=0.955, p=4.9e-8) p=0.989 p=0.996 Heterogeneous, {1, 2, 3}SE

balanced-fit (bf ) p=0.937 (W=0.980, p=6.6e-3) p=0.864 p=0.851 Homogeneous, {1, 2, 3}SE

p=0.804 (W=0.976, p=1.8e-3) p=0.829 p=0.872 Heterogeneous, {1, 2, 3}SE

max-utilization (mu) p=0.985 (W=0.987, p=6.9e-3) p=0.889 p=0.924 Homogeneous, {1, 2, 3}SE

p=0.767 (W=0.993, p=0.204) p=0.611 p=0.794 Heterogeneous, {1, 2, 3}SE

min-energy (me) p=0.893 (W=0.978, p=1.4e-4) p>0.863 p=0.794 Homogeneous, {1, 2, 3}SE

p=0.986 (W=0.977, p=1.1e-4) p=0.995 p=0.996 Heterogeneous, {1, 2, 3}SE
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balanced-fit and possibly the min-energy algorithms are 
more suitable options for service placement.

The results in Fig.  6 show that less electricity was 
consumed when running algorithms in heterogeneous 
clouds compared with homogeneous ones, which is visu-
ally observable. Additionally, it becomes more evident, 
{*2SE: Kruskal(p ≪ 0.001), *3SE: Kruskal(p ≪ 0.001)}, 
how the algorithms behave differently from each other 
in these environments. In particular, multiple pairwise-
comparison tests were conducted and the results are 
shown in Column AM− , Co− (Energy) of Table  4. The 
min-energy algorithm saved an average of 2.621 electric-
ity units with 2SE and 2.565 units with 3SE compared to 
the balanced-fit algorithm, which resulted in a significant 
number of SLA violations on average: 475.20 for 2SE and 
479.36 for 3SE. It seems that when only auto-migration 
was enabled, the min-energy migrated services more fre-
quently compared to the balanced-fit algorithm, which 
might indicate an unbalanced use of resources. Overall, 
the balanced-fit algorithm appeared to be the most stable 
one among all algorithms considered in this study.

In this section, two sets of comparisons were con-
ducted to provide insights into the performance of indi-
vidual algorithms in staged evaluations and their overall 
effectiveness across different environments. The first 
set of comparisons focused on comparing the stability 
of each algorithm configured with various staged evalu-
ations. The results showed that both 2SE and 3SE are 
generally stable across all algorithms, indicating a con-
sistent performance throughout the evaluation process. 
Based on these findings, the second set of comparisons 
aimed to identify stable algorithms in terms of energy 

consumption and SLA violation for homogeneous and 
heterogeneous environments. This analysis helps to pin-
point favorable algorithm configurations that can effec-
tively balance between energy efficiency and service level 
agreement compliance. Moreover, it is possible to fur-
ther optimize the performance of these stable algorithms 
by implementing dynamic switching mechanisms that 
adjust their behavior based on specific SLA thresholds. 
Such adaptive strategies can help maintain a delicate bal-
ance between energy consumption and SLA violation in 
various cloud environments.

Although real time auto-scaling can improve overall 
resource utilization, it frequently leads to service level 
agreement violation, which may negatively impact ser-
vice performance. To address this issue proactively, 
some services should be migrated from overcrowded 
servers to less busy ones. Figure 8 shows the probability 
density functions of energy consumption & SLA vio-
lations, and the cumulative distribution functions of 
service migrations collected from simulations of both 
homogeneous and heterogeneous cloud environments 
that revealed interesting insights into energy consump-
tion, SLA violations, and the effectiveness of different 
algorithms for managing resources. In a homogeneous 
environment, two specific algorithms - balanced-fit 
and min-energy - resulted in lower energy consumption 
levels while maintaining better control over SLA vio-
lations. The majority of these violations were concen-
trated within the range of 3 to 5 units, indicating that 
these algorithms were able to effectively minimizing 
energy consumption and control SLA violations. When 
comparing the number of service migrations between 

Table 4 A pairwise comparison was conducted to evaluate the impact of implementing various features, including automatic 
migration (AM) and server consolidation (Co), on the statistical mean difference between algorithms for energy consumption and 
number of service migrations. The analysis considered both homogeneous and heterogeneous cloud environments

The differences between algorithms were calculated using Tukey Honest Significance Differences method, considering both homogeneous (Ho) and heterogeneous 
(He) cloud environments. The mean differences between 2SE and 3SE with/without auto-migration (AM+/− ) and server consolidation (Co+/− ) features were analyzed 
separately for each environment type. Since the mean differences in homogeneous clouds are identical when comparing 2SE with AM+ to 3SE with AM+ , these values 
have been merged into a single column under “Ho-{2, 3}SE”

Algo. AM  , Co  (Energy) AM+ , Co  (#Migration) AM+ , Co+ (#Migration)

He-2SE He-3SE Ho-{2,3}SE He-2SE He-3SE Ho-2SE Ho-3SE He-2SE He-3SE

ff - bf 0.247 0.303 -1.69 1.83 1.81 -1.57 -1.58 0.77 0.72

mu - bf 4.017 4.146 -1.53 0.51 0.50 -1.39 -1.37 -1.66 -1.45

me - bf -2.621 -2.565 -0.85 0.50 0.49 -0.38 -0.39 -0.92 -0.80

rnd -bf 0.989 1.061 -0.67 2.02 2.01 -0.39 -0.37 0.25 0.23

mu - ff 3.769 3.843 0.16 -1.32 -1.31 0.18 0.21 -2.43 -2.17

me - ff -2.868 -2.868 0.84 -1.33 -1.32 1.19 1.19 -1.69 -1.52

rnd - ff 0.741 0.757 1.02 0.19 0.20 1.18 1.21 -0.52 -0.49

me - mu -6.638 -6.711 0.68 -0.016 -0.01 1.01 0.98 0.74 0.65

rnd - mu -3.028 -3.086 0.86 1.51 1.51 1.00 1.00 1.91 1.68

rnd - me 3.609 3.626 0.18 1.52 1.52 -0.01 0.02 1.17 1.03
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different algorithms in the experiments, it was found 
that there was only a marginal difference between 
them (1-2), as shown in Table  4. The primary distinc-
tion lies in the level of SLA violations compared to the 
results shown in Fig.  6. This difference translates into 
trading off from higher energy consumption levels, 

as demonstrated in the first row of Table  5. It is also 
important to note that both the balanced-fit and min-
energy algorithms consumed less energy when utilizing 
a server consolidation mechanism. For example, the 
mean differences in energy consumption between the 
configurations [(Ho,MA+,Co− ) - (Ho,MA+,Co+ )] and 
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Fig. 8 The energy consumption, SLA violation, and number of service migrations obtained from homogeneous and heterogeneous clouds 
with auto-migration enabled

Table 5 Statistical mean differences in energy consumption and the number of service migrations obtained through simulations of 
different cloud configurations

Note that 95% confidence interval was used

 Ho homogeneous, He heterogeneous, AM+/− with/without auto-migration, Co+/− with/without server consolidation

Configuration balanced-fit (energy diff in unit) min-energy (energy diff in unit)

2SE 3SE 2SE 3SE

(Ho,MA ,Co  ) - (Ho,MA+,Co ) (-8.418, -7.395) (-8.448, -7.424) (-8.189, -7.196) (-8.193, -7.200)

(He,MA ,Co  ) - (He,MA+,Co ) (-0.909, 0.286) (-0.969, 0.211) (-11.187, -9.727) (-11.192, -9.735)

(Ho,MA+,Co  ) - (Ho,MA+,Co+) (5.367, 6.549) (5.374, 6.556) (5.450, 6.587) (5.450, 6.587)

(He,MA+,Co  ) - (He,MA+,Co+) (0.586, 1.776) (0.590, 1.782) (5.730, 7.214) (5.693, 7.168)
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[(He,MA+,Co− ) - (He,MA+,Co+ )] fall in the range (95% 
CI = 5.367, 6.549) and (95% CI = 0.586, 1.776), respec-
tively. These results demonstrate the effectiveness of 
server consolidation in reducing energy consumption. 
Overall, while all algorithms in this study showed some 
ability to manage resource allocation and reduce energy 
consumption, the balanced-fit approach emerged as 
particularly effective strategies for maintaining good 
performance in cloud computing environments.

Effectiveness of service migration
In contrast to other algorithms, the balanced-fit approach 
demonstrated superior performance in terms of energy 
consumption and SLA violation (near zero) within het-
erogeneous environments. However, this algorithm 
resulted in a slightly higher number of service migrations 
compared with others operating under similar condi-
tions, with the largest mean difference of 2.02, as shown 
in Table 4. When cross-compared to the results obtained 
from Fig.  6 (heterogeneous environments), it becomes 
evident that energy efficiency was slightly improved 

overall (second row of Table 5). With a 90% probability, 
the number of service migrations under this algorithm 
falls within a range between 0 and 10. Overall, the bal-
anced-fit approach emerged as the most stable and effi-
cient algorithm in both homogeneous and heterogeneous 
environments with the specific configurations mentioned 
in Table 1.

To enhance energy efficiency and resource utilization 
even further, a server consolidation feature was incor-
porated into the experiments. It’s important to note that 
auto-migration and server consolidation are two separate 
processes. Auto-migrations occur when services experi-
encing resource scarcity, while server consolidation runs 
periodically (12 ticks for the following experiments), sim-
ulating a consolidation process triggered on a per hour 
basis in real-world scenarios. As shown in Fig. 9, server 
consolidation can significantly reduce energy consump-
tion compared to the results displayed in Fig. 8 (same set 
of services, but without server consolidation). The differ-
ences were further analyzed using an independent t-test 
with a 95% confidence interval, as presented in Table 5. 
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Fig. 9 Energy consumption, SLA violation, and number of service migrations obtained from experiments involving both homogeneous 
and heterogeneous cloud environments with auto-migration and server consolidation features activated
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In these experiments, both the balanced-fit and the min-
energy algorithms demonstrated strong performance. 
However, it’s worth noting that while the min-energy 
algorithm had a lower average energy consumption, its 
variance of SLA violation was much wider (unstable). On 
the other hand, the balanced-fit algorithm maintained 
a more stable and efficient performance with a smaller 
variance concentrated around 2-3 units and number of 
migrations under 10 at 90% of the time.

Resource utilization
Comparing resource utilization between multiple 
instances of simulation becomes complex due to vari-
ous random factors involved in each case, such as dif-
ferences in service submission times, arrival speeds, and 
per-service configurations; server heterogeneity enabled/
disabled based on configuration settings; varying pat-
terns of resource utilization over time; and the impacts 
of resource scarcity on service lifetimes. At different 
timestamps, the number of services, their distribution 
across servers, and overall resource utilization may vary 
significantly from one simulation run to another. To draw 
meaningful conclusions about resource utilization in 
these experiments, this work focused on calculating such 
values for only active servers, those with running ser-
vices, and then bin-packing the results based on the num-
ber of active servers. Statistics were collected from 100 
independent runs of the experiments to provide a com-
prehensive understanding of resource utilization in both 
homogeneous and heterogeneous cloud environments.

From Fig.  10, it becomes evident that all algorithms 
exhibit similar performance in homogeneous cloud envi-
ronments. In contrast, as illustrated by Fig. 11, the first-fit 
and balanced-fit algorithms demonstrate superiority over 
other approaches when considering server utilization in 
heterogeneous clouds. It is worth noting that the random 
algorithm appears to use fewer servers than its coun-
terparts due to the influence of the 3-staged evaluation 
process. This is because, during the initial stages, active 
servers are given priority and thus tend to be placed on a 
smaller number of servers.

Effectiveness of the penalty allocation
In order to evaluate the proposed SLA quantification and 
allocation scheme, a controlled experimental environ-
ment was established. For this experiment, ten services 
were configured with memory-intensive workloads and 
deployed on a single server (with model code 1 and 64GB 
of memory). The provisioned memory resources for each 
service were uniformly drawn from the set {8192MB, 
12288MB, 16384MB}. The runtime memory usage of 
each service was still drawn from the beta distribution 
with parameters { α = 2, β = 4}. The requirements for 

computing and networking resources were intentionally 
kept at minimum to ensure that no SLA violations would 
be triggered by resource constraints of these kinds. All 
services had a fixed lifetime of 500 units. Other param-
eters remained consistent with those shown in Table 1.

Figure  12 illustrates the memory usage of both the 
server and the individual services during runtime. The 
line in black represents the aggregate memory usage of 
all ten services, which is equivalent to the memory usage 
of the server itself. It can be seen that the server’s mem-
ory capacity was not exceeded by any of the service’s 
memory requests. However, if a service were to request 
more memory than what the server could provide, an 
SLA violation would occur and be indicated by the red 
dashed line in the graph. Although the services had been 
configured with a fixed lifetime of 500 units, the timeline 
on the x-axis has reached around 660 due to three pos-
sible reasons: 

1. The ten services were submitted at different times, 
which caused the overall duration of the experiment 
to be extended;

2. Because of the SLA violations, the lifetime of each 
service was automatically extended accordingly in 
order to maintain compliance with the specified SLA;

3. Constrained by the limited physical resources, some 
services may not be able to deploy immediately. They 
may have to wait for sufficient resources to become 
available on the server.

In relation to the unfulfilled memory resource requests 
above the server’s physical capacity (the upper part of 
Fig.  12, where the y-axis is greater than 64GB), Fig.  13 
illustrates the penalties calculated for all services running 
on the server. It becomes evident that the total amount 
of SLA violations corresponds proportionally to the 
amounts of unfulfilled memory resources, as shown in 
Fig. 12.

To further explore the intricate of the distribution of 
penalties, an arbitrary instance was selected from Fig. 13, 
highlighted in blue. Additional details can be found 
in Fig.  14. At the time of execution, ten services were 
concurrently running on the server, with their initially 
provisioned memory resources shown in Fig.  14 [left, 
’provisioned’]. Certainly, the total amounts of provisioned 
memory (for services, 112GB) significantly exceed the 
physical capacity of the server (64GB), causing some ser-
vices to be delayed upon deployment. However, during 
runtime, services may require much less resources than 
their provisioned amount, depending on their workloads 
and resource utilization patterns. The unused resources 
can thus be utilized for deploying new services, i.e., 
over-commitment. However, at the previous execution 
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step (as shown in Fig.  14 [left, ’previously occupied’]), 
the total amount of memory occupied by the services 
was 55.8GB, which is well below the server’s physi-
cal capacity of 64GB. Consequently, no SLA violation 
events occurred during that time. When the execution 
advanced to the current step, the total requested memory 

resources increased to 84.76GB, surpassing the server’s 
physical capacity limit. As a result, all services received 
penalties based on their share of unfulfilled memory 
resource requests (as shown in Fig. 14 [right]). Although 
service-0 ( a0 ) had requested less resources than its previ-
ously occupied state, it still faced some penalty due to the 
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Fig. 10 Resource utilization of active servers was examined in experiments involving homogeneous clouds with a 3-staged evaluation 
process. For these experiments, auto-migration and server consolidation were disabled to better understand resource allocation patterns 
without the influence of these features. In the experiments, services represent predominantly memory-intensive tasks
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server’s overall performance degradation. On the other 
hand, services with higher memory requirements, such 
as service-3, 6, and 8, received more significant penalties 
since they needed larger amounts of memory to complete 
their tasks, but could not be fully satisfied due to the 

server’s limited resources. These services experienced a 
greater impact from the SLA violation events.

To better explain the concept, a concrete example with 
detailed calculation process is outlined below. As men-
tioned in Penalty for performance degradation section, 
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Fig. 11 Resource utilization of active servers was examined in experiments involving heterogeneous clouds with a 3-staged evaluation 
process. For these experiments, auto-migration and server consolidation were disabled to better understand resource allocation patterns 
without the influence of these features. In the experiments, services represent predominantly memory-intensive tasks
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Fig. 13 The extension of services’ lifetime was based on the amounts of memory resources that could not be provided by the underlying server

Fig. 14 This figure illustrates one occurrence of penalty distribution (the shaded area in Fig. 13) among all services running on the server. The 
distribution of penalties was calculated according to the amounts of provisioned resources, previously occupied resources, and currently requested 
resources for each service, as specified by Eq. (1)
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penalties are expressed as an increase in a service’s life-
time. The total amount of penalty is quantified as 
τ ·

∑n
i=0 Rr (aji)−Rc(sj)

Rc(sj)
 . Since the server was configured with 

65536MB (64GB) memory and it was the sole server 

involved in the experiment, hence Rc(s0) = 65536. More-
over, denoting services deployed on server s0 as 
{a00, a01, · · · , a09} , the total requested memory in the 
current step 

∑9
i=0 Rr(a0i) = 86795MB (referring to 

Table 6 Server Side Java workload models and the model accuracy

The energy consumption information for servers was collected from http:// www. spec. org, published in 2020 and 2021. To verify the accuracy of the models, one can 
refer to the Actual Load, ssj_ops (server-side Java operations per second), and Average Active Power (W) fields in the data, which are available at http:// www. spec. org/ 
power_ ssj20 08/ resul ts/. The code index corresponds to the server specifications listed in Table 2

Code Method Model Accuracy

1 Simple Linear Power = 6.076e-05 * SSJ + 7.237e+01 R2 = 0.933

Quadratic Power = 1.642e-11 * SSJ2 + 6.182e-06 * SSJ + 9.959e+01 R2 = 0.992

Cubic Power = 3.90e-18 * SSJ3 - 3.01e-12 * SSJ2 + 3.08e-5 * SSJ + 9.45e+1 R2 = 0.995

Stepwise Linear {(2.7e-5, 9.4e+1), (3.9e-5, 9.2e+1), (4.0e-5, 8.0e+1), (3.6e-5, 9.3e+1), (3.9e-5, 9.0e+1),

CPU% 0 – 100 (5.2e-5, 6.8e+1), (6.6e-5, 3.9e+1), (1.1e-4, -5.9e+1), (1.4e-4, -1.5e+2), (6.8e-5, 7.2e+1)}

2 Simple Linear Power = 2.313e-05 * SSJ + 7.066e+01 R2 = 0.950

Quadratic Power = 3.178e-13 * SSJ2 + 2.118e-05 * SSJ + 7.245e+01 R2 = 0.950

Cubic Power = 1.76e-18 * SSJ3 - 1.58e-11 * SSJ2 + 5.88e-5 * SSJ + 5.80e+1 R2 = 0.994

Stepwise Linear {(7.4e-5, 5.3e+1), (1.8e-5, 8.7e+1), (1.8e-5, 8.7e+1), (1.6e-5, 9.0e+1) (1.6e-5, 9.0e+1),

CPU% 0 – 100 (1.7e-5, 8.9e+1), (1.6e-5, 9.0e+1), (2.0e-5, 7.2e+1), (3.7e-5, -9.3e+0), (5.4e-5, -1.0e+2)}

3 Simple Linear Power = 5.361e-05 * SSJ + 1.252e+02 R2 = 0.967

Quadratic Power = 3.803e-12 * SSJ2 + 2.481e-05 * SSJ + 1.580e+02 R2 = 0.988

Cubic Power = 1.24e-18 * SSJ3 - 1.03e-11 * SSJ2 + 6.56e-5 * SSJ + 1.39e+2 R2 = 0.998

Stepwise Linear {(8.3e-5, 1.3e+2), (3.6e-5, 1.7e+2), (3.5e-5, 1.7e+2), (3.5e-5, 1.7e+2), (3.7e-5, 1.6e+2),

CPU% 0 – 100 (4.5e-5, 1.3e+2), (5.8e-5, 7.2e+1), (8.5e-5, -6.9e+1), (7.2e-5, 1.1e+1), (1.1e-4, -2.3e+2)}

4 Simple Linear Power = 5.369e-05 * SSJ + 1.067e+02 R2 = 0.935

Quadratic Power = 4.869e-12 * SSJ2 + 1.405e-05 * SSJ + 1.550e+02 R2 = 0.975

Cubic Power = 1.58e-18 * SSJ3 - 1.45e-11 * SSJ2 + 7.40e-5 * SSJ + 1.24e+2 R2 = 0.995

Stepwise Linear {(7.9e-5, 1.2e+2), (3.9e-5, 1.5e+2), (3.3e-5, 1.6e+2), (3.1e-5, 1.7e+2), (2.8e-5, 1.8e+2),

CPU% 0 – 100 (4.3e-5, 1.2e+2), (4.9e-5, 8.4e+1), (7.1e-5, -4.0e+1), (1.5e-4, -5.3e+2), (8.4e-5, -7.7e+1)}

5 Simple Linear Power = 7.339e-05 * SSJ + 8.569e+01 R2 = 0.967

Quadratic Power = 3.526e-12 * SSJ2 + 3.258e-05 * SSJ + 1.565e+02 R2 = 0.991

Cubic Power = 4.75e-19 * SSJ3 - 4.71e-12 * SSJ2 + 6.89e-5 * SSJ + 1.3e+2 R2 = 0.995

Stepwise Linear {(1.2e-4, 1.0e+2), (3.9e-5, 1.9e+2), (4.0e-5, 1.9e+2), (4.6e-5, 1.7e+2), (5.9e-5, 1.1e+2),

CPU% 0 – 100 (6.6e-5, 7.1+1), (8.5e-5, -6.4e+1), (1.3e-4, -4.2e+2), (1.0e-4, -1.9e+2), (1.0e-4, -1.6e+2)}

6 Simple Linear Power = 2.335e-05 * SSJ + 9.456e+01 R2 = 0.905

Quadratic Power = -2.637e-12 * SSJ2 + 3.951e-05 * SSJ + 7.969e+01 R2 = 0.938

Cubic Power = 1.64e-18 * SSJ3 - 1.77e-11 * SSJ2 + 7.48e05 * SSJ + 6.61e+1 R2 = 0.974

Stepwise Linear {(1.1e-4, 5.5e+1), (2.6e-5, 1.1e+2), (1.8e-5, 1.2e+2), 1.8e-5, 1.2e+2), (1.3e-5, 1.3e+2),

CPU% 0 – 100 (1.9e-5, 1.1e+2), (2.1e-5, 1.0e+2), (2.1e-5, 1.0e+2), (1.8e-5, 1.2e+2), (2.2e-5, 9.8e+1)}

7 Simple Linear Power = 1.285e-04 * SSJ + 1.310e+02 R2 = 0.991

Quadratic Power = 1.344e-11 * SSJ2 + 9.763e-05 * SSJ + 1.416e+02 R2 = 0.995

Cubic Power = 4.37e-18 * SSJ3 - 1.61e-12 * SSJ2 + 1.11e-4 * SSJ + 1.40e+2 R2 = 0.995

Stepwise Linear {(2.0e-4, 1.3e+2), (7.7e-5, 1.6e+2), (9.1e-5, 1.5e+2), (1.1e-4, 1.4e+2), (1.1e-4, 1.4e+2),

CPU% 0 – 100 (1.3e-4, 1.2e+2), (1.6e-4, 8.2e+1), (1.9e-4, 2.8e+1), (1.4e-4, 1.2e+2), (1.1e-4, 1.8e+2)}

8 Simple Linear Power = 2.409e-05 * SSJ + 1.490e+02 R2 = 0.967

Quadratic Power = -5613e-13 * SSJ2 + 3.067e-05 * SSJ + 1.374e+02 R2 = 0.973

Cubic Power =3.0e-19 * SSJ3 - 5.83e-12 * SSJ2 + 5.42e-5 * SSJ + 1.20e+2 R2 = 0.989

Stepwise Linear {(7.7e-5, 1.1e+2), (2.6e-5, 1.7e+2), (1.4e-5, 1.9e+2), (2.2e-5, 1.7e+2), (2.0e-5, 1.7e+2),

CPU% 0 – 100 (1.4e-5, 2.1e+2), (2.8e-5, 1.1e+2), (2.4e-5, 1.5e+2), (2.3e-5, 1.5e+2), (2.7e-5, 1.2e+2)}

http://www.spec.org
http://www.spec.org/power_ssj2008/results/
http://www.spec.org/power_ssj2008/results/
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Fig. 14 [left, ’currently requested’]). By default, one simu-
lation unit represents five minutes in real time, i.e., τ = 
300 seconds, therefore, the total penalties for this time 
frame are approximately equal to 97.31598 seconds.

The second component of Eq.  (1) is the distribution 
factor ζ , expressed as δ′(aji)∑n

i=0 δ′(aji)
 , where δ′(aji) = α+

abs(min{δ(aj)})+ δ(aji) and δ(aji) = Rr(aji)− Rp(aji) . 
Taking service a0 as an example, δ(a00) = Rr(a00)−

Rp(a00) = 692− 4760 = −4068 . This is also the smallest 
value among all other services deployed on s0 , i.e., 
min{δ(a0i)}

9
i=0 = −4068 . In practice, a small non-zero 

value α is used to avoid a ratio of zero. In the present 
implementation of the model, α = 10 . This gives 
δ′(a00) = 10 , δ′(a01) = 3805 , and so on. The distribution 
factors for the services are shown in Fig.  14 [right]. 
Applying the distribution factor ( ζ(a03) = 19.469% ) to 
service-3 ( a3 ), its lifetime was extended by a total of 
approximately 18.946 seconds ( 97.31598 ∗ 0.19469 ). 
This expansion has a noticeable impact on the perfor-
mance and resource utilization of service-3. In contrast 
to this significant penalty, service-0 ( a0 ) experienced an 
almost negligible increase in its lifetime, 97.31598 ∗

0.00014 ≈ 0.0136 seconds. This small expansion has an 
extremely brief impact on service-0’s performance. It 
is worth further clarifying the differences between 

Rr(aji) and Ro(aji) in this example. Since the total 
requested resources exceed the physical capacity of the 
server, Ro(aji) = Rr(aji)−ζ(

∑n
i=0 Rr(aji)− Rc(sj)) . Taking 

service-3 as an example, Ro(a03) = Rr(a03)− ζ(a03) ∗

(
∑9

i=0 Rr(a0i)− Rc(s0)) =15406− 0.19469 ∗ (86795− 65536)

≈ 11267 MB. In this case, 15406 MB system memory 
was requested by service-3 to complete its tasks. How-
ever, due to resource scarcity, only 11267 MB of system 
memory could be assigned to the service.

Furthermore, a local factor, as explained in Penalty 
for performance degradation section, was applied to 
each individual service, expressed as (1+ δ(aji)

Rc(aji)
) . Taking 

service-0 ( a0 ) and service-3 ( a3 ) as examples, the local 
factors for the two services are ∼0.5034 and ∼1.5837 
(where the provisioned memory for a0 and a3 are 
Rc(a0) = 8192 MB and Rc(a3) = 16384MB, as shown in 
Fig. 14 [left, ’provisioned’]), i.e., the total impact on ser-
vice-0 has further reduced to 0.5034 ∗ 0.0136 ≈ 0.0068 
seconds and the total impact on service-3 has further 
increased to 1.5837 ∗ 18.946 ≈ 30.0048 seconds, respectively.

Accuracy of energy consumption models
In the simulator, four power consumption models were 
developed to predict energy usage in the clouds: Step-wise 
Linear Regression, Simple Linear Regression, Quadratic 
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Fig. 15 Energy consumption models of the servers
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Polynomial, and Cubic Polynomial models. The accuracy 
of these models was evaluated using multiple R-squared 
statistics, as shown in Table 6 and Fig. 15. Figure 16 pre-
sents a summary of the statistics for energy consump-
tion collected from homogeneous clouds. The Step-wise 
Linear Regression model was based on individual data 
points, serving as a baseline for comparison. It is worth 
noting that the Simple Linear Regression models consist-
ently underestimate energy usage when compared to the 
average baseline values, which are {rnd: 23.63, ff: 27.92, 
bf: 22.32, mu: 26.20, me: 21.92}. In contrast, other models 
produced very similar results, with the differences being 
statistically insignificant, {rnd: p=0.327, bf: p=0.433, mu: 
p=0.115, me: p=0.772}, and marginal for the first-fit algo-
rithm, {ff: p=0.0481}, suggested by ANOVA tests. These 
findings indicate that while Simple Linear Regression 
consistently underestimates energy usage, other energy 
consumption models provide similar predictions with 
insignificant differences. This suggests that more com-
plex models may not always lead to better predictions and 
highlights the importance of the quality and quantity of 
the data associated with energy consumption patterns of 
servers in building accurate baseline models.

The effectiveness of these models is heavily dependent on 
the quality as well as quantity of energy consumption data. 
It’s important to note that these models are only approxi-
mations of actual server energy consumption patterns. The 
comparisons provided here serve as a reference point for 
further analysis and evaluation. When using different com-
binations of servers and energy consumption models, it will 
be necessary to collect basic statistics in order to establish a 
baseline for more thorough evaluations.

Discussion
Based on the experimental results, it is evident that the 
stability of the algorithms is significantly influenced 
by environmental heterogeneity. In other words, the 

variance in energy consumption and SLA violation 
observed in heterogeneous environments was found to 
be much higher than those obtained from homogene-
ous environments (as shown in Figs. 8 and 9). However, 
clouds configured with server consolidation features 
provide better opportunities for energy consumption 
reduction. Among the implemented algorithms, the bal-
anced-fit algorithm demonstrated statistical robustness 
and efficiency in service placement for both homogene-
ous and heterogeneous cloud environments. It should be 
noted that the efficiency evaluations of the algorithms 
were based on specific configurations within the experi-
ments, such as service resource utilization models, initial 
resource requirements of services, and server specifica-
tions. It is possible that system performance may vary for 
different cloud profiles. As a result, environment profil-
ing plays an essential role in optimizing and managing 
cloud resources. One potential approach to address this 
issue involves incorporating digital twins of clouds as 
an abstraction layer on top of the underlying infrastruc-
ture. This would enable better environmental profiling, 
decision-making, and event prediction within cloud sys-
tems. The development of such a simulation model also 
presents opportunities for exploring decentralized and 
potentially self-organizing cloud architectures through 
experimentation and analysis.

Conclusion
In this work, an agent-based cloud simulator has been 
developed, offering significant flexibility in terms of 
parameter tuning and configurability. The simulator 
can be easily extended by adding new characteristics to 
agents or implementing other types of cloud elements 
through the creation of new breeds of agents. It is port-
able as it is written in a platform-neutral language, which 
can be executed on most mainstream operating systems 
facilitated by the NetLogo platform. In the evaluation, 

SWLR SLR QP CP

En
er

gy
 C

on
su

m
pt

io
n 

(k
W

h)

random

15
20

25
30

SWLR SLR QP CP

first−fit

15
20

25
30

SWLR SLR QP CP

balanced−fit

15
20

25
30

SWLR SLR QP CP

max−utilization

15
20

25
30

SWLR SLR QP CP

min−energy

15
20

25
30
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statistical methods were employed to assess the perfor-
mance of the built-in resource management algorithms. 
Real time plots were also utilized to visualize the runtime 
status of clouds. The concept of SLA violation has been 
redefined as service lifetime extension, which is calcu-
lated based on the relative resource requirements of ser-
vices and their adjacency within the cloud environment. 
Future versions of this simulator will introduce new 
features such as a 3D model to study heat dissipation in 
clouds and a network module for customized network 
topology design.
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