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Abstract 

In practical data mining, a wide range of classification algorithms is employed for prediction tasks. However, selecting 
the best algorithm poses a challenging task for machine learning practitioners and experts, primarily due to the inher-
ent variability in the characteristics of classification problems, referred to as datasets, and the unpredictable perfor-
mance of these algorithms. Dataset characteristics are quantified in terms of meta-features, while classifier perfor-
mance is evaluated using various performance metrics. The assessment of classifiers through empirical methods 
across multiple classification datasets, while considering multiple performance metrics, presents a computationally 
expensive and time-consuming obstacle in the pursuit of selecting the optimal algorithm. Furthermore, the scar-
city of sufficient training data, denoted by dimensions representing the number of datasets and the feature space 
described by meta-feature perspectives, adds further complexity to the process of algorithm selection using classical 
machine learning methods. This research paper presents an integrated framework called eML-CBR that combines 
edge edge-ML and case-based reasoning methodologies to accurately address the algorithm selection prob-
lem. It adapts a multi-level, multi-view case-based reasoning methodology, considering data from diverse feature 
dimensions and the algorithms from multiple performance aspects, that distributes computations to both cloud 
edges and centralized nodes. On the edge, the first-level reasoning employs machine learning methods to recom-
mend a family of classification algorithms, while at the second level, it recommends a list of the top-k algorithms 
within that family. This list is further refined by an algorithm conflict resolver module. The eML-CBR framework offers 
a suite of contributions, including integrated algorithm selection, multi-view meta-feature extraction, innovative 
performance criteria, improved algorithm recommendation, data scarcity mitigation through incremental learning, 
and an open-source CBR module, reshaping research paradigms. The CBR module, trained on 100 datasets and tested 
with 52 datasets using 9 decision tree algorithms, achieved an accuracy of 94% for correct classifier recommendations 
within the top k=3 algorithms, making it highly suitable for practical classification applications.
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Introduction
In data mining, prediction problems are commonly 
and frequently encountered, and they are effectively 
addressed through the utilization of machine learn-
ing algorithms. Machine learning experts have devised 
and created a large number of algorithms tailored for 
data mining applications [1]. Similarly, to improve clas-
sification accuracy, especially on difficult problems, 
researchers are developing new and innovative meth-
ods for combining and designing new classifiers, such 
as ensemble or exploit the intrinsic structure classes [2]. 
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This makes the algorithm space vast, which is categorized 
into distinct families, encompassing decision trees, Bayes 
classifiers, rule-based learners, meta-learners, multi-
instance classifiers, and function classifiers and lazy clas-
sifiers [3]. Among these categories, decision tree-based 
algorithms are widely acknowledged and employed as a 
prominent data classification technique due to their effi-
ciency, user-friendly nature, and comparatively modest 
complexity [4]. In various applications, including medi-
cine, finance, public policy, and more, they serve as valu-
able tools for facilitating decision-making [5].

Picking an appropriate classification algorithm (a deci-
sion tree in this case) for a given dataset is a difficult 
and challenging task not only for end users but also for 
machine learning practitioners [6]. This is because differ-
ent algorithms behave differently on the same problem 
due to the inherent characteristics of the data. For exam-
ple, some algorithms are better suited for linear data, 
while others are better suited for non-linear data. Addi-
tionally, some algorithms are more computationally effi-
cient than others [7].

One approach involves empirically evaluating all 
available classifiers for a given classification problem 
and selecting the one with the best results as the win-
ner [7, 8]. However, this method faces the challenge of 
exhaustive search, leading to computational complexity 
[9]. Several studies have demonstrated that there isn’t a 
universal classification algorithm suitable for all classi-
fication problems. For instance, if the same classifier is 
applied to a different problem, it may yield suboptimal 
results, thus affirming the established "No Free Lunch" 
theorem [10]. The reason is that the results of classifiers 
depend on the specific characteristics of each problem, 
making the task of classifier selection as a meta-learning 
approach [11]. In this approach, the meta-characteristics 
of classification problems are computed, and classifi-
ers are evaluated based on their performance on these 
problems. Subsequently, a mapping is learned between 
problem features and the classifier(s) that exhibit the 
best performance, enabling the recommendation of an 
appropriate classifier [12]. Hence, the task of automatic 
algorithm selection through meta-learning can be rep-
resented as a four-step process model [13]. This model 
encompasses the following stages: classifier characteri-
zation, where classifier performance is assessed; problem 
characterization, involving the extraction of inherent 
meta-characteristics of the problem; the mapping and 
learning of problem meta-characteristics against classi-
fier performance, and ultimately the recommendation of 
suitable classifier(s) for a new problem.

Classifier characterization represents the user’s objec-
tive in developing an application, such as accuracy or 

computational efficiency. It can be assessed using per-
formance evaluation metrics [14]. The research com-
munity has approached classifier characterization 
from both uni-metric and multi-metric perspectives, 
often referred to as meta-target. Problem characteri-
zation involves extracting the underlying data behav-
iors that reflect its unseen nature, measured through 
meta-features or meta-characteristics. Various types of 
meta-characteristics have been identified, including sta-
tistical, information theoretic, model-based, land-mark-
ing, and complexity [15, 16].

Recently, Q. Song et  al. [17] has used a new dataset 
characterization method for computing datasets fea-
tures and computed performance of seventeen clas-
sification algorithms over 84 UCI publically available 
datasets [18]. Mapping meta-characteristics and classi-
fiers performance is the process of aligning each prob-
lem against the appropriate classifier. The objective of 
the process is to make algorithm selection problem as 
a machine learning problem where meta-characteristics 
form a feature-vector and label(s) of the classifier(s), 
with best performance, as the class label. Identification 
of the class-label is a challenging task and researchers 
have approached the issue using various approaches, 
such as multiple comparison method. As a result of 
these methods, some of the problems have more than 
one applicable classifiers as the class label. This makes 
the problem of algorithm selection is a single-class 
and multi-class problem and research community has 
approached them using single-label learning and multi-
label learning. For learning association or mapping 
function between problems meta-characteristics and 
class label(s), researcher have used different approaches 
that can broadly be categorized – define categories - as 
decision tree-based learner (e.g., C4.5 [19]), rule-based 
learner [20], linear regression [21] and instance-based 
learner (e.g., k-NN [17, 22]). Finally, for the selection of 
appropriate classifier(s) on the fly, researchers have used 
different approaches.

In the realm of classification algorithm selection, 
meta-learning has been employed extensively. EFFECT 
[23] offers an interpretable meta-learning framework 
to explain recommendation results and algorithm per-
formance in specific business scenarios. AMLBID [24] 
automates algorithm selection for analyzing industrial 
data, while [15, 16] utilizes meta-learning to assess data 
characteristics and recommend algorithms across vari-
ous datasets.

Summary of the existing research work on automatic 
algorithm selection reveals several limitations. One 
significant challenge is the computational complex-
ity involved in empirically assessing classifiers across 
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multiple datasets and employing various performance 
metrics. This complexity can make the algorithm selec-
tion process time-consuming and resource-intensive, 
particularly for large datasets. Another limitation stems 
from the scarcity of sufficient training data required for 
effective machine learning, including the representation 
of diverse datasets and their associated meta-features. 
Additionally, the unpredictable performance of classifi-
cation algorithms on different datasets adds an element 
of uncertainty to the selection process. Furthermore, the 
variability in dataset characteristics, such as data dis-
tribution and feature space complexity, makes finding 
a universally optimal algorithm difficult. Lastly, deter-
mining appropriate performance metrics for evalua-
tion can be a challenging task, as different datasets may 
necessitate different metrics for meaningful assessment. 
These limitations underscore the need for innovative 
approaches like meta-learning to address the complexi-
ties inherent in algorithm selection for data mining.

To address the issues highlighted earlier on the sub-
ject problem of algorithm selection, this research paper 
proposes an integrated framework called eML-CBR that 
combines edge machine learning (ML) and case-based 
reasoning (CBR) methodologies. It adapts a multi-level, 
multi-view CBR methodology that considers data from 
diverse feature dimensions and algorithms from multiple 
performance aspects. The computation is distributed to 
both cloud edges and centralized nodes. On the edge, the 
first-level reasoning employs machine learning methods 
to recommend a family of classification algorithms, while 
at the second level, it recommends a list of the top-k 
algorithms within that family. This list is further refined 
by an algorithm conflict resolver module.

Key contributions of the research work are enlisted as 
follows.

The eML-CBR boasts several key contributions that are 
set to transform the field:

• Pioneering the design and development of an inte-
grated algorithm selection framework that seamlessly 
integrates edge-ML with CBR methodology.

• Thoroughly exploring and extracting multi-view 
meta-features from datasets to provide a deeper 
insight into their intricacies.

• Devising a new multi-objective criteria with weighted 
summation to accurately assess algorithm perfor-
mances.

• Enhancing algorithm recommendation significantly 
through the integration of the algorithm conflict 
resolver (ACR).

• Mitigating the persistent challenge of data scarcity by 
introducing the concept of incremental evolutionary 
learning using the CBR methodology.

• Releasing the CBR module as a stand-alone open-
source software to the research community in the 
field.

The remainder of this paper is structured as follows: 
Section "Edge ML and Case-based Reasoning for Algo-
rithm Selection" provides an in-depth overview of Edge 
ML and Case-based Reasoning for Algorithm Selec-
tion. In Section "Multi-views Case-based Reasoning 
for Algorithm Selection", we delve into the Multi-views 
Case-based Reasoning methodology applied to Algo-
rithm Selection. Section "Implementation, experiments 
and evaluation" is dedicated to the implementation, 
experiments, and evaluation of our proposed methodol-
ogy. Finally, in Section "Conclusion and Future Work", 
we conclude our work and outline potential avenues for 
future research.

Edge ML and case‑based reasoning for algorithm 
selection
Definition of algorithm selection problem
Based on the Rice model [25], the algorithm selection 
problem can be defined as follows: given a problem p as 
input and a set of candidate machine learning algorithms 
A that can learn the same p with varying performance 
levels Y, the objective of an algorithm selection method 
is to find and select an algorithm a ∈ A that can learn p 
with the best possible performance. Now, we introduce 
the notation that will be used throughout this paper. Let 
P denote a set of historical problems (i.e., classification 
datasets in this case) with F as the feature vector repre-
senting the meta-features of each problem p ∈ P, and let 
A be a set of classification algorithms capable of solving P 
with some performance level Y.

Algorithm selection as an edge ML problem
Edge machine learning, abbreviated as edge ML, involves 
executing machine learning algorithms on edge devices 
located close to the data source rather than on remote 
cloud servers, enabling faster decision-making. In the 
proposed study, the algorithm selection problem is 
divided into two levels, taking place at both local and 
remote nodes within the distributed system. At the first 
level, we select the appropriate family of ML algorithms, 
including probabilistic, decision tree, function-based, 
lazy learners, meta-learners, and rules-based fami-
lies. At the second level, we choose the appropriate ML 
algorithm on the remote cloud server. In both levels, we 
employ a case-based reasoning methodology, rendering 
the algorithm selection process a multi-level reasoning 
process.

Overview of the proposed Edge ML computing envi-
ronment is shown in Fig. 1.
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The proposed methodology for edge ML comput-
ing in ML algorithm selection is supported by a hier-
archical machine learning approach. In this approach, 
the first layer of the hierarchy recommends a family 
of algorithms, and the second layer of the hierarchy 
selects the appropriate algorithm within the chosen 
family. In this framework, both the edge device and the 
cloud server act as computing nodes, both locally and 
remotely. The paper will now focus on the case-based 
reasoning methodology used on both the edge and 
cloud devices.

Multi‑views case‑based reasoning for algorithm 
selection
As previously discussed, algorithm selection is an 
edge ML computing problem wherein case-based 
reasoning (CBR) is employed at both the local device 

and the centralized cloud server. This process encom-
passes three key modules: (i) datasets and algorithms 
characterization, (ii) model creation, and (iii) algo-
rithm recommendation. CBR utilizes diverse families 
of data characteristics, rendering it a multi-view CBR 
approach. An architectural depiction of the proposed 
framework, inspired by the Rice framework [12], is pre-
sented in Fig. 2.

The subsequent section explains the workings of each 
module, with its technical details and the methods 
used.

Datasets and Algorithms Characterization (DAC)
The datasets and algorithms characterization (DAC) 
module plays a crucial role by extracting meta-features 
(denoted as f ∈ F) for each dataset (d) and aligning them 
with the most suitable algorithm (a ∈ A). This align-
ment process prepares instances for the training dataset, 

Fig. 1 Overview of the proposed edge ML computing environment
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Case-Base in this case, facilitating the subsequent stages 
of the algorithm selection.

Multi‑view meta‑features extraction
In this study, we propose a new approach that involves 
the extraction of multi-view meta-features from the 
archived datasets, with each meta-feature belonging 
to a unique feature family. These families include gen-
eral, simple statistical, advanced statistical, and infor-
mation theoretic. The rationales behind the selection 
of these four families of meta-feature come from the 
fact that they represent global view for different clas-
sification data types and can be computed in real-time, 
supporting practical data mining applications, such as 
algorithm selection. The general view includes sim-
ple measurements, computed for the entire dataset, 
offering a global perspective using aggregated values. 
The basic statistical view encompasses measurements 
related to dataset dimensionality and attribute ratios. 
Advanced statistical features provide valuable insights 
about a dataset, such as the distribution of numeric 
attributes, the balance between positive and negative 
instances, the accuracy of default classification, the 
presence of incomplete data, and the distinct values 
in nominal attributes. By examining these advanced 
statistical characteristics, analysts can gain deeper 
knowledge and make informed decisions when working 
with datasets, enabling more effective data mining and 
analysis for best algorithm selection. Similarly, as each 
dataset contains both continuous and symbolic data 
features. To enhance algorithm selection, we extract 

symbolic meta-features known as information-theo-
retic features. These features, based on entropy, meas-
ure data purity relative to class labels. This approach is 
unique as compared to single-view approaches [26, 17] 
because it extracts diverse or multi-view meta-features 
from the datasets. This diverse set of meta-features ena-
bles the utilization of a multi-view learning approach in 
the classifier selection process. This approach is aligned 
with the fundamental concept of approaching the algo-
rithm selection problem from multiple aspects, consid-
ering various factors and perspectives. This concept is 
illustrated in Fig.  3 and the characteristics considered 
are listed in Tables 1, 2, 3 and 4.

These meta-features are computed using [14, 27] 
available on GitHub.

Machine learning algorithms characterization
In this section, we characterize the performance of the 
decision tree algorithms listed in Table 5. Our objective 
is to identify the best-performing algorithms for the 
dataset at hand. We assess performance using a mul-
tifaceted evaluation criteria, considering the weighted 
average F-score and standard deviation. Results for 
these criteria are obtained using the Weka experi-
menter environment [3], employing the default param-
eters for the algorithms and standardized 10x10-fold 
cross-validation. To determine the best-performing 
algorithm (where a ∈ A) for a specific dataset (where (p 
∈ P)), we apply PerformanceEval algorithm  1, as illus-
trated in Fig. 4.

Fig. 2 Case-based reasoning for algorithm selection
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Algorithm 1. PerformanceEval: A comprehensive performance evaluation approach
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Model creation (Case‑Base Creation)
Once the datasets and classifiers are character-
ized, as described in previous sections, the best 
classifier(s) are assigned to the set of meta-features (e.g., 
F→bestClassifier(s)) using a simple alignment function to 
produce a single training dataset or Case-Base. The map-
ping of features against classifiers forms resolved cases 
for a CBR process.

The rationale behind using case-base creation is that 
different machine learning algorithms can also be used 

Fig. 3 Enriching Algorithm Selection with Multi-View Dataset Representation

Table 1 General characteristics of dataset

Feature ID Description

GC 1 InstanceCount

GC 2 NumAttributes

GC 3 ClassCount

GC 4 NumBinaryAtts

GC 5 NumNominalAtts

GC 6 NumNumericAtts

GC 7 NumMissingValues

Table 2 Basic statistical characteristics

Feature ID Description

BS 1 PercentageOfBinaryAtts

BS 2 PercentageOfNominalAtts

BS 3 PercentageOfNumericAtts

BS 4 MeanSkewnessOfNumericAtts

BS 5 MeanKurtosisOfNumericAtts

BS 6 Dimensionality

Table 3 Advanced statistical characteristics

Feature ID Description

AS 1 MeanStdDevOfNumericAtts

AS 2 MeanMeansOfNumericAtts

AS 3 NegativePercentage

AS 4 PositivePercentage

AS 5 DefaultAccuracy

AS 6 IncompleteInstanceCount

AS 7 PercentageOfMissingValues

AS 8 MinNominalAttDistinctValues

AS 9 MaxNominalAttDistinctValues

AS 10 StdvNominalAttDistinctValues

AS 11 MeanNominalAttDistinctValues

Table 4 Information theoretic characteristics

Feature ID Description

IT 1 ClassEntropy

IT 2 MeanAttributeEntropy

IT 3 MeanMutualInformation

IT 4 EquivalentNumberOfAtts

IT 5 NoiseToSignalRatio

as predictive models, but the small number of training 
instances makes it difficult for conventional classifiers. To 
overcome this issue, we adapt the CBR model with some 
enhancements in the case base creation and retrieval 
phases.

For case representation, we adapt propositional case 
representation schemes [28], where a case is represented 
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as a proposition containing key-value pair format. In 
the proposed algorithm selection scenario, a case con-
tains data characteristics (i.e., extracted meta-features) 
as problem description and the best algorithm name as 
solution description. A generic structure of the proposed 
Case-Base, using feature-vector representation, is shown 
in Table 6.

The meta-features 1-29, shown in Table 6, are multiple 
views of data characteristics given in Tables 1, 2, 3 and 4. 
Similarly, the best-classifier (last column) is the label of 
one or more, best decision tree classifiers, from Table 5. 
The size of the case-base is 100 resolved cases, authored 
from 100 freely available classification datasets collected 
from UCI [29] and OpenML [30] machine learning 
repositories. A subset of datasets used for case-base crea-
tion is provided in Table 7 along with brief descriptions 
of the general characteristics of the datasets

Table 5 Decision tree algorithms in the Weka environment

Algorithm ID Decision Tree Algorithm

A 1 trees.BFTree

A 2 trees.FT

A 3 trees.J48

A 4 trees.J48graft

A 5 trees.LADTree

A 6 trees.RandomForest

A 7 trees.RandomTree

A 8 trees.REPTree

A 9 trees.SimpleCart

Fig. 4 Multi-criteria analysis for algorithm performance evaluation
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In the proposed Case-Base, all the features are real 
numbers, so their data types are set to numeric.

Algorithm recommendation using CBR
Algorithm recommendation using CBR represents 
the online phase of algorithm selection, suggesting 
the top-k suitable algorithms to end users through the 
CBR cycle. The rationale for using CBR methodology 
for algorithm recommendation, as opposed to state-
of-the-art machine learning methods, is that algorithm 
recommendation is an estimation problem, in which 

CBR excels, rather than a discrete solution produced by 
conventional machine learning methods. In the study, 
we enhance the classical CBR with the use of accurate 
similarity functions, multi-view features extraction, and 
incremental learning to improve the algorithms selec-
tion process. Methodology of CBR cycle follows the 
steps given below.

New case preparation ‑ multi‑view meta‑features extraction
A Query Case (Q) is prepared from a given new dataset by 
extracting multi-view features with the help of a meta-fea-
ture extractor to form a feature vector. For this purpose, the 
same dataset characterization mechanism described in the 

offline phase is used. As different families of the features 
are extracted, a multi-view reasoning process is initiated.

CBR cycle – 4R
The CBR cycle comprises retrieve, reuse, revise and 
retain steps that are performed in sequential order as 
explained below.

In the retrieve step, similarity functions are defined to 
match the meta-features of the query dataset Q against 
the resolved cases R in the Case-Base, retrieving the 
top-k cases as suggested solutions. For individual meta-
feature similarity matching, we use the local similarity 
function, as shown in Eq.  1. For matching a new case 
with the existing resolved cases in the Case-Base, we 
employ a global similarity function, as shown in Eq. 2

where, idealSimmf i =1 & dg Maxmf i ,Minmf i  is the 
global interval or range of the values of each continuous 
value meta-feature. Similarly, nCmf i represents meta-
feature of new case and eCmf i represents meta-feature of 
existing cases.

Where, ∝i is the weight value of each mfi in the 
Case-Base and we assigned equal weight value to each 
meta-features, based on the assumption that all the 29 
meta-features are equally important for selecting the 
best algorithm.

Reuse In the reuse step, the solution part, i.e., the label 
of best algorithm, of the top-k similar cases are assigned 
to the problem description part of the new case as a sug-
gested solution (recommended algorithm in this case).

This process of retrieve and reuse is algorithmically 
presented in Algorithm 2.

(1)Siml

(

nCmfi , eCmfi

)

= idealSimmfi −
dl
(

nCmfi , eCmfi

)

dg
(

Maxmfi ,Minmfi

)

(2)Simg(nC, eC) =
∝1 ∗ Siml

(

nCmfi , eCmfi

)

+ · · · + ∝n ∗ Siml

(

nCmfn , eCmfn

)

∝1 +∝2 + · · · + ∝n

Table 6 Representation of algorithm selection case base

* In this case: n=100 and m=29

Problem or Dataset Description/Characterization Algorithm 
Characterization

Resolved 
Case‑ID

Meta‑ F1 Meta‑F2 … Meta‑Fm Best‑Algorithm

R1 F1 F2 … Fm Al

R2 F1 F2 … Fm A1

… … … … … …

Rn F1 F2 … Fm A3

Table 7 Subset of datasets for case-base creation with brief descriptions

ID Dataset Name General Characteristics

Attributes NominalAtts NumericAtts BinaryAtts Classes IncompInstances Instances MissingValues

1 abalone.arff 9 1 7 0 3 0 4177 0

2 abe_148.arff 6 0 5 0 2 0 66 0

3 acute-inflammations.arff 7 5 1 5 2 0 120 0

… … … … … … … … … …

… … … … … … … … … …

100 car.arff 7 6 0 0 4 0 1728 0
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Algorithm 2. Top-k algorithm selection using case-based reasoning
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Descriptions of each of the procedures, used in this 
algorithm 2, are given below.

CalculateSimilarityIntervals: This procedure loops 
through all meta-features, calculates interval value and 
defines weight for each of feature. The interval value is 
computed using dg

(

Maxmfi ,Minmfi

)

 , while the weight 
assigned to each meta-feature is same, i.e., 1.

BuildNNConfig(I): This procedure performs the 
main task of finding nearest neighbor computation. 
The set of tasks performed using this procedure are: 
initialize NNConfig, set global similarity function as 
per Eq. 2, map a local similarity function with each fea-
ture as per Eq. 1, set weight for each feature, i.e., assign 
1 to each feature in this case and return NNConfig.

evaluateSimilarity(R,Q, S ): evaluates similarity of 
each ci where ci ∈ C against the queryCase Q using 
similarity function mapped in NN similarityConfig S, 
and returns a collection of retrievalResults RR (most 
similar cases).

selectTopK(RR, K): this procedure Selects top K most 
similar CBR cases from the collection of retrievalResult 
RR.

The final output of the retrieve and reuse steps, 
denoted as RR, consists of a list of the top-k (with k=3) 
cases that exhibit the highest similarity scores in com-
parison to the query case (Q). If RR yields the top-k 
algorithms with distinct Wgt.Avg.F-score values, the 
top-ranked one is recommended as the most suitable 
algorithm and assigned as the label to the feature vec-
tor as the class label. Otherwise, the revise step of the 
CBR is initiated to uniquely identify the most suitable 
algorithm.

Revise – algorithm conflict resolver (ACR) In the revi-
sion step of the proposed CBR approach, the unique 
algorithm recommended in the reuse step is added as 
a new instance into the existing Case-Base. However, 
if more than one algorithm with similar or statistically 
insignificant differences in the similarity scores are 
recommended, then either any of the recommended 
algorithms is randomly selected as the final recom-
mendation, or conflict resolution becomes neces-
sary among the competing algorithms. To resolve this 
conflict, we propose a method known as the Algo-
rithm Conflict Resolver (ACR). This method performs 

Table 8 Characterization of decision tree classifiers

ID DT Classifier 
Comprehensibility 
Characteristics

1 measureNumRules

2 measurePercentAttsUsedByDT

3 measureTreeSize

4 measureNumLeaves

5 measureNumPredictionLeaves

meta-reasoning at the meta-characteristics level of 
the classifiers (e.g., decision tree length, number of 
rules, depth, among others) rather than focusing on 
the data characteristics. The proposed ACR employs a 
multi-objective criteria with weighted summation, as 
presented in Eq. 3, which takes into account the com-
prehensibility characteristics of the classifiers listed in 
Table 8. This allows us to recommend the most com-
prehensible classifier.

Where: i represents algorithm in A(algorithm space) 
and j represents criteria in C(criteria space)

• ai is the weighted sum score for algorithm a ∈ A

• wnj is the normalized weight assigned to criterion cj , 
calculated using Eq. 4.

• C(i,j)  is the performance or evaluation score of algo-
rithm ai on criterion cj

where: wi is the original weight assigned to criterion  ci by 
the user, using the AHP process

• min(w) is the minimum weight for all criteria
• max(w) is the maximum weight for all criteria

Working of the ACR algorithm is shown in 
Algorithm 3.

(3)ai =
∑

(wnj ∗ C(i, j)

(4)wnj =
(wi −min(w)

max(w)−min(w)
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Algorithm 3. Algorithms Conflict Resolver (ACR)
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Given that conflict resolution is application-depend-
ent, we employ a semi-automatic expert-based criteria 
weighting approach, adopting the analytical hierarchy 

process (AHP) pairwise comparison processes. The 
algorithm used for AHP-based criteria weighting is 
presented in Algorithm 4.

Algorithm 4. Weight calculation using Analytic Hierarchy Process (AHP)
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In the retention step, Q, represented by a meta-features 
containing features from all the families, along with the 
final recommended algorithm either from the reuse or 
revise steps of CBR, is incorporated into the Case-Base. 
This process incrementally enlarges the size of the Case-
Base and improves the quality of the CBR for recom-
mending the most suitable algorithm. This demonstrates 
the proposed algorithm recommendation model as an 
instance of an incremental and evolutionary learning 
process.

Implementation, experiments and evaluation
This section describes the implementation of the pro-
posed system and presents experiments conducted to 
validate the methodology.

Implementation
The proposed multi-view case-based reasoning meth-
odology for accurate classifier selection has been imple-
mented in the Java environment as an open-source 
application. The key components of the methodology 
include the extraction of multiple categories of meta-
features from the dataset and meta-reasoning by utiliz-
ing the Case-Base. These meta-features are computed 
using the OpenML [30] data characteristics (DC) open-
source library, which is freely available on GitHub [27] . 
For the CBR-based reasoning process, we utilized jCo-
libri 2.0, a case-based reasoning framework [31], where 

we implemented our custom case similarity functions to 
ensure accurate matching of existing cases. The result-
ing CBR-based incremental learning and reasoning sys-
tem has been released as an open-source application on 
GitHub, featuring an extensible and adaptable implemen-
tation strategy [32], enabling end-users to utilize it for 
selecting a suitable decision tree classifier for their appli-
cation’s data. The interface of the CBR application for 
meta-feature extraction is displayed in Fig. 5.

The process of multi-view reasoning using CBR is 
shown in Fig. 6.

Experimental setup
Classifiers under consideration
We conducted experiments on the nine most commonly 
used multi-class classification algorithms, as listed in 
Table 5. These algorithms are implemented in the Weka 
machine learning library [3]. We utilized them with their 
default parameters

Training and testing datasets To train and test the 
proposed methodology, two disjoint sets of datasets are 
utilized. For training, the CBR model, i.e., Case-Base, is 
constructed using 100 multi-class classification datasets, 
as shown in Table  9. These datasets are sourced from 
the UCI machine learning repository [29] and OpenML 
repositories [30]. Similarly, a separate set of 52 datasets is 
employed for testing the methodology. All the classifiers 
listed in Table 5 are evaluated for each of the test datasets 

Fig. 5 Interface of the CBR Application for Meta-Features Extraction
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using the method implemented and described in Fig.  6. 
Subsequently, the best classifiers are determined to assess 
the performance of the proposed methodology.

Evaluation methodology and criteria To evaluate the 
accuracy of the proposed method, the following steps are 
used:

• For each given dataset (test datasets in this case), 
meta-features are extracted using the developed 
meta-feature extractor to prepare a Query Case (Q).

• The CBR methodology is used to recommend the 
top-k (k=3) best classifiers for each Q.

• Measure the similarity between the recommended 
top-k (k=3) classifiers and the actual classifiers of 
those datasets. If the recommended classifier for a 
given dataset belongs to any of the top-k (k=3) classi-
fiers, the recommendation is declared as correct; oth-
erwise, it is considered incorrect.

Experiments and results analysis When experiments 
were conducted on the test Case-Base consisting of 52 
datasets, shown in Table 10, and the results were evalu-
ated, 48 out of the 52 datasets received accurate classi-
fier recommendations. As a result, the overall accuracy 
of the proposed methodology was determined to be 94% 
for appropriate algorithm recommendations with a top-k 
value of 3 algorithms.

The results in Table  10 show that only 3 out of 52 
classifiers, namely Dataset 30, Dataset 38, and Data-
set 48, were not recommended with correct classifiers. 
Similarly, for a top-k value of 1, the proposed method-
ology correctly recommended accurate classifiers for 
30 datasets, resulting in an accuracy of 57.6% (calcu-
lated as 30 * 100 / 52). To analyze the results for a top-k 
value of 2, the methodology correctly recommended 
classifiers for 38 datasets and achieved an accuracy of 
73% (calculated as 38 * 100 / 52).

Overall Accuracy =
Number of Accurate Recommendations× 100

Total Number of Datasets
=

48× 100

52
= 94%

Fig. 6 Case-Based Reasoning (CBR) for optimal machine learning algorithm selection
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Table 9 Training datasets for case-base creation with brief descriptions

ID Dataset Name General Characteristics

Attributes NominalAtts NumericAtts BinaryAtts Classes IncompInstances Instances MissingValues

1 abalone.arff 9 1 7 0 3 0 4177 0

2 abe_148.arff 6 0 5 0 2 0 66 0

3 acute-inflammations.arff 7 5 1 5 2 0 120 0

4 ada_agnostic.arff 49 0 48 0 2 0 4562 0

5 ada_prior.arff 15 8 6 1 2 88 4562 88

6 adult- 4000.arff 15 8 6 1 2 0 3983 0

7 adult- 80000.arff 15 8 6 1 2 0 8000 0

8 ailerons - 5840.arff 41 0 40 0 2 0 5795 0

9 analcatdata_aids.arff 5 2 2 0 2 0 50 0

10 analcatdata_apnea1.arff 4 2 1 0 2 0 475 0

11 analcatdata_apnea2.arff 4 2 1 0 2 0 475 0

12 analcatdata_asbestos_ciup-
dated

4 2 1 1 2 0 83 0

13 analcatdata_authorship.arff 71 0 70 0 4 0 841 0

14 analcatdata_bankruptcy.arff 7 1 5 0 2 0 50 0

15 analcatdata_birthday.arff 4 2 1 0 2 30 365 30

16 analcatdata_bondrate.arff 12 7 4 1 5 1 57 1

17 analcatdata_boxing1.arff 4 3 0 1 2 0 120 0

18 analcatdata_boxing2.arff 4 3 0 1 2 0 132 0

19 analcatdata_braziltourism.arff 9 4 4 1 7 49 412 96

20 analcatdata_broadway.arff 10 6 3 1 5 6 95 9

21 analcatdata_broadwaymult.arff 8 4 3 1 7 18 285 27

22 analcatdata_chall101.arff 3 1 1 0 2 0 138 0

23 analcatdata_challenger.arff 6 4 1 0 2 0 23 0

24 analcatdata_chlamydia.arff 4 3 0 1 2 0 100 0

25 analcatdata_creditscore.arff 7 3 3 2 2 0 100 0

26 analcatdata_currency.arff 4 2 1 0 7 0 31 0

27 analcatdata_cyyoung8092.arff 11 3 7 2 2 0 97 0

28 analcatdata_cyyoung9302.arff 11 4 6 2 2 0 92 0

29 analcatdata_dmft.arff 5 4 0 1 6 0 797 0

30 analcatdata_donner.arff 4 3 0 1 2 0 28 0

31 analcatdata_draft.arff 6 2 3 0 2 1 366 1

32 analcatdata_election2000.arff 16 1 14 0 2 0 67 0

33 analcatdata_esr.arff 3 0 2 0 2 0 32 0

34 analcatdata_famufsu.arff 4 2 1 0 2 0 14 0

35 analcatdata_fraud.arff 12 11 0 10 2 0 42 0

36 analcatdata_germangss.arff 6 4 1 2 4 0 400 0

37 analcatdata_gsssexsurvey.arff 10 5 4 5 5 6 159 6

38 analcatdata_gviolence.arff 10 1 8 0 2 0 74 0

39 analcatdata_halloffame.arff 18 2 15 0 3 20 1340 20

40 analcatdata_happiness.arff 4 2 1 0 3 0 60 0

41 analcatdata_homerun.arff 28 14 13 7 2 1 163 9

42 analcatdata_impeach.arff 11 8 2 4 2 0 100 0

43 analcatdata_japansolvent.arff 10 1 8 0 2 0 52 0

44 analcatdata_lawsuit.arff 5 1 3 1 2 0 264 0

45 analcatdata_marketing.arff 33 32 0 0 5 35 347 79

46 analcatdata_michiganacc.arff 5 2 2 0 2 0 108 0

47 analcatdata_ncaa.arff 20 15 4 1 2 0 120 0

48 analcatdata_neavote.arff 4 2 1 0 2 0 100 0

49 analcatdata_negotiation.arff 6 1 4 1 2 17 92 26

50 analcatdata_olympic2000.arff 13 1 11 0 2 0 66 0
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Table 9 (continued)

ID Dataset Name General Characteristics

Attributes NominalAtts NumericAtts BinaryAtts Classes IncompInstances Instances MissingValues

51 analcatdata_reviewer.arff 9 8 0 0 2 367 379 1368

52 analcatdata_runshoes.arff 11 6 4 5 2 14 60 14

53 analcatdata_supreme.arff 8 0 7 0 2 0 4052 0

54 analcatdata_uktrainacc.arff 17 0 16 0 2 25 31 150

55 analcatdata_votesurvey.arff 5 1 3 1 4 0 48 0

56 analcatdata_whale.arff 8 1 6 1 2 5 228 15

57 analcatdata_wildcat.arff 6 2 3 2 2 0 163 0

58 anneal.arff 39 32 6 14 6 0 898 0

59 anneal.ORIG.arff 39 32 6 7 6 898 898 22175

60 appendicitis.arff 8 0 7 0 2 0 106 0

61 ar1.arff 30 0 29 0 2 0 121 0

62 ar3.arff 30 0 29 0 2 0 63 0

63 ar4.arff 30 0 29 0 2 0 107 0

64 ar5.arff 30 0 29 0 2 0 36 0

65 arsenic-female-bladder.arff 5 1 3 0 2 0 559 0

66 arsenic-female-lung.arff 5 1 3 0 2 0 559 0

67 arsenic-male-bladder.arff 5 1 3 0 2 0 559 0

68 arsenic-male-lung.arff 5 1 3 0 2 0 559 0

69 audiology (binary version 
of audiology).arff

70 69 0 61 2 222 226 317

70 australian.arff.arff 15 0 14 0 2 0 690 0

71 automobile.arff 26 10 15 3 6 0 159 0

72 autoMpg.arff 8 3 4 0 2 6 398 6

73 autos.arff 26 10 15 4 7 46 205 59

74 autoUniv-au6-1000.arff 41 3 37 2 8 0 1000 0

75 autoUniv-au7-1100.arff 13 4 8 2 5 0 1100 0

76 autoUniv-au7-700.arff 13 4 8 2 3 0 700 0

77 backache.arff 33 26 6 22 2 0 180 0

78 badges2.arff 12 3 8 3 2 0 294 0

79 balance-scale.arff 5 0 4 0 3 0 625 0

80 balloon.arff 3 0 2 0 2 0 2001 0

81 banana.arff 3 0 2 0 2 0 5300 0

82 bands.arff 20 0 19 0 2 0 365 0

83 bank32nh - 1956.arff 33 0 32 0 2 0 1918 0

84 bank8FM.arff 9 0 8 0 2 0 8192 0

85 banknote-authentication.arff 5 0 4 0 2 0 1372 0

86 baskball.arff 5 0 4 0 2 0 96 0

87 BC-breast-cancer-data.arff 10 9 0 3 2 9 286 9

88 biomed.arff 9 1 7 0 2 15 209 15

89 blogger.arff 6 5 0 2 2 0 100 0

90 blood-transfusion-service-
center.arff.arff

5 0 4 0 2 0 748 0

91 bodyfat.arff 15 0 14 0 2 0 252 0

92 bolts.arff 8 0 7 0 2 0 40 0

93 boston.arff 14 2 11 1 2 0 506 0

94 boston_corrected.arff 21 3 17 1 2 0 506 0

95 breast-cancer.arff 10 9 0 3 2 9 286 9

96 breastTumor.arff 10 8 1 4 2 9 286 9

97 bridges_version1.arff 13 9 3 2 6 37 107 73

98 bridges_version2.arff 13 12 0 2 6 37 107 73

99 bupa.arff 7 0 6 0 2 0 345 0

100 car.arff 7 6 0 0 4 0 1728 0
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Conclusion and future work
This research centers on the automatic selection of 
machine learning (ML) algorithms through the inte-
gration of edge machine learning (edge ML) and a 
case-based reasoning (CBR) methodology. Edge ML 
enhances the capabilities of CBR by facilitating the rec-
ommendation of ML algorithm families at edge nodes 
and the selection of the actual algorithm at remote 
cloud servers. This integration serves to enhance sys-
tem performance by significantly expediting algorithm 
recommendations while minimizing associated costs.

In the future, our research endeavors will expand 
upon the current study. This expansion will encompass 
the practical implementation of edge ML computing, a 
facet not covered in this research. Additionally, we aim 
to augment the case-based approach by introducing 
more meta-characteristics and incorporating a broader 
array of algorithm families. These enhancements are 
designed to transform our platform into a universal 
and versatile tool for machine learning practitioners. 
Through these developments, we seek to provide a com-
prehensive and adaptable solution to the challenges of 
ML algorithm selection.
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Table 10 Performance results of case-based reasoning for 
algorithm selection

ID Dataset Position of Recommended 
Algorithm in Top‑3 
Algorithms

Dataset 1 cardiotocographt-10clas 1

Dataset 2 cars 1

Dataset 3 cars_with_names 2

Dataset 4 CastMetal1 1

Dataset 5 chess-small 1

Dataset 6 cholesterol 1

Dataset 7 chscase-adopt 3

Dataset 8 chscase-census2 3

Dataset 9 chscase-census3 2

Dataset 10 chscase-census5 1

Dataset 11 chscase-census6 2

Dataset 12 chscase-funds 1

Dataset 13 chscase-geyser1 1

Dataset 14 hscase-health 1

Dataset 15 chscase-vine1 1

Dataset 16 chscase-vine2 3

Dataset 17 chscase-whale 1

Dataset 18 cjs 1

Dataset 19 cleveland 1

Dataset 21 climate-simulation-crac 3

Dataset 22 cloud 3

Dataset 23 cm1_req 1

Dataset 24 cmc 1

Dataset 25 horse-colic 1

Dataset 26 horse-colic.ORIG 2

Dataset 27 colleges-aaup 1

Dataset 28 colleges-usnews 2

Dataset 29 collins 1

Dataset 30 onfidence 2

Dataset 31 ontact‑lenses 9
Dataset 32 contraceptive 3

Dataset 33 costamadre1 1

Dataset 34 cps_85_wages 3

Dataset 35 cpu 3

Dataset 36 cpu_act 1

Dataset 37 cpu_small 1

Dataset 38 credit-rating 3

Dataset 39 crx 4
Dataset 40 DATATRIEVE 1

Dataset 41 dbworld-subjects-stemme 1

Dataset 42 dbworld-subjects 1

Dataset 43 delta_ailerons 1

Dataset 44 dermatology 1

Dataset 45 desharnais.csv-weka.fil 2

Dataset 46 pima_diabetes 1

Dataset 47 diggle-Table_A1_Luteniz 2

Dataset 48 disclosure-X_BIAS 1

Table 10 (continued)

ID Dataset Position of Recommended 
Algorithm in Top‑3 
Algorithms

Dataset 49 disclosure‑X_NOISE 4
Dataset 50 disclosure-X_TAMPERED 3

Dataset 51 disclosure-Z 3

Dataset 52 dresses-sales 1

Dataset 53 eastWest 1
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