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Abstract 

Container-based High-Performance Computing (HPC) is changing the way computation is performed and repro-
duced without sacrificing the raw performance compared to hypervisor-assisted virtualization technologies. It 
primarily supports continuously evolving data-intensive applications such as computational fluid dynamics, seismic 
tomography, molecular biology, and Proteomics. OpenPOWER systems, unlike the x86 systems, use the POWER-com-
pliant processor to exploit instruction-level and thread-level parallelism heavily. In our previous work, we designed 
and developed a Containerized HPC environment (cHPCe) from the scratch using Linux namespaces on OpenPOWER 
systems. This paper aims to provide an in-depth performance analysis of the Containerized HPC environment using 
x86 systems and Containerized HPC environment using the OpenPOWER system, on systems’ subcomponents, pro-
cessor, memory, interconnect, and IO. This sub-component analysis provides an insight on several aspects of the sys-
tem performance. To the best of our knowledge, no research has been reported yet for such a comparative analysis 
that designs cHPCe for both x86 and OpenPOWER systems. The performance of the developed cHPCe is compared 
with BareMetals, and VMs using the benchmarks HPCC, and IOZone. Our experimental results achieve 0.13% less com-
pute performance penalty at its peak performance on cHPCe compared to the BareMetal-based solution for x86 
systems. In contrast, a VM-based solution introduces an overhead of 20% and 4.83% in x86 and OpenPOWER cases, 
respectively. Moreover, the x86 and OpenPOWER systems observe inconsistent behavior for memory performance 
with a worst-case penalty of 9.68% and 6.64% compared to achieved peak performance, respectively. However, similar 
behavior is reported for cHPCe with an overhead of less than 3% and 2% in the worst case for the latency and band-
width, respectively, compared to the BareMetal for network and disk performance. Our experimental results reveal 
that the containerized OpenPOWER environment represents a viable alternative to the counterpart x86 environment 
for the HPC solution.

Keywords Cloud computing, HPC, Virtual machine, Performance evaluation, Container technology, HPCC, 
OpenPOWER system

Introduction
The emerging High-Performance Computing (HPC) 
solutions target simplifying the implementation of com-
plex HPC environments. The primary goal of the HPC 
solutions is to maximize the productivity and efficiency 
without compromising on the performance, especially 
to support dynamic data-intensive workloads. On the 
other hand, users demand cloud-like HPC environments 
with the comparable performance of BareMetal systems. 
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The HPC users desire the support of the complex soft-
ware stacks specific to their applications’ needs. It is 
often challenging to install, port, and manage them due 
to their critical dependency on the administrator. The 
Cloud service providers (CSP) in the past used hypervi-
sor supported VM-based solutions to satisfy the need for 
flexible environments. But the usefulness of such VM-
based cloud in HPC remains an open research challenge 
due to its inherent overhead in almost all aspects, espe-
cially memory, I/O, and interconnect spaces [1–3]. In this 
direction, the recently skyrocketing Linux container tech-
nology, a lightweight process virtualization mechanism, 
has drawn the attention of the HPC community because 
of its near-native performance. The Linux container 
offers an isolated and portable environment with all the 
runtime needs that an application requires to execute. 
It provides an abstract environment with the help of the 
Linux kernel features, namely, namespaces1 and cgroups2. 
The namespaces provide the abstraction of the system 
resources for processes, and cgroups handle the resource 
usage. In this work, we develop a container-based HPC 
environment (cHPCe) for both x86 and OpenPOWER 
systems and analyze the performance.

Motivation  The primary challenge of the HPC solu-
tion providers is to provide a dynamic HPC environment 
for scientific and technical computing users so that the 
focus would be on computing rather than underlying 
background details. Hence, the HPC solution architects 
aim to provide the following: 

1. Maximize throughput of the HPC environment.
2. Minimize environment management effort.
3. Alleviate on the problem of research reproducibility.

The performance analysis is one of the critical approaches 
to observe the bottlenecks and maximize the throughput 
of the provided environment. Although few authors, such 
as [4–9] assessed and analyzed the performance effect of 
container-based HPC solutions, however, there are sev-
eral research gaps as discussed below: 

(a) The lack of research that reports the development 
of the container-based HPC environments on 
OpenPOWER machines along with its performance 
analysis against x86 systems.

(b) None of the research works has examined the per-
formance of BareMetal, container, and VM for all 
the HPC sub-components, i.e., CPU, Memory, I/O, 
Interconnect, and disk on both the systems.

(c) Most of the works on container employed either 
on Docker or OpenVZ or Linux Vserver or LXC 
on a virtual machine. These environments do not 
support the workload manager plug-in integration 
readily for HPC.

Hence, the existing solutions fail to give us an in-depth 
insight into the usability of containers and their impact 
on HPC environments. To take the advantage of the sys-
tem potential, it is necessary to understand and carefully 
examine the kernel execution platforms and their sub-
systems keeping algorithmic needs. They may depend 
on specific characteristics of the individual application, 
like, whether compute-intensive or memory-intensive, or 
user-specific domain, and the hardware on which these 
models are executed. These studies make it possible to 
correctly map the application kernel to the heterogene-
ous hardware, and also to achieve maximum perfor-
mance on a particular HPC system and its containerized 
dependencies. Moreover, advances in container technol-
ogy in the cloud necessitate a continual evaluation of the 
suitability of HPC for a variety of applications.

Contribution  The proposed work explores container-
based HPC environments that rely on namespace using 
a) OpenPOWER, and b) x86 systems, to support research 
reproducibility and deal with software dependencies 
without disrupting the existing environment. We use 
HPCC, and IOZone benchmarks to compare the perfor-
mance of the container-based HPC environment with 
BareMetals and VMs. Further, the experiments assess the 
performance by varying the number of threads to exploit 
the simultaneous multithreading capability of the sys-
tems fully. The main research contributions of this work 
are as follows:

• container-based High-Performance Computing envi-
ronments (cHPCes) that rely on namespace using 
OpenPOWER and x86 systems are presented.

• The performance of cHPCes is evaluated exhaustively. 
The study mostly motivates the performance analysis 
of the MPI-style cluster rather than a single instance.

• The performance of the proposed cHPCes is compared 
with the similar environments made of VMs and 
BareMetal servers.

This work extends our previous contribution [10] with an 
exhaustive comparative performance analysis of BareM-
etal, container, and VM-based environment on the x86 
and OpenPOWER systems with the architecture-specific 
compiler and the libraries. Our work presents a compre-
hensive evaluation and analysis of HPC environments 
that contain x86 and OpenPOWER systems to systemati-
cally understand each subsystem’s maximum achievable 

1 https:// lwn. net/ Artic les/ 531114/
2 https:// www. kernel. org/ doc/ Docum entat ion/ cgroup- v1/ cgrou ps. txt

https://lwn.net/Articles/531114/
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
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performance, restrictions, and bottlenecks to be consid-
ered in future design. Moreover, our findings reveal the 
suitability of Container for HPC, and most importantly, 
it clarifies the perspective of using OpenPOWER or x86 
systems at the hardware level for different categories of 
applications depending on the potential requirement 
of various subcomponents of the underlying physical 
system.

Organization  The rest of the paper is organized as 
follows: “Background”  section presents a detailed over-
view of the container by comparing it with a traditional 
hypervisor-based solution. “Related work”  section dis-
cusses the current related work. “Container-based HPC 
environment”  section describes the proposed proto-
type model on the Container-based HPC environment 
(cHPCe). We present the experimental testbed in “Exper-
imental testbed”  section. “Performance evaluation on 
HPC environments”  section presents the detailed per-
formance evaluations and the experimental results of dif-
ferent benchmark applications on environments made of 
containers, BareMetals, and VMs. “Conclusion & future 
work”  section concludes the work and outlines future 
work.

Background
HPC is a highly mature technology treated as the domain 
of experts using the overpriced proprietary systems. The 
requirement of computational scientists for HPC envi-
ronment is detailed in [11]. Their primary focus is on 
timely executing and maximizing science performed on 
the computational workload with allocated resources 
by optimizing the performance benefit. This approach 
mainly aims for superior portability, reproducibility, 
manageability, productibility, and availability, apart from 
maximizing the utilization. The important terms like 
Virtual Machine (VM), container, software dependency 
problem, MPI cluster, and OpenPOWER system are 
introduced below.

Virtual machine: The virtual machine monitor (VMM) 
or hypervisor allows us to run multiple guest operat-
ing systems that share the same underlying hardware 
resources. It virtualizes all the physical resources of the 
host to provide an environment to the users by interact-
ing with the host OS or hardware. The commonly used 
hypervisor solutions include KVM, VMWare, Oracle 
VM VirtualBox, Microsoft’s Hyper-V, etc. The hypervi-
sor solution, KVM, is used as the representative solution 
for our experimental setup. KVM provides a full virtual-
ization solution for Linux on OpenPOWER and x86 sys-
tems. We use QEMU integrated KVM solution to deploy 
the VM. QEMU delivers emulated hardware to achieve 
near-native speed.

Container: The Linux container technology, a light-
weight process virtualization mechanism, allows exe-
cuting multiple isolated user-space instances that share 
the same kernel as the host OS. The container provides 
a secluded runtime environment but can share up to 
libraries or binaries with the host OS (for instance, an 
application container). The Linux container relies on 
the two mature kernel features, namely, namespaces 
and cgroups. The namespace feature provides an iso-
lated view of the global system resources to each pro-
cess. Various kinds of namespace, such as Mount, UTS, 
IPC, Net, PID, and User, offer abstraction for the global 
system resources to a group of processes. Cgroup fea-
ture restricts how much resources a group of processes 
can use. Container presents little or no overhead to 
the system resources compared to BareMetal. Several 
container-based solutions are available nowadays, such 
as LXC, Docker, OpenVZ, Solaris Container, etc. Our 
experimental setup utilizes the namespace features to 
deploy raw containers.

Software dependency problem: HPC users want the 
execution of the applications in the same environment 
that they utilize for the development purpose. Such a 
dependency adds more challenges to the system admin-
istrators. The system administrators need to deal with a 
suitable environment for rapid development of applica-
tions including incredibly data-intensive applications, 
libraries, and tools demanded by the specific scientific 
community. It is cumbersome to provide an environ-
ment that changes over time as libraries and compilers 
get updated very frequently with the change in HPC 
systems. On the other hand, the user may be interested 
in having application-specific tools that are sometimes 
difficult to install and port along with all the dependen-
cies. This dependency hell may arise due to the varying 
communities. For example, the genomics and biolo-
gist, mostly, demand Ubuntu as their base image with 
a specific version of Python and/or Perl. In contrast, 
High-energy physicists may ask for Scientific Linux 
with specific compilers, libraries, and scripting tools. 
HPC users desire to have a cloud-like flexible envi-
ronment, where they can quickly move their desktop 
environment using User Defined Images (UDI) capabil-
ity with the potential to have BareMetal performance 
without dealing with nasty underlying environmental 
details. Linux container technology has emerged in a 
revolutionary way to satisfy user demands for a flex-
ible computing environment. The container can pro-
vide a whole stack of runtime environments similar to a 
home development environment. In order to accelerate 
the research reproducibility, the containers are used to 
resolve dependencies and portability issues.
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Consequently, users can comfortably bring their images 
used in their development environment to perform their 
experiments in supercomputing like data centers.

MPI cluster: MPI is a de-facto standard programming 
paradigm for distributed parallel application processes to 
communicate across multiple nodes in the HPC environ-
ment. OpenMPI, MPICH, and MVAPICH2 are popular 
examples of MPI implementations. MPI communication 
can happen in different forms, such as collective, point-
point, or one-sided. It offers high-level primitives to the 
application developers to hide the data movement com-
plexity in the NUMA node through various intercon-
nects under different configurations. Advanced MPI 
libraries implementation maintains several performance-
aware knobs to get the most out of it. CUDA-aware 
MPI libraries can directly handle GPU-resident data by 
explicitly managing memory in MPI primitives, improv-
ing performance and productivity [12]. Most previous 
works present the performance analysis of containerized 
environments either on a single standalone system or 
deployed containers inside the virtualized environment. 
Their models fail to provide an in-depth understand-
ing of overheads imposed due to distributed memory 
compute systems. Our experimental results show how 
system-level advancement improves inter-process and 
intra-process communication for heterogeneous systems 
computation.

OpenPOWER system: OpenPOWER Foundation, 
backed by IBM’s POWER processor [13], accelerates the 
adaptation of an open server architecture to optimize 
and innovate various advanced hardware technologies 
and software co-designs for data centers to implement 
various scientific applications. Each POWER8 processor 
carries up to 12 cores per socket, with each core holding 
eight hardware threads, 64KB L1 data cache, and 32KB 
L1 instruction cache. Additionally, each core supports a 
512KB L2 cache and 8MB L3 cache, along with accom-
panying up to 128MB off-chip L4 eDRAM. Further, the 
on-chip memory controller can support 1TB RAM and 
230GB/s sustainable memory bandwidth, and 48GB/s 
I/O to the other part of the system. The processor clock 
operates at rates between 2.5 to 5GHz. POWER8 proces-
sor incorporates enhanced prefetching features like data 
prefetch depth awareness, instruction speculation aware-
ness, and Coherence Attach Processor Interface (CAPI), 
providing a direct communication link between the 
POWER8 CPU and co-processor and peripherals.

Related work
The significant contribution in this field mainly falls into 
two categories: x86-backed solution and OpenPOWER-
backed solution.

x86-backed solution. David et  al. [5] observed the 
unexploited potential of HPC in the cloud and conducted 
several benchmark experiments to learn the feasibility of 
a container-based HPC environment that shows its near-
native performance. This performance metric compares 
CPU, network, and inter-process communication against 
KVM. This work utilizes the virtualized environment of 
VM for their experimental setup. Similarly, Felter et  al. 
[6] took into account the CPU performance metric and 
presented the performance comparison of KVM with 
Docker container. The server application MySQL is used 
to conclude that both the techniques require tuning 
related to I/O operation.

Migual et al. [7] carried out an extensive performance 
investigation for container-based virtualization such as 
LXC, OpenVZ, and LinuxVserver for HPC compared 
to Xen. The performance overhead includes Compute, 
Memory, Disk, Network, and isolation [14] features of 
the container compared to the virtual machine to con-
clude the applicability of the container technology in 
HPC. The authors claim that LXC gives the higher per-
formance in most of the cases, except in isolation, where 
hypervisor-based solution dominates.

Scheepers et al. [15] also encouraged the above obser-
vation based on performance comparison using an appli-
cation and inter-VM communication microbenchmark. 
Single Root I/O Virtualization (SR-IOV) significantly 
mitigates the high I/O overhead problem that usually 
occurs in I/O intensive HPC workloads. A solution to 
the communication overhead is also addressed in ear-
lier work [16] using a Software-Defined Artificial Neu-
ral Network (SD-ANN) switch based on a Fiber channel 
with a predicted neural network technique. Using intel-
ligent congestion control and QoS implementation, the 
model offers a high throughput and low latency network 
for lossless data transmission. Their approach is suitable 
for reducing internode network latency. Though con-
tainer-based solutions outshine VM-based solutions [17] 
regarding inter-process communication, network latency, 
and bandwidth, however, hypervisor-based VM presents 
a more robust isolation feature. To enhance containers’ 
isolation, Mavridis et al. [18] utilized the combination of 
VMs and containers, and also quantified the performance 
overhead experimentally on various virtual machines. 
Similarly, Li et  al. [9] presented the performance differ-
ence between the stand-alone Docker container with a 
stand-alone virtual machine using several benchmarks. 
The authors revealed that the performance difference 
could arise not only due to a feature-by-feature basis but 
also a job-by-job basis.

To the best of our knowledge, the existing state-of-
the-art solutions fail to provide an in-depth analysis 
of the performance results by examining all the HPC 
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subcomponents (comprising CPU, Memory, I/O, and 
Interconnect) considering all BareMetal, container, 
and VM altogether in their assessments. The proposed 
solutions are unable to provide a glimpse of the scope 
of improvement in each HPC subcomponent. Several 
contributions on container employed either Docker or 
OpenVZ or Linux Vserver or LXC on a virtual machine. 
These environments do not support the workload man-
ager plug-in integration readily for HPC.

OpenPOWER-backed solution. Adinetz et  al. [19] 
analyzed the performance of the POWER8-based sys-
tem using STREAM and OpenMP micro-benchmark 
suite. The authors have also provided insight into 
how the POWER8-based system can be exploited to 
efficiently utilize several applications such as LBM, 
MAFIA, and NEST. Lu et al. [20] extensively evaluated 
the performance of OpenPOWER systems for process-
ing big-data workload using an improved RDMA-based 
Hadoop RPC engine. They also discussed the architec-
ture-aware tuning and CPU-affinity policies to enhance 
the performance of RDMA-based communication. 
Similarly, Reguly et  al. [21] reported the performance 
of the several application benchmarks such as Black-
Scholes computations, Rolls-Royce Hydra, and CFD 
applications on the OpenPOWER system.

In our previous work [10], the performance com-
parison of container-based HPC to the BareMetal and 
VM-based environment on the OpenPOWER system 
is presented. The initial implementation of the envi-
ronment is evaluated, and the preliminary results were 
reported based on the experimental setup without 
architecture-specific libraries. Therefore, our experi-
ments could provide only limited insight into our per-
formance analysis. Moreover, the proposed work in this 
paper presents a comparative analysis of our proposed 
environments on OpenPOWER and x86 systems, and 
most importantly, this work is extensively different 
from our previous article in terms of rigorous findings, 
and exhaustive analysis of those findings on the x86 and 
OpenPOWER systems.

Table  1 presents the comparison of the existing con-
tributions based on the different types of environments 
used for analysis. Table  2 summarizes the existing con-
tributions in the container space for the HPC environ-
ment. However, to the best of our knowledge, no work is 
reported on container-based HPC environments devel-
oped on OpenPOWER machines that show the perfor-
mance comparison with its x86 counterpart.

Discussions. To fully utilize the compute system effi-
ciency, it is essential to carefully identify the kernel exe-
cution hardware based on the algorithmic needs. These 
requirements rely on the model of the individual appli-
cation characteristics, namely compute-bound or mem-
ory-bound, or user-specific domain, and the hardware on 
which these models are executed. To take advantage of 
their full potential, it is worth assessing each subsystem’s 
performance behavior that allows us to choose the best-
fitting hardware for each domain-specific compute task. 
In this work, we have extended our previous work [10] 
with a systematic performance comparison and analysis 
using an empirical study to understand the performance 
implication due to using containerized HPC applications 
on x86 and OpenPOWER systems with its counterpart. 
These measurement results make it possible to correctly 
map the application kernel to the heterogeneous hard-
ware to achieve the maximum possible performance on a 
particular HPC system. Moreover, it also presents recent 
advances on the applicability of containerization in HPC 
space.

Container‑based HPC environment
HPC sites deploy the highly optimized environment 
using tunned OS, environment-specific enhanced MPI 
library, parallel file system, and moderately fast intercon-
nects appropriate to the application’s need. These sites 
are unable to fulfill the daunting set of requirements 
because of the dynamic nature of an almost insatia-
ble desire for high application performance. HPC users 
wish their implementation environment to be highly 
performed, comprehensive, and coherent. It should 
meet the requirements of the heterogeneous workloads 
with complex software stacks, the elastic growth of 
their environmental resources, different processing ele-
ments, power-awareness, and reliability [22]. Keeping in 
mind several imperfections of traditional HPC sites, and 
research perspective on the design and development of a 
Container-based environment for HPC, a prototype of a 
Container-based HPC environment is presented in Fig. 1. 
Our prototype model gives a glimpse of the environmen-
tal architecture and subsystems involved and a high-level 
control flow model to perform benchmarking of differ-
ent subsystems. Some of the essential components of the 
prototype are discussed below:

Table 1 Summary of related work w.r.t system used- and sub-
components stressed on BareMetal Vs. VM Vs. container

C, M, B, L and I denotes Compute, Memory, Bandwidth, Latency, and I/O 
respectively

x86 Only OpenPOWER Only Both

David et al. [5] C,B,L x x

Felter et al. [6] I x x

Li et al. [9] C,M,B,I x x

Zhang et al. [17] B,L x x

 Kuity et al. [10] x C,M,B,L,I x
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User environment. In the proposed model, the image 
preparation takes place using the below mentioned steps:

• User prepares an image in his home environment to 
set up the container run-time according to the execu-
tion-time needs for the workflow application.

• User pushes the image to a private or public reposi-
tory (e.g., Docker Hub).

• The prepared image can be accessed later to drag and 
save it to a shared location of the environment.

User interface. The user logs in to the environment 
using authorized credentials and submits the job to the 
SLURM job scheduler with the required run-time envi-
ronmental parameters and the image(s) to be used.

Orchestration. The job scheduler maintains the queue 
of the workflow applications according to the deadline 
and the Quality of Service (QoS) parameter require-
ments. It invokes the Container manager or VM manager, 
depending on the tasks. It dispatches a group of related 

subtasks to the selected VM or a container. Database 
stores and processes the monitoring information. When 
a user submits a job specifying the resource requirements 
as a combination of CPU, memory, and disk constraints, 
the log-in node forwards the request to the workload 
manager. The scheduler component of the workload 
manager determines the nodes on which the jobs run in a 
distributed manner, using the first-fit decrease variant of 
the Vector Bin packing strategy [23]. The scheduler con-
siders the multi-objective optimization strategy aiming 
to maximize resource utilization while minimizing the 
number of worker nodes without violating the capacity 
constraint of nodes. We sort the jobs in decreasing order 
based on the resource requirements by additive normali-
zation to the maximum resource requirement. Then, it 
tries to pick the first worker node which can fulfill the 
requirement.

The container manager, running on the worker node, 
creates a set of containers to execute the job based on 
allocated resources on the selected node(s). When the 

Fig. 1 High-level prototype for container-based HPC environment
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creation of a container cluster to perform a job is over, 
the container manager submits the job to the container 
cluster. Our investigation does not consider the dynamic 
scheduling of jobs with online arrival and departure over 
time because we focus only on a systematic performance 
comparison and analysis. It is outside this paper’s scope. 
Previous work  [24] reported a cHPCe model for analyt-
ical-based data locality and memory bandwidth conten-
tion-aware container placement and its performance 
analysis.

Decision. Container or VM manager agent facilitates 
the HPC application runtime environment. It chooses 
the most suitable compute node(s) to execute the subtask 
group by analyzing the collected metrics, which include 
available computing nodes and performance monitor-
ing counter values. The shared image location provides a 
user-defined image to the container run-time.

Physical system. The container daemon, namely a 
container-based HPC engine (CHPCe), deploys the con-
tainers which execute a group of similar subtasks on the 
compute node(s).

The proposed environment finally executes the tasks 
on several containers following a distributed memory 
programming model on compute nodes and returns out-
put to the user. The implementation details regarding the 
above defined environment can be found in our previous 
work [10].

Security aspects and limitations. The security of 
containerized HPC solutions mainly comes from the 
lack of a fine-grained access control list and users’ 

privilege escalation. Our deployed containerized HPC 
environment(cHPCe) does not provide any capabil-
ity beyond regular users’ processes can have. When 
the user executes a process inside the User Defined 
Image (UDI), it doesn’t have any elevated privileges. 
Images and file systems are mounted with setuid and 
device capability disabled conditions. These protec-
tion features combinedly provide a secure environ-
ment for containerization in the OpenPOWER HPC 
environment and its counterpart. However, sometimes, 
users may deploy their images through third-party 
repositories leading to several attack vectors. This can 
be addressed separately by introducing scanning and 
auditing images in the image gateway for known vul-
nerabilities. The application-specific security concerns 
are not addressed in this work explicitly. Our environ-
ment presently uses a flat network topology, which can 
be optimized to provide low latency and high through-
put for communication-intensive applications using an 
intelligent routing mechanism to achieve the desired 
level of QoS.

The proposed work presents an architectural design 
of containerized HPC environment and an empiri-
cal study to assess the performance metrics of differ-
ent subsystems using benchmark applications on x86 
and OpenPOWER systems. To fully utilize a particular 
HPC system, each subsystem’s performance behavior is 
worth assessing to choose the best-fitting hardware for 
each domain-specific compute task and correctly map 
the application kernel to the heterogeneous hardware.

Table 3 System characteristics

Features Specifications x86 System OpenPOWER System

Processor Architecture x86_64 ppc64le

Processor Model Intel(R) Xeon(R) CPU E5-2630 v3 POWER8 (raw), altivec supported

No. of cores per socket 8 8

Core clock frequency (GHz) 2.400 3.857

Floating Point/clock/core 16 08

Peak Perf./core (GFlops) 38.400 30.856

L1 cache size(KB) 32+32 32+64

L2 cache size(KB) 256 512

L3 cache size(MB) 20 08

Local memory/Node (GBs) 094 128

Interconnect 10 GB/s ethernet 10 GB/s ethernet

Network Topology Flat Flat

Operating System CentOS Linux release 7.3.1611 (Core) CentOS Linux release 7.3.1611 (AltArch)

Fortran Compiler INTEL-FORTRAN-17.0.4-196 IBM XL FORTRAN V15.1.5.1

C Compiler INTEL COMPILER-17.0.4-196 GCC- 4.8.5

Math Library Intel� Math Kernel Library 2017 ESSL- 5.4.0

MPI mpich2-1.5 mpich2-1.5

Page Sizes 4KB 64KB
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Experimental testbed
This section summarizes our experimental testbed, as 
shown in Table 3. The smart-managed 10-Gigabit switch 
interconnects all the nodes. The proposed work deploys 
OpenStack-backed private cloud named “Amber” in our 
lab, which comprises of x86 and OpenPOWER servers. 
The experiments utilize OpenStack’s BareMetal provi-
sioning approach to get a BareMetal server for our exper-
imentation. The container-based environment is formed 
using the namespace feature with the help of an extended 
resource plug-in. The plug-in interacts with the underly-
ing BareMetal server to provision container and export 
Application Programming Interface(API) to the user. All 
the testbed employs standard cluster formation proce-
dure to set-up the experimental environments. The VM-
based testbed uses KVM hypervisor as VMM solution 
due to its universal acceptance and superior performance 
benefit. We have not imposed any optimizations dur-
ing our experiments. The work tries to produce similar 
environments made of BareMetal(s), Container(s), and 
VM(s) for all the tests to achieve performance for legiti-
mate comparison. Tuning and analysis utilities(TAU) and 
performance application programming interface(PAPI) 
tools assist us in investigating the in-depth analysis of 
our experimental results. TAU profiling and tracing uti-
lizes compiler-based instrumentation techniques for our 
experiments.

HPC Challenge benchmark(HPCC) [25] stresses dif-
ferent subcomponents of the system, such as processor, 
memory, and interconnect to evaluate the performance 
of the environments made of BareMetals, containers, 
and virtual machines. It has seven benchmarks: HPL, 
STREAM, RandomAccess, PTRANS, FFTE, DGEMM, 
and b_eff Latency/Bandwidth. We maintain the largest 
problem size that fits in 70% (i.e., approximately 90GB) 
of the total memory for all the experiments to fulfill the 
standard benchmark evaluation criteria. The problem 
size and block size is of the order of 100000 and 100, 
respectively. Flat process grid ratios of 1 : 4, 1 : 8, 1 : 16, 
1 : 24, 1 : 32, 1 : 48, 1 : 56, and 1 : 64 are used as input. An 
attempt can be made in the future to enhance the pres-
ently used flat network topology like a spine-leaf topol-
ogy for organizing the switching fabric as presented [26] 
to improve the East-West network throughput.

Performance evaluation on HPC environments
This section critically analyses the results obtained from 
experiments conducted on the proposed container-
based HPC environment compared to BareMetal and 
VM-based environments. To reduce the space usage, 
we discuss our profiling results using only eight or six-
teen threads cases on BareMetal or container-based 

environment for the benchmarks. Moreover, this work 
avoids analyzing the hardware performance counter plot 
generated during experiments, unless it is necessary. 
This section aims to discuss the experimental results for 
BareMetal and container cases because VM-based cases 
give reduced performance due to the overhead. There are 
contributions in this domain, such as [5, 6, 9], which eval-
uate the Intel Xeon processor architecture on container 
space. Still, only a very few of them [10] assess the perfor-
mance of the OpenPOWER system in the HPC container 
perspective. Therefore, the proposed work emphasizes 
more on the OpenPOWER system throughout our dis-
cussion. The aim of our experiments is not to achieve 
optimal performance from the underlying environments 
whereas to focus on the comparative analysis of all the 
three environments on both the architectures. It is essen-
tial to understand the performance of several subcompo-
nents of a system like Compute, Memory, Interconnect, 
and Disk to pinpoint the bottlenecks on running the 
benchmark HPC applications.

To preamble more insights into our rigorous perfor-
mance comparative analysis for two genres of computing 
systems using the containerized environment against its 
VM counterpart, compiler-based instrumented bench-
mark applications are used with TAU. TAU instrumen-
tation lacks the support for inline assembly code, and it 
doesn’t resolve system symbol information that comes 
as ’unknown’ preprocessing directives. As a precaution-
ary action, the instrumented code is throttled to reduce 
overhead, which has almost equal distribution for both 
compute systems and is ignored to highlight in further 
discussion to increase the accuracy of the resulting pro-
file data. In our experiments, the median values of all 
the tests are considered to plot the graphs. The inner 
plot in every figure represents the probability density 
distribution of the obtained results at 32 threads over 
20 repetitions of the experiments. We observe a clear 
peak at median values in almost all cases. The following 
subsections present the environment overhead and the 
impact of these subcomponents in detail on the HPC 
environment.

Time and space analysis
This experiment presents the overhead introduced 
to execute the basic operations of the VM and con-
tainerized HPC environments, namely startup and 
teardown time, along with node memory usage. The 
minimal “echo hello world” shell command executes 
inside all environments. The image gateway pulls the 
purposely built container image from DockerHub and 
VM image, converts it, and saves it into the fast shared 
storage location. The primary container running com-
mand “cHPCe command” is invoked to exercise the 
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startup and teardown overhead. The deployed contain-
ers destroy automatically when the invoking commands 
finish execution to ensure minimal container creation 
time and start executing the process as quickly as possi-
ble. We assume that Containers or VMs are ready when 
they can be ssh-ed in for our measurement. Table 4 pre-
sents the overhead to execute the essential operation in 
different environments. To illustrate the space usage, 
and memory consumption with STREAM per node is 
sampled at a 10-second interval before actual STREAM 
starts using /proc/meminfo to get insight into imple-
mentation behavior. The experimental results show that 
memory usage by bare metal is a median of 60.25MB 
with VM and cHPCe added 231.23MB and 15.4MB 
using proportional set size metrics, respectively.

The scheduler uses a simple 2-approximation algo-
rithm [23] for first-fit decrease variant of the Vector Bin 
packing, which is NP-complete. The algorithm runs in 
O(nlogn+ nr) time using Self-Balancing Binary Search 
Trees, where n represents the number of jobs and r rep-
resents the number of nodes. The space complexity of the 
algorithm is O(n), whereas the auxiliary space complexity 
is O(1). The algorithm is well-studied and straightforward 
in implementation because it does not rely on system 
state history and has a low computational and memory 
footprint.

Compute performance
In this sub-section, the results of three compute bench-
marks, namely High-Performance LINPACK (HPL) 
towards peak performance benchmark, Double-precision 
General Matrix Multiply(DGEMM) benchmark, and FFT 
benchmark are discussed.

HPL
The HPL of HPCC is used to measure the compute per-
formance of our constructed environments on x86 and 
OpenPOWER systems. It solves a dense linear system of 
equations using LU factorization with partial row pivot-
ing method. It reports the estimated performance of the 
system with the help of local matrix multiplication opera-
tions. All the LINPACK benchmark experiments use the 

parameters specified in Table  5 to achieve the optimal 
performance of our environments made of BareMetal, 
Container, and VM on x86 and OpenPOWER systems. 
Our study analyzes the achievable performance for the 
distributed memory computation with varying numbers 
of threads by dividing them equally among the compute 
nodes. The variation in performance is also observed by 
enabling the hyperthreading capability of the nodes. The 
environment comprises of the platform-specific libraries 
and the compiler to obtain optimal performance. HPL 
settings are fixed for all the experiments.

Figure 2 presents the performance of the HPL bench-
mark of three environments on x86 and OpenPOWER 
systems. Table 6 shows the achievable peak performance 
for BareMetal, container, and VM-based environments, 
respectively, on both x86 and OpenPOWER systems. We 
believe that 63.71% and 86.50% of the theoretical perfor-
mance on x86 and OpenPOWER based HPC environ-
ments, respectively, reflect a reasonable performance 
compared to the highly engineered, purpose-built HPC 
Cluster.

Inference: Figure  2 shows the performance gradu-
ally degrades as the number of threads increases. The 
reason behind this is because the parallel jobs running 
on the multiple nodes introduce considerable overhead 

Table 4 Overhead of executing basic operation

Overhead to execute Basic 
Operation

cHPCe VM

Start Time (Sec) 0.189 103.250

Teardown Time (Sec) 0.0134 055.620

Table 5 HPL experimental parameters

Problem Size 70% of Total Available Memory

Matrices of Order 100000× 100000

Block Size 100

Process Grids 1:04, 1:08, 1:16, 1:24, 1:32, 1:48, 1:56, 1: 64

Table 6 HPL performance

x86 OpenPOWER

BareMetal Container VM BareMetal Container VM

Achievable Peak 
Performance(GFlops)

783.873 782.117 619.322 213.518 212.954 203.222

% of Theoretical Peak Perfor-
mance

63.71 63.65 50.40 86.50 86.27 82.33



Page 11 of 27Kuity and Peddoju  Journal of Cloud Computing          (2023) 12:178  

because of the slow network connection. Figure 3 shows 
the network overhead due to the increase in computa-
tion threads. By profiling HPL using TAU, we observe 
that the time spent on synchronizing among the pro-
cesses increases as the number of threads increases. In 
the case of HPL, the performance on the OpenPOWER 
system improves up to 16 threads. The reason is the 
OpenPOWER system has much better bandwidth com-
pared to the used x86 system. Hence, memory conten-
tion is much less on the OpenPOWER system compared 
to x86. The contention is likely to occur at the last level 
cache; Almost two orders of magnitude performance 

degradation is observed as the number of computing 
threads doubles.

The performance of the container-based environ-
ment is nearly the same as that of the BareMetal-based 
environment. However, VM-based environment always 
shows degraded performance with an overhead up to 
21% and 4.82% for x86 and OpenPOWER systems, 
respectively, as compared to BareMetal. In the case of a 
VM-based environment, KVM hides the hardware details 
and does not expose the CPU topology information to 
the workload. Therefore, the workload is unable to take 
advantage of this information to detect the exact nature 

(a) (b)
Fig. 2 Performance of HPL on BareMetal-, Container-, and VM-based environments on (a) x86. (b) OpenPOWER

Fig. 3 Network overhead
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of the system, and as a consequence, it offers much-
reduced performance. Overall, all the three environments 
for both x86 and OpenPOWER, depict the comparable 
performance on the compute-intensive HPL benchmark. 
It is because HPL consumes most of its time in comput-
ing the well-optimized kernels that near optimally handle 
TLB misses, cache hierarchies, and inter-process com-
munications. Moreover, it introduces little overhead due 
to the OS-level abstraction required for the container 
and the built-in accelerating facility incorporated at the 
hardware level to support virtualization efficiently.

DGEMM
A simple multi-threaded dense matrix multiply bench-
mark is used to capture the sustained floating-point com-
putational rate of double precision real matrix-matrix 
multiplication of a single node. It measures the achievable 
double-precision FLOPS of a single node. The DGEMM 
benchmark uses the following computation kernels

where A,  B, and C are matrices of the dimensions 
M × K ,K × N  , and M × N  , respectively. In our experi-
ments, we evaluate the performance for the matrices with 
the size of 10205× 10205, 8332× 8332 , and 7714 × 7714 
to fit them into the available caches to reduce the band-
width requirement.

Figures  4 and  5 show a comparison of the DGEMM 
benchmark performance among the three environments 
on x86 and OpenPOWER systems, respectively. Table 7 
presents the achievable performances for BareMetal, 
container, and VM-based environments, respectively, on 
x86 and OpenPOWER systems.

In the case of SingleDGEMM, it is observed that the 
performance of the VM-based environment on both x86 
and OpenPOWER systems degrades more rapidly. In the 
case of StarDGEMM, BareMetal and container-based 
environments show nearly the same performance on the 

(1)C = αAB+ βC;

x86 system. They perform better than VM-based envi-
ronments up to 16 threads. However, as the number of 
threads starts increasing beyond this limit, all the three 
environments give a similar performance on the x86 
system. For the OpenPOWER system, the performance 
increases up to eight threads, and beyond that, it shows 
similar characteristics, like the x86 system, for all the 
environments. In all the cases, the performance deterio-
rates as the total number of threads increases because it 
reduces the effective bandwidth available to each thread.

Inference: DGEMM utilizes Level-3 Basic Linear 
Algebra Subprograms (BLAS), having an order of N 2 
data and N 3 FLOPS, in which data movement is more 
critical as compared to that of computation [27]. The 
observation regarding time spent on different functions 
for 16 threads on BareMetal is shown in Table  8. The 
experimental results report that the DGEMM bench-
mark spent most of its time on MPIDI_CH3I_Progress 
and MPID_nem_tcp_connpoll modules, and as the num-
ber of threads increases further, the time spent on both 
functions monotonically increases. Therefore, threads 
spent a decent amount of time on synchronizing and 
communicating among themselves. We also observe that 
in the case of the VM-based environment, it is magni-
fied. DGEMM uses AVX instructions, which is slower 
than the typical clock speed on x86, which leads to lower 
performance.

Moreover, when we dig into the hardware perfor-
mance counter to observe cache misses, It is found that 
L1 data cache misses increase as the number of threads 
increases. Our experiments show a worst-case compara-
ble reduction of up to 18.57% in L3 data cache misses in 
OpenPOWER w.r.t counterpart due to the OpenPOWER 
processor has a dedicated 8MB L3 cache per core. In con-
trast, the x86 processor has a total of 25MB. The Open-
POWER system shows less cache misses compared to the 
x86 system. The major hindrance is still the data move-
ment to effectively mitigate the difference in memory 

(a) (b)
Fig. 4 Performance of SingleDGEMM on BareMetal-, Container-, and VM-based environments on (a) x86. (b) OpenPOWER
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latencies and bandwidth in the memory hierarchy to 
achieve high performance. This behavior is noticeable 
only when the number of threads increases more than 
the number of the physical cores on both the systems. 
The optimal usage of the cache system reduces the total 
number of memory accesses, which increases the avail-
ability of the memory system for other processors.

In DGEMM, the blocking also plays a vital role in the 
achievable performance by minimizing the eviction of 

data from the cache, which helps to effectively use the 
cache hierarchies to hide the performance disparity 
between memory and the processor on both multi-core 
and many-core architectures. We observe worst-case 
performance variation of 49.23% and 37.57%, respec-
tively, for x86 and OpenPOWER system between the 
performance of the worst cache block size and the best 
cache size with diagonal matrices of size 4k, 8k, 10k, 
16k, and 32k. The commission reported is with a 90% 

Table 7 SingleDGEMM Performance

x86 OpenPOWER

BareMetal Container VM BareMetal Container VM

Achievable Peak 
Performance(GFlops)

394.444 393.523 315.494 215.177 213.646 205.476

% of Theoretical Peak Perfor-
mance

64.20 64.05 51.35 87.17 86.55 83.24

(a) (b)
Fig. 5 Performance of StarDGEMM on BareMetal-, Container-, and VM-based environments on (a) x86. (b) OpenPOWER

Table 8 Accumulated exclusive time per process of SingleDGEMM in case of 16 threads

x86 OpenPOWER

 Processes Interpretation Exclusive 
Execution Time 
(Sec)

% of Total 
Execution 
Time

Exclusive 
Execution Time 
(Sec)

% of Total 
Execution 
Time

MPIDI_CH3I_Progress maintain process progress state for asynchro-
nous communications

1,436.507 65.74 1,991.025 45.11

MPID_nem_tcp_connpoll tcp communication between processes 0424.685 19.44 1,812.856 41.07

mkl_blas_avx2_dgemm_kernel_0 dgemm function of the Math Kernel Library 
from Intel

0127.769 05.85 - -

MPID_nem_network_poll network polling for communicating threads - - 0339.154 00.08

Unknown not reported 0071.447 03.27 0149.722 00.03

MPIDU_Sched_are_pending Check if all_schedules is empty 0062.728 02.87 0121.134 00.03

Others for rest 0004.303 00.20 - -
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confidence interval. As the OpenPOWER system has a 
rich cache subsystem compared to the x86 system, the 
OpenPOWER system, taking advantage of the higher 
memory bandwidth, keeps a significant portion of the 
data in the fast end of the memory for reuse during com-
putation. It helps to achieve significantly closer perfor-
mance compared to the theoretical peak.

Finally, the tile dimensions used in the experiment 
need to be selected carefully, keeping the architecture 
in mind because it may reduce the performance due to 
TLB pressure and cache associativity conflict. To maxi-
mize the performance of DGEMM on OpenPOWER, we 
can also impose the instruction level optimization to take 
advantage of the dual instruction pipeline.

FFT benchmark
This benchmark is used to measure the floating-point 
rate of execution of double-precision complex one-
dimensional discrete Fourier transform (DFT) of size 
m. It stresses on the inter-process communication using 
large messages. Figures 6 and 7 show the performance of 
the FFT benchmark for 4 to 64 threads for each of the 

three environments on x86 and OpenPOWER systems. 
The performance of BareMetal and container-based 
environments are quite similar. The VM-based environ-
ment always depicts reduced performance compared to 
the other two instances in all the experiments. The per-
formance degrades in all cases as the number of threads 
increases due to the high latency and lower bandwidth 
availability of intra-node communication.

Inference: FFT algorithm can reduce or eliminate the 
time spent in the communication mode. It is possible 
by overlapping computation on a current plane with 
the communication on the previously processed plane 
depending on the computation and communication 
characteristics of the underlying machine [28]. During 
1D FFT computation, each data point must be loaded 
and stored from memory at least once, in which the 
cache is exploited to prevent additional memory access 
within each node for each operand of the floating-
point operation. Similar cache behavior is observed for 
both OpenPOWER and x86 cases. Table 9 presents the 
time spent on different functions for eight threads on 
BareMetal based environment. In the case of MPIFFT, 

(a) (b)
Fig. 6 Performance of StarFFT on BareMetal-, Container-, and VM-based environments on (a) x86. (b) OpenPOWER

(a) (b)
Fig. 7 Performance of MPIFFT on BareMetal-, Container-, and VM-based environments on (a) x86. (b) OpenPOWER
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we see that FFT experiment spent a good amount of the 
time(10% to 30% of the total time) on HPCC_bcnrand 
procedure which generates a sequence of IEEE 64-bit 
floating point pseudo-random number. Further, the 

time spent on the MPIDI_CH3I_Progress increases 
gradually as the number of threads increases, which 
indicates that the time spent on asynchronous commu-
nications could be a limiting factor in the performance 

Table 9 Accumulated exclusive time of processes of MPIFFT in case of 8 threads

x86 OpenPOWER

 Processes Interpretation Exclusive 
Execution 
Time(Sec)

% of Total 
Execution 
Time

Exclusive 
Execution 
Time(Sec)

% of Total 
Execution 
Time

HPCC_bcnrand IEEE 64-bit floating-point pseudorandom 
generator

- - 2.828 16.27

Tau_global_getLightsOut:TauCAPI.cpp to control disable profiling - - 1.704 09.81

FunctionInfo::IsThrottled() 
const:FunctionInfo.h

throttled timers 0.251 03.43 1.634 09.40

MPIDI_CH3I_Progress maintain process progress state for asyn-
chronous communications

1.032 14.10 1.254 07.22

Tau_get_thread:TauCAPI.cpp Return id of the worker thread 0.172 02.35 1.174 06.76

Tau_memory_wrapper_
enable:TauMemory.cpp

memory wrapper enable library - - 0.915 05.27

MPID_nem_tcp_connpoll tcp communication between processes 0.924 12.63 0.797 04.59

MPID_nem_network_poll network polling for communicating 
threads

0.203 02.77 - -

MPID_nem_barrier thread barrier for synchronization 0.157 02.15 - -

Unknown not reported 1.433 19.59 0.657 03.78

Tau_memory_wrapper_
disable:TauMemory.cpp

memory wrapper disable library 0.137 01.87 0.593 03.41

Tau_lite_start_timer:TauCAPI.cpp start timer for a phase - - 0.532 03.06

HPCC_pzfft1d parallelized FFT codes - - 0.443 02.55

HPCC_PoolReturnObj return pool of processes represented 
by buckets

0.265 03.62 - -

HPCC_ra_Heap_IncrementKey Random access heap key increment 0.223 03.05 - -

HPCC_InsertUpdate Each process (PE) maintains a set of des-
tination PE

0.180 02.46 - -

HPCC_GetUpdates maintains the updates for each PE 0.102 01.39

Tau_lite_stop_timer:TauCAPI.cpp stop timer for a phase 0.419 05.73 0.431 02.48

Tau_profile_c_timer:TauCAPI.cpp profile timer in C 0.394 02.27

Tau_global_incr_insideTAU:TauCAPI.cpp global increment inside TAU 0.317 04.33 0.380 02.19

Tau_global_decr_insideTAU:TauCAPI.cpp global decrement inside TAU 0.486 06.64

dddiv:bcnrand.inst.c IEEE 64-bit floating-point pseudorandom 
generator

- - 0.378 02.18

RtsLayer::TheEnableInstrumentation():Rt
sLayer.cpp

To enable instrumentation - - 0.370 02.13

Tau_lite_start_timer:TauCAPI.cpp start timer for a phase - - 0.325 1.87

Tau_global_getLightsOut:TauCAPI.cpp to control disable profiling 0.194 02.65 0.299 1.72

FunctionInfo::IsThrottled() 
const:FunctionInfo.h

throttled timers - - 0.277 1.59

fft8:fft235.inst.c Radix-8 fft routine - - 0.231 1.33

Tau_lite_stop_timer:TauCAPI.cpp stop timer for a phase 0.184 02.51 0.226 1.3

Tau_start_timer:TauCAPI.cpp start timer for a particular thread 0.200 02.73 0.207 1.19

Tau_global_incr_insideTAU:TauCAPI.cpp global increment inside TAU - - 0.164 0.94

Tau_get_thread:TauCppAPI.h Return id of the worker thread - 02.35 0.128 0.74

Others for rest 0.183 02.50 - -
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of the FFT. The OpenPOWER system has fully asso-
ciative 64-entry Instruction Effective to Real Address 
Translation Table (IERAT). Therefore, at any time, it 
can translate 64 virtual pages. Hence, it is important to 
choose the optimal block size of the problem to mini-
mize TLB misses and fully exploit the cache hierarchy.

It can be concluded that the critical design consid-
eration for the FFT benchmark depends not on the 
absolute per-processor performance, but the relative 
balances on the per-node compute capacity, intra-node 
bandwidth, and inter-node bandwidth.

Memory performance
In this sub-section, the results of two memory-stress 
benchmarks, namely STREAM and RandomAccess, are 
discussed.

STREAM
A simple synthetic benchmark application used to evalu-
ate the sustainable memory bandwidth of the constructed 

environments. It measures the computation rate using 
four simple vector kernels.  

where a, b, c are vectors and α is a scalar.
The STREAM benchmark experiment is done with an 

array size, which requires a total memory of more than 
2x the size of L3 caches for all the environments on both 
x86 and OpenPOWER systems.

Figures 8 and 9 display the sustainable memory band-
width using the STREAM benchmark for each of the 
three environments on x86 and OpenPOWER systems. 
The average achievable memory bandwidth running 
STREAM Triad kernel is up to 13.14125 GB/s, 13.14915 
GB/s, and 11.6643 GB/s for BareMetal, container, and 
VM-based environments on x86 systems, respectively. 
However, OpenPOWER based environments result up 
to 23.9111 GB/s, 24.9417 GB/s, and 24.84495 GB/s for 

(2)

COPY : c = a,

SCALE : b = αc,

ADD : c = a+ b,

TRIAD : a = b+ αc.

(a) (b)
Fig. 8 Performance of SingleSTREAM_Triad on BareMetal-, Container-, and VM-based environments on (a) x86. (b) OpenPOWER

(a) (b)
Fig. 9 Performance of StarSTREAM_Triad on BareMetal-, Container-, and VM-based environments on (a) x86. (b) OpenPOWER
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BareMetal, container, and VM cases, respectively. In the 
case of SingleSTREAM, VM-based environment shows 
reduced bandwidth compared to BareMetal-based envi-
ronments. The container-based environment behaves 
nearly similar to the BareMetal case on x86 systems. A 
negligible difference is observed between the perfor-
mance of all three environments on the OpenPOWER 
system.

Inference: The OpenPOWER processor has two sym-
metric load pipelines and two load/store pipelines. 
Moreover, it has interfaces to the external memory with 
an integrated cache that offers twice the number of load 
requests than the stores [13]. The achievable bandwidth 
for copy, scale, and the sum is lower than the triad. The 
triad uses two loads and one store stream to fit the mem-
ory links. In the OpenPOWER-based environment, the 
GCC compiler fails to use the vector instruction for the 
copy benchmark. The Stream benchmark offers the peak 
achievable bandwidth with four threads, at which point 
every LSU is busy. In the SingleStream case, only one 
thread performs the computation, and the entire band-
width is available for it. The performance degradation in 
the VM-based environment is due to the address transla-
tion overhead, and double caching problem in the virtu-
alization layer.

In the case of StartSTREAM, nearly equal perfor-
mance is observed for BareMetal, container, and VM-
based environments on x86 and OpenPOWER systems. 
All threads perform computation, so all the participat-
ing threads share the available bandwidth and L3 cache 
among themselves. All the experiments show degraded 
performance as the number of threads starts increasing 
due to memory contention. The efficiency of the prefetch 

mechanism has a high impact on the STREAM bench-
marks performance due to its highly regular nature. 
Moreover, only the first and third level cache affects the 
STREAM benchmark. As a part of the prefetch stream, it 
fetches up to six cache lines into the L1 and L2 cache, and 
16 lines into L3 cache ahead of the stream. Although the 
prefetch request may miss the L2 cache as it has the same 
prefetch line as L1, it will surely hit the L3 cache as it is 
ahead of the L1 cache.

We analyze hardware performance counters to under-
stand the impact of the cache hierarchy on the result. It 
is clear from the hardware performance counter data that 
instruction and data cache misses gradually decrease as 
the number of threads increases. Moreover, the obser-
vations show that the time spent in synchronization 
amongst the threads increases with an increased number 
of threads. Table  10 depicts the time spent by different 
functions. Figure 10 shows the cache behavior from hard-
ware performance values during StarSTREAM bench-
mark experiments on the container-based environment.

From the above discussion, It can be concluded that the 
higher density of threads and poor choice of the locality 
can negatively impact the memory performance, which 
indicates that the thread binding has a crucial role to 
achieve performance on the OpenPOWER system which 
has not been imposed in our experimentation to main-
tain consistency in performance result.

RandomAccess benchmark
This benchmark assesses the peak capacity of the mem-
ory subsystem by updating the random location of 
the system memory. The benchmark works on a large 

Table 10 Accumulated exclusive time of processes of StarStream in case of 16 threads

x86 OpenPOWER

 Processes Interpretation Exclusive 
Execution 
Time(Sec)

% of Total 
Execution 
Time

Exclusive 
Execution 
Time(Sec)

% of Total 
Execution 
Time

tuned_STREAM_Add._omp_fn.5:stream.
inst.c

OpenMP implementation of Stream add 
kernel

224.717 25.29 - -

tuned_STREAM_Triad._omp_fn.6:stream.
inst.c

OpenMP implementation of Stream triad 
kernel

224.553 25.27 - -

tuned_STREAM_Copy._omp_fn.3:stream.
inst.c

OpenMP implementation of Stream 
copy kernel

169.924 19.12 - -

tuned_STREAM_Scale._omp_fn.4:stream.
inst.c

OpenMP implementation of Stream 
scale kernel

169.681 19.09 - -

HPCC_Stream._omp_fn.1:stream.inst.c HPCC parent stream function 056.604 06.37 601.192 59.78

Unknown not reported - - 170.243 16.93

MPIDI_CH3I_Progress maintain process progress state for asyn-
chronous communications

- - 100.768 10.02

MPID_nem_tcp_connpoll tcp communication between processes - - 085.760 08.53

computeSTREAMerrors compute the average errors for each 
array

020.056 02.26 020.940 02.08
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distributed table of size 2p , occupying approximately 
half of the system memory and profiles the memory 
architecture of the system. MPIRandomAccess uses 
the main table of size 8589934592(233 ) words in all the 
tests. The PE main table of size 231 , 230 , 229 , 233/24, ( 233
)/48, ( 233)/56, and ( 228 ) words are used respectively for 
4, 8, 16, 24, 32, 48, 56, 64 threads in the case of both 
MPIRandomAccess and StarRandomAccess. It per-
forms four times the total number of updates.

Figures  11 and  12 capture the performance of the 
RandomAccess benchmark for BareMetal, container, 
and VM-based environments on x86 and OpenPOWER 
systems. We observe that the performance of the Star-
RandomAccess on x86 systems increases as the num-
ber of threads increases up to 16 in all the three cases. 
Further, it gradually decreases as the number of threads 

increases. For the OpenPOWER system, container-
based and BareMetal-based environments show similar 
performance. The VM-based environment introduces 
overhead up to 61.5% and 1.74% as compared to the 
BareMetal-based environment on x86 and Open-
POWER systems, respectively. In the case of MPIRan-
domAccess, we notice that the performance increases 
as the number of threads increases up to 32, and 
beyond that, it starts decreasing on the x86 systems. 
For the OpenPOWER system, the experimental results 
show that the performance of all the three environ-
ments increases up to 24 threads, and further, it drops 
sharply. The VM-based environment presents up to 
32.4% and 12.64% overhead as compared to the BareM-
etal-based environment on x86 and OpenPOWER sys-
tems, respectively, due to high pressure on TLB and 

Fig. 10 Performance Counter values for 16 threads on (a) x86. (b) OpenPOWER

(a) (b)
Fig. 11 Performance of StarRandomAccess on BareMetal-, Container-, and VM-based environments on (a) x86. (b) OpenPOWER
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handling of the substantial number of short messages 
between the threads in a virtualized environment.

Inference: The RandomAccess Benchmark is designed 
to exhibit very low temporal and spatial locality, which 
updates random entries in a large table that is unlikely to 
be cached [29]. In a distributed memory model, the total 
available memory is partitioned among the nodes. More-
over, within a node, only a fraction of the entire node 
memory is local to a particular thread. The MPIRan-
domAccess benchmark carries out local as well as remote 
update of a large globally distributed table to the whole 
system memory in parallel. It allows us to look ahead and 
store at most 1024 updates before going to update in the 
table entries. The mapping mode 1 of Random Access 
benchmark shows the best case performance, which per-
fectly balances the workload on each core. The table on 
each core is allocated on a bank that has NUMA affinity, 
thereby reducing cache consistency overhead and inter-
node traffic. Hence, the performance of the benchmark 
depends on the choice of the mapping and optimization 
strategy to the cores of a multi-core node.

The performance decreases as the number of threads 
increases in all the cases after 32 threads. It is due to 
bi-section bandwidth and an average number of bytes 
sent over the network to update the table locations. 
Our experiments use the simple flat network for com-
munication among the nodes. As the number of threads 
increases due to an increase in some bytes over the net-
work, the bi-section bandwidth eventually becomes the 
bottleneck for the performance. We observe, by profiling 
the benchmark as shown in Table  11 for eight threads, 
that the benchmark spends a reasonable amount of time 
in sending and receiving the messages. Suppose the 
global table maintained by the RandomAccess bench-
mark is not a power of two. In that case, computing the 

node id and offset of the table update location requires an 
integer division operation. It is a maximum of twice the 
order of magnitude than the other operations. It signifi-
cantly influences the performance of the benchmark.

We conclude that the performance of the benchmark 
depends on the bi-section communication bandwidth, 
multi-core mapping strategy, and performance of the 
integer division operation for non-power of two-node 
cases.

Interconnect performance
In this sub-section, the results of two interconnect-
related benchmarks, namely PTRANS (Parallel Matrix 
transpose) and b_eff are discussed.

PTRANS
This benchmark is used to inspect the total communica-
tion capacity of the system interconnect. It exchanges a 
large number of messages simultaneously between each 
pair of processors to investigate the communication 
capacity. A matrix of size 50000 x 50000 processes, and 
process grids of size 1 x 4, 1 x 8, 1 x 16, 1 x 24, 1 x 32, 1 x 
48, 1 x 56, and 1 x 64 are taken as an input.

Figure  13 captures the performance of the PTRANS 
benchmark for BareMetal, container, and VM-based 
environments on x86 and OpenPOWER systems. In 
this benchmark, we discuss the result for the optimal 
configuration only. The performance of the benchmark 
scales very well as the number of threads increases. 
However, it shows different behavior for 48 threads 
for BareMetal and container-based environments on 
x86 systems. The performance of the VM-based envi-
ronment increases as the number of threads increases 
up to 32, after that, it starts to decline. However, it 
offers much-degraded performance with a maximum 

(a) (b)
Fig. 12 Performance of MPIRandomAccess on BareMetal-, Container-, and VM-based environments on (a) x86. (b) OpenPOWER
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overhead up to 81.26% and 81.32% compared to that of 
BareMetal and container-based environment, respec-
tively, on the x86 systems.

In the case of the OpenPOWER system, the perfor-
mance of all three environments boosts as the number 
of threads increases up to 24, and further, it begins to 

Table 11 Accumulated Exclusive time of processes of MPIRandomAccess in case of 8 threads

x86 OpenPOWER

 Processes Interpretation Exclusive 
Execution 
Time(Sec)

% of Total 
Execution 
Time

Exclusive 
Execution 
Time(Sec)

% of Total 
Execution 
Time

Unknown not reported 1.051 37.73 1.433 19.59

MPIDI_CH3I_Progress maintain process progress state for asyn-
chronous communications

0.554 19.90 1.032 14.10

MPID_nem_tcp_connpoll tcp communication between processes 0.112 04.02 0.924 12.63

Tau_global_decr_insideTAU:TauCAPI.cpp global decrement inside TAU - - 0.486 06.64

Tau_global_incr_insideTAU:TauCAPI.cpp global increment inside TAU 0.026 00.93 0.317 04.33

HPCC_PoolGetObj return pool of processes represented 
by buckets

0.311 11.17 - -

HPCC_PoolReturnObj return pool of processes represented 
by buckets

0.173 06.21 0.265 03.62

FunctionInfo::IsThrottled() 
const:FunctionInfo.h

throttled timers - - 0.251 03.43

HPCC_ra_Heap_IncrementKey Random access heap key increment - - 0.223 03.05

MPID_nem_network_poll network polling for communicating 
threads

- - 0.203 02.77

Tau_start_timer:TauCAPI.cpp start timer for a particular thread 0.200 02.73 0.200 02.73

Tau_global_getLightsOut:TauCAPI.cpp to control disable profiling 0.194 02.66 0.194 02.65

Tau_lite_stop_timer:TauCAPI.cpp stop timer for a phase 0.129 04.63 0.419 05.73

Tau_lite_stop_timer:TauCAPI.cpp stop timer for a phase 0.079 02.84 0.184 02.51

HPCC_InsertUpdate maintains the updates for each PE - - 0.180 02.46

Tau_get_thread:TauCAPI.cpp Return id of the worker thread - - 0.172 02.35

MPID_nem_barrier thread barrier for synchronization - - 0.157 02.15

Tau_memory_wrapper_
disable:TauMemory.cpp

memory wrapper disable library 0.135 04.85 0.137 01.87

HPCC_GetUpdates Each process (PE) maintains a set of des-
tination PE

- - 0.102 01.39

PMPI_Testany used to wait for the completion of one 
out of several operations

0.074 02.77 - -

(a) (b)
Fig. 13 Performance of PTRANS on BareMetal-, Container-, and VM-based environments on (a) x86. (b) OpenPOWER
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decrease. It shows different behavior for 56 threads. The 
BareMetal and container-based environment, showing a 
similar performance, outperform the VM-based environ-
ment in almost all the cases on the OpenPOWER system. 
The benchmark displays the diminishing performance as 
the number of threads increases because it stresses the 
global network and a high number of threads involve-
ment in communication through interconnect. However, 
Fig.  13 shows entirely different behavior in the case of 
x86 based environments.

b_eff benchmark
This benchmark captures the effective bandwidth and 
latency of the interconnect of the environment. It 
exchanges 8 bytes and 2,000,000 bytes of messages to 
measure latency and bandwidth of the communica-
tion interconnect, respectively, using simple MPI point-
point routines. In the case of ring communication, all the 
threads arrange themselves in a ring fashion, and each 
thread sends and receives messages tofrom its neighbors 
in parallel. It utilizes the number of threads like 4, 8, 16, 

24, 32, 48, 56, and 64. The Ping Pong communication 
uses 992(i.e.,32*(32-1)), 2256, and 3080 pairs of threads 
for latency and bandwidth measurement.

Latency: Figures  14 and  15 plot avgPingPong and 
random-order ring latency for BareMetal, container, 
and VM-based environments on x86 and OpenPOWER 
systems. The BareMetal and Container-based environ-
ments report a similar behavior for avgPingPong and 
random-order latency on the x86 system. For the VM-
based environment, latency increases as the number of 
threads increases in random-order ring latency on the 
x86 systems. It is due to the virtualization overhead, for 
the increasing number of threads. However, in the avg-
PingPong case, the latency decreases as the number of 
threads increases up to 24; after that, it starts increas-
ing. The reason behind this is not evident to us. In all the 
cases, usually, latency boosts as the number of threads 
increases due to the required number of multi-stage tra-
versal by the threads. All the three environments show 
excellent scaling as the number of threads increases for 
both avgPingPong and random-order ring latency on 

(a) (b)
Fig. 14 Performance of AvgPingPongLatency on BareMetal-, Container-, and VM based environments on (a) x86. (b) OpenPOWER

(a) (b)
Fig. 15 Performance of RandomlyOrderedRingLatency on BareMetal-, Container-, and VM-based environments on (a) x86. (b) OpenPOWER
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the OpenPOWER system. Both the benchmarks depict 
nearly a similar performance in all three cases with slight 
variation in latency with VM-based environment on the 
OpenPOWER system.

Inference: On ping-pong communication, only one 
pair of processes communicate with each other using 
MPI standard blocking send and receive call. At the same 
time, all the other processes wait on a blocking receive 
call to avoid any potential interference. The profiling of e_
bff benchmark is done to observe the time spent on dif-
ferent functions, as shown in Table  12. Communication 
latency would cause an increase in latency in all cases. 
Still, the impact of extra communication costs reduces 
the total communication performance as the number of 
threads increases. Figure  15 depicts that as the number 
of threads increases, the average latency increases signifi-
cantly in the case of x86 based environment as compared 
to the OpenPOWER based environment. It is because, 
in the case of OpenPOWER based environment, all the 
communications happen within the same node with 
extremely low latency. However, in the case of x86 based 
environment, although half of the communication occurs 

within the node, but as the number of threads increases, 
most of the threads communicate through a router with 
relatively higher latency, which leads to the increase in 
overall latency.

Bandwidth: Figures 16 and 17 display the avgPingPong 
and random-order ring bandwidth for BareMetal, con-
tainer, and VM-based environments on x86 and Open-
POWER systems. Nearly similar performance behavior 
is observed for both avgPingPong and random-order 
ring bandwidth on BareMetal and container-based envi-
ronments using x86 and OpenPOWER systems. The 
random-order ring bandwidth shows excellent scalabil-
ity with a proportional decrease in the bandwidth as the 
number of threads increases for all the three environ-
ments on the x86 systems. The VM-based environment 
on x86 systems depicts noticeable performance over-
head, as expected, due to the virtualization overhead. 
In the OpenPOWER case, all three environments dis-
play diminishing performance as the number of threads 
increases, with VM-based environment showing the 
degraded performance compared to the other two, up to 
24 threads, and beyond that, all converge. In the case of 

Table 12 Accumulated exclusive time of processes of b_eff in case of 16 threads

x86 OpenPOWER

 Processes Interpretation Exclusive 
Execution 
Time(Sec)

% of Total 
Execution 
Time

Exclusive 
Execution 
Time(Sec)

% of Total 
Execution 
Time

MPIDI_CH3I_Progress maintain process progress state for asynchro-
nous communications

0051.736 50.07 2139.827 46.30

Unknown not reported 0025.976 25.14 0108.248 02.34

MPID_nem_tcp_connpoll tcp communication between processes 0019.023 18.41 1808.054 39.12

MPID_nem_network_poll network polling for communicating threads 0003.046 02.95 - -

lmt_shm_recv_
progress:mpid_nem_lmt_
shm.c

message receiving mechanism of MPI - - 0068.265 01.48

(a) (b)
Fig. 16 Performance of AvgPingPongBandwidth on BareMetal-, Container-, and VM-based environments on (a) x86. (b) OpenPOWER. 
RandomlyOrderedRingBandwidth
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AvgPingPong bandwidth, similar behavior for all three 
environments is observed on the OpenPOWER system 
like random-order ring bandwidth. In x86 case, the per-
formance boosts as the number of threads increases until 
the entire active bandwidth is exhausted, and beyond 
that, it starts to drop.

Inference: The more emphasis on random ring band-
width reports the available inter-node communication 
bandwidth per MPI process because for the parallel 
applications, most MPI processes communicate with 
other MPI processes on other SMT nodes. In all the 
experiments, diminishing characteristics are observed 
as the number of threads increases. The possible reason 
behind this could be, in the case of a single node, all the 
communication happens to be within the same node, 
which leads to a higher network bandwidth. However, 
as the number of processes increases, more cores start 
communicating with each other through the router. The 
bandwidth delivered by the router is relatively lower than 
the PCIe-3 bus used in the OpenPOWER system, which 
degrades the performance of the RandomRing bench-
mark due to the inter-node communication.

The OpenPOWER-enabled system incorporates an 
RDMA-based (Remote Direct Access Memory) com-
munication engine capable of an InfiniBand network 
card to hide the inherent overhead issues seen on the 
network bus, which usually has fewer communication 
threads than the default socket-based design. It provides 
high-performance and low-overhead network transfers 
by delegating the packet building and processing to the 
network chip. Additionally, to achieve good performance, 
POWER architecture-aware tuning can be exercised in 
advance/automatically, such as chunk size per RDMA 
operation, fine-grained communication thread bind-
ing, the number of handler threads for data transferring, 
RDMA buffer pool size, etc., based on the testbed [30]. 
Finally, we conclude that to achieve optimal performance 

for the communication benchmark; the significant fac-
tors are the efficient communication channel, an opti-
mized MPI communication method, and message size.

Disk performance
IOzone: The widely used IOzone3 benchmark is utilized 
to investigate the disk performance of BareMetal, con-
tainer, and VM-based environments on x86 and Open-
POWER systems. It stresses and evaluates a variety of 
file operations such as read, write, re-read, re-write, read 
backwards, strided read, fread, fwrite, random read/
write, pread/pwrite variants, aio_read, aio_write, and 
mmap on all the three environments. The benchmark 
runs with a maximum file size of 15 GB and a record 
capacity of up to 16 MB.

Figures  18 and  19 capture the performance of the 
IOzone benchmark related to different read and write 
operations for BareMetal, container, and VM-based 
environments on x86 and OpenPOWER systems. The 
minimal performance penalty connected to various I/O 
operations is observed in the Container-based environ-
ment as compared to the native performance on x86 
as well as OpenPOWER systems. The VM-based envi-
ronment encounters a significant performance penalty 
compared to the BareMetal-based environment on x86 
and OpenPOWER systems because of the high over-
head related to I/O and write operations inside the vir-
tualized environment. The VM-based environment 
offers a noticeable difference in the performance as the 
file size increases due to the inefficiency of the virtual-
ization driver to deal with the large file size. As the file 
size is increased, I/O performance degrades proportion-
ally because the container scheduler tries to reorder I/O 
aggressively to avoid starvation as much as possible.

(a) (b)
Fig. 17 Performance of RandomlyOrderedRingBandwidth on BareMetal-, Container-, and VM-based environments on (a) x86. (b) OpenPOWER

3 http:// www. iozone. org/

http://www.iozone.org/
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Summary & comparison
Here, the proposed work is summarized and compared 
with the existing contribution in this domain. Table  13 
shows the maximal obtained results in all the experi-
ments. Our experiments depict that container-based 
environments offer near-native performance in almost all 
aspects of the system compared to the BareMetal-based 
environment on both x86 and OpenPOWER systems. 
Although the x86-based environments present consistent 
and predictable performance behavior in all the experi-
ments, but OpenPOWER-based environments show 
unpredictable nature in some cases. The tests display sig-
nificant overhead in the case of a VM-based environment 
compared to the BareMetal-based environment on the 
x86 systems. However, the overhead is much less for VM-
based environments using the OpenPOWER system. 
The inconsistent response is also observed in the case of 
HPL, MPIFFT, due to improper selection of some threads 

for all the three environments on the OpenPOWER sys-
tem. The container-based environment outperforms 
the BareMetal-based environment in some benchmark 
experimentation; it may be because of the optimized 
library, and less interference involvement in the container 
environment. Moreover, an entirely different behavior is 
encountered in a few instances of our experiments. The 
reason behind this is not evident to us. A more detailed 
analysis for these corner cases can be done as a part of 
the future work. Table 14 shows that we stressed all the 
sub-components of the container-based HPC environ-
ments on OpenPOWER and x86 systems.

The state-of-the-art CPU and GPU implementation 
often suffer from limited performance while solving 
large-scale simulations. These applications are influenced 
by complex irregular access patterns and low arithmetic 
intensity. OpePOWER systems provide excellent ben-
efits due to high data transfer memory bandwidth and 

(a) (b)
Fig. 18 Performance of IOzone Random_write (a) x86. (b) OpenPOWER

(a) (b)
Fig. 19 Performance of IOzone Strided_Read (a) x86. (b) OpenPOWER
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an advanced near-memory accelerator than the con-
ventional system architecture. Our proposed container-
ized HPC environment offers reduced deployment time, 
shorter latency, and better scalability, which is highly 
suitable for different big data workloads, having multiple 
executors distributed in the lightweight application con-
tainer. It also provides fine-grained resource provision-
ing to reflect the big-data workload characteristics better. 
On the other hand, the OpenPOWER system has been 
introduced to suit Big Data workloads, Machine learn-
ing/AI, cloud/Containers by providing more threads per 
core and with a considerably large cache and memory 
bandwidth than the other platforms. It presents a mod-
ular architecture for the system accelerator to eliminate 
inherent I/O overhead and latency, increasing through-
put. OperPOWER system also introduces NVlink, which 
significantly reduces the communication bottleneck 
between the CPU and GPU.

Conclusion & future work
In this work, we design and implement the Container-
based HPC environments that rely on simple Linux 
namespace features build on the top of a) OpenPOWER 
and b) x86 systems. These container systems are experi-
mentally analyzed for the performance compared to 
BareMetal, and VM-based environments. The applica-
bility of these container-based environments on HPC is 
evaluated stressing the different subcomponents of the 
HPC systems using various benchmarks, HPCC, and 
IOzone.

The experiments show that the VM-based HPC solu-
tions are not optimized enough to be utilized for work-
loads on the supercomputing facilities. Whereas, it is 
observed that, the Container-based HPC environments 
developed on x86 and OpenPOWER systems can be 
treated as the most feasible solution to fulfill the user’s 
customized dynamic environment requirements, in 
shared HPC clusters without sacrificing the raw per-
formance of the system. The performance of the Open-
POWER system represented a viable alternative to the 
x86 system for the HPC solution. The future generation 
systems are motivated by energy efficiency constraints 
together with the increase in scale, complexity, and het-
erogeneity. From a future perspective, our focus would be 
on making our container-based HPC environment solu-
tion to be energy-efficient. We also indent to explore the 
scalability test with the most recent OpenPOWER sys-
tem comparing with the counterpart.

Table 13 Summary of the proposed work

Workload x86 OpenPOWER

BareMetal Container VM BareMetal Container VM

HPL (GFLOPS) 783.88[ ± 2.16] 782.12[ ± 2.15] 619.32[ ± 3.15] 213.54[ ± 1.72] 212.95[ ± 1.86] 203.22[ ± 2.06]

DGEMM Single (GFLOPS) 394.44[ ± 1.76] 393.53[ ± 1.42] 315.49[ ± 1.99] 215.18[ ± 2.67] 213.65[ ± 2.61] 205.48[ ± 2.06]

Star (GFLOPS) 232.56[ ± 0.86] 232.52[ ± 0.92] 216.49[ ± 1.96] 024.89[ ± 2.01] 024.21[ ± 2.03] 022.25[ ± 1.68]

FFT Star (GFLOPS) 02.68[ ± 0.31] 02.62[ ± 0.25] 02.13[ ± 0.32] 01.48[ ± 0.37] 01.47[ ± 0.34] 01.46[ ± 0.33]

MPI (GFLOPS) 10.82[ ± 0.43] 10.82[ ± 0.48] 07.05[ ± 0.58] 07.91[ ± 0.27] 07.87[ ± 0.42] 07.74[ ± 0.36]

Stream Single(Triad) (GFLOPS) 13.14[ ± 0.74] 13.15[ ± 0.70] 11.66[ ± 0.81] 25.50[ ± 2.70] 24.94[ ± 2.75] 24.85[ ± 2.13]

Star(Triad) (GFLOPS) 11.26[ ± 1.11] 11.17[ ± 1.02] 10.80[ ± 0.44] 10.69[ ± 0.53] 09.98[ ± 0.68] 09.32[ ± 1.23]

RandomAccess Star (GUPs) 0.053[ ± 0.04] 0.052[ ± 0.03] 0.020[ ± 0.03] 1.60[ ± 0.03] 1.58[ ± 0.03] 1.49[ ± 0.05]

MPI (GUPs) 0.038[ ± 0.04] 0.028[ ± 0.03] 0.019[ ± 0.04] 0.022[ ± 0.04] 0.022[ ± 0.04] 0.021[ ± 0.04]

PTRANS (GBs) 4.19[ ± 0.14] 4.20[ ± 0.18] 0.79[ ± 0.30] 4.59[ ± 0.10] 4.58[ ± 0.10] 4.43[ ± 0.26]

b_eff AvgPingPong 
Latency(usec)

14.06[ ± 0.98] 14.00[ ± 0.98] 33.23[ ± 1.57] 01.07[ ± 0.08] 01.07[ ± 0.08] 01.08[ ± 0.08]

RandomlyOrderedRing 
Latency(usec)

024.084[ ± 0.57] 024.847[ ± 1.06] 145.035[ ± 4.14] 001.993[ ± 0.15] 002.011[ ± 0.17] 001.993[ ± 0.19]

AvgPingPong 
Bandwidth(GBs)

04.053[ ± 0.17] 04.035[ ± 0.19] 03.858[ ± 0.30] 11.430[ ± 0.95] 10.517[ ± 1.04] 09.396[ ± 0.72]

RandomlyOrderedRing 
Bandwidth(GBs)

00.774[ ± 0.26] 00.766[ ± 0.19] 00.386[ ± 0.22] 05.075[ ± 0.67] 04.553[ ± 0.78] 04.465[ ± 0.63]

Table 14 Sub-components focused by our work

x86 and 
OpenPOWER

System Sub-components 
Stress

Compute ✓
Memory ✓
Interconnect Bandwidth ✓

Latency ✓
I/O ✓
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