
Wang et al. Journal of Cloud Computing (2023) 12:174
https://doi.org/10.1186/s13677-023-00553-0

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Reinforcement learning based task
scheduling for environmentally sustainable
federated cloud computing
Zhibao Wang1,2, Shuaijun Chen1, Lu Bai3*, Juntao Gao1, Jinhua Tao4, Raymond R. Bond5 and
Maurice D. Mulvenna5

Abstract

The significant energy consumption within data centers is an essential contributor to global energy consumption
and carbon emissions. Therefore, reducing energy consumption and carbon emissions in data centers plays a crucial
role in sustainable development. Traditional cloud computing has reached a bottleneck, primarily due to high energy
consumption. The emerging federated cloud approach can reduce the energy consumption and carbon emissions
of cloud data centers by leveraging the geographical differences of multiple cloud data centers in a federated cloud.
In this paper, we propose Eco-friendly Reinforcement Learning in Federated Cloud (ERLFC), a framework that uses
reinforcement learning for task scheduling in a federated cloud environment. ERLFC aims to intelligently consider
the state of each data center and effectively harness the variations in energy and carbon emission ratios across geo-
graphically distributed cloud data centers in the federated cloud. We build ERLFC using Actor-Critic algorithm, which
select the appropriate data center to assign a task based on various factors such as energy consumption, cooling
method, waiting time of the task, energy type, emission ratio, and total energy consumption of the current cloud
data center and the details of the next task. To demonstrate the effectiveness of ERLFC, we conducted simulations
based on real-world task execution data, and the results show that ERLFC can effectively reduce energy consump-
tion and emissions during task execution. In comparison to Round Robin, Random, SO, and GJO algorithms, ERLFC
achieves respective reductions of 1.09, 1.08, 1.21, and 1.26 times in terms of energy saving and emission reduction.

Keywords Cloud computing, Federated cloud, Reinforcement learning, Energy efficiency, Carbon emissions, Task
scheduling

Introduction
Cloud computing [1] has become the most popular com-
puting paradigm today for distributed computing and
parallel processing [2] because of its elasticity and scal-
ability and pay-per-use model [3]. Despite its popular-
ity, traditional cloud computing paradigm has reached
a plateau, exposing many limitations such as resource
contention, service interruption, lack of interoperability
in data representation, degradation of Quality of Service
(QoS), and especially high energy consumption and car-
bon emissions [4–8]. The enormous pressure on energy
consumption and carbon emission [9] severely hampers
the continued development of cloud data centers. Due to

*Correspondence:
Lu Bai
l.bai@qub.ac.uk
1 School of Computer and Information Technology, Northeast Petroleum
University, Daqing 163318, China
2 Bohai-Rim Energy Research Institute, Northeast Petroleum University,
Qinhuangdao 066004, China
3 School of Electronics, Electrical Engineering and Computer Science,
Queen’s University Belfast, Belfast BT9 6SB, UK
4 State Key Laboratory of Remote Sensing Science, Aerospace Information
Research Institute, Chinese Academy of Sciences, Beijing Normal
University, Beijing 100101, China
5 School of Computing, Ulster University, Belfast BT15 1ED, UK

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00553-0&domain=pdf

Page 2 of 17Wang et al. Journal of Cloud Computing (2023) 12:174

the serious challenge of global warming, green comput-
ing [10, 11] is gaining more popularity. In China, energy
consumption and CO2 emissions increased by 70.97%
and 47.15%, respectively, from 82.88 exajoules and 6.673
billion tons in 2006 to 14,170 exajoules and 982.58 bil-
lion tons in 2019 [12]. In Saudi Arabia, the total emis-
sions of greenhouse gas from electricity consumption
increased from 58.2 million tons in 1971 to 58.88 million
tons in 2020, accounting for 1.45% of global carbon emis-
sions and the total emissions from electricity in Saudi
Arabia are increasing to an average annual rate of more
than 5% [13]. According to the US Environment Protec-
tion Agency (EPA), there were nearly 44 million servers
worldwide in 2007, which consumed approximately 0.5%
of the world’s electricity, and U.S. data centers consume
as much electricity as five power plants in a year [14].
Their data centers also produced 80 metric tons of carbon
emissions per year, equivalent to the carbon footprint of
the Netherlands and Argentina combined [15]. There-
fore, the information and communication technology
sector is identified as a significant contributor to global
energy consumption and greenhouse gas emissions, and
data centers are projected to account for 13% of global
energy consumption by 2030 due to the increased energy
demand from data centers [16].

Many solutions have been proposed by both indus-
try and academia to address the energy consumption
dilemma faced by cloud computing. Among these solu-
tions, federated clouds [17, 18] perform the best and are
most likely to be the key solution to the problems associ-
ated with cloud computing. A federated cloud is a collab-
orative network of resources from multiple cloud service
providers (CSPs). Each CSP in the federated cloud can
forward the request to the cloud data center of the CSP
that is best suited for computing based on the character-
istics of the user request. This approach optimizes energy
consumption and carbon emissions by taking advantage
of the differences in energy sources between the geo-
graphic locations of different data centers. Additionally,
as the federated cloud aggregates the resources of mul-
tiple CSPs, it reduces the need for hardware resources
from individual CSPs, thereby reducing their operational
costs. The federated cloud architecture presents opportu-
nities for small and medium sized CSPs, enhancing their
competitiveness with larger CSPs [19].

One of the most complex challenges in a federated
cloud environment is to optimize the diverse resources
offered by various CSPs. This involves making informed
decisions about task allocations, specifically determining
the most suitable data center and server room for execut-
ing tasks. The aim is to minimize energy consumption
and carbon emissions while satisfying the user’s QoS.
The geographical location of different cloud data centers

results in different energy types and varying carbon emis-
sions even for the same amount of energy consumption.
Additionally, the current workload of each server in the
federated cloud can vary, which adds to the complex-
ity of this issue. Cloud data centers are composed of IT
equipment such as servers, network equipment, storage
equipment and infrastructure equipment such as cooling
and power equipment. Cooling equipment and servers
are considered to be the main contributors to the energy
consumption of cloud data centers [20–22], accounting
for 80% of the total energy consumption of data cent-
ers [23]. Server energy consumption and cooling energy
consumption are interdependent, and when server
energy consumption rises, the cooling energy consump-
tion also rises in tandem. Energy consumption of servers
can be divided into two types; one is static energy con-
sumption, i.e., the standby energy consumption of serv-
ers. The other is dynamic energy consumption, i.e., the
energy consumption of the server when computing tasks.
Data center cooling methods include air cooling and liq-
uid cooling [24], with each method generating different
energy consumption. To reduce the energy consumption
of cloud data centers, it is necessary to consider these two
energy consumptions. The scheduling algorithm should
consider multiple metrics to make an intelligent decision
on how to reduce the energy consumption of both the
cooling method and the energy consumption of the serv-
ers requires.

A task is presented as a directed acyclic graph (DAG)
where each vertex of the DAG represents a subtask in
the task, and the edges between different vertices repre-
sent the dependencies between different subtasks. This
dependency relationship makes it easy to describe the
parallelism of the task. Usually, data transfer between dif-
ferent subtasks results in a large amount of energy con-
sumption [25]. To reduce the energy consumption of data
transfer between different tasks, we propose to allocate
all subtasks in the same DAG to the same cloud data
center and machine room for computation. To achieve
this, we use reinforcement learning to determine the
optimal assignment of tasks to specific server rooms
within cloud data centers. Then we assign the task to the
corresponding server for computation using Heterogene-
ous Earliest Finish Time (HEFT) algorithm [26], which
helps reduce the energy consumption and emissions of
the data center. To make the decision of the scheduling
algorithm more detailed, we consider the load situation,
cooling method, total energy consumption, total emis-
sions, emission ratio, and the next task details for each
server room in each data center. This helps the schedul-
ing algorithm choose the most suitable server for execut-
ing the task, and further reducing energy consumption
and emissions. Furthermore, this paper introduces the

Page 3 of 17Wang et al. Journal of Cloud Computing (2023) 12:174

watermark to simulate the randomness of task arrival
time to create a more relevant task scheduling environ-
ment. To better cope with the real-time scheduling, we
aim to minimize the complexity of the neural network
architecture, enabling the scheduling algorithm to make
quicker decisions upon task arrival.

The main contribution of this paper is summarized as
follows:

• A suitable reinforcement learning framework
(ERLFC) is developed for fast task allocation deci-
sions in a federated cloud environment, leading to
reduced energy consumption and carbon emissions.

• The ERLFC is compared with classical task schedul-
ing algorithms and metaheuristics algorithms, and
our experimental results show that the ERLFC still
has a strong competitive edge even in scenarios with
large task volumes.

• We take full advantage of the federated cloud and
the differences of geographical locations of CSPs
by introducing six different energy types and
diverse carbon emission ratios to provide novel
insights for energy consumption and carbon emis-
sions reduction.

• Diverse cooling methods are introduced to further
reduce energy consumption and carbon emissions by
optimizing the control of cooling methods.

The remaining of this paper is organized as follows.
Section 2 provides a review of the relevant works. The
proposed system model is presented in Sect. 3. Experi-
mental details, the results and discussions are presented
in Sect. 4. Section 5 concludes the paper.

Related work
In recent years, the energy consumption and emission
of cloud data centers have become the main limita-
tion for the development of cloud computing. Scholars
have conducted extensive research and exploration in
energy saving and emission reduction techniques. These
research efforts have been divided into four main cat-
egories, which will be discussed in detail in the following
subsections.

Algorithms based on heuristics
Yuan et al. [7] proposed an adaptive simulated-anneal-
ing-based biobjective differential evolution (ASBD)
algorithm that takes full advantage of the variation in
power prices brought about by the diversity of different
cloud data geographic locations to reduce the average
cost of energy. This approach minimizes the energy cost
as well as the average task loss of the cloud data center
by constructing a Pareto-optimal set using the minimum

Manhattan distance approach from the number of data
center energized servers and the portal task allocation
data to decide on an optimal solution. Another approach,
proposed by Hogade et al. [27] is to use three workload
management mechanisms that take into account factors
such as data center cooling power, co-location interfer-
ence, time-of-use tariff, renewable energy, net metering,
and peak demand pricing to reduce data center energy
consumption and cost based on geographic load. In [28],
Ben Alla et al. proposed an efficient deadline and energy-
aware task scheduling algorithm to improve efficiency
and reduce the consumption of cloud resources under
the deadline constraints. The algorithm optimizes the
scheduling service of any tasks in terms of makespan,
energy consumption, resource utilization, and load bal-
ancing. However, many of the parameters in this algo-
rithm are pre-set, such as the number of instructions
for the task, which can be challenging to estimate in real
applications. In [29], the assignment of tasks is abstracted
into the deployment of virtual machines, and by estimat-
ing the future workload and the current resource dis-
tribution. The resources are allocated using a simulated
annealing algorithm to balance the load among servers to
reduce the power consumption in cloud computing sys-
tems. While heuristic algorithms, such as this one, have
lower computational cost and require only information
about the current task, they may not be well-suited for
real-time environments because of their high response
delay in time-sensitive scenarios.

Algorithms based on dynamic voltage and frequency
scaling
Xie et al. [30] proposed an energy efficient way to recover
idle time by introducing the concept of latest comple-
tion time through dynamic voltage and frequency energy
efficient design optimization techniques. In the case of
meeting the task deadline constraint, the dynamic energy
consumption is reduced by moving the task to the idle
area that can generate the least dynamic energy proces-
sor, thus reducing the overall energy consumption. In
[31], Safari and Khorsand introduced a new energy-effi-
cient scheduling method for time-limited workflow tasks
using dynamic voltage and frequency scaling techniques.
This method reduces energy consumption by adjusting
the voltage according to the machine’s frequency, oper-
ating and adjusting the frequency according to the cur-
rent host usage. Tang et al. [32] proposed a workflow
task scheduling algorithm based on dynamic voltage and
frequency scaling techniques. The algorithm primar-
ily focuses on allocating tasks to computing resources
that are relatively available, considering their deadlines.
Additionally, it intelligently shuts down the current
computing resources to enhance resource utilization,

Page 4 of 17Wang et al. Journal of Cloud Computing (2023) 12:174

thereby achieving energy-saving benefits. Baskiyar and
Abdel-Kader [33] proposed a scheduling algorithm on
a heterogeneous processor running at discrete operat-
ing voltages, which exploits the dependencies between
tasks to achieve energy savings by dynamically scaling
the voltage of the processor. The algorithm focuses on
converting the DAG into a single-entry and single-exit
DAG, and dynamically scales the CPU voltage by cal-
culating the difference between the end time of tasks
on the non-critical path and tasks on the critical path.
A joint multi-objective optimization of task scheduling
and energy consumption based on dynamic voltage and
frequency scaling (DVFS) technique and whale opti-
mization algorithm [34] was proposed in [35] to reduce
energy consumption from device overhead by scheduling
tasks flexibly in mobile cloud computing. DVFS enables
tasks to run at reduced voltage and clock frequency to
fill idle time and reduce energy consumption. However,
DVFS often requires a high degree of coupling between
tasks and resources [36] and its transitions are too long,
leading to reduced response time for tasks and inability
to meet the requirements of real-time tasks. Additionally,
DVFS is only applicable to CPUs, which consume only
a small fraction of the total system power, leaving little
room for DVFS in future technologies [37].

Algorithms based on joint optimization and adaptive
systems
Wang et al. [38] proposed a real-time task classification
and scheduling strategy. This approach involves classify-
ing real-time tasks and assigning tasks with similar exe-
cution times and end times to the same server, ultimately
enhancing server utilization. This results in optimizing
the energy efficiency of the cooling system and the server
as a way to reduce energy consumption. A joint energy
efficiency optimization scheme based on marginal cost
and task grouping is proposed in [39], considering the
cooling energy consumption that is generated by different
cooling methods and uses these according to the charac-
teristics of the tasks to achieve energy savings. A joint
optimization scheme is proposed in [37], which reduces
the energy consumption by reducing the sum of idle
power and cooling power, decreasing the response time,
and reducing the total power and local power hotspots.
Jiang et al. [40] proposed an adaptive scheme to sched-
ule a heterogeneous task with random arrivals, reducing
the energy consumption of mobile devices. The algo-
rithm is based on a continuous-time Markov decision
process that formulates energy-efficient and QoS-guar-
anteed task scheduling as a constrained stochastic opti-
mization problem. Chase et al. [41] proposed a resource
allocation strategy that improves the energy efficiency of
server clusters by balancing the cost of resources and the

benefits derived from their use. The implementation con-
centrates the load of the data center on a subset of servers
and saves energy by shutting down the remaining servers.

Algorithms based on reinforcement learning and neural
networks
Deep reinforcement learning has been widely used in the
domain of cloud job scheduling. The recent research by
Zhang et al. [42] introduces a novel cost-aware schedul-
ing system for real-time workflows in the cloud by com-
bining the global search capability of genetic algorithm
and the environment awareness decision-making capa-
bility of deep reinforcement learning techniques. Cheng
et al. [43] proposed an approach to enhance scheduling
policy training with efficient preemptive mechanisms to
minimize job execution costs and meet user response
time expectations. Cheng et al. [44] introduced a deep
reinforcement learning based method for real-time job
scheduling in hybrid clouds, prioritizing cost-effective
job execution without compromising quality of service
and minimizing response time. Ding et al. [45] proposed
a Q-learning based energy-efficient cloud computing task
scheduling, which aims to reduce energy consumption
by using Q-learning policies to compute the most suit-
able virtual machines for task execution. This reduces
task response time and maximizes CPU utilization per
server. Similarly, Siddesha et al. [46] proposed a Q-learn-
ing based task scheduling approach that considers the
load balancing capability of VMs and introduces a novel
strategy to enhance the reward of task scheduling for bet-
ter resource sharing and reduced duration of computa-
tional policies. However, Q-learning for task scheduling
decisions can be challenging because the state of cloud
data centers is constantly changing making it difficult
to maintain an infinite state. Yan et al. [47] proposed a
strategy to model data center temperature and cooling
energy consumption using neural networks to compute
the optimal placement of servers by genetic algorithms.
The main objective is to minimize the maximum tem-
perature of the data center server room and minimize the
minimum power of new servers to achieve energy saving.
This method mainly considers the energy consumption in
the data center server room and does not address large
scale energy savings. Kang et al. [48] proposed an adap-
tive DRL-based constraint framework for energy-aware
task scheduling with changing workloads and unpredict-
able nature. The framework consists of three parts, the
first part detects and predicts future workload changes,
the second part adjusts the discount factor to determine
agent changes, and the third part uses the deep Q-net-
work algorithm to achieve task scheduling. Although the
above task scheduling algorithms consider energy con-
sumption, they do not address the issue of emissions.

Page 5 of 17Wang et al. Journal of Cloud Computing (2023) 12:174

Having reviewed the related works, we found that pre-
vious efforts to achieve energy efficiency in cloud envi-
ronments focused on single clouds and hybrid clouds.
However, due to limitations in geographical location and
communication, these clouds were not able to achieve
optimal energy savings. There is a need for more work
to research the use of federated clouds by leveraging the
differences in energy sources resulting from geographical
variations and achieve significant energy savings. In this
study, we addressed the previous research gap in carbon
emissions and also considered the energy consumption
from cooling systems.

Methodology
Problem definition
The problem of scheduling DAG tasks in federated cloud
environments is often described as a mapping problem.
By mapping a given set of tasks to a given set of resources
in an optimal way, the utilization of resources is improved
while accelerating task execution. This federated cloud
system (FC) consists of multiple cloud service provid-
ers’ data centers (DCs), each cloud data center contains
multiple machine rooms (MHs), and each machine room
contains multiple servers (PMs). We describe the feder-
ated cloud system as:

where DSi(i = 1, 2, ...,n) denotes the data center of
cloud service provider i . Datacenter is represented as:

where DSi and MHj(j = 1, 2, ..., n) represents room j in
data center i . Machine room is represented as:

where MHk and serveri(i = 1, 2, ..., i, ..., n) denotes the
i-th server in the k-th server room.

A DAG task (DT) is usually composed of multiple
subtasks, which are accompanied by a large number

(1)FC = {DS1,DS2, ...,DSn}

(2)DSi = {MH1,MH2, ...MHi, ...MHn}

(3)MHk = {server1, server2, ..., serveri, ..., servern}

of constraint relationships between subtasks. The dis-
assembly of a DAG task, the dependency of execution
time between subtasks, and the way of communicating
between the tasks have a great impact on the task’s effi-
ciency of execution and the utilization of the resources.
This relationship can be described as:

where taski(i = 1, 2, . . . , ∂) denotes the i-th subtask
in the DT and ∂ denotes the number of subtasks. There
is a dependency between subtasks in execution can be
described as:

where st, pt and pre_task denote the start time of the
task, the execution time of the task, and the set of other
subtasks on which the execution of the task depends,
respectively. pre_taski = taskj , . . . , taskk indicates
that the execution of taski needs to depend on multiple
subtasks in the precedence sequence.

During the disassembly of tasks, the main considera-
tion is the way of data transfer between different tasks,
as shown in Fig. 1. The dependency between tasks can
be mapped to the start time of a subtask. The delay
time of the current subtask compared to the start of the
execution of the parent task can be described as

In the task scheduling process, the primary focus is on
minimizing task latency through using Advantage Actor
Critic (A2C) to decide the allocation of tasks to specific
data center rooms. For mapping of subtasks and servers
within the DAG, the HEFT algorithm is used.

Reinforcement learning environment modeling
The scheduling for real-time tasks in a federated cloud
environment is essentially a continuous decision process,
and the use of RL can transform this scheduling problem

(4)DT =

{

task1, task2, . . . , taski, . . . task∂
}

(5)taski =
{

st, pt, pre_task
}

(6)lt = st −min(stj , ..., stk)

Fig. 1 DAG disassembly methods

Page 6 of 17Wang et al. Journal of Cloud Computing (2023) 12:174

into a Markov or Semi-Markov decision problem. There-
fore, this paper models the scheduling problem as a tri-

plet (S, A, R), where S denoting the state, A representing
the action, and R representing the reward.

Characteristic expression of the state
The state describes the characteristics of the scheduling
environment, which contains both local and global char-
acteristics. In RL, the actions made by the agent to inter-
act with the environment depend entirely on the state
of the environment. The state is modeled as S (minWTi,
maxWTi, TEi, CTi, TEN, TEM, ET, ER, CNT, CMET).

Where minWTi and maxWTi denote the shortest wait
time and the longest wait time of the No. i room, which is
constructed as:

Where meti denotes the remaining execution time of
machine i . It is assumed that each machine can execute
only one independent subtask at a given time.

Energy consumption in a data center is mainly composed
of two components: one is the energy consumption gener-
ated by IT equipment and the other is the energy consump-
tion generated by infrastructure. The energy consumption
of IT equipment is mainly generated by servers, the energy
consumption of infrastructure is mainly generated by cool-
ing equipment. There are two main cooling methods used in
data centers: air cooling and liquid cooling, where the main
air-cooling energy consumption is generated by the blower,
and its power consumption is typically around one-third
of the blower speed. According to the heat transfer theory
and the general fan law, the energy consumption gener-
ated by the blower and the energy consumption generated
by the server can reach a fixed ratio under strict control of
the blower speed [39]. The energy consumption generated
by these two cooling methods is different, and in order to
better reduce the cooling energy consumption, the differ-
ent cooling methods can be dynamically adjusted according
to the current load of each server room in the data center.

(7)minWTi = min(met1,met2, ...,meti, ...,metn)

(8)maxWTi = max(met1,met2, ...,meti, ...,metn)

Thus, the energy consumption of a single server room in a
data center can be modeled as:

TEi is the total energy consumption of server room i ,
exeTimek is the duration of server k in the computing state,
and Ppeak is the peak power of the server. idleTimek is the
duration of server k in the standby state, where idleTime is
composed of two parts of the standby time: (1) the waiting
time for the child tasks on the current server to wait for the
completion of the execution of the parent task on which
it depends and (2) the waiting time for all the remaining
subtasks to be completed. Pidle represents the power of the
server in standby state. cr represents the ratio between the
server energy consumption and the cooling energy con-
sumption. PctStart represents the startup energy consump-
tion due to the switching of different cooling methods and
can be modeled as:

PairStart is the start-up power for air cooling, PliquidStart
is the start-up power for liquid cooling, exe(server) is the
number of servers in the current server room in the com-
puting state, PairPeak is the peak cooling power for air cool-
ing, and CTi is the cooling method for server room i in the
current data center.

The above states reflect local characteristics of the
current data center including the load balance, energy
consumption and cooling methods of each room in the
current data center. The following will describe the data
center in terms of global characteristics. TEN and TEM
represent the total energy consumption and emissions of
the current data center, respectively. ET represents the
type of energy used in the current data center, which is
the key to the federated cloud ability to reduce carbon
emissions, because the federated cloud is composed of
several geographically distributed cloud service pro-
viders. The type of energy used is different in different
geographic locations, for example, most of the electric-
ity in Norway comes from hydroelectric power, while
France mainly relies mainly on nuclear energy [49]. The
emission ratio of the same energy consumption is differ-
ent because of the different energy types. ER represents
the emission ratio of the energy used in the data center
to the carbon emissions. CNT represents the number of
subtasks contained in the current DAG, and CMET rep-
resents the execution time of the largest subtask in the

(9)TEi =
∑n

k=1
(exeTimek ∗ Ppeak + idleTimek ∗ Pidle) ∗ (1+ cr)+ PctStart

(10)
PctStart =







PairStart
PliquidStart

0

exe(server) ∗ Ppeak < PairPeak&CTcurrent = Liquid
exe(server) ∗ Ppeak > PairPeak&CTcurrent = Air

other

Page 7 of 17Wang et al. Journal of Cloud Computing (2023) 12:174

current DAG. All the above states are global states, which
reflect the overall operation of the current data center
and thus help the agent to make decisions, where TEN
and TEM can be modeled as follows:

where n indicates the current number of data center
server rooms.

Action definition
In this paper we define the action as the choice of the
most appropriate data center to allocate the incom-
ing DAG tasks, with the aim of minimizing the energy
and carbon emissions generated at the end of a batch
of task scheduling. The action space is constructed as
follows:

(11)TEN =
∑n

i=1
TEi

(12)TEM = ER ∗
∑n

i=1
TEi

where probi represents the probability of assigning the
current DAG task to room i and probnothing represents
the probability of not assigning the DAG task to the cur-
rent data center. To enhance the exploration capability,
the selection of actions from the action space is based on
probability.

Reward function
In RL, the design of the reward is crucial, as it directly
reflects the effectiveness of the current decision made by
the agent. However, in practice, the feedback from the
reward is often delayed. For DAG task scheduling, after
the task is assigned to the data center, the correctness of
the agent’s decision is not immediately available since the
energy consumption and emissions generated by the exe-
cution of the task are not immediately available. There-
fore, the rewards can be constructed as follows:

(13)
action = (prob1, prob2, ..., probi, ..., probn, probnothing)

Fig. 2 The overall system architecture of ERLFC

Page 8 of 17Wang et al. Journal of Cloud Computing (2023) 12:174

where E(RH) represents the total energy consumption
generated by using RoundRobin and HEFT (RH) joint
scheduling, E(ERLFC) represents the total energy con-
sumption generated by ERLFC scheduling policy sched-
uling, EMI(RH) represents the total emission generated
by using RH scheduling, EMI(ERLFC) represents the
total emission generated by ERLFC scheduling policy
scheduling, and ϑ represents the reward amplification
ratio, which can be amplified reward to help agent to
update in a better direction. The sum of these two ratios
ensures that when the energy consumption and emissions
generated by ERLFC scheduling are smaller than those
generated by RH scheduling, the model receives positive
feedback and can thus reinforce the learned policy.

System architecture and algorithm design
Figure 2 shows the overall system architecture of ERLFC.
The ERLFC schedules DAG tasks in a real-time environ-
ment where the arrival of DAG tasks is not time bounded.
To ensure the reliability of the overall scheduling, tasks are
placed into a task queue when they arrive, and the queue
can be represented as Q = {DT 1,DT 2, . . .DTi, . . . ,DTn, } .
The detailed implementation of our proposed ERLFC
architecture is accessible on GitHub [50].

The ERLFC model requires two networks in the training
process: 1) DAG task scheduling policy network (actor)
πθ = (ai|si) , which calculates the probability distribution
ai of each action in the action space based on the input

(14)
reward =

{

(
E(RH)-E(ERLFC)

E(RH)
+

EMI(RH)−EMI(ERLFC)
EMI(RH)

) ∗ ϑ

0

done = true
done = false

state si and the weight θ . 2) value network (critic) Vθ v(si) ,
which calculates the value of the state based on the input
state Si and the weight θv . Both networks need to be opti-
mized during the training process so that the agent can
get a more optimal objective function reward when mak-
ing the final decision.

The optimization of πθ relies on the strategy gradient
theorem, and in updating the strategy parameters θ using
the strategy gradient theorem, A(τ)∇logp(at |st , θ) is used,
where A(τ) is evaluated by critic, which is called the advan-
tage function A(τ) = rt − (V πθ (st)− V πθ (st+1)) . where rt
represents the real reward that the agent gets when it sees
state St and takes action at, and V πθ (st)− V πθ (st+1) rep-
resents the reward that the agent is expected to get when
it sees state st . When the advantage function gets the value
A(τ) > 0 , the probability of action at can be increased, and
vice versa, the probability of action at can be decreased.

The specific design of the Actor-Critic network is illus-
trated in Fig. 3 and the specific parameters for network
architecture are provided in Table 1. In a real-time environ-
ment the CNT and CMET of the future DAG tasks are usu-
ally unbounded, and the normalization of CNT and CMET
is required to be handled specially in order for the Actor to
perceive the importance of the current DAG task. The nor-
malization method we use is as in Eqs. (15) and (16):

(15)CNT =
∂

max(h(∂), ∂)

Fig. 3 Overview of ERLFC architecture

Page 9 of 17Wang et al. Journal of Cloud Computing (2023) 12:174

The normalization method allows the model to contin-
uously learn during the training. When the value of CNT
or CMET is 1, it means that the scale or execution time of
the current task is never seen in the historical tasks, and
the model should place more emphasis on the task char-
acteristics in the decision-making process.

During the agent training process, we incorporate
proximal policy optimization (PPO) [51], which com-
bines the benefit of trust region policy optimization
(TRPO) [52] and allows for multi-cycle small batch
updates of the agent. PPO uses the following objective
function in Eq. (17) to update the policy network:

where rt(θ) = πθ (at |st)
πθ old(at |st)

 , πθold represents the policy net-
work before θ updates, At = rt − (V πθ (st)− V πθ (st+1))
is the advantage function, and clip is a clipping function

(16)CMET =
max(pt)

max(h(pt),max(pt))

(17)L(θ) = Et [min(rt(θ)At , clip(rt(θ), 1− ε, 1+ ε)At)]

that keeps rt(θ) within the range [1− ε, 1+ ε] , in this paper
ε = 0.2.

The agent is responsible for assigning tasks to specific
rooms in the specific data centers based on the character-
istics of the DAG tasks, as well as the global state of data
centers and server rooms in the federated cloud. The rea-
son why subtasks in a DAG are not used as independent
schedulers in task assignment is that data also generates
a lot of energy consumption and emissions when they are
transmitted over the network [13]. By assigning all tasks
in a DAG to the same room, we can avoid the energy
consumption caused by data transmission over the net-
work and the computational instability caused by network
delays. Additionally, we can use the overlap of data trans-
mission and computation to ignore the time required for
communication. The concept of overlapping of computa-
tion and communication has been demonstrated in [53].

In this paper, we adopt the HEFT method to assign
independent subtasks to server rooms because HEFT
usually assigns tasks with a global perspective and can
minimize the makespan of the entire DAG task. The
principle of assigning a separate subtask to a server fol-
lows the formula in Eq. (18):

where <serveri, taskj> represents the assignment of sub-
task j to server i. ms represents the smallest remaining
execution time among all servers in the current server
room. mrsi represents the status (remaining execution
time) of server i in the current server room.

After assigning subtask taskj to serveri for comple-
tion, the update strategy for mrsi is:

(18)< serveri, taskj >= argmin
(∣

∣(lt +ms)−mrsi
∣

∣

)

(19)

mrsi =

{

freeTimei + exeTimej
exeTimej

lt +ms > mrsi
other

Table 1 Relevant parameters of ERLFC

Parameters Value

Input 39

Actor FC Layer 64

Actor FC Layer 128

Actor FC Layer 8

Critic FC Layer 64

Critic FC Layer 128

Critic FC Layer 1

Optimizer Adam

Loss function MSELoss

Learning rate of actor 0.001

Learning rate of critic 0.01

Fig. 4 Workflow of ERLFC at the t iteration for scheduling policy

Page 10 of 17Wang et al. Journal of Cloud Computing (2023) 12:174

where freeTimei represents the extra period of idle
time that serveri has before the execution of taskj, and
exeTimej represents the execution time of taskj. Where
freeTimei can be constructed as follows:

In order to better simulate the arrival of real-time
tasks in real-world, we introduce the concept of water-
mark in our experiments [54]. The watermark represents
a marker to measure the event time progress, which
declares the time t at which the event time has been
reached in the simulated environment. In the experi-
ments watermark is constructed as shown in Eq. (21):

where RETn
ki

 represents the remaining execution time
of server i in server room k in data center n and wr rep-
resents the watermark advance rate. The main goal is to
have an indeterminate number of tasks finish executing
in the entire federated cloud after completing one water-
mark advance, rather than just one.

(20)freeTimei = (it +ms)−mrsi

(21)
watermark = round(min(RET 1

11
,RET

1

12
, ...,RET

n

ki
)) ∗ (1+ wr)

Algorithm 1. Training process of agent

Table 2 Data center configuration parameters

Parameters Value

Static energy consumption of a single server 0.15kw/h

Peak energy consumption of a single server 0.5kw/h

Calculation of energy consumption and air cooling energy
consumption ratio

0.0005

Calculation of energy consumption and liquid cooling energy
consumption ratio

0.2

Peak power for air cooling 1.55kw/h

Air-cooled starting power 0.525kw

Starting power for liquid cooling 1.5kw

Fire energy emission ratio 0.6

Solar emission ratio 0.3

Wind energy emission ratio 0.1

Water to energy discharge ratio 0.3

Hydrogen energy emission ratio 0.2

Nuclear energy emission ratio 0.3

Table 3 Details of the dataset

Dataset No Number of DAG tasks Number of
subtasks

1 1,633 43,940

2 5,003 149,176

3 15,195 472,658

Page 11 of 17Wang et al. Journal of Cloud Computing (2023) 12:174

Fig. 5 Distribution of dataset sampling tasks

Fig. 6 Training curves for ERLFC training process

Page 12 of 17Wang et al. Journal of Cloud Computing (2023) 12:174

Algorithm 1 gives the training process of the agent in the
kth epoch of the ERLFC model. Before the training, the
state of the data center is initialized, and a set is created to
record the parameters of the training process (lines 1–2).
During the training process, the task is first assigned to the
server room of the data center for execution using the pol-
icy network πθ (at |st) based on the state St (lines 5–6). Then
HEFT is used to assign the subtasks to the corresponding
servers for execution, and the watermark is advanced to
end part of the task execution. The energy consumption
and emission generated by this watermark advancing to

the server rooms of each data center and the reward gener-
ated by this scheduling can be calculated according to the
advancing watermark (lines 7–10). After the watermark
advance is completed, the next state of the data center and
the characteristics of the next task to be scheduled are cal-
culated and spliced into a new state St+1, which serves as
the basis for the agent’s decision (lines 11–14). Once the
task scheduling is completed, the PPO algorithm is used to
update the policy and value networks based on the histori-
cal decision information (16–18). Figure 4 shows the work-
flow of ERLFC in the t iteration.

Fig. 7 Evaluation results with different scheduling algorithms

Page 13 of 17Wang et al. Journal of Cloud Computing (2023) 12:174

Experiments and results
Experimental environment setup
The federated cloud we consider in this study is com-
posed of six data centers with geographically dispersed
CSPs. Each data center has a data structure similar to
that described in [39], consisting of seven server rooms,
with each room containing 10 servers. Consequently, a
single data center has 70 servers, and the entire federated
cloud contains 420 servers, each sharing identical server
configurations across all data centers. We introduce six
types of energy sources, one corresponding to one of the
six cloud data centers: (cloud data center 1, fire energy),
(cloud data center 2, solar energy), (cloud data center 3,
wind energy), (cloud data center 4, hydro energy), (cloud
data center 5, hydrogen energy), and (cloud data center
6, nuclear energy). Additional configurations are shown
in Table 2.

In this paper, we conducted experiments using real
trace data from the Google Cluster dataset [55] to
investigate the impact of ERLFC on energy consump-
tion and carbon emissions in a federated cloud environ-
ment. Each task in the dataset is represented by a DAG,
and each DAG subtask is as in Eq. (5). The task execu-
tion time is estimated during task scheduling and can
be predicted based on historical execution data [56].
In order to evaluate the stability of the model’s deci-
sions in a real-time environment, we tested the model
using three different numbers of tasks, and the details
of the datasets are shown in Table 3. To analyze the
distribution of the subtask numbers in the DAG tasks
in the different datasets, we randomly sampled 1% of
the data and plotted the results in Fig. 5. The results
show that there are more small-scale DAGs in the data-
sets, but the number of subtasks in each DAGs varies
widely, and the distribution is irregular, thus testing the
ERLFC model’s ability to make decisions in the face of
unknown tasks.

Training process
The training process utilizes dataset 1, and Fig. 6 pre-
sents the energy consumption, carbon emission and
cumulative reward change curves during the training. It
is observed that the convergence of the agent is very fast
during the training process. The PPO algorithm used in
this study allows for complete exploration of each state,
contributing to this rapid convergence.

Results and discussions
To evaluate the performance of ERLFC for task schedul-
ing, we compared it with four baseline algorithms:

Round Robin algorithm: A round-robin approach is
used to select data centers, and then machine rooms
are selected in a round-robin fashion for task assign-
ment.
Random algorithm: The scheduling of this task will
select a random server room from a random data
center.
SO algorithm [57]: Scheduling of tasks using SO
algorithms taking into account of energy consump-
tion, carbon emissions and makespan metrics.
GJO algorithm [58]: Scheduling of tasks using GJO
algorithms taking into account of energy consump-
tion, carbon emissions and makespan metrics.

In order to evaluate the effectiveness of the trained
ERLFC, we use it in conjunction with the four aforemen-
tioned algorithms for scheduling varying quantities of
DAG tasks and sub-tasks, and the experimental results
are shown in Fig. 7.

Figure 7 shows the comparison between ERLFC and
the four algorithms regarding energy consumption and
carbon emission for different datasets. It can be seen
that for dataset 1, RoundRobin, Random, SO and GJO
consume 1.01, 1.06, 1.05 and 1.09 times more energy

Fig. 8 Comparison of makespan

Page 14 of 17Wang et al. Journal of Cloud Computing (2023) 12:174

and emit 1.02, 1.06, 1.06, 1.09 times more carbon com-
pared to ERLFC, respectively. For the dataset 2 energy
consumption and carbon emissions are 1.10, 1.15, 1.24
and 1.26 times higher than those of ERLFC. For dataset
3, energy consumption and carbon emissions are 1.09,
1.08, 1.21 and 1.26 times higher than those of ERLFC. To
ensure stability of the experimental results we have taken
the average of the outcomes over 10 iterations for the
Random algorithm.

From the experimental results, it can be seen that the
heuristic scheduling algorithm (SO and GJO algorithms)
can obtain better results than the traditional schedul-
ing algorithm (RoundRobin and Random algorithms)
for small data volume, mainly because the difference in
the state of the data centers is relatively small, and the
heuristic algorithm can obtain better results through
the optimization search, and the traditional scheduling
algorithm can make the load between the data centers
more balanced for large data volume, but the heuristic
algorithm cannot use the state information of the data
centers, which leads to a significant increase in energy
consumption and emissions. The heuristic algorithms
are unable to use the state information of the data center
which leads to a significant increase in energy consump-
tion and emissions. ERLFC algorithm achieves better
results because it uses the state information of the data
center and can sense the state of the data center in the
real-time environment, so that the tasks can be assigned
to a more appropriate machine to execute, thus reducing
energy consumption and carbon emissions. For real-time
task scheduling makespan is also a more important met-
ric and Fig. 8 shows the comparison between ERLFC and
the baseline algorithms in terms of makespan.

Figure 8 shows that ERLFC’s reduction in energy con-
sumption and carbon emissions does not come at the
expense of makespan, and thus ERLFC’s scheduling of real-
time tasks is better able to satisfy service level agreements.

The task’s delay is also an important indicator for
assessing the scheduling performance of the model. The
introduction of watermark becomes significant due to
the uncertainty associated with the task’s arrival time. In
this study, the task delay time is primarily defined as the
duration between the assignment of the task to the server
and the actual execution time of the task. Considering
the substantial variation in task execution times within
the Google dataset, there is a heightened demand for
the model’s load balancing capability. Figure 9 illustrates
the delay times incurred by various task scheduling algo-
rithms during the scheduling process.

In Fig. 9, it is evident that with a small number of tasks,
the delay time is shorter. However, as the number of
tasks increases, a noticeable increase in task wait times
is observed. Notably, the ERLFC model exhibits frequent

task waiting as the task count rises on dataset 3. Despite
this, in comparison to other algorithms, the overall wait-
ing time for tasks remains relatively small. This is pri-
marily attributed to the increment in task volume and,
secondarily, to the model strategically assigning tasks for

Fig. 9 Comparison of delay time

Page 15 of 17Wang et al. Journal of Cloud Computing (2023) 12:174

execution in data centers with lower energy consumption
and emissions. The goal is to mitigate energy usage and
emissions. Given the comparatively minimal delay intro-
duced by ERLFC in scheduling dataset 3, Fig. 10 provides
a dedicated visualization of task delay.

Conclusion
The significant energy consumption and carbon emission
in cloud environments have hindered the development
of cloud computing. In this paper, we explore the use of
reinforcement learning for real-time task scheduling on a
federated cloud, taking into account the energy consump-
tion caused by different cooling methods in data centers.
In order to reduce the energy consumption and carbon
emission of data centers, we use the different CSP data
center locations and energy sources in the federated cloud
to optimize the energy consumption and carbon emission.
Additionally, we introduce Watermark to simulate the ran-
domness of task arrival in a realistic environment. The
simulation results demonstrate that the ERLFC algorithm
effectively reduces data center energy consumption and car-
bon emissions by 1.09, 1.08, 1.21, and 1.26 times in terms of
energy savings and emissions reduction when compared to
the RoundRobin, Random, SO, and GJO algorithms in the
scheduling of real-time tasks. Therefore, the ERLFC pro-
posed in this paper provides an effective solution to reduce
the energy consumption and carbon emission generated by
data centers. For future work, we will explore the scheduling
capabilities of ERLFC for specialized domains, considering
task scheduling and server shutdown in heterogeneous sce-
narios with multiple different data center resources.

Authors’ contributions
Shuaijun Chen: conducted research, wrote the initial draft, and prepared all
figures and tables. Zhibao Wang and Lu Bai: planned and supervised the work.
Zhibao Wang, Lu Bai, Juntao Gao, Jinhua Tao, Raymond R. Bond, and Maurice
D. Mulvenna: modified and reviewed the paper. All authors reviewed the
results and approved the final version of the manuscript.

Funding
This work was supported in part by TUOHAI special project 2020 from Bohai
Rim Energy Research Institute of Northeast Petroleum University under Grant
HBHZX202002, project of Excellent and Middle-aged Scientific Research Inno-
vation Team of Northeast Petroleum University under Grant KYCXTD201903,
Heilongjiang Province Higher Education Teaching Reform Project under Grant
SJGY20200125 and National Key Research and Development Program of
China under Grant 2022YFC330160204.

Availability of data and materials
The datasets and code used in this study are available for download from the
following repository: https:// github. com/ Shuai junC/ RL_ Based TaskS chedu lingF
orEnv ironm ental lSust atina bleFCC/ tree/ master/ data.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 14 June 2023 Accepted: 21 November 2023

References
 1. Taherkordi A, Zahid F, Verginadis Y, Horn G (2018) Future cloud systems

design: challenges and research directions. IEEE Access 6:74120–74150.
https:// doi. org/ 10. 1109/ ACCESS. 2018. 28831 49

 2. Hazra D, Roy A, Midya S, et al (2018) Distributed task scheduling in cloud
platform: a survey[C]//Smart Computing and Informatics: Proceedings

Fig. 10 Delay caused by ERLFC scheduling for dataset 3

https://github.com/ShuaijunC/RL_BasedTaskSchedulingForEnvironmentallSustatinableFCC/tree/master/data
https://github.com/ShuaijunC/RL_BasedTaskSchedulingForEnvironmentallSustatinableFCC/tree/master/data
https://doi.org/10.1109/ACCESS.2018.2883149

Page 16 of 17Wang et al. Journal of Cloud Computing (2023) 12:174

of the First International Conference on SCI 2016, Volume 1. Springer
Singapore. 183–191

 3. Fan Y, Tao L, Chen J (2019) Associated task scheduling based on dynamic
finish time prediction for cloud computing. Proc - Int Conf Distrib Com-
put Syst 2019:2005–2014. https:// doi. org/ 10. 1109/ ICDCS. 2019. 00198

 4. Assis MRM, Bittencourt LF, Tolosana-Calasanz R, et al (2016) Cloud
federations: requirements, properties, and architectures[M]//Developing
Interoperable and Federated Cloud Architecture. IGI Global. 1–41

 5. Gu Y, Wang D, Liu C (2014) DR-Cloud: Multi-Cloud based disaster recovery
service. Tsinghua Sci Technol 19(1):13–23. https:// doi. org/ 10. 1109/ tst.
2014. 67332 04

 6. Rochwerger B, Breitgand D, Levy E, Galis A, Nagin K, Llorente IM, Montero
R, Wolfsthal Y, Elmroth E, Cáceres J, Ben-Yehuda M, Emmerich W, Galán F
(2009) The Reservoir model and architecture for open federated cloud
computing. IBM J Res Dev 53(4):1–17. https:// doi. org/ 10. 1147/ JRD. 2009.
54290 58

 7. Yuan H, Bi J, Zhou MC (2022) Energy-efficient and QoS-optimized adap-
tive task scheduling and management in clouds. IEEE Trans Autom Sci
Eng 19(2):1233–1244. https:// doi. org/ 10. 1109/ TASE. 2020. 30424 09

 8. Luo L, Wu W, Di D, Zhang F, Yan Y, Mao Y (2012) A resource scheduling
algorithm of cloud computing based on energy efficient optimiza-
tion methods. 2012 Int Green Comput Conf IGCC 2012 (July 2007):0–5.
https:// doi. org/ 10. 1109/ IGCC. 2012. 63222 51

 9. Dinesh Reddy V, Gangadharan GR, Rao GSVRK (2019) Energy-aware virtual
machine allocation and selection in cloud data centers. Soft Comput
23(6):1917–1932. https:// doi. org/ 10. 1007/ s00500- 017- 2905-z

 10. Kurp P (2008) Green computing. Commun ACM 51(10):11–13. https:// doi.
org/ 10. 1145/ 14001 81. 14001 86

 11. Wang D (2008) Meeting green computing challenges. 10th Electron
Packag Technol Conf EPTC 2008(858):121–126. https:// doi. org/ 10. 1109/
EPTC. 2008. 47634 21

 12. Zhao X, Ma X, Chen B, Shang Y, Song M (2022) Challenges toward carbon
neutrality in China: strategies and countermeasures. Resour Conserv
Recycl 176(October 2021):105959. https:// doi. org/ 10. 1016/j. resco nrec.
2021. 105959

 13. Aldossary M, Alharbi HA (2022) An eco-friendly approach for reduc-
ing carbon emissions in cloud data centers. Comput Mater Contin
72(2):3175–3193. https:// doi. org/ 10. 32604/ cmc. 2022. 026041

 14. Mata-Toledo R, Gupta P (2010) Green data center: how green can we
perform? J Technol Res 2:1–8

 15. Forrest W, Kaplan JM, Kindler N (2008) Data centers: how to cut carbon
emissions and costs[J]. McKinsey Bus Technol 14(6):4–13

 16. Andrae A, Edler T (2015) On global electricity usage of communication
technology: trends to 2030. Challenges 6(1):117–157. https:// doi. org/ 10.
3390/ chall e6010 117

 17. Assis MRM, Bittencourt LF (2016) A survey on cloud federation archi-
tectures: identifying functional and non-functional properties. J Netw
Comput Appl 72:51–71. https:// doi. org/ 10. 1016/j. jnca. 2016. 06. 014

 18. Moreno-Vozmediano R, Huedo E, Llorente IM, Montero RS, Massonet P,
Villari M, Merlino G, Celesti A, Levin A, Schour L, Vázquez C, Melis J, Spahr
S, Whigham D (2016) BEACON: A cloud network federation framework.
Commun Comput Inf Sci 567(644048):325–337. https:// doi. org/ 10. 1007/
978-3- 319- 33313-7_ 25

 19. Celesti A, Tusa F, Villari M (2012) Toward cloud federation: concepts and
challenges[M]//Achieving Federated and Self-Manageable Cloud Infra-
structures: Theory and Practice. IGI Global. 1–17

 20. Dayarathna M, Wen Y, Fan R (2016) Data center energy consumption
modeling: a survey. IEEE Commun Surv Tutorials 18(1):732–794. https://
doi. org/ 10. 1109/ COMST. 2015. 24811 83

 21. Nor NM, Hussin M, Abdullah R (2019) Energy-saving framework for data
center from reduce, reuse and recycle perspectives. Pertanika J Sci Tech-
nol 27(3):1259–1277

 22. Wan J, Gui X, Zhang R, Fu L (2018) Joint cooling and server control in data
centers: A cross-layer framework for holistic energy minimization. IEEE
Syst J 12(3):24–2472. https:// doi. org/ 10. 1109/ JSYST. 2017. 27008 63

 23. Ohadi MM, Dessiatoun SV, Choo K, Pecht M, Lawler JV (2012) A compari-
son analysis of air, liquid, and two-phase cooling of data centers. Annu
IEEE Semicond Therm Meas Manag Symp 58–63. https:// doi. org/ 10. 1109/
STHERM. 2012. 61888 26

 24. Habibi Khalaj A, Halgamuge SK (2017) A Review on efficient thermal
management of air- and liquid-cooled data centers: from chip to the

cooling system. Appl Energy 205(August):1165–1188. https:// doi. org/ 10.
1016/j. apene rgy. 2017. 08. 037

 25. Aldossary M, Alharbi HA (2021) Towards a green approach for minimiz-
ing carbon emissions in fog-cloud architecture. IEEE Access 9:131720–
131732. https:// doi. org/ 10. 1109/ ACCESS. 2021. 31145 14

 26. Topcuoglu H, Hariri S, Society IC (2002) Performance-Effective and Low-
Complexity. 13(3):260–274

 27. Hogade N, Pasricha S, Siegel HJ, MacIejewski AA, Oxley MA, Jonardi E
(2018) Minimizing energy costs for geographically distributed heteroge-
neous data centers. IEEE Trans Sustain Comput 3(4):318–331. https:// doi.
org/ 10. 1109/ TSUSC. 2018. 28226 74

 28. Ben Alla H, Ben Alla S, Touhafi A, Ezzati A (2018) Deadline and Energy
Aware Task Scheduling in Cloud Computing. 2018 4th Int Conf Cloud
Comput Technol Appl Cloudtech 2018. https:// doi. org/ 10. 1109/ Cloud
Tech. 2018. 87133 38

 29. Xu X, Cao L, Wang X (2016) Resource pre-allocation algorithms for
low-energy task scheduling of cloud computing. J Syst Eng Electron
27(2):457–469. https:// doi. org/ 10. 1109/ JSEE. 2016. 00047

 30. Xie G, Zeng G, Xiao X, Li R, Li K (2017) Energy-efficient scheduling algo-
rithms for real-time parallel applications on heterogeneous distributed
embedded systems. IEEE Trans Parallel Distrib Syst 28(12):3426–3442.
https:// doi. org/ 10. 1109/ TPDS. 2017. 27308 76

 31. Safari M, Khorsand R (2018) Energy-aware scheduling algorithm for time-
constrained workflow tasks in DVFS-enabled cloud environment. Simul
Model Pract Theory 87(July):311–326. https:// doi. org/ 10. 1016/j. simpat.
2018. 07. 006

 32. Tang Z, Qi L, Cheng Z, Li K, Khan SU, Li K (2016) An energy-efficient task
scheduling algorithm in DVFS-enabled cloud environment. J Grid Com-
put 14(1):55–74. https:// doi. org/ 10. 1007/ s10723- 015- 9334-y

 33. Baskiyar S, Abdel-Kader R (2010) Energy aware DAG scheduling on het-
erogeneous systems. Cluster Comput 13(4):373–383. https:// doi. org/ 10.
1007/ s10586- 009- 0119-6

 34. Mirjalili S, Lewis A (2016) The whale optimization algorithm. Adv Eng
Softw 95:51–67. https:// doi. org/ 10. 1016/j. adven gsoft. 2016. 01. 008

 35. Peng H, Wen WS, Tseng ML, Li LL (2019) Joint optimization method for
task scheduling time and energy consumption in mobile cloud comput-
ing environment. Appl Soft Comput J 80(2019):534–545. https:// doi. org/
10. 1016/j. asoc. 2019. 04. 027

 36. Kessaci Y, Melab N, Talbi EG (2013) A Pareto-based metaheuristic for
scheduling HPC applications on a geographically distributed cloud
federation. Cluster Comput 16(3):451–468. https:// doi. org/ 10. 1007/
s10586- 012- 0210-2

 37. Ahmad F, Vijaykumar TN (2010) Joint optimization of idle and cooling
power in data centers while maintaining response time. ACM SIGPLAN
Not 45(3):243–256. https:// doi. org/ 10. 1145/ 17359 71. 17360 48

 38. Wang Y, Zhang F, Wang R, Shi Y, Guo H, Liu Z (2017) Real-time task sched-
uling for joint energy efficiency optimization in data centers. Proc - IEEE
Symp Comput Commun 0:838–843. https:// doi. org/ 10. 1109/ ISCC. 2017.
80246 31

 39. Ji K, Chi C, Marahatta A, Zhang F, Liu Z (2020) Energy Efficient Scheduling
Based on Marginal Cost and Task Grouping in Data Centers. e-Energy
2020 - Proc 11th ACM Int Conf Futur Energy Syst 482–488. https:// doi.
org/ 10. 1145/ 33968 51. 34026 57

 40. Jiang Q, Leung VCM, Tang H, Xi HS (2019) Adaptive scheduling of stochas-
tic task sequence for energy-efficient mobile cloud computing. IEEE Syst
J 13(3):3022–3025. https:// doi. org/ 10. 1109/ JSYST. 2019. 29224 36

 41. Chase JS, Anderson DC, Thakar PN, Vahdat AM, Doyle RP (2001) Managing
energy and server resources in hosting centers. 103. https:// doi. org/ 10.
1145/ 502043. 502045

 42. Zhang J, Cheng L, Liu C, Zhao Z, Mao Y (2023) Cost-aware schedul-
ing systems for real-time workflows in cloud: an approach based on
Genetic Algorithm and Deep Reinforcement Learning. Expert Syst Appl
234(July):120972

 43. Cheng L, Wang Y, Cheng F, Liu C, Zhao Z, Wang Y (2023) A Deep Rein-
forcement Learning-Based Preemptive Approach for Cost-Aware Cloud
Job Scheduling. IEEE Trans Sustain Comput PP 1–12. https:// doi. org/ 10.
1109/ TSUSC. 2023. 33038 98

 44. Cheng L, Kalapgar A, Jain A, Wang Y, Qin Y, Li Y, Liu C (2022) Cost-aware
real-time job scheduling for hybrid cloud using deep reinforcement
learning. Neural Comput Appl 34(21):18579–18593. https:// doi. org/ 10.
1007/ s00521- 022- 07477-x

https://doi.org/10.1109/ICDCS.2019.00198
https://doi.org/10.1109/tst.2014.6733204
https://doi.org/10.1109/tst.2014.6733204
https://doi.org/10.1147/JRD.2009.5429058
https://doi.org/10.1147/JRD.2009.5429058
https://doi.org/10.1109/TASE.2020.3042409
https://doi.org/10.1109/IGCC.2012.6322251
https://doi.org/10.1007/s00500-017-2905-z
https://doi.org/10.1145/1400181.1400186
https://doi.org/10.1145/1400181.1400186
https://doi.org/10.1109/EPTC.2008.4763421
https://doi.org/10.1109/EPTC.2008.4763421
https://doi.org/10.1016/j.resconrec.2021.105959
https://doi.org/10.1016/j.resconrec.2021.105959
https://doi.org/10.32604/cmc.2022.026041
https://doi.org/10.3390/challe6010117
https://doi.org/10.3390/challe6010117
https://doi.org/10.1016/j.jnca.2016.06.014
https://doi.org/10.1007/978-3-319-33313-7_25
https://doi.org/10.1007/978-3-319-33313-7_25
https://doi.org/10.1109/COMST.2015.2481183
https://doi.org/10.1109/COMST.2015.2481183
https://doi.org/10.1109/JSYST.2017.2700863
https://doi.org/10.1109/STHERM.2012.6188826
https://doi.org/10.1109/STHERM.2012.6188826
https://doi.org/10.1016/j.apenergy.2017.08.037
https://doi.org/10.1016/j.apenergy.2017.08.037
https://doi.org/10.1109/ACCESS.2021.3114514
https://doi.org/10.1109/TSUSC.2018.2822674
https://doi.org/10.1109/TSUSC.2018.2822674
https://doi.org/10.1109/CloudTech.2018.8713338
https://doi.org/10.1109/CloudTech.2018.8713338
https://doi.org/10.1109/JSEE.2016.00047
https://doi.org/10.1109/TPDS.2017.2730876
https://doi.org/10.1016/j.simpat.2018.07.006
https://doi.org/10.1016/j.simpat.2018.07.006
https://doi.org/10.1007/s10723-015-9334-y
https://doi.org/10.1007/s10586-009-0119-6
https://doi.org/10.1007/s10586-009-0119-6
https://doi.org/10.1016/j.advengsoft.2016.01.008
https://doi.org/10.1016/j.asoc.2019.04.027
https://doi.org/10.1016/j.asoc.2019.04.027
https://doi.org/10.1007/s10586-012-0210-2
https://doi.org/10.1007/s10586-012-0210-2
https://doi.org/10.1145/1735971.1736048
https://doi.org/10.1109/ISCC.2017.8024631
https://doi.org/10.1109/ISCC.2017.8024631
https://doi.org/10.1145/3396851.3402657
https://doi.org/10.1145/3396851.3402657
https://doi.org/10.1109/JSYST.2019.2922436
https://doi.org/10.1145/502043.502045
https://doi.org/10.1145/502043.502045
https://doi.org/10.1109/TSUSC.2023.3303898
https://doi.org/10.1109/TSUSC.2023.3303898
https://doi.org/10.1007/s00521-022-07477-x
https://doi.org/10.1007/s00521-022-07477-x

Page 17 of 17Wang et al. Journal of Cloud Computing (2023) 12:174

 45. Ding D, Fan X, Zhao Y, Kang K, Yin Q, Zeng J (2020) Q-learning based
dynamic task scheduling for energy-efficient cloud computing. Futur
Gener Comput Syst 108:361–371. https:// doi. org/ 10. 1016/j. future. 2020.
02. 018

 46. Siddesha K, Jayaramaiah GV, Singh C (2022) A novel deep reinforcement
learning scheme for task scheduling in cloud computing. Cluster Comput
25(6):4171–4188. https:// doi. org/ 10. 1007/ s10586- 022- 03630-2

 47. Yan L, Liu W, Bai D (2019) Temperature and power aware server place-
ment optimization for enterprise data center. Proc Int Conf Parallel
Distrib Syst - ICPADS 2018:433–440. https:// doi. org/ 10. 1109/ PADSW.
2018. 86446 39

 48. Kang KX, Ding D, Xie HM, Yin Q, Zeng J (2021) Adaptive drl-based task
scheduling for energy-efficient cloud computing. IEEE Transactions on
Network and Service Management

 49. Gibney E (2022) How to shrink AI’s ballooning carbon footprint. Nature
607(7920):648–648

 50. Chen S (2023) ‘RL_BasedTaskSchedulingForEnvironmentallSustatina-
bleFCC’, Available at: [https:// github. com/ Shuai junC/ RL_ Based TaskS
chedu lingF orEnv ironm ental lSust atina bleFCC/ tree/ master]. Accessed:
16/11/2023

 51. Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O (2017) Proximal
Policy Optimization Algorithms. pp 1–12

 52. Schulman J, Levine S, Abbeel P, et al (2015) Trust region policy
optimization[C]//International conference on machine learning. PMLR.
1889–1897

 53. Grinsztajn N, Beaumont O, Jeannot E, Preux P (2021) READYS: a reinforce-
ment learning based strategy for heterogeneous dynamic scheduling.
Proc - IEEE Int Conf Clust Comput ICCC 2021:70–81. https:// doi. org/ 10.
1109/ Clust er489 25. 2021. 00031

 54. Akidau T, Begoli E, Chernyak S, Hueske F, Knight K, Knowles K, Mills D, Soto-
longo D (2021) Watermarks in stream processing systems: Semantics and
comparative analysis of apache flink and google cloud dataflow. Proc VLDB
Endow 14(12):3135–3147. https:// doi. org/ 10. 14778/ 34763 11. 34763 89

 55. Charles Reiss, John Wilkes JH (2014) Google cluster-usage traces format
schema 2014–11–17 external.pdf - Google Drive. Google Inc: 1–14
https:// code. google. com/ apis/ stora ge/

 56. Pham TP, Durillo JJ, Fahringer T (2020) Predicting workflow task execution
time in the cloud using a two-stage machine learning approach. IEEE
Trans Cloud Comput 8(1):256–268. https:// doi. org/ 10. 1109/ TCC. 2017.
27323 44

 57. Hashim FA, Hussien AG (2022) Snake optimizer: a novel meta-heuristic
optimization algorithm. Knowledge-Based Syst 242:108320. https:// doi.
org/ 10. 1016/j. knosys. 2022. 108320

 58. Chopra N, Mohsin Ansari M (2022) Golden jackal optimization: a novel
nature-inspired optimizer for engineering applications. Expert Syst Appl
198(March):116924. https:// doi. org/ 10. 1016/j. eswa. 2022. 116924

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1016/j.future.2020.02.018
https://doi.org/10.1016/j.future.2020.02.018
https://doi.org/10.1007/s10586-022-03630-2
https://doi.org/10.1109/PADSW.2018.8644639
https://doi.org/10.1109/PADSW.2018.8644639
https://github.com/ShuaijunC/RL_BasedTaskSchedulingForEnvironmentallSustatinableFCC/tree/master
https://github.com/ShuaijunC/RL_BasedTaskSchedulingForEnvironmentallSustatinableFCC/tree/master
https://doi.org/10.1109/Cluster48925.2021.00031
https://doi.org/10.1109/Cluster48925.2021.00031
https://doi.org/10.14778/3476311.3476389
https://code.google.com/apis/storage/
https://doi.org/10.1109/TCC.2017.2732344
https://doi.org/10.1109/TCC.2017.2732344
https://doi.org/10.1016/j.knosys.2022.108320
https://doi.org/10.1016/j.knosys.2022.108320
https://doi.org/10.1016/j.eswa.2022.116924

	Reinforcement learning based task scheduling for environmentally sustainable federated cloud computing
	Abstract
	Introduction
	Related work
	Algorithms based on heuristics
	Algorithms based on dynamic voltage and frequency scaling
	Algorithms based on joint optimization and adaptive systems
	Algorithms based on reinforcement learning and neural networks

	Methodology
	Problem definition
	Reinforcement learning environment modeling
	Characteristic expression of the state
	Action definition
	Reward function

	System architecture and algorithm design

	Experiments and results
	Experimental environment setup
	Training process

	Results and discussions
	Conclusion
	References

