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Abstract 

The significant energy consumption within data centers is an essential contributor to global energy consumption 
and carbon emissions. Therefore, reducing energy consumption and carbon emissions in data centers plays a crucial 
role in sustainable development. Traditional cloud computing has reached a bottleneck, primarily due to high energy 
consumption. The emerging federated cloud approach can reduce the energy consumption and carbon emissions 
of cloud data centers by leveraging the geographical differences of multiple cloud data centers in a federated cloud. 
In this paper, we propose Eco-friendly Reinforcement Learning in Federated Cloud (ERLFC), a framework that uses 
reinforcement learning for task scheduling in a federated cloud environment. ERLFC aims to intelligently consider 
the state of each data center and effectively harness the variations in energy and carbon emission ratios across geo-
graphically distributed cloud data centers in the federated cloud. We build ERLFC using Actor-Critic algorithm, which 
select the appropriate data center to assign a task based on various factors such as energy consumption, cooling 
method, waiting time of the task, energy type, emission ratio, and total energy consumption of the current cloud 
data center and the details of the next task. To demonstrate the effectiveness of ERLFC, we conducted simulations 
based on real-world task execution data, and the results show that ERLFC can effectively reduce energy consump-
tion and emissions during task execution. In comparison to Round Robin, Random, SO, and GJO algorithms, ERLFC 
achieves respective reductions of 1.09, 1.08, 1.21, and 1.26 times in terms of energy saving and emission reduction.

Keywords Cloud computing, Federated cloud, Reinforcement learning, Energy efficiency, Carbon emissions, Task 
scheduling

Introduction
Cloud computing [1] has become the most popular com-
puting paradigm today for distributed computing and 
parallel processing [2] because of its elasticity and scal-
ability and pay-per-use model [3]. Despite its popular-
ity, traditional cloud computing paradigm has reached 
a plateau, exposing many limitations such as resource 
contention, service interruption, lack of interoperability 
in data representation, degradation of Quality of Service 
(QoS), and especially high energy consumption and car-
bon emissions [4–8]. The enormous pressure on energy 
consumption and carbon emission [9] severely hampers 
the continued development of cloud data centers. Due to 
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the serious challenge of global warming, green comput-
ing [10, 11] is gaining more popularity. In China, energy 
consumption and CO2 emissions increased by 70.97% 
and 47.15%, respectively, from 82.88 exajoules and 6.673 
billion tons in 2006 to 14,170 exajoules and 982.58 bil-
lion tons in 2019 [12]. In Saudi Arabia, the total emis-
sions of greenhouse gas from electricity consumption 
increased from 58.2 million tons in 1971 to 58.88 million 
tons in 2020, accounting for 1.45% of global carbon emis-
sions and the total emissions from electricity in Saudi 
Arabia are increasing to an average annual rate of more 
than 5% [13]. According to the US Environment Protec-
tion Agency (EPA), there were nearly 44 million servers 
worldwide in 2007, which consumed approximately 0.5% 
of the world’s electricity, and U.S. data centers consume 
as much electricity as five power plants in a year [14]. 
Their data centers also produced 80 metric tons of carbon 
emissions per year, equivalent to the carbon footprint of 
the Netherlands and Argentina combined [15]. There-
fore, the information and communication technology 
sector is identified as a significant contributor to global 
energy consumption and greenhouse gas emissions, and 
data centers are projected to account for 13% of global 
energy consumption by 2030 due to the increased energy 
demand from data centers [16].

Many solutions have been proposed by both indus-
try and academia to address the energy consumption 
dilemma faced by cloud computing. Among these solu-
tions, federated clouds [17, 18] perform the best and are 
most likely to be the key solution to the problems associ-
ated with cloud computing. A federated cloud is a collab-
orative network of resources from multiple cloud service 
providers (CSPs). Each CSP in the federated cloud can 
forward the request to the cloud data center of the CSP 
that is best suited for computing based on the character-
istics of the user request. This approach optimizes energy 
consumption and carbon emissions by taking advantage 
of the differences in energy sources between the geo-
graphic locations of different data centers. Additionally, 
as the federated cloud aggregates the resources of mul-
tiple CSPs, it reduces the need for hardware resources 
from individual CSPs, thereby reducing their operational 
costs. The federated cloud architecture presents opportu-
nities for small and medium sized CSPs, enhancing their 
competitiveness with larger CSPs [19].

One of the most complex challenges in a federated 
cloud environment is to optimize the diverse resources 
offered by various CSPs. This involves making informed 
decisions about task allocations, specifically determining 
the most suitable data center and server room for execut-
ing tasks. The aim is to minimize energy consumption 
and carbon emissions while satisfying the user’s QoS. 
The geographical location of different cloud data centers 

results in different energy types and varying carbon emis-
sions even for the same amount of energy consumption. 
Additionally, the current workload of each server in the 
federated cloud can vary, which adds to the complex-
ity of this issue. Cloud data centers are composed of IT 
equipment such as servers, network equipment, storage 
equipment and infrastructure equipment such as cooling 
and power equipment. Cooling equipment and servers 
are considered to be the main contributors to the energy 
consumption of cloud data centers [20–22], accounting 
for 80% of the total energy consumption of data cent-
ers [23]. Server energy consumption and cooling energy 
consumption are interdependent, and when server 
energy consumption rises, the cooling energy consump-
tion also rises in tandem. Energy consumption of servers 
can be divided into two types; one is static energy con-
sumption, i.e., the standby energy consumption of serv-
ers. The other is dynamic energy consumption, i.e., the 
energy consumption of the server when computing tasks. 
Data center cooling methods include air cooling and liq-
uid cooling [24], with each method generating different 
energy consumption. To reduce the energy consumption 
of cloud data centers, it is necessary to consider these two 
energy consumptions. The scheduling algorithm should 
consider multiple metrics to make an intelligent decision 
on how to reduce the energy consumption of both the 
cooling method and the energy consumption of the serv-
ers requires.

A task is presented as a directed acyclic graph (DAG) 
where each vertex of the DAG represents a subtask in 
the task, and the edges between different vertices repre-
sent the dependencies between different subtasks. This 
dependency relationship makes it easy to describe the 
parallelism of the task. Usually, data transfer between dif-
ferent subtasks results in a large amount of energy con-
sumption [25]. To reduce the energy consumption of data 
transfer between different tasks, we propose to allocate 
all subtasks in the same DAG to the same cloud data 
center and machine room for computation. To achieve 
this, we use reinforcement learning to determine the 
optimal assignment of tasks to specific server rooms 
within cloud data centers. Then we assign the task to the 
corresponding server for computation using Heterogene-
ous Earliest Finish Time (HEFT) algorithm [26], which 
helps reduce the energy consumption and emissions of 
the data center. To make the decision of the scheduling 
algorithm more detailed, we consider the load situation, 
cooling method, total energy consumption, total emis-
sions, emission ratio, and the next task details for each 
server room in each data center. This helps the schedul-
ing algorithm choose the most suitable server for execut-
ing the task, and further reducing energy consumption 
and emissions. Furthermore, this paper introduces the 
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watermark to simulate the randomness of task arrival 
time to create a more relevant task scheduling environ-
ment. To better cope with the real-time scheduling, we 
aim to minimize the complexity of the neural network 
architecture, enabling the scheduling algorithm to make 
quicker decisions upon task arrival.

The main contribution of this paper is summarized as 
follows:

• A suitable reinforcement learning framework 
(ERLFC) is developed for fast task allocation deci-
sions in a federated cloud environment, leading to 
reduced energy consumption and carbon emissions.

• The ERLFC is compared with classical task schedul-
ing algorithms and metaheuristics algorithms, and 
our experimental results show that the ERLFC still 
has a strong competitive edge even in scenarios with 
large task volumes.

• We take full advantage of the federated cloud and 
the differences of geographical locations of CSPs 
by introducing six different energy types and 
diverse carbon emission ratios to provide novel 
insights for energy consumption and carbon emis-
sions reduction.

• Diverse cooling methods are introduced to further 
reduce energy consumption and carbon emissions by 
optimizing the control of cooling methods.

The remaining of this paper is organized as follows. 
Section  2 provides a review of the relevant works. The 
proposed system model is presented in Sect.  3. Experi-
mental details, the results and discussions are presented 
in Sect. 4. Section 5 concludes the paper.

Related work
In recent years, the energy consumption and emission 
of cloud data centers have become the main limita-
tion for the development of cloud computing. Scholars 
have conducted extensive research and exploration in 
energy saving and emission reduction techniques. These 
research efforts have been divided into four main cat-
egories, which will be discussed in detail in the following 
subsections.

Algorithms based on heuristics
Yuan et  al. [7] proposed an adaptive simulated-anneal-
ing-based biobjective differential evolution (ASBD) 
algorithm that takes full advantage of the variation in 
power prices brought about by the diversity of different 
cloud data geographic locations to reduce the average 
cost of energy. This approach minimizes the energy cost 
as well as the average task loss of the cloud data center 
by constructing a Pareto-optimal set using the minimum 

Manhattan distance approach from the number of data 
center energized servers and the portal task allocation 
data to decide on an optimal solution. Another approach, 
proposed by Hogade et al. [27] is to use three workload 
management mechanisms that take into account factors 
such as data center cooling power, co-location interfer-
ence, time-of-use tariff, renewable energy, net metering, 
and peak demand pricing to reduce data center energy 
consumption and cost based on geographic load. In [28], 
Ben Alla et al. proposed an efficient deadline and energy-
aware task scheduling algorithm to improve efficiency 
and reduce the consumption of cloud resources under 
the deadline constraints. The algorithm optimizes the 
scheduling service of any tasks in terms of makespan, 
energy consumption, resource utilization, and load bal-
ancing. However, many of the parameters in this algo-
rithm are pre-set, such as the number of instructions 
for the task, which can be challenging to estimate in real 
applications. In [29], the assignment of tasks is abstracted 
into the deployment of virtual machines, and by estimat-
ing the future workload and the current resource dis-
tribution. The resources are allocated using a simulated 
annealing algorithm to balance the load among servers to 
reduce the power consumption in cloud computing sys-
tems. While heuristic algorithms, such as this one, have 
lower computational cost and require only information 
about the current task, they may not be well-suited for 
real-time environments because of their high response 
delay in time-sensitive scenarios.

Algorithms based on dynamic voltage and frequency 
scaling
Xie et al. [30] proposed an energy efficient way to recover 
idle time by introducing the concept of latest comple-
tion time through dynamic voltage and frequency energy 
efficient design optimization techniques. In the case of 
meeting the task deadline constraint, the dynamic energy 
consumption is reduced by moving the task to the idle 
area that can generate the least dynamic energy proces-
sor, thus reducing the overall energy consumption. In 
[31], Safari and Khorsand introduced a new energy-effi-
cient scheduling method for time-limited workflow tasks 
using dynamic voltage and frequency scaling techniques. 
This method reduces energy consumption by adjusting 
the voltage according to the machine’s frequency, oper-
ating and adjusting the frequency according to the cur-
rent host usage. Tang et  al. [32] proposed a workflow 
task scheduling algorithm based on dynamic voltage and 
frequency scaling techniques. The algorithm primar-
ily focuses on allocating tasks to computing resources 
that are relatively available, considering their deadlines. 
Additionally, it intelligently shuts down the current 
computing resources to enhance resource utilization, 
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thereby achieving energy-saving benefits. Baskiyar and 
Abdel-Kader [33] proposed a scheduling algorithm on 
a heterogeneous processor running at discrete operat-
ing voltages, which exploits the dependencies between 
tasks to achieve energy savings by dynamically scaling 
the voltage of the processor. The algorithm focuses on 
converting the DAG into a single-entry and single-exit 
DAG, and dynamically scales the CPU voltage by cal-
culating the difference between the end time of tasks 
on the non-critical path and tasks on the critical path. 
A joint multi-objective optimization of task scheduling 
and energy consumption based on dynamic voltage and 
frequency scaling (DVFS) technique and whale opti-
mization algorithm [34] was proposed in [35] to reduce 
energy consumption from device overhead by scheduling 
tasks flexibly in mobile cloud computing. DVFS enables 
tasks to run at reduced voltage and clock frequency to 
fill idle time and reduce energy consumption. However, 
DVFS often requires a high degree of coupling between 
tasks and resources [36] and its transitions are too long, 
leading to reduced response time for tasks and inability 
to meet the requirements of real-time tasks. Additionally, 
DVFS is only applicable to CPUs, which consume only 
a small fraction of the total system power, leaving little 
room for DVFS in future technologies [37].

Algorithms based on joint optimization and adaptive 
systems
Wang et al. [38] proposed a real-time task classification 
and scheduling strategy. This approach involves classify-
ing real-time tasks and assigning tasks with similar exe-
cution times and end times to the same server, ultimately 
enhancing server utilization. This results in optimizing 
the energy efficiency of the cooling system and the server 
as a way to reduce energy consumption. A joint energy 
efficiency optimization scheme based on marginal cost 
and task grouping is proposed in [39], considering the 
cooling energy consumption that is generated by different 
cooling methods and uses these according to the charac-
teristics of the tasks to achieve energy savings. A joint 
optimization scheme is proposed in [37], which reduces 
the energy consumption by reducing the sum of idle 
power and cooling power, decreasing the response time, 
and reducing the total power and local power hotspots. 
Jiang et  al. [40] proposed an adaptive scheme to sched-
ule a heterogeneous task with random arrivals, reducing 
the energy consumption of mobile devices. The algo-
rithm is based on a continuous-time Markov decision 
process that formulates energy-efficient and QoS-guar-
anteed task scheduling as a constrained stochastic opti-
mization problem. Chase et al. [41] proposed a resource 
allocation strategy that improves the energy efficiency of 
server clusters by balancing the cost of resources and the 

benefits derived from their use. The implementation con-
centrates the load of the data center on a subset of servers 
and saves energy by shutting down the remaining servers.

Algorithms based on reinforcement learning and neural 
networks
Deep reinforcement learning has been widely used in the 
domain of cloud job scheduling. The recent research by 
Zhang et al. [42] introduces a novel cost-aware schedul-
ing system for real-time workflows in the cloud by com-
bining the global search capability of genetic algorithm 
and the environment awareness decision-making capa-
bility of deep reinforcement learning techniques. Cheng 
et  al. [43] proposed an approach to enhance scheduling 
policy training with efficient preemptive mechanisms to 
minimize job execution costs and meet user response 
time expectations. Cheng et  al. [44] introduced a deep 
reinforcement learning based method for real-time job 
scheduling in hybrid clouds, prioritizing cost-effective 
job execution without compromising quality of service 
and minimizing response time. Ding et al. [45] proposed 
a Q-learning based energy-efficient cloud computing task 
scheduling, which aims to reduce energy consumption 
by using Q-learning policies to compute the most suit-
able virtual machines for task execution. This reduces 
task response time and maximizes CPU utilization per 
server. Similarly, Siddesha et al. [46] proposed a Q-learn-
ing based task scheduling approach that considers the 
load balancing capability of VMs and introduces a novel 
strategy to enhance the reward of task scheduling for bet-
ter resource sharing and reduced duration of computa-
tional policies. However, Q-learning for task scheduling 
decisions can be challenging because the state of cloud 
data centers is constantly changing making it difficult 
to maintain an infinite state. Yan et  al. [47] proposed a 
strategy to model data center temperature and cooling 
energy consumption using neural networks to compute 
the optimal placement of servers by genetic algorithms. 
The main objective is to minimize the maximum tem-
perature of the data center server room and minimize the 
minimum power of new servers to achieve energy saving. 
This method mainly considers the energy consumption in 
the data center server room and does not address large 
scale energy savings. Kang et al. [48] proposed an adap-
tive DRL-based constraint framework for energy-aware 
task scheduling with changing workloads and unpredict-
able nature. The framework consists of three parts, the 
first part detects and predicts future workload changes, 
the second part adjusts the discount factor to determine 
agent changes, and the third part uses the deep Q-net-
work algorithm to achieve task scheduling. Although the 
above task scheduling algorithms consider energy con-
sumption, they do not address the issue of emissions.
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Having reviewed the related works, we found that pre-
vious efforts to achieve energy efficiency in cloud envi-
ronments focused on single clouds and hybrid clouds. 
However, due to limitations in geographical location and 
communication, these clouds were not able to achieve 
optimal energy savings. There is a need for more work 
to research the use of federated clouds by leveraging the 
differences in energy sources resulting from geographical 
variations and achieve significant energy savings. In this 
study, we addressed the previous research gap in carbon 
emissions and also considered the energy consumption 
from cooling systems.

Methodology
Problem definition
The problem of scheduling DAG tasks in federated cloud 
environments is often described as a mapping problem. 
By mapping a given set of tasks to a given set of resources 
in an optimal way, the utilization of resources is improved 
while accelerating task execution. This federated cloud 
system (FC) consists of multiple cloud service provid-
ers’ data centers (DCs), each cloud data center contains 
multiple machine rooms (MHs), and each machine room 
contains multiple servers (PMs). We describe the feder-
ated cloud system as:

where DSi(i = 1, 2, ...,n) denotes the data center of 
cloud service provider i . Datacenter is represented as:

where DSi and MHj(j = 1, 2, ..., n) represents room j in 
data center i . Machine room is represented as:

where MHk and serveri(i = 1, 2, ..., i, ..., n) denotes the 
i-th server in the k-th server room.

A DAG task (DT) is usually composed of multiple 
subtasks, which are accompanied by a large number 

(1)FC = {DS1,DS2, ...,DSn}

(2)DSi = {MH1,MH2, ...MHi, ...MHn}

(3)MHk = {server1, server2, ..., serveri, ..., servern}

of constraint relationships between subtasks. The dis-
assembly of a DAG task, the dependency of execution 
time between subtasks, and the way of communicating 
between the tasks have a great impact on the task’s effi-
ciency of execution and the utilization of the resources. 
This relationship can be described as:

where taski(i = 1, 2, . . . , ∂) denotes the i-th subtask 
in the DT and ∂ denotes the number of subtasks. There 
is a dependency between subtasks in execution can be 
described as:

where st, pt and pre_task denote the start time of the 
task, the execution time of the task, and the set of other 
subtasks on which the execution of the task depends, 
respectively. pre_taski = taskj , . . . , taskk  indicates 
that the execution of  taski needs to depend on multiple 
subtasks in the precedence sequence.

During the disassembly of tasks, the main considera-
tion is the way of data transfer between different tasks, 
as shown in Fig. 1. The dependency between tasks can 
be mapped to the start time of a subtask. The delay 
time of the current subtask compared to the start of the 
execution of the parent task can be described as

In the task scheduling process, the primary focus is on 
minimizing task latency through using Advantage Actor 
Critic (A2C) to decide the allocation of tasks to specific 
data center rooms. For mapping of subtasks and servers 
within the DAG, the HEFT algorithm is used.

Reinforcement learning environment modeling
The scheduling for real-time tasks in a federated cloud 
environment is essentially a continuous decision process, 
and the use of RL can transform this scheduling problem 

(4)DT =

{

task1, task2, . . . , taski, . . . task∂
}

(5)taski =
{

st, pt, pre_task
}

(6)lt = st −min(stj , ..., stk)

Fig. 1 DAG disassembly methods
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into a Markov or Semi-Markov decision problem. There-
fore, this paper models the scheduling problem as a tri-

plet (S, A, R), where S denoting the state, A representing 
the action, and R representing the reward.

Characteristic expression of the state
The state describes the characteristics of the scheduling 
environment, which contains both local and global char-
acteristics. In RL, the actions made by the agent to inter-
act with the environment depend entirely on the state 
of the environment. The state is modeled as S (minWTi, 
maxWTi, TEi, CTi, TEN, TEM, ET, ER, CNT, CMET). 

Where minWTi and maxWTi denote the shortest wait 
time and the longest wait time of the No. i room, which is 
constructed as:

Where meti denotes the remaining execution time of 
machine i . It is assumed that each machine can execute 
only one independent subtask at a given time.

Energy consumption in a data center is mainly composed 
of two components: one is the energy consumption gener-
ated by IT equipment and the other is the energy consump-
tion generated by infrastructure. The energy consumption 
of IT equipment is mainly generated by servers, the energy 
consumption of infrastructure is mainly generated by cool-
ing equipment. There are two main cooling methods used in 
data centers: air cooling and liquid cooling, where the main 
air-cooling energy consumption is generated by the blower, 
and its power consumption is typically around one-third 
of the blower speed. According to the heat transfer theory 
and the general fan law, the energy consumption gener-
ated by the blower and the energy consumption generated 
by the server can reach a fixed ratio under strict control of 
the blower speed [39]. The energy consumption generated 
by these two cooling methods is different, and in order to 
better reduce the cooling energy consumption, the differ-
ent cooling methods can be dynamically adjusted according 
to the current load of each server room in the data center. 

(7)minWTi = min(met1,met2, ...,meti, ...,metn)

(8)maxWTi = max(met1,met2, ...,meti, ...,metn)

Thus, the energy consumption of a single server room in a 
data center can be modeled as:

TEi is the total energy consumption of server room i , 
exeTimek is the duration of server k in the computing state, 
and Ppeak is the peak power of the server. idleTimek is the 
duration of server k in the standby state, where idleTime is 
composed of two parts of the standby time: (1) the waiting 
time for the child tasks on the current server to wait for the 
completion of the execution of the parent task on which 
it depends and (2) the waiting time for all the remaining 
subtasks to be completed. Pidle represents the power of the 
server in standby state. cr represents the ratio between the 
server energy consumption and the cooling energy con-
sumption. PctStart represents the startup energy consump-
tion due to the switching of different cooling methods and 
can be modeled as:

PairStart is the start-up power for air cooling, PliquidStart 
is the start-up power for liquid cooling, exe(server) is the 
number of servers in the current server room in the com-
puting state, PairPeak is the peak cooling power for air cool-
ing, and CTi is the cooling method for server room i in the 
current data center.

The above states reflect local characteristics of the 
current data center including the load balance, energy 
consumption and cooling methods of each room in the 
current data center. The following will describe the data 
center in terms of global characteristics. TEN and TEM 
represent the total energy consumption and emissions of 
the current data center, respectively. ET represents the 
type of energy used in the current data center, which is 
the key to the federated cloud ability to reduce carbon 
emissions, because the federated cloud is composed of 
several geographically distributed cloud service pro-
viders. The type of energy used is different in different 
geographic locations, for example, most of the electric-
ity in Norway comes from hydroelectric power, while 
France mainly relies mainly on nuclear energy [49]. The 
emission ratio of the same energy consumption is differ-
ent because of the different energy types. ER represents 
the emission ratio of the energy used in the data center 
to the carbon emissions. CNT represents the number of 
subtasks contained in the current DAG, and CMET rep-
resents the execution time of the largest subtask in the 

(9)TEi =
∑n

k=1
(exeTimek ∗ Ppeak + idleTimek ∗ Pidle) ∗ (1+ cr)+ PctStart

(10)
PctStart =







PairStart
PliquidStart

0

exe(server) ∗ Ppeak < PairPeak&CTcurrent = Liquid
exe(server) ∗ Ppeak > PairPeak&CTcurrent = Air

other
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current DAG. All the above states are global states, which 
reflect the overall operation of the current data center 
and thus help the agent to make decisions, where TEN 
and TEM can be modeled as follows:

where n indicates the current number of data center 
server rooms.

Action definition
In this paper we define the action as the choice of the 
most appropriate data center to allocate the incom-
ing DAG tasks, with the aim of minimizing the energy 
and carbon emissions generated at the end of a batch 
of task scheduling. The action space is constructed as 
follows:

(11)TEN =
∑n

i=1
TEi

(12)TEM = ER ∗
∑n

i=1
TEi

where probi represents the probability of assigning the 
current DAG task to room i and probnothing represents 
the probability of not assigning the DAG task to the cur-
rent data center. To enhance the exploration capability, 
the selection of actions from the action space is based on 
probability.

Reward function
In RL, the design of the reward is crucial, as it directly 
reflects the effectiveness of the current decision made by 
the agent. However, in practice, the feedback from the 
reward is often delayed. For DAG task scheduling, after 
the task is assigned to the data center, the correctness of 
the agent’s decision is not immediately available since the 
energy consumption and emissions generated by the exe-
cution of the task are not immediately available. There-
fore, the rewards can be constructed as follows:

(13)
action = (prob1, prob2, ..., probi, ..., probn, probnothing )

Fig. 2 The overall system architecture of ERLFC
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where E(RH) represents the total energy consumption 
generated by using RoundRobin and HEFT (RH) joint 
scheduling, E(ERLFC) represents the total energy con-
sumption generated by ERLFC scheduling policy sched-
uling, EMI(RH) represents the total emission generated 
by using RH scheduling, EMI(ERLFC) represents the 
total emission generated by ERLFC scheduling policy 
scheduling, and ϑ represents the reward amplification 
ratio, which can be amplified reward to help agent to 
update in a better direction. The sum of these two ratios 
ensures that when the energy consumption and emissions 
generated by ERLFC scheduling are smaller than those 
generated by RH scheduling, the model receives positive 
feedback and can thus reinforce the learned policy.

System architecture and algorithm design
Figure 2 shows the overall system architecture of ERLFC. 
The ERLFC schedules DAG tasks in a real-time environ-
ment where the arrival of DAG tasks is not time bounded. 
To ensure the reliability of the overall scheduling, tasks are 
placed into a task queue when they arrive, and the queue 
can be represented as Q = {DT 1,DT 2, . . .DTi, . . . ,DTn, } . 
The detailed implementation of our proposed ERLFC 
architecture is accessible on GitHub [50].

The ERLFC model requires two networks in the training 
process: 1) DAG task scheduling policy network (actor) 
πθ = (ai|si) , which calculates the probability distribution 
ai of each action in the action space based on the input 

(14)
reward =

{

(
E(RH)-E(ERLFC)

E(RH)
+

EMI(RH)−EMI(ERLFC)
EMI(RH)

) ∗ ϑ

0

done = true
done = false

state si and the weight θ . 2) value network (critic) Vθ v(si) , 
which calculates the value of the state based on the input 
state Si and the weight θv . Both networks need to be opti-
mized during the training process so that the agent can 
get a more optimal objective function reward when mak-
ing the final decision.

The optimization of πθ relies on the strategy gradient 
theorem, and in updating the strategy parameters θ using 
the strategy gradient theorem, A(τ )∇logp(at |st , θ) is used, 
where A(τ ) is evaluated by critic, which is called the advan-
tage function A(τ ) = rt − (V πθ (st)− V πθ (st+1)) . where rt 
represents the real reward that the agent gets when it sees 
state St and takes action at, and V πθ (st)− V πθ (st+1) rep-
resents the reward that the agent is expected to get when 
it sees state st . When the advantage function gets the value 
A(τ ) > 0 , the probability of action at can be increased, and 
vice versa, the probability of action at can be decreased.

The specific design of the Actor-Critic network is illus-
trated in Fig.  3 and the specific parameters for network 
architecture are provided in Table 1. In a real-time environ-
ment the CNT and CMET of the future DAG tasks are usu-
ally unbounded, and the normalization of CNT and CMET 
is required to be handled specially in order for the Actor to 
perceive the importance of the current DAG task. The nor-
malization method we use is as in Eqs. (15) and (16):

(15)CNT =
∂

max(h(∂), ∂)

Fig. 3 Overview of ERLFC architecture
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The normalization method allows the model to contin-
uously learn during the training. When the value of CNT 
or CMET is 1, it means that the scale or execution time of 
the current task is never seen in the historical tasks, and 
the model should place more emphasis on the task char-
acteristics in the decision-making process.

During the agent training process, we incorporate 
proximal policy optimization (PPO) [51], which com-
bines the benefit of trust region policy optimization 
(TRPO) [52] and allows for multi-cycle small batch 
updates of the agent. PPO uses the following objective 
function in Eq. (17) to update the policy network:

where rt(θ) = πθ (at |st )
πθ old(at |st )

 , πθold represents the policy net-
work before θ updates, At = rt − (V πθ (st)− V πθ (st+1)) 
is the advantage function, and clip is a clipping function 

(16)CMET =
max(pt)

max(h(pt),max(pt))

(17)L(θ) = Et [min(rt(θ)At , clip(rt(θ), 1− ε, 1+ ε)At)]

that keeps rt(θ) within the range [1− ε, 1+ ε] , in this paper 
ε = 0.2.

The agent is responsible for assigning tasks to specific 
rooms in the specific data centers based on the character-
istics of the DAG tasks, as well as the global state of data 
centers and server rooms in the federated cloud. The rea-
son why subtasks in a DAG are not used as independent 
schedulers in task assignment is that data also generates 
a lot of energy consumption and emissions when they are 
transmitted over the network [13]. By assigning all tasks 
in a DAG to the same room, we can avoid the energy 
consumption caused by data transmission over the net-
work and the computational instability caused by network 
delays. Additionally, we can use the overlap of data trans-
mission and computation to ignore the time required for 
communication. The concept of overlapping of computa-
tion and communication has been demonstrated in [53].

In this paper, we adopt the HEFT method to assign 
independent subtasks to server rooms because HEFT 
usually assigns tasks with a global perspective and can 
minimize the makespan of the entire DAG task. The 
principle of assigning a separate subtask to a server fol-
lows the formula in Eq. (18):

where <serveri, taskj> represents the assignment of sub-
task j to server i. ms represents the smallest remaining 
execution time among all servers in the current server 
room. mrsi represents the status (remaining execution 
time) of server i in the current server room.

After assigning subtask taskj to serveri for comple-
tion, the update strategy for mrsi is:

(18)< serveri, taskj >= argmin
(∣

∣(lt +ms)−mrsi
∣

∣

)

(19)

mrsi =

{

freeTimei + exeTimej
exeTimej

lt +ms > mrsi
other

Table 1 Relevant parameters of ERLFC

Parameters Value

Input 39

Actor FC Layer 64

Actor FC Layer 128

Actor FC Layer 8

Critic FC Layer 64

Critic FC Layer 128

Critic FC Layer 1

Optimizer Adam

Loss function MSELoss

Learning rate of actor 0.001

Learning rate of critic 0.01

Fig. 4 Workflow of ERLFC at the t iteration for scheduling policy
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where freeTimei represents the extra period of idle 
time that serveri has before the execution of taskj, and 
exeTimej represents the execution time of taskj. Where 
freeTimei can be constructed as follows:

In order to better simulate the arrival of real-time 
tasks in real-world, we introduce the concept of water-
mark in our experiments [54]. The watermark represents 
a marker to measure the event time progress, which 
declares the time t at which the event time has been 
reached in the simulated environment. In the experi-
ments watermark is constructed as shown in Eq. (21):

where RETn
ki

 represents the remaining execution time 
of server i in server room k in data center n and wr rep-
resents the watermark advance rate. The main goal is to 
have an indeterminate number of tasks finish executing 
in the entire federated cloud after completing one water-
mark advance, rather than just one.

(20)freeTimei = (it +ms)−mrsi

(21)
watermark = round(min(RET 1

11
,RET

1

12
, ...,RET

n

ki
)) ∗ (1+ wr)

Algorithm 1. Training process of agent

Table 2 Data center configuration parameters

Parameters Value

Static energy consumption of a single server 0.15kw/h

Peak energy consumption of a single server 0.5kw/h

Calculation of energy consumption and air cooling energy 
consumption ratio

0.0005

Calculation of energy consumption and liquid cooling energy 
consumption ratio

0.2

Peak power for air cooling 1.55kw/h

Air-cooled starting power 0.525kw

Starting power for liquid cooling 1.5kw

Fire energy emission ratio 0.6

Solar emission ratio 0.3

Wind energy emission ratio 0.1

Water to energy discharge ratio 0.3

Hydrogen energy emission ratio 0.2

Nuclear energy emission ratio 0.3

Table 3 Details of the dataset

Dataset No Number of DAG tasks Number of 
subtasks

1 1,633 43,940

2 5,003 149,176

3 15,195 472,658
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Fig. 5 Distribution of dataset sampling tasks

Fig. 6 Training curves for ERLFC training process
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Algorithm 1 gives the training process of the agent in the 
kth epoch of the ERLFC model. Before the training, the 
state of the data center is initialized, and a set is created to 
record the parameters of the training process (lines 1–2). 
During the training process, the task is first assigned to the 
server room of the data center for execution using the pol-
icy network πθ (at |st) based on the state St (lines 5–6). Then 
HEFT is used to assign the subtasks to the corresponding 
servers for execution, and the watermark is advanced to 
end part of the task execution. The energy consumption 
and emission generated by this watermark advancing to 

the server rooms of each data center and the reward gener-
ated by this scheduling can be calculated according to the 
advancing watermark (lines 7–10). After the watermark 
advance is completed, the next state of the data center and 
the characteristics of the next task to be scheduled are cal-
culated and spliced into a new state St+1, which serves as 
the basis for the agent’s decision (lines 11–14). Once the 
task scheduling is completed, the PPO algorithm is used to 
update the policy and value networks based on the histori-
cal decision information (16–18). Figure 4 shows the work-
flow of ERLFC in the t iteration.

Fig. 7 Evaluation results with different scheduling algorithms
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Experiments and results
Experimental environment setup
The federated cloud we consider in this study is com-
posed of six data centers with geographically dispersed 
CSPs. Each data center has a data structure similar to 
that described in [39], consisting of seven server rooms, 
with each room containing 10 servers. Consequently, a 
single data center has 70 servers, and the entire federated 
cloud contains 420 servers, each sharing identical server 
configurations across all data centers. We introduce six 
types of energy sources, one corresponding to one of the 
six cloud data centers: (cloud data center 1, fire energy), 
(cloud data center 2, solar energy), (cloud data center 3, 
wind energy), (cloud data center 4, hydro energy), (cloud 
data center 5, hydrogen energy), and (cloud data center 
6, nuclear energy). Additional configurations are shown 
in Table 2.

In this paper, we conducted experiments using real 
trace data from the Google Cluster dataset [55] to 
investigate the impact of ERLFC on energy consump-
tion and carbon emissions in a federated cloud environ-
ment. Each task in the dataset is represented by a DAG, 
and each DAG subtask is as in Eq. (5). The task execu-
tion time is estimated during task scheduling and can 
be predicted based on historical execution data [56]. 
In order to evaluate the stability of the model’s deci-
sions in a real-time environment, we tested the model 
using three different numbers of tasks, and the details 
of the datasets are shown in Table  3. To analyze the 
distribution of the subtask numbers in the DAG tasks 
in the different datasets, we randomly sampled 1% of 
the data and plotted the results in Fig.  5. The results 
show that there are more small-scale DAGs in the data-
sets, but the number of subtasks in each DAGs varies 
widely, and the distribution is irregular, thus testing the 
ERLFC model’s ability to make decisions in the face of 
unknown tasks.

Training process
The training process utilizes dataset 1, and Fig.  6 pre-
sents the energy consumption, carbon emission and 
cumulative reward change curves during the training. It 
is observed that the convergence of the agent is very fast 
during the training process. The PPO algorithm used in 
this study allows for complete exploration of each state, 
contributing to this rapid convergence.

Results and discussions
To evaluate the performance of ERLFC for task schedul-
ing, we compared it with four baseline algorithms:

Round Robin algorithm: A round-robin approach is 
used to select data centers, and then machine rooms 
are selected in a round-robin fashion for task assign-
ment.
Random algorithm: The scheduling of this task will 
select a random server room from a random data 
center.
SO algorithm [57]: Scheduling of tasks using SO 
algorithms taking into account of energy consump-
tion, carbon emissions and makespan metrics.
GJO algorithm [58]: Scheduling of tasks using GJO 
algorithms taking into account of energy consump-
tion, carbon emissions and makespan metrics.

In order to evaluate the effectiveness of the trained 
ERLFC, we use it in conjunction with the four aforemen-
tioned algorithms for scheduling varying quantities of 
DAG tasks and sub-tasks, and the experimental results 
are shown in Fig. 7.

Figure  7 shows the comparison between ERLFC and 
the four algorithms regarding energy consumption and 
carbon emission for different datasets. It can be seen 
that for dataset 1, RoundRobin, Random, SO and GJO 
consume 1.01, 1.06, 1.05 and 1.09 times more energy 

Fig. 8 Comparison of makespan
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and emit 1.02, 1.06, 1.06, 1.09 times more carbon com-
pared to ERLFC, respectively. For the dataset 2 energy 
consumption and carbon emissions are 1.10, 1.15, 1.24 
and 1.26 times higher than those of ERLFC. For dataset 
3, energy consumption and carbon emissions are 1.09, 
1.08, 1.21 and 1.26 times higher than those of ERLFC. To 
ensure stability of the experimental results we have taken 
the average of the outcomes over 10 iterations for the 
Random algorithm.

From the experimental results, it can be seen that the 
heuristic scheduling algorithm (SO and GJO algorithms) 
can obtain better results than the traditional schedul-
ing algorithm (RoundRobin and Random algorithms) 
for small data volume, mainly because the difference in 
the state of the data centers is relatively small, and the 
heuristic algorithm can obtain better results through 
the optimization search, and the traditional scheduling 
algorithm can make the load between the data centers 
more balanced for large data volume, but the heuristic 
algorithm cannot use the state information of the data 
centers, which leads to a significant increase in energy 
consumption and emissions. The heuristic algorithms 
are unable to use the state information of the data center 
which leads to a significant increase in energy consump-
tion and emissions. ERLFC algorithm achieves better 
results because it uses the state information of the data 
center and can sense the state of the data center in the 
real-time environment, so that the tasks can be assigned 
to a more appropriate machine to execute, thus reducing 
energy consumption and carbon emissions. For real-time 
task scheduling makespan is also a more important met-
ric and Fig. 8 shows the comparison between ERLFC and 
the baseline algorithms in terms of makespan.

Figure  8 shows that ERLFC’s reduction in energy con-
sumption and carbon emissions does not come at the 
expense of makespan, and thus ERLFC’s scheduling of real-
time tasks is better able to satisfy service level agreements.

The task’s delay is also an important indicator for 
assessing the scheduling performance of the model. The 
introduction of watermark becomes significant due to 
the uncertainty associated with the task’s arrival time. In 
this study, the task delay time is primarily defined as the 
duration between the assignment of the task to the server 
and the actual execution time of the task. Considering 
the substantial variation in task execution times within 
the Google dataset, there is a heightened demand for 
the model’s load balancing capability. Figure 9 illustrates 
the delay times incurred by various task scheduling algo-
rithms during the scheduling process.

In Fig. 9, it is evident that with a small number of tasks, 
the delay time is shorter. However, as the number of 
tasks increases, a noticeable increase in task wait times 
is observed. Notably, the ERLFC model exhibits frequent 

task waiting as the task count rises on dataset 3. Despite 
this, in comparison to other algorithms, the overall wait-
ing time for tasks remains relatively small. This is pri-
marily attributed to the increment in task volume and, 
secondarily, to the model strategically assigning tasks for 

Fig. 9 Comparison of delay time
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execution in data centers with lower energy consumption 
and emissions. The goal is to mitigate energy usage and 
emissions. Given the comparatively minimal delay intro-
duced by ERLFC in scheduling dataset 3, Fig. 10 provides 
a dedicated visualization of task delay.

Conclusion
The significant energy consumption and carbon emission 
in cloud environments have hindered the development 
of cloud computing. In this paper, we explore the use of 
reinforcement learning for real-time task scheduling on a 
federated cloud, taking into account the energy consump-
tion caused by different cooling methods in data centers. 
In order to reduce the energy consumption and carbon 
emission of data centers, we use the different CSP data 
center locations and energy sources in the federated cloud 
to optimize the energy consumption and carbon emission. 
Additionally, we introduce Watermark to simulate the ran-
domness of task arrival in a realistic environment. The 
simulation results demonstrate that the ERLFC algorithm 
effectively reduces data center energy consumption and car-
bon emissions by 1.09, 1.08, 1.21, and 1.26 times in terms of 
energy savings and emissions reduction when compared to 
the RoundRobin, Random, SO, and GJO algorithms in the 
scheduling of real-time tasks. Therefore, the ERLFC pro-
posed in this paper provides an effective solution to reduce 
the energy consumption and carbon emission generated by 
data centers. For future work, we will explore the scheduling 
capabilities of ERLFC for specialized domains, considering 
task scheduling and server shutdown in heterogeneous sce-
narios with multiple different data center resources.
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