
Gao et al. Journal of Cloud Computing          (2023) 12:173  
https://doi.org/10.1186/s13677-023-00548-x

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

PDLB: Path Diversity-aware Load Balancing 
with adaptive granularity in data center 
networks
Weimin Gao1,2, Jiawei Huang1*  , Zhaoyi Li1, Shaojun Zou3 and Jianxin Wang1 

Abstract 

Modern data center topologies often take the form of a multi-rooted tree with rich parallel paths to provide high 
bandwidth. However, various path diversities caused by traffic dynamics, link failures and heterogeneous switching 
equipment widely exist in the production datacenter network. Therefore, the multi-path load balancer in data center 
should be robust to these diversities. Although prior fine-grained schemes such as RPS and Presto make the best 
use of available paths, However, they are prone to experiencing packet reordering problem under the asymmetric 
topology. The coarse-grained solutions such as ECMP and LetFlow effectively avoid packet reordering, but easily lead 
to under-utilization of multiple paths. To cope with these inefficiencies, we propose a load balancing mechanism 
called PDLB, which adaptively adjusts flowcell granularity according to path diversity. PDLB increases flowcell granu-
larity to alleviate packet reordering under large degrees of topology asymmetry, while reducing flowcell granular-
ity to obtain high link utilization under small degrees of topology asymmetry. PDLB is only deployed on the sender 
without any modification on switch. We evaluate PDLB through large-scale NS2 simulations. The experimental results 
show that PDLB reduces the average flow completion time by up to ∼8-53% over the state-of-the-art load balancing 
schemes.

Keywords Path diversity-aware, Adaptive granularity, Load balancing, Data center networks

Introduction
The data center network connects a large number of 
hosts through switches to provide large-scale comput-
ing and storage. In order to improve network transmis-
sion performance, new multi-rooted tree topologies 
such as Fat-tree [1], Clos [2], and VL2 [3] have appeared 
in the architecture design of data center network. These 
new network topologies provide multiple available 

transmission paths between the source host and the des-
tination host. Parallel multi-path transmission can greatly 
improve the network throughput and reliability of the 
data center.

The primary goal of load balancing is to evenly distrib-
ute traffic to each parallel path, improve network link uti-
lization, and avoid network congestion caused by burst 
traffic. Equal Cost Multi-Path (ECMP) [4] is the most 
typical flow-level load balancing scheme in production 
datacenter, which uses flow hashing to transfer flows 
to available paths. LetFlow [5] and CONGA [6] reroute 
flowlets to avoid packet reordering. Random Packet 
Spraying (RPS) [7], Presto [8] and Distributed Rand-
omized In-network Localized Load balancing (DRILL) 
[9] flexibly split flows at a finer granularity to make best 
use of all available paths.

*Correspondence:
Jiawei Huang
jiaweihuang@csu.edu.cn
1 School of Computer Science and Engineering, Central South University, 
Changsha 410083, China
2 Department of Computer Science and Engineering, Hunan Institute 
of Technology, Hengyang 421002, China
3 School of Computer Science and Technology, Hainan University, 
Haikou 570228, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00548-x&domain=pdf
http://orcid.org/0000-0002-7578-4490


Page 2 of 16Gao et al. Journal of Cloud Computing          (2023) 12:173 

However, as the data center runs over time, traffic 
dynamics, topology asymmetry, and switch failures will 
appear [8, 10]. Under such uncertainty, the multiple 
paths become diverse or asymmetric. When these load 
balancing schemes scatter data packets on congested 
paths, some flows will inevitably experience unpre-
dicted congestion and packet disordering. The degrada-
tions of transmission delay and flow throughput result 
in a longer application response time and a worse user 
experience. For example, Presto uses the maximum 
TCP Segment Offload (TSO) size of 64 KB as the flow 
unit granularity, allowing fine-grained load balanc-
ing at the network bandwidth of more than 10 Gbps. 
However, since Presto uses fixed-size packet clusters to 
split the traffic without considering the path diversity, 
Presto has problems with out-of-order and packet loss 
in asymmetric topology.

In this paper, in order to solve the robustness and flex-
ibility of the above methods under asymmetric topol-
ogy, we propose a load balancing mechanism called Path 
Diversity-aware Load Balancing (PDLB), which adap-
tively adjusts flowcell sizes to obtain both low packet 
reordering and high link utilization. In particular, flow-
cell is defined as a packet cluster composed of gran 
packets, flowcell size is also gran, which is equal to 2n 
KB (n=0, 1, 2... 6). Flowcell is also a balance loader with 
the packet cluster size of TCP Segmentation Offload 
(TSO) unit. To mitigate the impact of uncertainties 
under high path asymmetry, PDLB increases the size 
of flowcells to alleviate packet reordering. On the con-
trary, when the path asymmetry is low, PDLB reduces 
the size of the flowcells to achieve high link utilization. 
Moreover, PDLB is deployed on the sender with negligi-
ble overhead, while making no modifications on switch. 
From the perspective of performance, PDLB is sensitive 
to path latency and periodically adjusts flowcell granu-
larity at the sending end. It exhibits high flexibility and 
resiliency under asymmetric topology and achieves 
good load balancing.

In summary, our major contributions are:

• We conduct an extensive simulation-based study to 
analyze the impact of path asymmetry on the load 
balancing performance. We demonstrate experimen-
tally and theoretically why controlling the granularity 
of the flowcell is effective in avoiding large tailed flow 
completion time (FCT) and packet reordering under 
large path asymmetry.

• We propose a flowcell-level load balancing scheme, 
PDLB, to spread flowcell across the multiple paths, 
which are adaptively selected according to path 
diversity. PDLB rationally adjusts the size of the 
flowcell to improve link utilization under small path 

asymmetry and reduce tailed latency under large 
path asymmetry.

• By using large-scale NS2 simulations, we demon-
strate that PDLB performs remarkably better than 
the state-of-the-art load balancing designs under 
different realistic traffic workloads. Especially, PDLB 
greatly reduces the mean FCT up to ∼8-53% over 
RPS, ECMP, LetFlow, Presto and Queuing Delay 
Aware Packet Spraying (QDAPS).

The remainder of this paper is structured as follows. In 
Related works section, we introduce related works. In 
Background and motivation section, we demonstrate the 
design motivation. We present the design overview and 
details of PDLB in Adaptively adjusting flowcell granular-
ity and The Algorithm of PDLB sections. In Simulation 
evaluation section, we evaluate the performance of PDLB 
using NS2 simulation. Finally, we conclude the conclu-
sion and future work in Conclusion and future work 
section.

Related works
In recent years, researchers have proposed various load 
balancing mechanisms to facilitate parallel data trans-
mission across multiple paths. The state-of-the-art algo-
rithms mainly include RPS, LetFlow, ECMP, Presto, and 
QDAPS. The comparison is shown in the Table  1. RPS 
and QDAPS are classical packet-level load balancing 
algorithms, while LetFLow and Presto are classical flow-
let-level load balancing algorithms, as well as ECMP, is 
typical of flow-level load balancing.

LetFlow [5] uses the natural attributes between data 
packets to automatically sense path congestion. When 
a flow encounters congestion on a certain path, the 
interval between data packets will increase, naturally 
forming a packet cluster with a time interval. LetFlow 

Table 1 Comparisons with state-of-the-art load balancing 
algorithms

Schemes Relevance

RPS Randomly forwards packets 
of a flow to all paths at switches.

LetFlow Picks a random path for each flowlet.

Presto Splits a flow into many units 
with a fixed size (i.e.,64KB) 
and spreads the units to all paths.

ECMP Selects a random path from n paths 
for forwarding.

QDAPS Selects the output port for each 
packet based on the queueing 
delay of the last arriving packet 
in the same flow to avoid packet 
reordering.



Page 3 of 16Gao et al. Journal of Cloud Computing          (2023) 12:173  

distinguishes the packet clusters according to the time 
interval threshold, and randomly sends the packet 
clusters to other paths. Since the interval threshold is 
generally greater than the maximal path difference, Let-
Flow can avoid disorder and effectively combat asym-
metry problems. However, due to the randomness of 
flowlet scheduling, the optimal load balancing perfor-
mance cannot be achieved.

Presto [8] is a typical flowcell-based mechanism that 
sprays the flowcells onto all available paths in a round-
robin style. Presto uses a software switch to split flows 
into 64KB data slices. Presto uses the central controller 
to collect topology information. The software switch on 
the host sends each packet cluster of equal size of 64KB 
to all available paths in a poll. The receiving end modifies 
the Generic Receive Offload (GRO) mechanism to reduce 
disorder.

BurstBalancer [9] is an efficient load balancing system, 
with the aim of manipulating only a small number of crit-
ical flowlets. BurstBalancer devises a sketch, namely Bal-
anceSketch, and deploys it on each switch to detect and 
make forwarding decisions for each FlowBurst. BurstBal-
ancer only needs small on-chip memory to keep critical 
flowlets (FlowBursts), and thus perfectly embraces the 
highly skewed flow distribution. Further, BurstBalancer 
only anipulates the critical flowlets, which are minimiz-
ing packet reordering.

CONGA [6] designs a distributed algorithm to obtain 
global congestion information in leaf-spine topologies, 
and assigns each flowlet to the least congested path at 
leaf switches. It can sense the congestion and failure of 
the path, and thus can be applied to asymmetric net-
works. However, CONGA needs to store a large amount 
of path information and use customized switches, which 
is difficult to deploy on a large scale.

Hop-by-hop Utilization-aware Load balancing Archi-
tecture (HULA) [11] uses programmable switches to 
achieve congestion sensing load balancing. HULA peri-
odically sends detection packets to all available paths 
to collect global link utilization information. Based on 
the detection packet feedback information, each switch 
selects the next hop path with the lowest path utilization 
and notifies it to all neighbor nodes. At the same time, 
each switch maintains a congestion information table to 
store the best next hop path to the destination, and there-
fore it effectively eliminates the storage pressure of path 
explosion on the switch. However, because HULA only 
selects the best next-hop path, it will cause congestion on 
the best path.

Luopan [12] is a sample-based load balancing 
scheme. Luopan uses a fixed-size packet cluster as the 
scheduling unit, and the packet cluster size is set as the 
maximum TSO size of 64KB. For the multiple paths, 
Luopan periodically samples part of the paths, and 
then forwards the packet cluster directly to the path 
with the smallest queue length to achieve load balanc-
ing. The comparison of flowlet-level load balancing 
schemes is shown in Table 2.

Some packet-level load balancing research work are 
proposed, such as QDAPS and Adaptively Adjusting 
Concurrency (AAC). QDAPS [13] is a queueing delay-
aware load balancing mechanism that significantly 
reduces the flow completion time. QDAPS selects a suit-
able output queue to ensure that the packets arrive at the 
receiver in order and avoid the low link utilization in a 
flexible manner. Moreover, QDAPS also designs a flow 
rerouting method to reduce the queueing delay of long 
flows. Compared with QDAPS, PDLB has its own fea-
tures. Firstly, the granularity of load balancing is differ-
ent. PDLB is a flowcell-based load balancing method, 

Table 2 The comparison of flowlet-level load balancing schemes

Schemes Key design Advantage and Disadvantage (A &D)

LetFlow [5] Selects the forwarding path for each packet cluster randomly 
at a fixed time interval.

Suitable for asymmetric networks, but routing randomly.

Presto [8] Uses the central controller to collect topology information. Suitable for asymmetric networks. It’s not necessary to modify 
the protocol stack and hardware, but the deployment is complex.

Burst-Balancer [9] Only manipulates a small amount of critical flowlets. Suitable for symmetric and asymmetric topologies, but the over-
head is not small.

CONGA [6] The switch selects the lightest congestion path for each flowlet 
according to the congestion information table and the flowlet 
table.

Suitable for asymmetric networks, but the feedback delay is too 
large and the scalability is poor.

HULA [11] The path of forwarding flowlet is the best next hop. Solved the scalability issue of CONGA, and the overhead of for-
warding tables is low, but has a herd effect.

Luopan [12] Samples the congestion information of some paths, and for-
wards the fixed-size flowlet to the lightest congestion path.

Low overhead, suitable for asymmetric networks. However, sens-
ing partial congestion cannot guarantee global optimization.



Page 4 of 16Gao et al. Journal of Cloud Computing          (2023) 12:173 

while QDAPS is a packet-level load balancing method. 
Secondly, PDLB adaptively adjusts flowcell granularity 
according to path diversity. PDLB increases flowcell gran-
ularity to alleviate packet reordering under large degrees 
of topology asymmetry, while reducing flowcell granu-
larity to obtain high link utilization under small degrees 
of topology asymmetry. But QDAPS only proposes a 
flow rerouting method to avoid packet reordering at the 
switch.

AAC [14] measures the leaf-to-leaf delay at a leaf switch 
to adjust the flow concurrency according to the degree of 
path asymmetry. Both AAC and PDLB are load balanc-
ing schemes designed for data center network. However, 
AAC and PDLB are essentially different works. Firstly, 
AAC is a load balancing scheme with packet-based gran-
ularity, while the switching granularity of PDLB is flow-
cell, which is adjusted according to the path asymmetry. 
Second, AAC performs routing selection on the switch 
by controlling the flow concurrency, while PDLB does 
not perform routing selection at switch and only adjusts 
the size of the flowcell at the sender. Finally, PDLB works 
at the sender side, without any deployment overhead at 
switch. However, AAC quickly senses network conges-
tion at switches and adjusts the sending paths, incurring 
some deployment overhead.

Background and motivation
In this section, we provide empirical research to show 
that, the path asymmetry is very common in the 
modern data centers. Then, we analyze the impact 
of path asymmetry on load balancing performance 

and demonstrate that controlling the size of flow-
cells is effective in reducing latency under large path 
asymmetry.

Path asymmetry in production data center
Data center network traffic is known for its bursty traf-
fic [15, 16]. When the traffic bursts instantaneously, it is 
easy to cause congestion, resulting in path asymmetry. 
In addition, due to link failures and the heterogeneity of 
network equipment, path asymmetry generally exists in 
data centers [5, 6, 17–20]. The main difference between 
symmetric topology and asymmetric topology is whether 
the delay and bandwidth of multiple paths between any 
pair of communication hosts are consistent. If the delay 
or bandwidth of paths between any pair of hosts is the 
same, it is a symmetric topology, otherwise it is an asym-
metric topology. In the following, we use an example to 
show the wide existence of path asymmetry.

As shown in Fig.  1a, a bursty flow is transmitted by 
ECMP from leaf switch L1 to leaf switch L2 . Since the link 
between spine switch S0 and leaf switch L2 is blocked by 
the burst flow, the two paths from L0 to L2 become asym-
metric. Figure 1b shows the asymmetric topology caused 
by link failures. When the link between L1 and S1 breaks 
down, any traffic from L1 to L2 is forced to be transferred 
on the path L1 - S1 - L2 . Consequently, traffic from leaf 
switch L1 to L2 will go through two paths with different 
latencies. Besides, switch failures such as random packet 
dropping and heterogeneous switches with different link 
speeds can also induce topology asymmetry [5].

Fig. 1 Topology Asymmetry



Page 5 of 16Gao et al. Journal of Cloud Computing          (2023) 12:173  

The granularity of flowcell affects the performance of load 
balancing
In order to explore the impact of path asymmetry on 
load balancing performances, we use the NS2 simula-
tion to test the performance of Presto, which is the 
typical datacenter load balancing design already imple-
mented on the commodity switches [8, 21]. The test 
topology is a leaf-spine topology [11] with 8 spine 
switches and 2 leaf switches in Fig. 2. The bandwidth of 
each path and the buffer size of each switch are 1Gbps 
and 250 packets, respectively. Each sender sends a 
DCTCP flow to a single receiver via leaf switches with 
the RPS scheme, which randomly spreads the arriving 
packets to all 8 paths. To produce the path asymmetry, 
we change the round trip propagation delay of each 
path. We generate 10 flows with 10000 packets. The 
RTT of the uncongested path is set to 100µ s, and the 
RTT of the congested path is set to 300µ s and 600µ s, 
respectively. 

1) FCT under different granularity of flowcell: Figure 3 
shows the average and 99th percentile flow com-
pletion time with different granularity of flowcell. 
The RTTs of congested path is different. Figure  3a 
shows that average flow complete time(AFCT) firstly 
declines and then arises with the increasing size of 
flowcells. In Fig.  3b, the 99th percentile FCT shows 
the similar trend. This result shows that, smaller 
flowcells provide higher link utilization to reduce 
flow completion time under smaller path asymmetry. 
However, under large path asymmetry, lager flowcells 
easily increase the tailed delay and reduce link utili-
zation, resulting in large AFCT and 99th percentile 
FCT.

2) Packet reordering and link utilization under differ-
ent granularity of flowcell: We further investigate the 
reasons of above results. Figure 4a shows the ratio of 
3-dupack events caused by out-of-order packets to 
all packets. As the flowcell is cut smaller, more data 

Fig. 2 Leaf-spine topology

Fig. 3 FCT under different granularity of flowcell



Page 6 of 16Gao et al. Journal of Cloud Computing          (2023) 12:173 

packets are scattered on the bad path, and the out-
of-order rate of the data packet is higher. At the same 
time, increasing the number of bad paths will cause 
the same trend. Figure 4b shows the link utilization 
rate under symmetric and asymmetric paths. Under 
the symmetric path, the link utilization rate increases 
as the flowcell cutting granularity decreases; under 
the asymmetric path, the link utilization rate will 
show a convex curve as the flowcell cutting granular-
ity increases.

Summary
Based on the above analysis, we draw the following con-
clusions that (i) smaller flowcells provide higher link 
utilization, but out-of-order is more likely to occur in 
path asymmetry, (ii) lager flowcells easily decrease out-
of-order events are reduce the link utilizations. These 
conclusions motivate us to design a novel load balancing 
scheme that adjusts the size of flowcells to achieve a good 
tradeoff between the packet reordering and link utiliza-
tion. In the following part, we design an adaptive granu-
larity load balancing scheme, PDLB, to improve network 
performance under dynamic network conditions.

Adaptively adjusting flowcell granularity
In this section, we first describe the architecture of 
PDLB, presenting several challenges that need to be 
addressed. Then, we present the details how to estimate 
path asymmetry at the end-host. Moreover, we theoreti-
cally analyze how to obtain the granularity of the flow-
cell according to the network congestion state. Finally, we 
evaluate the accuracy of the model.

Design overview
Our goal is to design a load balancing mechanism that 
adjusts flowcell size based on the latency difference 

among multiple paths to achieve the tradeoff between 
packet reordering and link utilization. In Fig.  5, we 
plot the architecture of PDLB, which includes the path 
asymmetry estimation module and the flowcell size 
adjustment module. Firstly, PDLB implements the RTT 
measurement of the path at the sending end, which 
periodically sends the detection packet with the time 
stamp option to obtain the RTT sample information of 
each link in the network, and then the sampling infor-
mation can be processed to obtain the real-time con-
gestion states. The paths are divided into congested 
paths and uncongested ones. With the path states, 
PDLB makes flowcell-level forwarding decisions for 
each arrival packet. Specifically, PDLB calculates the 

Fig. 4 Performance under different granularity of flowcell

Fig. 5 The architecture of PDLB



Page 7 of 16Gao et al. Journal of Cloud Computing          (2023) 12:173  

optimal size of flowcells gran based on the path diver-
sity. Then PDLB spreads flowcells on all paths to bal-
ance the out-of-order rate and link utilization.

PDLB design needs to solve several key challenges. 
Firstly, PDLB needs to periodically collect path delays 
with limited overhead to distinguish congested and 
non-congested paths. Secondly, the size of flowcell 
adjustment should quickly respond to the dynamic 
changes of the network. Finally, PDLB should be com-
patible with existing transport layer protocols and be 
easy to deploy in large-scale network.

Path asymmetry estimation
Load balancing schemes that require path congestion 
information, naturally, are much more complex [22]. 
Modern data center networks are usually organized in 
multi-rooted tree topologies, in which the load balanc-
ing schemes split traffic across multiple paths between 
the source leaf switch and the destination one. To 
obtain the path congestion state, PDLB should measure 
the end-to-end delay of the transmission path.

The path asymmetry can be estimated in advance 
at the sender based on the measurement of RTT [23]. 
Since PDLB mainly adjusts the granularity of flowcell 
adaptively according to the difference of the path, in 
order to realize the purpose of transferring the traffic 
from the congested path to the uncongested path. But 
the sender is unable to directly obtain the exact RTT for 
each path. Here, we utilize the TCP congestion control 
mechanism [15]. Specifically, when the sender receives 
the ACK packets, based on the corresponding RTT of 
each ACK, the bad path probability is calculated as the 
ratio of the number of ACK packets with large RTT to 
the total number of received ACK packets. For exam-
ple, assuming that 10 flowcells are sent at the sender, 
the number of flowcells should generally be consistent 
with the number of paths. Since the switch uses poll-
ing scattering to route the flowcells, the sender calcu-
lates the probability of the bad path according to the 
path delay. If the transmission times of two flowcells are 
obviously longer than that of other 8 flowcells, it is pos-
sible that these two flowcells are taking the bad path. 
Then, the probability of a bad path Pb=0.2. To limit the 
computing and memory overhead, the sender measures 
the path delay every 100µs.

PDLB brings about limited overhead, since it only 
measures the one-way-delay by using source and desti-
nation hosts. Moreover, to reduce overhead and enhance 
scalability, PDLB periodically uses a few data and ACK 
packets to carry the delay information in the option field 
of TCP header. Thus, the path delay is collected with very 
small traffic overhead and deployment overhead.

Flowcell size adjustment
The flowcell size affects both the TCP reordering prob-
ability and network utilization under different asym-
metric degrees. We give the analysis on how to get the 
optimal value of flowcell size as follows.

Let Fsize and gran denote the size of a TCP flow and 
flowcell granularity, respectively. Because the smallest 
granularity is a packet, and the largest granularity is 
64KB (44 packets) [8, 18], the value of gran ranges from 
1 to 44. Then the flow is cut into Fsizegran flowcells according 
to gran granularity.

When the flowcell are transferred on multiple paths, 
a flowcell is out-of-order only when at least one flowcell 
sent later arrives at the destination earlier. We assume 
that the n flowcells may select m parallel paths, which 
consist of Nb congested paths and Ng uncongested 
paths with the propagation delay Db and Dg , respec-
tively. Assuming that the ratio of the number of bad 
paths to the number of good paths is R, then R is equal 
to Nb

Ng
 . Let X denote the ratio of bad paths to good paths, 

then X is equal to Db
Dg

.
Here, we classify the path types according to the path 

delay with the following considerations. Firstly, since 
RTT asymmetry is caused by dynamic traffic and hard-
ware failures such as frame checksum errors and high 
CPU utilization, the delay suddenly jumps up when 
an incident occurs [24]. Since the uncongested paths 
between host pair have the same numbers of hops, they 
have similar RTT [25]. Secondly, in the model analysis, 
references [18, 23, 26] divide the paths into congested 
paths and non-congested paths. For the convenience 
of modeling, we also divide the paths into two types. 
Thirdly, the transmission of the flowcell should be con-
sidered, because the flowcell is composed of multiple 
packets which are transmitted on each path. Since the 
size of the flowcell is not large, the variance of expe-
rienced delay is also not large. Moreover, to track the 
real-time delay information, the sender will update the 
path delay once receiving the ACK packets.

Therefore, for simplicity, we classify the paths into 
congested and uncongested ones according to their 
delay. The congested paths are defined as the ones with 
a latency larger than 2x the average RTT of all paths. If 
Pg and Pb are the probabilities that the flowcell selects 
the uncongested and congested paths, respectively. Spe-
cifically, Pg and Pb may be various under different load 
balancing schemes. In our design, in order to avoid syn-
chronization effect, each flowcell is randomly assigned to 
one of the available paths. Thus, the probability Pb that a 
congested path is selected is calculated as Nb

m .
Then, we get the probability Pg that an uncongested 

path is selected as



Page 8 of 16Gao et al. Journal of Cloud Computing          (2023) 12:173 

At the receiving host, we can use the monotonically 
increasing sequence number method to determine 
whether a out of order occurs. That is, the sequence num-
ber of the received data packet is monotonically increas-
ing, then the data packet arrives in order, otherwise, a out 
of order occurs.

The out-of-order event occurs when one packet 
train is transmitted on congested path and at least one 
flowcell sent later is transmitted on uncongested path. 
Therefore, the reordering probability P of n flowcells is 
calculated as

Substitute Pb and Pg into Eq. (2), we get the reordering 
probability P as

Assume that the largest window in each round of trans-
mission on a path is MaxW, and the initial value of the 
network congestion window is W0 . When detecting the 
out-of-order packet, the TCP sender reduces its conges-
tion window by half. Thus, in each round of data trans-
mission, if ni represents the number of flowcells in i-th 
round, the i-th round window Wi and the out-of-order 
ratio of i-th round Pi are

· · ·

In the slow start phase of the protocol, the conges-
tion window increases exponentially. After the send-
ing rate reaching the link capacity, the slow start 
phase is switched to the congestion avoidance phase. 
Then we assume that at the switch point (i.e., i=0), the 
total maximum window is m×MaxW  for m paths. 

(1)Pg = 1−
Nb

m
.

(2)

P = 1− (Pn
b + Pn−1

b × Pg + Pn−2
b × P2

g + ...

+ Pn−k
b × Pk

g + Pb × Pn−1
g + Pn

g )

= 1−

n

k=0

Pn−k
b × Pk

g .

(3)P = 1−

n
∑

k=0

(1−
Nb

m
)k × (

Nb

m
)n−k .



















n1 = f (W0) = min(m,
W0

gran )

P1 = g(n1) = 1−
�n1

k=0
P
n1−k
b × Pk

g

W1 = δ(P1)

= min(n1 ×MaxW , (W0 + 1)× (1− P1)+
W0

2
× P1)



















ni = f (Wi) = min(m,
Wi−1

gran )

Pi = g(ni) = 1−
�ni

i=0
P
ni−i
b × Pi

g

Wi = δ(Pi)

= min(ni ×MaxW , (Wi−1 + 1)× (1− Pi)+
Wi−1

2
× Pi)

Therefore, the congestion window for each round Wi 
is given by:

Let r and Ws represent the number of rounds required 
to transmit n flowcells and the sum of congested win-
dows respectively, then Ws can be expressed as

When Ws is firstly greater than or equal to Fsize , the 
subscript of Wi corresponds to the number of transmis-
sion rounds r, then we get the average congestion win-
dow W  as

Though the small size of flowcell leads to large packet 
reordering probability, the small flowcell could utilize 
more paths, increasing the total utilized bandwidth. 
Given the link bandwidth C for each path, since each 
flowcell randomly picks its transmission path, the total 
bandwidth for n flowcell is n× C.

Typically, the end-to-end latency mainly consists of the 
queueing and propagation delay. Given the average con-
gestion window W  , we obtain the average end-to-end 
round-trip time RTT  as

Substitute Db and W  into Eq. (7), we can get the RTT  
as

After introducing the end-to-end delay of each round 
of transmission, we only need to calculate the number 
of rounds of transmission, and use the product of both 
the end-to-end delay of each round and the number of 
rounds to deduce the flow completion time. So FCT can 
be expressed as

(4)

Wi =







m×MaxW i = 0;
min(ni ×MaxW , (Wi−1 + 1)× (1− Pi)

+
Wi−1

2 × Pi) i&gt; 0.

(5)Ws =

r
∑

i=0

Wi.

(6)W =

Ws

r
.

(7)RTT = (1− (
Nb

m
)W )× Dg + (

Nb

m
)W × Db +

W

n× C
.

(8)RTT = ((X − 1)× (
Nb

m
)W + 1)× Dg +

Ws

r × n× C
.

(9)

FCT =

Fsize

W
× RTT

=

Fsize

W
× ((X − 1)× (

Nb

m
)W + 1)× Dg +

Fsize

n× C

=

Fsize

W
× ((X − 1)× (

Nb

m
)W + 1)× Dg +

gran

C



Page 9 of 16Gao et al. Journal of Cloud Computing          (2023) 12:173  

wherein Fsize , C, Nb , m, Dg , X are constant coefficients. 
There is a quadratic function relationship between the 
variable W  and the independent variable gran. Finally, 
according to Eq.  9 we can get the optimal granularity 
gran to obtain the minimum value of average flow com-
pletion time FCT as

Model verification
We evaluate the correctness of the model by NS2 simu-
lations. We use DCTCP [27] as the underlying transport 
protocol, and the experimental topology shown is Fig. 2. 
Besides, the flow size, the delay of two bad paths(Db ), and 
the delay of good path ( Dg ) are 10000 packets, 300µ s, 
600µ s and 100µ s, respectively. Other parameters are the 
same as the experimental scenario in Sect. III-B.

When the number of flowcells increases from 1 to 44, 
we calculate the theoretical completion time FCT for ten 
flows with a size of 100000 packets. The value of numeric 
analysis is consistent with the varying trend in the NS2 
simulation test (Fig. 6).

The Algorithm of PDLB
Based on the above theory and verification experiment 
analysis, we can get the optimal granularity of flowcell. 
However, in the production data center network, with 
thousands of servers, complex topology and frequent 
burst traffic, it is obviously unreasonable to use a fixed 
flowcell granularity for transmission. Therefore, we have 
to adopt certain adjustment strategies as shown in Algo-
rithm  1 to quickly respond to network changes. PDLB 
algorithm consists of path asymmetry estimation module 
and flowcell size adjustment module.

(10)
gran = arg min

∥

∥FCT
(

grani
)

∥

∥.

grani∈[1, 44]

Algorithm  1 Pseudo-code of  PDLBPath asymmetry 
estimation module: The path congestion estimation of 
PDLB at the sender side periodically (e.g.100µ s) sends 
probe flowcells to measure the congestion state. When 
the timer expires after the timeout T, the PDLB first esti-
mates the delay of all paths between the sender and the 
destination host. Then the PDLB updates the number of 
congested paths with a delay greater than 2X the average 
RTT [15, 28]. According to the path delay information, 
PDLB calculates the difference of path asymmetry.

Flowcell size adjustment module: When the path state 
changes, PDLB meausres the difference of paths and cal-
culates the optimal flowcell granularity.

To find the optimal flowcell granularity corresponding 
to the minimum flow completion time, we check all pos-
sible value of flowcell granularity one by one. The time 
complexity is O(gran), where gran is the maximum value 
of flowcell granularity. Since the flowcell granularity is 

Fig. 6 Model verification



Page 10 of 16Gao et al. Journal of Cloud Computing          (2023) 12:173 

limited by the maximum receiving window, the compu-
tational overhead is still small. We enforce the optimal 
granularity to all active flows in network. When the num-
ber of arriving packets from a given flow is less than the 
optimal granularity, the packets follow the path of the 
same cell by using the same five-tuple of packet header.

Simulation evaluation
In this section, we conduct the NS2 simulation tests to 
evaluate the performance of PDLB. We firstly test the 
basic performance of PDLB by adjusting the number of 
congested paths and the asymmetry of the path respec-
tively, and then compare PDLB with the state-of-the-art 
schemes under datacenter workloads in a large-scale test. 
We use FCT, link utilization and out-of-order rate as the 
primary performance metrics.

Basic performance
In this section, we test the basic performance of PDLB. 
We compare the packet reordering, link utilization and 
flow completion time of RPS, ECMP, Letflow and Presto1. 
The comparison of time complexity is shown in Table 3, 
where n represents the number of paths from the sending 
end to the receiving end. 

1) Adjusting the number of congested paths The experi-
mental topology is shown in Fig. 2. There are 8 avail-
able paths from the one leaf switch to another leaf 
switch. The downlink and uplink bandwidth of leaf 
switch are 10 Gbps. At the edge layer of the data 
center network, the arrival process of packets is 
represented by an ON/OFF model, the arrival time 
interval of packets between the OFF period obeys 
a normal distribution [1, 29]. In addition, to obtain 
fine-grained characteristics (such as packet size dis-
tribution, arrival time, etc.), the length of data flow in 
the data center network conforms to a heavy-tailed 
distribution [30]. That is 99% of flows are less than 
100 MB in size, while 1% of long flows exceed 90% 
of data traffic. We generate 200 flows from 50KB to 

200KB in heavy-tailed distribution and the start time 
of these flows follows the Poisson distribution. The 
RTT of good paths are 100µ s. The hotspot path with 
a latency of 300µ s, then we increase the number of 
hot paths from 1 to 4, we compare the performances 
of PDLB and others methods. In this section, the 
parameter values are taken from reference work [1, 
10, 18, 19]. We only randomly generated some small-
scale data for testing, trying to compare the perfor-
mance of PDLB with other load balancing schemes. 
From a macro perspective, the heterogeneous traffic 
exhibits the stable heavy-tailed distribution in data 
centers [27, 29]. From a micro viewpoint, however, 
datacenter traffic is very bursty and unpredictable at 
short timescales (e.g., 10-100s of microseconds) [1]. 
PDLB detects traffic changes by periodically updating 
the number of flows. But for the sake of simplicity, 
we used only one traffic mode in the test, and did not 
test the performances of PDLB under varying traf-
fic patterns. Figure  7 shows the basic performance 
with different load balancing mechanisms. Figure 7a 
shows that out-of-order ratio of RPS, ECMP, Letflow, 
Presto and PDLB under path asymmetry. Since RPS 
forwards packets of each flow to all paths in a packet-
level spraying manner, with the increasing number of 
bad paths, the packets scattered on the bad paths will 
experience a long transmission delay, so there will 
be a large number of out-of-order packets. ECMP 
and LetFlow are coarse-grained scheduling schemes, 
which can completely avoid packet reordering, while 
fail to fully utilize all parallel paths. Figure 7b and c 
show the similar trend. Smaller flowcells provide 
higher link utilization to reduce flow completion time 
under small path asymmetry. However, smaller flow-
cells easily increase the tailed delay under large path 
asymmetry. As RPS experiences more disorder, its 
average flow completion time is the worst. ECMP’s 
performance is also relatively poor, because ECMP 
has a higher probability of hashing flows to the same 
hot path. LetFlow can effectively avoid packet reor-
dering, while fail to fully utilize all parallel paths. 
PDLB still outperforms Presto. The reason is that 
PDLB uses path asymmetry-aware switch granularity 
adjustment. Therefore, PDLB always maintains the 
highest throughput and the smallest FCT compared 
to the other schemes.

2) Adjusting the asymmetry degree of the path The 
experimental topology used in the same as above. We 
randomly choose 4 parallel paths as the bad paths, 
while the remaining 4 paths are the good paths. 
Because there are eight paths in the test topology, 
the number of good and bad paths is set to be equal 
for the convenience of calculation and testing. We 

Table 3 Comparing the time complexity of different algorithms

Schemes Time complexity

RPS O(n)

LetFlow O(n2)

Presto O(n)

ECMP O(1)

QDAPS O(n)

1 Code and trace here: https:// github. com/ gwm20 22/ PDLB- test

https://github.com/gwm2022/PDLB-test


Page 11 of 16Gao et al. Journal of Cloud Computing          (2023) 12:173  

refer to BurstBalancer [9] and QDAPS [13] for this 
part of experimental parameter setting. According to 
typical link bandwidth in data center, we set the link 
bandwidth to 10Gbps, and the round trip propaga-
tion delay of good paths is 200µ s. For the bad paths, 
we gradually increase the propagation link delay to 
enlarge the degree of topology asymmetry. Therefore, 
the ratio of bad paths’ RTT to good paths’ RTT varies 
from 1.5 to 3.5. In our tests, the senders generate 100 
DCTCP flows based on the data mining workload 
according to the Poisson process. The threshold of 
flowlet used in LetFlow is set as 500µ s [5, 9]. We eval-
uate the performances of various schemes in terms of 
the average flow completion times (AFCTs) of short 
flows (100KB), the total throughput of long flows ( ≥
100KB) [22, 31], the ratio of retransmission packets 
caused by packet reordering. Figure 8a compares the 
retransmission ratio of short flows under different 
schemes. The rise of asymmetric degree causes RPS 
to experience increasingly serious packet reordering, 
generating a much higher retransmission ratio com-
pared to the other schemes. On the contrary, PDLB 
can effectively control packet reordering, and obtain 
high link utilization, thus achieving the shortest aver-
age and 99th percentile flow completion times across 
all cases, as shown in Fig. 8b and c. The performance 
of long flows is shown in Fig.  9. RPS can distribute 
load in the most balanced way, but possess a high 
retransmission ratio. Presto and PDLB perform load 
balancing based on flowcell granularity. In asymmet-
ric topology, a small part of long flows may be out of 

order and cause retransmission as shown in Fig. 9a. 
In Fig. 9b, ECMP and LetFlow can completely avoid 
packet reordering, while failing to fully utilize all par-
allel paths. Fortunately, PDLB can adjust the granu-
larity adaptively according to path conditions, and 
effectively avoid packet reordering. Therefore, PDLB 
is not affected by the rise of asymmetric degree, and 
always maintains the highest total throughput for 
long flows compared to the other schemes.

3) Adaptive Granularity In this section, we compare the 
fixed granularity scheme and the adaptive granular-
ity scheme in three aspects: the out-of-order rate of 
the data packet, the link utilization rate and whether 
the granularity can be adjusted adaptively. We use 
the Leaf-Spine topology with 4 paths. The round trip 
propagation delay is 200µ s and the link bandwidth is 
10Gbps. The buffer size of each switch is 100 packets. 
We generate 2 TCP flows with a size of 30MB. There 
is a 500Mbps UDP background flow on each path to 
induce congestion. Meanwhile, to produce topology 
asymmetry, we increase the sending rate of UDP flow 
to 800Mbps on one randomly selected path from 
100ms to 200ms. We set the sample interval as 500µs.

Figure  10a shows the flowcell granularity of PDLB. 
When the multiple paths are symmetric before 100ms or 
after 200ms, PDLB sends flowcells with smaller granular-
ity to improve link utilization. Although the asymmetric 
degree of multiple paths becomes large, PDLB increases 
the granularity of flowcell to alleviate packet reordering.

Fig. 7 The basic performance with different load balancing mechanisms



Page 12 of 16Gao et al. Journal of Cloud Computing          (2023) 12:173 

Fig. 8 The performances of short flows

Fig. 9 The performances of long flows

Fig. 10 Comparison of fixed granularity and adaptive granularity schemes



Page 13 of 16Gao et al. Journal of Cloud Computing          (2023) 12:173  

Figure 10b shows the ratio of 3-dupack events caused 
by out-of-order packets in all packets. Since the asym-
metry of the path occurs in [100, 200]ms, PDLB experi-
ences a little more packet reordering due to its random 
scheduling pattern. Fortunately, it can estimate the path 
asymmetric, and adjust the granularity of flowcell adap-
tively. Therefore, the packet reordering ratio of PDLB is 
still acceptable.

Figure  10c shows the overall network utilization. The 
network utilization of fixed granularity schemes is less 
than 50%, because 2 flows respectively almost fully uti-
lize 2 paths at a time, while the other 2 paths are unused. 
PDLB achieves high network utilization, because it adap-
tively adjusts the granularity of flowcell based on path 
asymmetry to make a trade-off between the packet reor-
dering and link utilization.

Large‑scale simulation test
In this part, we select topology parameter values that are 
taken from the references AG [25, 32] and TR [27], and 
the detailed settings are shown in Table  4 [33, 34]. We 
construct a large-scale leaf-spine network in which 256 
hosts are connected via 8 leaf switches, 8 spine switches, 
and 10Gbps links. The switch buffer size is set to 250KB. 
There are 8 equal cost paths with the propagation delay 
of 100µ s between any pair of hosts. In order to generate 
path asymmetry, we randomly select one of the paths and 
set its round-trip propagation delay to 300µs.

Besides, to make a comprehensive comparison, we use 
two representative data center workloads such as web 
search and data mining [35, 36]. Specifically, in the web 
search workload, over 95% of the bytes are from 30% 
of flows larger than 1MB. In the data mining workload, 
95% of all bytes are from 3.6% flows that are larger than 
35MB, while more than 80% of flows are less than 10KB. 
The average flow sizes are 1.6MB and 7.4MB in the web 
search and data mining applications, respectively. Over-
all, across two workloads, the ratios of short flows are 
always higher than those of long flows, following the 
heavy-tail distribution of data center traffic [17, 23, 27]. 

Flows are generated between random pairs of hosts fol-
lowing a Poisson process with load varying from 0.1 to 
0.8, We evaluate the performance of PDLB by comparing 
with the state-of-the-art load balancing schemes, such as 
RPS [7], LetFlow [5], ECMP [4], Presto [8] and QDAPS 
[13].

The performance test results of web search and data 
mining applications are shown in Figs. 11 and 12, respec-
tively. Figures 11a and 12a show the AFCT of short flows, 
which increases with a larger traffic load. We observe that 
RPS performs poorly for small flows because of it scatters 
the data flow to all paths at packet granularity. In the case 
of bad paths, the long flows will block the short flows, 
thus affecting the completion time of the short flows. 
For ECMP, because it forwards packets to paths in a flow 
hashing method, data flows are prone to collisions, so the 
AFCT of short flows is only better than RPS. Presto splits 
each flow into a fixed granularity (i.e. 64KB). Though 
mitigating the issues of low link utilization and packet 
disordering to a certain extent, the fixed granularity of 
Presto is not adaptable to all asymmetric degrees. Under 
LetFlow, the switch automatically senses path congestion 
by using the elasticity of the flowlet size. LetFlow sets a 
time interval threshold (i.e. 500µ s) for packet clusters, 
resulting in no out-of-order and smaller AFCT for short 
flows. QDAPS chooses the path for the packet with the 
least queuing delay based on the output buffer. Due to the 
adaptive switching granularity, PDLB reduces the average 
FCT of short flows by up to 43%.

Figures  11b and 12b show the 99th percentile FCT of 
short flows under different traffic loads. Compared with 
the other four schemes, PDLB significantly reduces the 
tail FCT of around 8%-59% and 20%-73% under web 
search and data mining workload, respectively. Note that 
under data mining workload, since the flow sizes of 80% 
flows are less than 100KB [3], the average FCT of short 
flows is lower than that of web search workload. Mean-
while, as the long flow size in data mining is larger, the 
short flows’ 99th FCT are higher than that of web search 
workload.

Figures  11c and 12c show the AFCT of long flows 
under different traffic loads. RPS experiences packet 
reordering under highly asymmetric topology. There-
fore, RPS displays the poor performance because of 
the packet reordering problem. ECMP may cause hash 
collisions due to random routing, so that the AFCT 
of long flows is only better than the RPS in asymmet-
ric topology. Since QDAPS selects a suitable output 
queue to ensure that the packets arrive at the receiver 
in order and avoid the low link utilization in a flex-
ible manner, it has obtained sub-optimal performance. 
Meanwhile, Presto sends flowcells at a fixed granularity, 
under asymmetric topology, thereby obtaining worse 

Table 4 Parameter settings

Parameter Setting values

Dg : The delay of uncongested path 100 µs

Db : The delay of congested path 300 µs

m: The number of paths 8

C: Link bandwidth 10 Gbps

RTO: Retransmission Timeout 10 ms

Sample Interval 500 µs

Buffer Size 200 packets



Page 14 of 16Gao et al. Journal of Cloud Computing          (2023) 12:173 

Fig. 11 FCT for the web search workload in the asymmetric topology

Fig. 12 FCT for the data mining workload in the asymmetric topology



Page 15 of 16Gao et al. Journal of Cloud Computing          (2023) 12:173  

performance than LetFlow. Compared with the other 
schemes, PDLB alleviates the impacts of large queueing 
delay and out-of-order problem by adaptively adjusting 
the flowcell granularity of long flows according to path 
congestion states. Therefore, PDLB reduces the AFCT 
of long flows by up to 8%-53% over other schemes.

Figure  11d and 12d show the AFCT of overall flows 
in web search and data mining workloads, respectively. 
Since RPS and Presto spread packets to all and some 
available paths, respectively, they experience many 
reordered packets and large FCT. ECMP and LetFlow 
easily degrade the link utilization due to their inflexibil-
ity. QDAPS flexibly selects the port with the shortest 
buffer queue for forwarding packets to avoid conges-
tion, so its FCT is close to PDLB [37–39].

Conclusion and future work
In this paper, we proposed PDLB, a novel load bal-
ancing scheme that reduces FCT and simultaneously 
improves link utilization. Specifically, PDLB performs 
path asymmetry estimation by periodically sending 
detection flowcells at the sender, and then adaptively 
adjusts the granularity according to the path diversity. 
By using large-scale NS2 simulations, we demonstrate 
that PDLB performs remarkably better than the state-
of-the-art load balancing designs under different realis-
tic traffic workloads.

In the future, we will implement PDLB on the hard-
ware programmable switches in a real testbed environ-
ment and conduct more experiments using NetBench 
to evaluate PDLB performance [24, 40].

Acknowledgements
Not applicable.

Authors’ contributions
All authors have participated in conception and design, or analysis and inter-
pretation of this paper.

Authors’ information
Weimin Gao is currently a professor with the School of Computer Science 
and Engineering, Hunan Institute of Technology, China. His current research 
interest is data center networks.
Jiawei Huang(M’07) is currently a professor with the School of Computer Sci-
ence and Engineering, Central South University. His research interests include 
performance modeling, analysis, and optimization for data center networks.
Zhaoyi Li is currently pursuing the Ph.D. degree in the School of Computer 
Science and Engineering at Central South University, China. His research 
interests are in the area of data center networks.
Shaojun Zou(Member, IEEE) is now an associate professor in the School 
of Computer Science and Technology, Hainan University, China. His current 
research interests include congestion control, load balancing and data center 
networks.
Jianxin Wang(SM’12) is currently a professor with the School of Computer 
Science and Engineering, Central South University. His current research inter-
ests include algorithm analysis and optimization, parameterized algorithm, 
bio-informatics, and computer network.

Funding
This work is supported by the National Natural Science Foundation of China 
(62132022, 61872387, 62102047), Key Research and Development Program 
of Hunan(2022WK2005), Natural Science Foundation of Hunan Province, 
China(2021JJ30867), Philosophy and Social Science Foundation of Hunan 
Province (21YBA224), Hengyang Science and Technology Innovation Project, 
China(202250045133).

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 18 August 2021   Accepted: 10 November 2023

References
 1. Huang Q, Jin X, Lee PPC et al (2015) Sketchvisor: Robust network meas-

urement for software packet processing. In: Proc. ACM SIGCOMM, New 
York, NY, USA. pp. 113–126

 2. Bredel M, Bozakov Z, Barczyk A et al (2014) Flow-based load balancing 
in multipathed layer-2 networks using OpenFlow and multipath-TCP. In: 
Proc. HotSDN, New York, NY, USA, pp. 213–214

 3. Greenberg A, Hamilton JR, Jain N, Kandula S, Kim C, Lahiri P, Maltz DA, 
Patel P, Sengupta S (2009) VL2: A scalable and flexible data center net-
work. In: Proc. ACM SIGCOMM, New York, NY, USA. pp. 51–62

 4. Hopps C (2000) Analysis of an Equal-Cost Multi-Path Algorithm. In: RFC 
2992, IESG, ISOC

 5. Vanini E, Pan R, Alizadeh M et al (2017) Let it flow: Resilient asymmetric load 
balancing with flowlet switching. In: Proc. USENIX Symposium on Networked 
Systems Design and Implementation, Berkeley, CA 94710 USA. pp. 407–420

 6. Alizadeh M, Edsall T, Dharmapurikar S et al (2014) CONGA: Distributed 
congestion-aware load balancing for datacenters. In: Proc. ACM SIG-
COMM, New York, NY, USA. pp. 503–514

 7. Dixit A, Prakash P, Hu YC, Kompella RR (2013) On the Impact of Packet Spraying 
in Data Center Networks. In: Proc. IEEE INFOCOM, Turin, Italy. pp. 2130–2138

 8. He K, Rozner E, Agarwal K, Felter W, Carter J, Akellay A (2015) Presto: 
Edge-based Load Balancing for Fast Datacenter Networks. In: Proc. ACM 
SIGCOMM, New York, NY, USA. pp. 466–478

 9. Ghorbani S, Yang Z, Godfrey PB, Ganjali Y, Firoozshahian A (2017) DRILL: 
Micro Load Balancing for Low-latency Data Center Networks. In Proceed-
ings of the Conference of the ACM Special Interest Group on Data Com-
munication (SIGCOMM ’17). Association for Computing Machinery, New 
York, NY, USA. pp. 225–238

 10. Zhang H, Zhang J, Bai W et al (2017) Resilient datacenter load balancing 
in the wild. In: Proc. ACM SIGCOMM, New York, NY, USA. pp. 253–266

 11. Katta N, Hira M, Kim C et al (2016) HULA: Scalable load balancing using 
programmable data planes. In: Proc. ACM SOSR, New York, NY, USA. pp. 
1–12

 12. Wang P, Trimponias G, Xu H, Geng YH (2019) Luopan: Sampling based 
load balancing in data center networks. IEEE Trans Parallel Distrib Syst 
30(1):133–145

 13. Huang J, Lyu W, Li W, Wang J, He T (2021) Mitigating Packet Reordering for 
Random Packet Spraying in Data Center Networks. IEEE/ACM Trans Netw 
29(3):1183–1196

 14. Gao W, Huang J, Zou S et al (2021) AAC: Adaptively Adjusting Concur-
rency by Exploiting Path Diversity in Datacenter Networks. J Netw Syst 
Manag 29(3):111–135



Page 16 of 16Gao et al. Journal of Cloud Computing          (2023) 12:173 

 15. Mittal R, Lam VT, Dukkipati N et al (2015) TIMELY: RTT-based Conges-
tion Control for the Datacenter. ACM SIGCOMM Comput Commun Rev 
45(4):537–550

 16. Kabbani A, Sharif M (2017) Flier: Flow-level congestion-aware routing for 
direct-connect data centers. In: Proc. IEEE INFOCOM, Atlanta, GA. pp. 1–9

 17. Zou S, Huang J, Wang J et al (2019) Improving TCP Robustness over 
Asymmetry with Reordering Marking and Coding in Data Centers. In: 
Proc. IEEE ICDCS, Dallas, TX, USA. pp. 57–67

 18. Liu J, Huang J, Li W et al (2019) AG: Adaptive Switching Granularity for 
Load Balancing with Asymmetric Topology in Data Center Network. In: 
Proc. IEEE ICNP, Chicago, IL, USA. pp. 1–11

 19. Zhang T, Lei Y, Zhang Q et al (2021) Fine-grained Load Balancing with 
Traffic-aware Rerouting in DataCenter Networks. J Cloud Comput 
10(37):1–20

 20. Olmedilla et al (2020) Optimizing Packet Dropping by Efficient Congesting-
Flow Isolation in Lossy Data-Center Networks, IEEE Symposium on High-
Performance Interconnects (HOTI), Piscataway, NJ, USA, 2020, pp. 47–54. 
https:// doi. org/ 10. 1109/ HOTI5 1249. 2020. 00022

 21. Abbasloo S, Xu Y, Chao HJ (2020) To schedule or not to schedule: When 
no-scheduling can beat the best-known flow scheduling algorithm in 
datacenter networks. Comput Netw 172:107–177

 22. Floyd S, Jacobson V (1993) Random early detection gateways for conges-
tion avoidance. IEEE/ACM Trans Netw 1(4):397–413

 23. Hu J, Huang J, Lv W et al (2019) CAPS: Coding-based adaptive packet 
spraying to reduce flow completion time in data center. IEEE/ACM Trans 
Netw 27(6):2338–2353

 24. Guo C et al (2015) Pingmesh: A Large-Scale System for Data Center Net-
work Latency Measurement and Analysis. In: Proc. ACM SIGCOMM, New 
York, NY, USA. pp. 139–152

 25. Liu J, Huang J, Li W et al (2022) Asymmetry-aware Load Balancing with 
Adaptive Switching Granularity in Data Center. IEEE/ACM Trans Netw 
30(5):2374–2387

 26. Duan Y, Li C, Chao G et al (2015) Finding the shortest path in huge data 
traffic networks: A hybrid speed model. In: Proc. IEEE International Confer-
ence on Communications, London, UK. pp. 6906–6911

 27. Alizadeh M, Greenberg A, Maltz D A et al (2010) Data center tcp (DCTCP). 
In: Proc. ACM SIGCOMM,  New York, NY, USA. pp. 63–74

 28. Noormohammadpour M, Raghavendra CS (2017) Datacenter traffic con-
trol: Understanding techniques and tradeoffs. IEEE Commun Surv Tutor 
20(2):1492–1525

 29. Benson T, Akella A, Maltz DA (2010) Network traffic characteristics of 
data centers in the wild. In: Proc. ACM SIGCOMM, New York, NY, USA. pp. 
267–280

 30. Theophilus B, Ashok A, Aditya A et al (2010) Understanding data center traf-
fic characteristics. ACM SIGCOMM Comput Commun Rev 40(1):92–99

 31. Zou S, Huang J, Jiang W et al (2020) Achieving high utilization of flowlet-
based load balancing in data center networks. Futur Gener Comput Syst 
108:546–559

 32. Huang J, Li W, Li Q et al (2020) Tuning high flow concurrency for MPTCP 
in data center networks. J Cloud Comput 9(1):1–15

 33. Poutievski L, Singh A, Vahdat A (2014) Wcmp:weighted cost multipathing 
for improved fairness in data centers. In: Proceedings of the Ninth Euro-
pean Conference on Computer Systems, New York, NY, USA. pp. 1–14

 34. Lee C, Park C, Jang K et al (2017) DX: Latency-Based Congestion Control 
for Datacenters. IEEE/ACM Trans Netw 25(1):335–348

 35. Zhangy W, Lingy D, Zhangy Y et al (2020) Achieving optimal edge-based 
congestion-aware load balancing in data center networks. In: Proc. IEEE 
Networking Conference. pp. 109–117

 36. Kumar G, Dukkipati N, Jang K, Wassel HMG, Wu X, Montazeri B, Wang Y, 
Springborn K, Alfeld C, Ryan M, Wetherall D, Vahdat A (2020) Swift: Delay 
is Simple and Effective for Congestion Control in the Datacenter. In: Proc. 
ACM SIGCOMM, New York, NY, USA. pp. 514–528

 37. Mittal, Radhika et al (2015) TIMELY: RTT-based Congestion Control for the 
Datacenter. In: Proc. ACM SIGCOMM, New York, NY, USA. pp. 537–550

 38. Diao X, Gu H, Yu X et al (2022) Flex: A flowlet-level load balancing based 
on load-adaptive timeout in DCN. Futur Gener Comput Syst 130:219–230

 39. Hu J, Huang J, Lyu W et al (2021) Adjusting Switching Granularity of Load 
Balancing for Heterogeneous Datacenter Traffic. IEEE/ACM Trans Netw 
29(5):2367–2384

 40. Chen L, Chen K, Bai W, Alizadeh M (2016) Scheduling mix-flows in com-
modity datacenters with karuna. In: Proc. ACM SIGCOMM, New York, NY, 
USA. pp. 174–187

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/HOTI51249.2020.00022

	PDLB: Path Diversity-aware Load Balancing with adaptive granularity in data center networks
	Abstract 
	Introduction
	Related works
	Background and motivation
	Path asymmetry in production data center
	The granularity of flowcell affects the performance of load balancing
	Summary

	Adaptively adjusting flowcell granularity
	Design overview
	Path asymmetry estimation
	Flowcell size adjustment
	Model verification

	The Algorithm of PDLB
	Simulation evaluation
	Basic performance
	Large-scale simulation test

	Conclusion and future work
	Acknowledgements
	References


