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Abstract 

With the increasing number of electric fast charging stations (FCSs) deployed along roadsides of both urban roads 
and highways, the long-distance travel of electric vehicles (EVs) becomes possible. The EV charging navigation 
scheme is significant for the quality of user experience. However, the variable conditions of both power grid and traf-
fic networks make it a serious challenge. In this paper, we propose an efficient EV charging navigation scheme 
while considering both the electric and computation resource sharing. With the support of vehicular edge comput-
ing networks in intelligent transportation systems (ITSs), EVs perform both the flexible power load and edge com-
puting nodes. When the traffic network in the established route starts to become congested, EVs can select to enter 
the nearest FCS. In addition to being supplemented by electric resources, EVs also benefit by sharing their own 
computing resource with FCSs. We formulate the EV charging navigation as a mixed integer programming problem, 
the EV moving route planning, FCS selection, and staying time in FCSs are optimized, to balance the relationships 
among the traveling time, traveling cost and reward. To address the influence caused by the randomness of traffic 
conditions and charging prices, a two-stage charging navigation algorithm combined with A∗ algorithm and deep 
reinforcement learning (DRL) is proposed, with a novel designed reward function. Eventually, numerous experimental 
results show the effectiveness of the proposed schemes.

Keywords Vehicular edge computing networks, EV charging navigation, Route planning, Deep reinforcement 
learning

Introduction
Due to low driving cost and carbon emission, EVs 
become one of the fastest development in intelligence 
transportation systems (ITSs) [1, 2]. Combined with the 
5G communication technology, EVs transform to the 
critical part of the vehicular edge computing networks 
(VECNs), the driving experience of EVs is improved sig-
nificantly  [3, 4]. The supporting environment of EVs is 
also gradually improved. Along with the growing deploy-
ment of FCSs, the long-distance travel of EVs becomes 
possible. Different from the EV charging in residential or 

workplace parking lots, an efficient EV charging naviga-
tion scheme is necessary to reduce the waiting time and 
charging cost in FCSs. Especially for the long distance 
travel scenario, the whole traveling cost and time are 
affected directly by the selection of FCSs and the mov-
ing route planning. However, for the time-varying traffic 
conditions, the charging prices, and the driving operation 
limitations, it is challenging to manage the EV charging 
navigation efficiently.

Recently, multiple studies have been conducted for the EV 
charging navigation to reduce the charging cost [5, 6], wait-
ing time in FCSs [7, 8], and improve the power grid reliabil-
ity [9]. To guarantee the electric requirement of the journey, 
EVs should be charged fully as early as possible. However, 
EVs can be considered as the flexible power loads, the dis-
ordered and frequent charging will make serious impact 
on the local power grid. Dynamic pricing of charging is an 
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effective method to guide EVs to reduce the traveling cost. 
Under the real time pricing and other uncertain factors, 
reinforcement learning (RL) and deep reinforcement learn-
ing (DRL) methods are widely used to find the optimal EV 
charging navigation decisions  [10–14]. In addition, com-
pared with the fuel powered vehicle, the charging time of 
EVs is longer. The waiting time in FCSs should be consid-
ered, which will affect the FCS selection and route planning 
of EVs. For long-distance journey, the objective function of 
EV charging navigation problems include minimizing the 
traveling time, charging cost and time, waiting time in FCSs, 
and energy consumption on road.

With the rapid development of the current internet 
of thing technologies, EVs become smart and comfort-
able and the data amount of task need to be processed in 
real time increases significantly. VECNs, which integrate 
the computation resources of both roadside unit (RSU)/
base station (BS) and moving vehicles on road, provide 
computing services nearby, become an acceptable solu-
tion for the various emerging application requirements in 
ITS [3, 15]. EVs and VECNs can interact with each other. 
VECNs empowered EVs. With the support of VECNs, the 
EVs can obtain real time useful information. For example, 
the electric charging prices in FCSs and the traffic situ-
ation prediction. Thus, EV selects an efficient and com-
fortable route. EVs constituted VECNs. EVs become the 
crucial component of VECNs. With the popularization 
of high level intelligent assisted driving and other appli-
cations  [16], the computation resource capacity of EVs 
is improved greatly  [17]. Specially, the idle computation 
resources of the moving vehicles  [18], the vehicle pla-
toon  [19], and the vehicles at roadside parking lots  [20] 
can be integrated to support the computing needs in 
VECNs.

Motivated by the above analysis, in this paper, we pro-
pose a smart and efficient EV charging navigation scheme 
in VECNs for a long-distance travel scenario. We extend 
the functional properties of EVs, both the electric and 
computation resource sharing between EVs and FCSs 
are mainly considered. The EVs perform both the flexible 
power load and edge computing nodes. When the traf-
fic becomes congested in the incoming moving road, EVs 
can select to enter the roadside FCSs to obtain the elec-
tric supplements while avoiding traffic congestion. More-
over, when EVs stay in FCSs, they can share their own 
computation resources with the local edge computing 
network to obtain reward. After charging, the EVs may 
still select stay in the parking lot of FCSs, when the price 
of computation resource sharing is high, or the road con-
gestion is still serious. We formulate the EV charging nav-
igation as a joint optimization problem to minimize the 
whole traveling cost, including the traveling time, energy 
consumption cost, and the resource sharing reward. The 

EV moving route, FCS selection, and the staying time in 
FCSs are jointly optimized. For the time-varying traffic 
conditions and charging prices in FCSs, a two-stage EV 
charging navigation algorithm combined with the A∗ 
algorithm and DRL-based EV charging navigation is pro-
posed. Different from the existing EV charging navigation 
strategies which focus on how to obtain the power sup-
ply quickly and efficiently, the route planning and power 
resource allocation are studied, and the charging stations 
ensure that sufficient charging piles and normal voltage 
can be selected firstly [6], in our work, we take full advan-
tage of the VECNs. We arrange the travel route ration-
ally to balance the traveling time and the charging time. 
And we use the idle computation resources of EVs during 
staying in FCSs to obtain reward, which can reduce the 
local computing pressure of VECNs and the total trave-
ling cost of EVs. The main contributions are summarized 
as follows.

• We construct a hierarchical system architecture for 
the EV charging with VECNs. Besides the normal 
traveling time and cost, both the electric and compu-
tation resource sharing are mainly considered.

• We formulate a mixed integer programming opti-
mization problem to minimize the total system cost, 
including the traveling time, traveling cost, and com-
putation resource sharing reward. The EV moving 
route, FCS selection and staying time in FCSs are 
optimized jointly.

• We propose a near optimal two-stage EV charging 
navigation algorithm combined with the A∗ algo-
rithm and DRL to solve the formulated optimization 
problem.

In addition, we give a set of simulation examples to 
show the efficiency of the proposed schemes. The rest of 
this paper is organized as follows. We review the related 
work in “Related work”  section. In “System architec-
ture”  section, we describe the system architecture. In 
“System model and problem formulation”  section, we 
introduce the system model and formulate a joint opti-
mization problem. In “Two-stage solution algorithm 
design” section, a two-stage EV charging navigation algo-
rithm is designed. Simulations are conducted in “Simula-
tion and analysis” section. Finally, we draw conclusions in 
“Conclusion” section.

Related work
The EV charging strategy and route planning is an inevi-
table problem in recent years, the traveling time and 
cost  [5, 6, 11, 13, 21], waiting time in FCSs  [7, 8, 10], 
user satisfaction  [4, 12, 14, 22] are considered. Mostly, 
the above factors are analyzed jointly. For the single EV 
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charging scenario, the real time collaboration between 
smart grids and ITSs is considered in [11], a DRL-based 
method is used to extract features from massive traf-
fic and power grid data, to make the decision model to 
learn the optimal charging scheme continuously, the 
charging cost also be considered. Ref.  [12] proposed a 
flexible smart charging strategy to reduce the grid con-
gestion, and in [13], a model free approach based on safe 
DRL is proposed to optimize the EV charging/discharg-
ing schedules. An adaptive EV charging and routing 
strategy is studied in  [7]. For the multiple EVs’ charging 
navigation, the problem becomes complexity. Ref.  [10] 
discussed the joint problem of charging navigation and 
route selection from multiple EVs to multiple FCSs. A 
deep learning-based low battery EV scheduling is pro-
posed. The EV fleet charging problem is analyzed in [22], 
combined with dynamic power prices and traffic condi-
tions, the user satisfaction has been considered. Different 
from the above works focus on the EV own cost minimi-
zation, ref.  [14] considered the maximization profit of 
the charging station, and proposed a real time charging 
scheduling and charging price adjustment strategy based 
on RL. Ref.  [21] proposed a charging path planning and 
early warning scheme for EVs in the case of insufficient 
energy.

In VECNs, the moving and parked vehicles are used 
to provide additional computation resources for the 
objective vehicles. Ref.  [23] proposed a three-layer 
architecture of VECNs to schedule the offloading tasks, 
to minimize the task response latency. The multi-hop 
task offloading scheme in VECNs is studied in [24], the 
mobility of vehicles on road is considered. Moreover, 
ref.  [25] studied the application of parked vehicles in 
VECNs, the workload distribution and the social wel-
fare maximization problems are analyzed. In [26], both 
the parked and moving vehicles are scheduled for the 
multi-access edge computing networks, the task off-
loading and resource allocation are jointly optimized. 
In  [27], the computation resources of vehicles are 
integrated when they pass through the coverage areas 
of RSUs. For the VECNs empowered EV, ref.  [28] pro-
posed a big data analysis system based on mobile edge 
computing (MEC), MEC server is performed as an 
intermediary to realize the interactions between EVs 
and charging stations.

Different from the above cited works, our work com-
bines the EV charging navigation with the VECNs in ITS, 
EVs perform as both the power load and edge nodes. It 
considers the optimal EV charging navigation schemes in 
a long-distance travel scenario. Under the the real time 
state of charge (SoC) constraint, and the vehicle normal 
travel should not be affected, the EV charging is arranged 
reasonably as the relationships among the traveling time, 

traveling cost and reward are balanced. EVs share their 
own computation resources to obtain reward when they 
enter the FCSs for charging. In details, when a special 
FCS lack of computation resources gives a high reward 
price, the EVs can preferentially select to enter the FCS, 
even it may have enough power. When the traffic road 
becomes congestion, the EVs can select enter the near-
est FCS. Moreover, when the incoming traffic road seg-
ments still be heavily congested after EV charging, the 
EV can select stay in the FCS, the whole traveling time, 
the energy consumption, and the reward are considered. 
During the whole path, EVs reduce the total travel cost 
through the flexible transfer of their own computing 
resources.

System architecture
In this section, we propose the system architecture of 
VECNs empowered EV charging in ITS. The basic archi-
tecture consists of three layers: cloud computing center 
(CCC) layer, edge computing (EC) layer, and user layer, 
shown as Fig. 1. The main notations are summarized in 
Table 1.

CCC layer
CCC functions as a service center for VECNs. With the 
help of ITS, the CCC obtains the global historical and 
real time traffic network and power grid information. 
Moreover, the CCC can process, analyze and manage the 
received data to predict the dynamic changes of the sys-
tem, including the traffic conditions, the charging prices 
and the available charging piles in FCSs.

EC layer
EC layer is composed of RSUs/BSs and other auxiliary 
facilities in FCSs. Each RSU/BS can cover a wider area, 
contains one or more FCSs. The EC layer acts as both 
the connect bridge for the entire framework, and pro-
vides the computing service for the ground devices. For 
the upper level, EC layer enables rapid integration and 
uploads the processed results. Normally, it includes the 
data cleaning, sorting and processing. For the lower 
level, when the RSUs/BSs in EC layer are suffering 
scarce resources, the received computation tasks can be 
offloaded back to the vehicles [29, 30].

User layer
User layer includes vehicles and smart devices. The EVs 
and devices can offload tasks to EC layer for calculation, 
and also receive tasks back. EVs can make use of their 
own idle computation resources to help the EC layer to 
relieve the computation pressure and obtain the corre-
sponding benefits [31].
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There are three interactions exist. Both the computa-
tion resource and information data sharing exist among 
the CCC, EC and user layers. The EVs can perform as 
crowd sensing nodes to collect the traffic information 
and upload to the CCC layer directly or with the relay 

of EC layer. The CCC can perform traffic flow forecast-
ing via deep learning methods  [32], and provide the 
forecasting results to EVs to make the optimal charg-
ing navigation. In addition, the EC layer integrates the 
decentralized and independent computation resources 
in user layer, and collaborates with CCC to provide the 
latency sensitive and computation intensive services for 
EVs and devices.

System model and problem formulation
System model
The system model of EV charging navigation in 
VECNs for long-distance travel scenario is proposed in 
Fig. 2. An EV travels from a start point to the destina-
tion, a set of FCSs are deployed at roadsides, including 
the normal service stations and the parking lots. For 
the traveling distance and the battery capacity, the EV 
should enter the FCS to obtain electric supplement at 
least once. With the VECNs, the RSUs/BSs deployed 
in FCSs can cover a set of traffic road segments. The 
CCC in ITS performs traffic forecasting with a slot-by-
slot fashion, the time interval is fixed as Tre , and EV 
can receive the forecasting information of road traf-
fic conditions at the beginning of each slot. As shown 
in Fig.  2, to avoid the congestion areas, there are two 
suitable paths for the EV, and the traveling distance, 
number of passing FCSs, waiting time and charg-
ing time in the FCSs are different. The EV can charge 
at one or several FCSs, the whole traveling time and 

Fig. 1 System architecture diagram

Table 1 Notations used throughout this paper

Notation Definition

T iw Total waiting time of EV in FCS i

vij Average speed of vehicle in road xij
Tre Fixed time interval

T
ij
r

Average traveling time in road xij

T
ij′

r
Predict traveling time in road xij

ω Fixed charging rate in FCS

ψe Average electricity cost

einti ,eendi
Initial and end SoCs of EV in FCS i

τ
p
i

Charging prices in FCS i

ξt Proportion of redundant computation resources

at time t

Ci EV sharing computation resource in FCS i

Cs Total computation resources of EV

pb Basic computation resource sharing price

Cneed Requirements of computation resources

D Set of FCSs

ζ Min battery threshold

σth Accepted traffic congestion degree
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energy consumption are balanced. It can perform both 
the electric and computation resource sharing with the 
FCSs. Providing the high resource sharing prices as 
incentives to influence the EV’s charging scheme, the 
total traveling cost of EV is reduced. The problem of 
regional computation resource imbalance is also alle-
viated effectively.

Regarding each FCS as a road segment point, denoted 
as ki , the road segments are represented as xij , the entire 
route {xij} of the EV Px is

where the total numbers of road segment points and 
FCSs are N and K, N > K  . Three aspects of time con-
sumption are considered respectively, as: the waiting 
time and actual charging time in FCSs, and the road driv-
ing time. The total waiting time in FCSs is Ttotal

w  , denote 
Ti
w as the EV’s waiting time in FCS i, we have

For EVs can provide their own computation resources 
with FCSs, the waiting time in FCSs consists of two parts, 
the waiting time before charging Ti

w,before , and after 
Ti
w,after , as

(1)Px = k0, x01, k1, ..., ki, xij , kj , ..., kN ,

(2)Ttotal
w =

K
∑

i=1

Ti
w .

(3)Ti
w = Ti

w,before + Ti
w,after .

When the EV completes charging actions, it has two 
choices: keep going or continue to stay, σi indicates a 
congestion factor in the incoming road, obtained via the 
CCC in ITS. σi = T

ij
′

r /T
ij
r  . Denote σth as the accepted 

congestion degree of EV.

The total charging time of the whole journey Ttotal
c  is 

composed of the time consumption of EV at each FCS, as

where Ti
c denotes EV’s charging time at FCS i. We set 

the charging rates of each FCS are fixed, denoted as ω . 
Capacity of EV battery is denoted as Emax . einiti  and eendi  
represent the EV’s start and end SoC in FCS i. The charging 
time of EV in FCS i is expressed as

It is not recommended for the EV stay in the parking 
lot of FCSs in an extended long time, for the congestion 
in FCS. We have

(4)Ti
w,after =

{

Ti
w,after , if σi > σth,

0 , otherwise.

(5)Ttotal
c =

K
∑

i=1

Ti
c ,

(6)Ti
c =

(

eendi − einiti

)

Emax

ω
.

(7)Ti
w + Ti

c ≤ Ts,th, ∀i.

Fig. 2 System mode of EV charging navigation in VECNs
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where Ts,th is the staying time threshold of EV in FCSs. 
The traveling time of EV on road is represented as

where dij is distance and vij is speed. We adopt the time-
of-use(TOU) price mechanism, the power prices are 
divided into peak, flat and valley ones respectively. The 
charging price in FCS i, denoted as τ pi  , shown as

When the power price takes fluctuation during the 
EV charging, we set that the charging cost of EV in FCS 
i, denoted as Ei

c , is calculated based on the current time 
period [33], as

where yi ∈ {0, 1} , indicates whether the EV chooses FCS i.
Actually, the driver or passengers may still use the 

devices on EV, when they wait for charging. Thus, 
denote ξt as the proportion of redundant computation 
resources at time t, the cost of EV caused by computa-
tion resource sharing in FCS i, Ei

s is given as

where Ec denotes the unit price of energy cost, 
Tend − Tstart = Ti

w + Ti
c . The total energy cost of EV in 

FCSs during the journey is

Normally, the energy consumption of EV moving on 
road is associated with the traffic conditions, the driv-
ing models and other factors  [34, 35]. In this paper, 
we set it is associated with the traveling distance only, 
denote ψe as the average electricity cost per kilometer 
and the whole traveling cost of EV on road is

For the EV can provide its own computation resources to 
obtain reward, the resource requirements and the charg-
ing benefits of each FCS are completely different [27]. The 
average computation resource price in FCS i is shown as

(8)Ttotal
r =

N
∑

i=1

Ti
r =

N
∑

i,j=1

dij/vij ,

τ
p
i =







τ
pv
i , if T i

c ∈ valley period,

τ
pf
i , if T i

c ∈ flat period,

τ
pp
i , if T i

c ∈ peak period.

(9)Ei
c = yiτ

p
i T

i
c ,

(10)Ei
s = yiEcCs

∫ Tend

Tstart

ξtdt,

(11)Etotal
c =

K
∑

i=1

(

Ei
c + Ei

s

)

.

(12)Etotal
r =

N
∑

i,j=1

rijψe.

where pb denotes the basic unit price of computation 
resource sharing, which is determined by ITS. δt indicates 
the level of resource demand FCS. Set a fixed time inter-
val Tre , the value of δt is updated once every time slot. 
When the FCS does not require computation resources, 
δt = 0 , otherwise, the value of δt increases according to 
the demand level for resources. Ci denotes the shared 
computation resource, and Cneed denotes the total 
requirements in FCS.

Then, the computation resources sharing reward of EV, 
Rtotal , is shown as

Problem formulation
According to the EV SoC, the charging and computation 
resource sharing prices in FCSs, and the traffic condi-
tions, from the start point, the EV makes the optimal 
decisions during the whole journey, includes the moving 
route {xij} , the selection of FCS {yi} and the waiting time 
of EV after charging in FCSs 

{

Ti
w,after

}

 . The objective is 
to minimize the total time and energy costs of the jour-
ney, and maximize the whole resource sharing reward. 
The objective function F is shown as

where η1, η2 represent the conversion cost coefficients of 
time and energy respectively. Then, the EV charging navi-
gation in VECNs is formulated as problem P1.

where xij ∈ {0, 1} . When the EV arrives road segment 
point j from point i, xij = 1 , otherwise xij = 0 , it means 

(13)pi =
1

Ti
w + Ti

c

pb

∫ Tend

Tstart

δt exp

(

lnCi

lnCneed

)

dt,

(14)Rtotal
=

K
∑

i=1

yipiCi

(

Ti
c + Ti

w

)

.

(15)
F = η1

(

Ttotal
w + Ttotal

r + Ttotal
c

)

+ η2

(

Etotal
r + Etotal

c

)

− Rtotal ,

(16)
min

{

xi,j ,yi ,T
i
w,after

}

F ,



















































C1 :

�

eendi − einiti

�

Emax − Enext
r ≥ ζEmax,

C2 :

K
�

i=1

yi ≤ m,

C3 : Ci ≤ Cth, ∀i,

C4 : Ti
w + Ti

c ≤ Ts,th, ∀i,

C5 :

�

i,j

xij −
�

i,j

xji =







1, i = s0
0, i �= s0, i /∈ D
−yi, i ∈ D

.
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that this path is not selected. C1 indicates that when the 
EV selects the FCS, it must satisfy it has enough energy 
to reach the selected target FCS. The minimize energy of 
EV is denoted as ζEmax , Enext

r  denotes the next reach road 
segment point of EV. Besides, C2 limits the number of EV 
charging in the whole process. m denotes the maximum 
number of charging, m ≤ K  . C3 restricts the computa-
tion resources from EV must not exceed the resources 
carried itself Cth . C4 restricts the staying time in FCS 
should not exceed the time threshold Ts,th . C5 indicates 
that the EV can only travel on a fixed path, the vehicle 
starts from k0 and passes through the FCSs in the set D, 
and the paths can be connected in sequence.
P1 is a mixed integer programming problem, it is hard 

to find the global optimal results directly. Next, we design 
a near optimal two-stage algorithm to solve it.

Two‑stage solution algorithm design
For the EV charging navigation, the issues that need to 
be considered throughout the whole journey include: 
the dynamic traffic conditions, idle charging piles, 
charging prices and demand of computing resources 
in FCSs, the objective is to optimize the EV moving 
route, the FCS selection and the staying time in FCSs 
to obtain the best income of EV. Due to the support 
of VECNs in ITS, the EV can receive the forecasting 
traffic conditions. However, the situation of the above 
mentioned influence factors will be quite different 
from the start moment, and the charging time of EV 
in FCSs is relatively long. It is not suitable to plan the 
global optimal solution for the entire journey at the 
start point. In addition, if the EV obtains the opti-
mal decision at the beginning of each time slot, it will 
cause the destination FCS on the vehicle side change 
constantly. Although the results obtained at the algo-
rithm and data level may be the optimal solutions, it 
does not conform to the EV usage and charging hab-
its. Therefore, we make use of incremental updates 
method at different decision points, as the road seg-
ment nodes and FCSs. In our work, we make decisions 
when the EV stays in these three types of road segment 
points. 1) The start point of EV. The EV should deter-
mine the moving route. 2) The road segment points 
with traffic congestion. When the unexpected conges-
tion occurs, the EV can select enter the nearest FCS to 
avoid it. 3) FCSs. When the EV passes the FCSs, it can 
make a decision whether enter the FCS and optimize 
the staying time in it.

Therefore, we design a two-stage EV charging naviga-
tion algorithm to solve problem P1, combined with the 
A∗ algorithm and deep Q-network (DQN), as shown in 

Algorithm  1. With the help of VECNs in ITS, the EV 
makes decision at the given road segment points. At 
the first stage, in the start point, the EV obtains the 
moving route of the whole journal {xij} in the offline 
manner, via the A∗ algorithm, with the traffic predic-
tion from the CCC in ITS. Then, at the road segment 
points, the EV obtains the optimal decisions whether 
enter the FCS {yi} and the corresponding waiting time 
after charging in the FCS {Ti

w,after} . Moreover, when a 
sudden traffic jam occurs on the planned traffic route, 
the EV can select whether to continue to wait on road 
or go to the nearest FCS based on the forecasting traffic 
congestion degree. Although the algorithm running 
time is long, it has enough time to make the final opti-
mal decisions. Next, we will give the details of each 
stage of the proposed algorithm.

Algorithm 1 Two-stage EV Charging Navigation Algorithm

EV route planning based on A∗ algorithm
In this section, we use A∗ algorithm to obtain EV moving 
route in the start point, based on two reasonable assump-
tions: the CCC in ITS can provide the traffic prediction 
for EV, and number of FCSs be deployed at roadsides. Set 
{

yi,T
i
w,after

}

 as fixed values, P1 reduces to a subproblem 
P1-1, as

subject to constraints C1 and C5. The A∗ algorithm is 
used to find the optimal solution of P1-1. Except for the 
start and end points, the FCSs are regarded as road seg-
ment points. Considering the SoC constraint of EV, the 
cost of EV in each point is evaluated, and the best one 
among all the connection points is obtained until reach 
the destination. Finally the shortest suitable path con-
nects the FCSs in traffic network is obtained. To improve 
the accuracy and calculation speed, in the A∗ algorithm, 
the priority of each point is calculated and be compared 

min
{xi,j}

F ,
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to obtain the next highest one. The priority function in 
point i is shown as

where f(i) represents the priority of the point, a smaller 
value means a higher priority. g(i) represents the cost 
value of the point i from the start point, h(i) represents 
the estimated value. We set the EV can move up, down, 
left and right only. g(i) and h(i) are calculated by the 
Manhattan distance. Under EV SoC constraint, the point 
with the minimal f(i) is selected as the next moving one. 
The details of the proposed A∗ algorithm are similar with 
the description in refs. [36, 37].

FCS selection based on DQN algorithm
In the section, we perform the FCS selection of EV and 
the staying time optimization in FCS, when the EV passes 
the road segment points. After the moving route of EV 
{xi,j} had been optimized via the proposed A∗ algorithm, 
P1 is reduced to a subproblem P1-2, as

subject to constraints C2− C5.
DQN is used to find the optimal solutions. Differ-

ent from the existing DRL-based EV charging schemes, 
we design a novel and efficient reward function, corre-
sponding to the scenario that we consider both the elec-
tric and computation resource sharing. With the support 
of the CCC and EC layers in ITS, the EV can obtain the 
real time and the collected traffic network and power 
grid information. It makes optimal decisions through 

(17)f (i) = g(i)+ h(i),

min
{

yi ,T
i
w,after

}

F ,

the proposed DQN-based algorithm. The framework is 
shown as Fig.  3. To express the proposed DQN-based 
algorithm, we introduce the formulation of Markov deci-
sion process (MDP) firstly, as:

1)State: To obtain the optimal decision, we consider a 
set of states, as the estimated traveling time costs 
{

T 01
′

t,r ,T 12
′

t,r , · · · ,T
ij
′

t,r

}

 , the charging price τ pt  , the compu-

tation resource sharing prices 
{

pt0, p
t
1, · · · , p

t
i

}

 in FCS i, 
SoC of EV et , EV location information lt , the free charg-
ing piles at the FCS i in the path 

{

hnum0 , hnum1 , · · · , hnumi

}

,

2)Action: The action of EV At , corresponds to the 
actions in each FCS at each step {ait} . ait ∈ {0, 1} indi-
cates whether to charge in FCS i, 0 means it passes and 
does not perform charging, 1 means entering the FCS for 
charging.

After charging in FCS i, the EV should determine the 
waiting time Tt

i,after , based on the real time traffic condi-
tions σi,t . When the traffic road becomes congested, 
σi,t ≥ σth , EV can stay in the FCS under constraint C4, 
otherwise, the EV should leave the FCS after charging, 
and Tt

i,after = 0.
3)Reward  :   In this paper, the benefits of EV are 

obtained according to the action At . We define a reward 
value rf  to influence the EV to make the correct choice, 

(18)

St =

[(

T 01
′

t,r ,T 12
′

t,r , · · · ,T
ij
′

t,r

)

, τ
p
t ,
(

pt0, p
t
1, · · · , p

t
i

)

,

et , lt ,
(

hnum0 , hnum1 , · · · , hnumi

)]

.

(19)At ∈ {i, 0, 1}.

Fig. 3 DQN algorithm framework
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and ensure that rf  is the same magnitude as the reward 
obtained by computation resources. When the EV does 
not select the FCS and the battery level falls below the 
minimum threshold, a negative reward is given. When 
the EV battery is fully charged but continues to stay in 
this FCS to provide computation resources, if the road 
segment ahead becomes congested, the reward for pro-
viding computation resources is given. Otherwise, the 
reward is 0. When the EV enters the target optimal 
FCS, it will receive a positive reward value of the selec-
tion and providing computation resources. When the 
EV does not choose the FCS with the largest reward to 
charge, the EV will receive a negative reward and the 
reward for providing computation resources will be 
multiplied by 0.8, to encourage the EV to choose the 
recommended FCS. Therefore, the reward function of 
EV is expressed as

According to the above discussion, Algorithm  2 pro-
vides a detailed description of the DQN training process. 
First, the evaluation and the target network parameters 
are initialized with the same structure. Besides, the expe-
rience pool is initialized to store the samples. A randomly 
selected probability value ρ and the ε algorithm are pro-
posed to explore new actions.

When ρ ≤ ε , the action is chosen randomly, otherwise, 
the EV selects the action that makes the Q value largest. 
The optimal policy π∗ that makes the action value function 
maximum is taken out, as

The loss function for DQN, using the mean squared error 
(MSE) method to minimize the error between the pre-
dicted Q value and the target one. The DQN loss function 
is shown as

where yt represents the target Q value, θ is the net-
work parameter. The stochastic gradient descent 

Rt =



























−rf , if et < ζEmax,

0, if et = Emax,
�

Ti
w + Ti

c

�

pti , if e
t
= Emax, σi ≥ σth,

rf +
�

Ti
w + Ti

c

�

pti , if EV selects FCS i,

−rf + 0.8
�

Ti
w + Ti

c

�

pti , if EV selects other FCSs.

at =

{

randomly select action, if ρ ≤ ε,

argmaxait
Q
(

sit, a
i
t

)

, if ρ > ε.

(20)Qπ∗ = maxQπ (St ,At).

(21)L(θ) =

[

(

yt − Q
(

sit , a
i
t; θ

))2
]

,

(22)yt = r
(

sit , a
i
t

)

+ γmaxQ
(

sit+1, a
i
t+1; θ

)

,

(SGD) algorithm is used on L(θ) to update the target 
DNN parameters.

Algorithm 2 DQN-based FCS Selection Algorithm

Simulation and analysis
Parameter and simulation environment settings
We consider the charging strategy arrangement for 
long-distance travel of EV. For both the electric and 
computation resource sharing schemes are consid-
ered in this paper, we construct a simulation model, 
we generate a series of points randomly, and con-
nect them with line segments to simulate roads, each 
point can be connected with at most four points 
around the top, bottom, left and right, using line seg-
ments to simulate roads. Multiple independent FCSs 
are deployed in points randomly. We assign a num-
ber to each line segment to represent the distance, 
measured in km. Actually, the current simulation 
model can be improved to each future realistic mod-
els. According to the current market mainstream, the 
EV battery capacity is 60Ah with maximal driving 
range 540km, the FCS fast charging rate is 40kw/h, 
the costs of FCS charging are divided into three 
types according to different time periods, [τ pvi ,τ

pf
i

,τ ppi ] corresponding to [0.55, 1.03, 1.4](CNY/kwh) [6]. 
FCS connects the local VECNs, and the computa-
tion resource sharing prices are in the interval of 
[0.6,  1.5](CNY/min), different computation resource 
prices simulate the levels of demand at FCSs. The 
accepted road congested degree is σth = 0.6 , and the 
traffic conditions in each road segment are random 
deployed, σi,t ∈ (0, 1) . η1 = η2 = 0.5 . The generated 
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random map of the simulation model is shown in 
Fig. 4. Other main simulation parameters are shown 
in Table 2.

Results and analysis
EV route planning
The start and the end points are determined Then, the 
EV route is derived by the A∗ algorithm, and the result 
obtained is shown in Fig.  5. Then A∗ algorithm out-
puts the coordinates of the points passed in the path as: 
[(−398,−212), (−312,−185), (−301,−104), (−218,−106),

(−105,−87), (−87, 14), (−86, 104), (−13, 105), (109, 107),

(184, 83), (292, 117), (293, 197), (296, 283), (292, 393)].

It means EV pass through 14 FCSs during the journey. 
The distances between each two FCSs in the journey are 
[90, 81, 83, 114, 102, 90, 73, 122, 78, 113, 80, 86, 110]km.

DQN‑based FCS selection algorithm
To verify the performance of the proposed DQN-based 
FCS selection algorithm, four baseline schemes are 
proposed, as:

• RL-based EV charging algorithm [38, 39] : After EV 
route is determined, the RL method is applied to find 
the optimal FCSs.

• Soft Q-learning based EV charging  [40, 41]: After 
EV route is determined, the soft Q-learning algo-
rithm is applied to find the suitable and optimal 
FCSs.

• FCS selection with SoC: It is a normal scheme. EV 
selects FCS and staying time in FCS only the SoC 
constraint C1 is ensured. In this method, several 
trials are conducted and averaged as an evaluation 
result.

• FCS selection without reward: The computation 
resource sharing is not considered, the EV route and 
FCS selection are optimized jointly, based on SoC 
requirement only.

When the initial range of EV is 200 km at the start 
point, the convergence of charging strategies solved by 
DQN and Q-learning are shown in Fig. 6 and Fig. 7. To 
express the performance clearly, we divide the objective 
function of P1 the total system cost F into reward and 
cost, as

Figure  6 shows that during the training process, 
the reward obtained by sharing the EV computation 

(23)

F = cost − reward,

cost = η1

(

Ttotal
w + Ttotal

r + Ttotal
c

)

+ η2

(

Etotal
r + Etotal

c

)

,

reward = Rtotal .

Fig. 4 Random map of simulation

Table 2 Simulation parameters

Parameter Value/unit

Fixed time intervalTre 0.5h

Learning rate α 0.01

Discount rate γ 0.9

Exploration rate ε 0.8

Training steps M 400

Replay memory size 2000

Target DNN renew rate 200
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resources grows slowly until it reaches convergence 
finally, while at the same time, the total cost spent by 
traveling the full path also gradually decreases. Besides, 
the total system cost F is negative when the train-
ing reaches convergence, which indicates that the EV 
achieves a positive gain when it travels under the pro-
posed DQN-based algorithm, the benefits obtained by 
EV sharing their idle computation resources with FCSs 
are outweigh the total cost spent on the road. Comparing 

Figs.  6 and  7, the training results of Q-learning are not 
as better as DQN, because DQN introduces target Q net-
work to update the target values, which makes it easier 
for the parameters to converge during the training pro-
cess, and the training results are better.

Figure 8 shows the total reward of EV obtained by shar-
ing computation resources throughout the whole jour-
ney with different initial SoCs of EV. We use the initial 
cruising distance to express the initial SoC of EV. From 

Fig. 5 A∗ algorithm to find the EV route

Fig. 6 Convergence of both the reward and total system cost F training results solved by DQN
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Fig. 8, we can find that the rewards throughout the jour-
ney decrease as the initial SoC increases, the reason is 
that in the case of a more adequate initial SoC, the neces-
sary charging time decreases, and both the time duration 
for resource sharing and the number of entering the FCS 
decrease. The EV under the proposed DQN-based algo-
rithm obtains the best reward, because EV can make the 
optimal decision about the FCS selection and the staying 
time in the FCS. The EV under the FCS selection with 

SoC method obtains reward without a fixed pattern. The 
method considers SoC as the only constraint. When an 
EV passes through a FCS, only when the remaining SoC 
is not enough to reach the next FCS, it selects to charge 
and provide computation resources. We can find that 
when the EV SoC is sufficient, the algorithm is more 
inclined to let the EV choose to continue driving, which 
can shorten the whole journey time, be in line with daily 
user driving habits.

Fig. 7 Convergence of both the reward and total system cost F training results solved by Q-learning

Fig. 8 Total reward for computation resource sharing under different initial SoCs of EV
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Figure  9 compares the system costs of EV for DQN-
based, RL-based, soft Q-learning based algorithms, FCS 
selection with SoC and FCS selection without reward 
under different congestion points are randomly deployed 
in the whole path. The initial cruising distance of EV 
is set as 200km, and the length of the whole journey is 
1000km. From Fig. 9, we can find that the system costs of 
EV for FCS selection with SoC and FCS selection with-
out reward increase quickly as the number of congestion 
points increases. The reason is that the EV selects the 
charging stations, and only the SoC constraint is consid-
ered. When the computation resource sharing rewards 
are not considered, the costs of EV increase. When there 
are many congestion points exist, the EV may select stay 
and wait, the time cost increases. However, the advan-
tages of the DQN, RL-based and soft Q-learning based 
algorithms are the EV can select to enter the nearest 
FCS, both the computation and electric resource sharing 
are considered. The traveling time, energy consumption 
and the rewards are balanced. And under the proposed 
DQN-based algorithm, the EV can find the best decisions 
when it passed each FCS.

Figure  10 compares the total system cost F of EV 
under different total route lengths. The initial cruis-
ing distance of EV is set as 200km. We can find that 
the reward of EV under the proposed DQN-based 
algorithm is the best than others, and along with the 

increasing of lengths of the total route, the benefit gap 
increases. The reason is that the EV under the proposed 
algorithm has a large solution space to find the optimal 
decision. However, as the length of route increases, the 
benefits obtained from the Randomized method by pro-
viding computation resources are no longer able to meet 
the charge expenses of the whole journey, the income of 
EV becomes negative. Disordered charging selection 
affects the EV benefit. And the EV under the DQN-
based, RL-based, soft Q-learning based algorithms can 
also achieve positive incomes.

Above all, under the proposed DQN-based FCS selec-
tion algorithm, the EV can select the optimal operations 
in a larger solution space, including the FCS selection 
and the waiting time. For both the electric and computa-
tion resource sharing schemes are considered, the per-
formance of the proposed DQN-based algorithm is the 
best, compared with other three algorithms.

Conclusion
In this paper, we design a smart and efficient EV charg-
ing navigation scheme in a long-distance travel sce-
nario, with the support of VECNs in ITS. Both the 
electric and computation resource sharing schemes 
are considered between the EV and FCSs. The EV own 
computation resource can compensate for the resource 
storage of VECN in FCS at peak times. The moving 

Fig. 9 The total costs under different number of congestion points deployed in the path
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route, FCS selection and staying time in FCS are opti-
mized jointly. We establish a two-stage solution algo-
rithm, combined the A∗-based EV route planning and 
DRL-based FCS selection algorithms, to find the opti-
mal EV charging navigation scheme. The geographical 
imbalance of VECN computation resources in path is 
solved effectively. Simulation results show that the 
proposed algorithm reduces the EV traveling costs, 
improves the traveling efficiency and makes reasonable 
use of global electric and computation resources.
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