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Abstract 

In this study, we present the EEG‑GCN, a novel hybrid model for the prediction of time series data, adept at address‑
ing the inherent challenges posed by the data’s complex, non‑linear, and periodic nature, as well as the noise that fre‑
quently accompanies it. This model synergizes signal decomposition techniques with a graph convolutional neural 
network (GCN) for enhanced analytical precision. The EEG‑GCN approaches time series data as a one‑dimensional 
temporal signal, applying a dual‑layered signal decomposition using both Ensemble Empirical Mode Decomposi‑
tion (EEMD) and GRU. This two‑pronged decomposition process effectively eliminates noise interference and distills 
the complex signal into more tractable sub‑signals. These sub‑signals facilitate a more straightforward feature analysis 
and learning process. To capitalize on the decomposed data, a graph convolutional neural network (GCN) is employed 
to discern the intricate feature interplay within the sub‑signals and to map the interdependencies among the data 
points. The predictive model then synthesizes the weighted outputs of the GCN to yield the final forecast. A key 
component of our approach is the integration of a Gated Recurrent Unit (GRU) with EEMD within the GCN framework, 
referred to as EEMD‑GRU‑GCN. This combination leverages the strengths of GRU in capturing temporal dependencies 
and the EEMD’s capability in handling non‑stationary data, thereby enriching the feature set available for the GCN 
and enhancing the overall predictive accuracy and stability of the model. Empirical evaluations demonstrate 
that the EEG‑GCN model achieves superior performance metrics. Compared to the baseline GCN model, EEG‑GCN 
shows an average R2 improvement of 60% to 90%, outperforming the other methods. These results substantiate 
the advanced predictive capability of our proposed model, underscoring its potential for robust and accurate time 
series forecasting.
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Introduction
In the era of rapid industrialization and informatization, 
people are increasingly relying on various sensors to 
obtain data [1]. Due to the large and constantly increas-
ing number of sensors deployed by humans, the explosive 
growth of time series data in various fields has followed 
suit. Today, time series data has become one of the most 
common types of data, such as changes in air quality 
data in a region, traffic flow changes at a certain inter-
section in a road network, fluctuations in stock prices in 
the stock trading market, greenhouse gas emissions and 
agricultural effects   [2–4], all of which are recorded and 
represented in a time series. Researchers can analyze 
these recorded data to further explore the hidden pat-
terns behind these changes. The more accurate research-
ers’ analysis of these patterns, the higher the accuracy of 
time series prediction. Accurately predicting time series 
data is beneficial for us to plan ahead and better allocate 
resources. The environmental protection department of 
the government can use historical air quality data in a 
region to predict the changes in air quality data in that 
region in the future, thereby making better arrangements 
for pollution prevention and control in that area [5]. In 
industrial production, managers can make better plans 
for the use of resources such as electricity, natural gas, 
and coal by predicting and analyzing time series data [6]. 
The traffic management department can use information 
on historical traffic flow to predict road congestion and 
remind people to arrange better travel routes in advance 
[7]. Time series data prediction has now become a very 
popular research direction, which can help people make 
corresponding plans in advance, reduce costs, improve 
efficiency, and is of great significance to improve social 
productivity  [8–10].

In the field of traffic volume forecasting, models can 
broadly be categorized into parametric and non-par-
ametric based on their structural foundation. Moreo-
ver, within the domain of deep learning methodologies, 
models are subclassified into generative, discrimina-
tive, and hybrid deep structures, each demonstrating its 
unique capabilities and advancements over time [11]. The 
evolution of research has seen a shift from traditional 
parametric statistical models towards non-parametric 
and subsequently to hybrid models, indicating a pro-
gression towards more complex and nuanced modeling 
techniques.

Early applications of parametric models often 
employed growth curves for forecasting metrics like rail 
transit passenger volumes (Yuan et  al. [12]). Common 
among these parametric approaches are various time-
series models and their derivatives, which are praised for 
their simplicity and interpretability [13–15]. Nonethe-
less, these models traditionally falter when addressing the 

non-linear nature of traffic flows, often leading to sub-
stantial prediction errors.

To mitigate the shortcomings of parametric models, 
non-parametric models like the support vector regres-
sion (SVR) algorithm have been introduced with nota-
ble success. Toan. T.D reported that SVR shows superior 
performance in forecasting traffic flow, particularly with 
small-sample, high-dimensional data sets characterized 
by non-linearity, offering a robust generalization capa-
bility that circumvents overfitting and thereby provides 
more accurate short-term urban traffic flow predictions 
[16].

Exploring the utility of recurrent neural networks, 
Yutian Liu. investigated three RNN variants applied to 
traffic data, concluding that RNNs offer commendable 
prediction capabilities, albeit with LSTM models showing 
slightly higher error rates [17]. Luo Xianglong. enhanced 
the training efficiency of support vector machines (SVM) 
by integrating the Discrete Fourier Transform (DFT) 
method, which helped to reduce the training scale and 
expedited the training process without compromising 
prediction accuracy [18].

In another innovative approach, Changxi Ma. lever-
aged a hybrid model combining Spatiotemporal Feature 
Selection Algorithm (STFSA) with a convolutional neural 
network (CNN) to create a two-dimensional matrix for 
short-term traffic flow prediction, yielding better accu-
racy than single models like SVR, SARIMA, KNN, ANN, 
or even combined models like STFSA-ANN [19]. Wang 
S. extended this hybrid model concept by integrating 
STFSA with a gated recurrent unit (GRU), which exhib-
ited substantial improvements over standalone CNN and 
GRU models in both precision and reliability for short-
term traffic forecasting [20].

Noreen Zaffer put forward a CNN-LSTM multi-step 
prediction model that incorporated feature data with an 
attention mechanism, showcasing an impressive accu-
racy rate of nearly 99%, with effective application across 
varying conditions such as peak and non-peak hours, and 
differentiating between working days and holidays [21]. 
Zhang W. proposed three hybrid deep learning models 
(CL-CN-G, CL-CNG, and G-CN-CL) integrating CNN, 
GRU, and ConvLSTM to specifically address the fore-
casting of traffic flow under distinctive conditions such 
as holidays and adverse weather scenarios. Case stud-
ies demonstrated the high accuracy and efficacy of these 
models, with the G-CN-CL model being particularly out-
standing  [22, 23].

This trajectory of research underscores a dynamic shift 
towards leveraging the strengths of various modeling 
techniques to enhance predictive performance in traf-
fic volume forecasting. The integration of deep learn-
ing architectures and hybrid models exemplifies the 
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innovative strides in the field, aiming to tackle the inher-
ent non-linear and complex patterns observed in traffic 
data.

The research contribution of integrating Ensem-
ble Empirical Mode Decomposition (EEMD), Gated 
Recurrent Unit (GRU), and Graph Convolutional Net-
work (GCN) for prediction purposes lies in addressing 
the complexities of time-series data that are both spa-
tially and temporally correlated. Each component of the 
EEMD-GRU-GCN method brings a unique strength to 
the prediction model, making the collective methodology 
robust and sophisticated for various forecasting tasks. 
Here’s how each component contributes:

Ensemble Empirical Mode Decomposition (EEMD)
Data decomposition
EEMD effectively decomposes non-linear and non-sta-
tionary time series data into a finite number of intrinsic 
mode functions (IMFs), which simplifies the complexity 
of the original data.

Noise reduction
It helps in reducing noise and enhancing the signal-to-
noise ratio, which is crucial for accurate forecasting.

Feature extraction
EEMD is an advanced feature extraction technique that 
identifies the underlying structures within the data, 
which can be critical for understanding complex patterns.

Gated Recurrent Unit (GRU)
Temporal relationships
GRU is a type of recurrent neural network that is particu-
larly good at capturing temporal dependencies, even over 
long sequences, which is vital for time-series prediction.

Modeling dynamics
It allows the model to include the dynamics of the system 
being studied, learning when to forget previous inputs 
and when to update its beliefs with new data.

Efficiency
GRUs are computationally more efficient than other 
types of RNNs, like LSTMs, without compromising the 
performance, making them suitable for real-time predic-
tion tasks.

Graph Convolutional Network (GCN)
Spatial correlation
GCN extends the utility of convolutional neural networks 
to graph-structured data, enabling the model to capture 
spatial correlations in data that cannot be represented in 
a Euclidean space.

Complex relationships
It is particularly useful for datasets where the relation-
ships between entities are as important as the enti-
ties themselves, such as in traffic networks or social 
networks.

Scalability
GCNs are scalable to large datasets, making them 
applicable to complex systems with numerous interact-
ing components.

Research Contribution of the EEMD‑GRU‑GCN Method
The combination of EEMD, GRU, and GCN in a single 
predictive framework leads to a powerful approach for 
tackling prediction problems:

Holistic analysis
The EEMD-GRU-GCN method can provide a holistic 
analysis of time-series data by taking into account both 
the temporal sequence and spatial connections between 
different parts of the data.

Enhanced accuracy
The multi-faceted nature of the approach leads to 
improved prediction accuracy, as it can deal with vari-
ous types of irregularities in the data.

Versatility
This method can be adapted to a wide range of appli-
cations, from financial markets and energy load fore-
casting to environmental monitoring and traffic flow 
prediction.

Improved generalization
By combining EEMD’s feature extraction, GRU’s tem-
poral dynamics learning, and GCN’s spatial relation-
ship understanding, the model is less likely to overfit 
and more likely to generalize well to unseen data.

Advanced insights
The method can also provide insights into the nature of 
the data being studied, revealing complex interdepend-
encies that simpler models might miss.

Research backgroud
Research on time series data prediction can generally 
be divided into three directions, namely, research on 
prediction methods based on statistics, research on 
prediction methods based on machine learning, and 
research on prediction methods based on hybrid mod-
els. Among them, machine learning includes traditional 
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machine learning and deep learning, and hybrid predic-
tion models mainly consist of two parts: signal decom-
position of time series data and time series prediction.

Traditional method
In the realm of energy system forecasting, considerable 
advancements have been made to identify efficacious 
methodologies suitable for real-world application. Such 
forecasting models are crucial in mitigating system fail-
ure risks and enhancing the reliability of energy systems 
through the projection of future scenarios [24].

Historically, an analog methodology was initially 
employed to project wind speed distributions, repre-
senting a nascent step in predictive modeling [25]. This 
was superseded by the advent of time series models, 
which aimed to forecast wind power several hours ahead, 
thereby facilitating more agile energy management strat-
egies [26]. For short-term wind speed forecasting, the 
Kalman filter emerged as a dynamic tool that assimilated 
new data to refine predictions continually [27].

Traditional statistical methods have long been used 
to emulate the characteristics of time series data, such 
as ARIMA (Auto-Regressive Integrated Moving Aver-
age) and AR-ARCH (Auto-Regressive Conditional Het-
eroskedasticity), both of which have found applications 
in financial markets for predicting return rates [28]. The 
fractional-ARIMA model, which offers predictive capa-
bilities for several days in advance, demonstrated supe-
rior accuracy compared to the persistence model in a 
case study involving a 750 kW wind turbine [29]. More-
over, the ARIMA model has been effectively adapted to 
forecast global solar irradiance, with modifications such 
as the combination of ARIMA and repeated wavelet 
transform yielding significant improvements in forecast-
ing performance [30].

In an innovative step, Wang et  al. incorporated an 
extreme learning model with ARIMA, validating its accu-
racy through various case studies for wind projection 
[31]. The synergy between Artificial Neural Networks 
(ANN) and ARIMA in a hybrid model developed by K R 
Nair underscored the potential for greater accuracy than 
when these models operate independently [32]. The inte-
gration of machine learning techniques with ARIMA has 
been suggested to further enhance the precision and con-
sistency of wind speed forecasts (Liu et  al. [33]). Addi-
tionally, Asim et al., introduced an ARIMA-based model 
designed to improve accuracy and manage the uncertain-
ties inherent in wind speed prediction and carbon emis-
sion control [34, 35].

It is critical to acknowledge that ARIMA-based mod-
els exhibit optimal performance with stationary time 
series data. However, energy-related time series such as 

solar radiation and wind speed typically manifest sea-
sonality and trends. To address these non-stationary 
characteristics, the Seasonal ARIMA (SARIMA) model 
has been employed, with Xianqi Z. demonstrating its 
high accuracy in predicting thermal energy require-
ments for district heating systems [36]. The SARIMA-
RVFL (Random Vector Functional Link) model, 
designed for short-term solar photovoltaic generation 
predictions, and Wang H. et  al.’s application of the 
SARIMA model for monthly wind velocity forecasting 
have both shown improved accuracy over traditional 
ARIMA-based approaches [37].

ANNs have seen widespread use due to their capacity 
to resolve complex nonlinear equations, thus enabling 
predictions across diverse future scenarios. Time series 
statistical methods coupled with ANNs have been 
extensively applied in the prediction of solar and wind 
energy patterns (Shuai Hu et al. [38]). The implementa-
tion of ANN techniques in solar irradiance prediction 
has yielded more accurate results compared to empiri-
cal regression models [39]. Diverse ANN architectures 
such as feed-forward propagation (FFBP), adaptive 
linear element (ADALINE), and radial basis function 
neural networks (RBFNN) have demonstrated vary-
ing levels of forecasting acuity, contingent upon their 
respective structures and parameterizations [40]. Feed-
forward neural networks (FFNN) have been broadly 
applied to wind power prediction with satisfactory 
accuracy [41].

A novel approach using genetic neural networks 
(GNN), which apply a genetic algorithm for weight and 
bias optimization instead of the traditional backpropa-
gation method, has shown promising results in wind 
velocity prediction [42, 43]. Enhancing ANN training 
with particle swarm optimization (PSO) has also been 
reported to produce superior outcomes compared to 
conventional training methods [44]. For instance, a 
study employing ANN to predict solar irradiance a 
day ahead in a grid-connected solar photovoltaic plant 
reported a mean absolute error (MAE) of 3.21% and a 
mean bias error (MBE) of 8.54% [45].

Support vector machines (SVMs), which are adept 
at modeling non-linear data patterns similar to ANN 
techniques, have exhibited improved prediction perfor-
mance in multi-layer perception neural networks (Unc-
uoglu, et  al. [46]). Additionally, wavelet networks—a 
hybrid of wavelet theory and neural network methodol-
ogy—have been applied in solar irradiance prediction, 
with one particular study demonstrating their competi-
tive performance against other neural network tech-
niques [47]. Both ANNs and SVMs have demonstrated 
proficiency in capturing and modeling the complex 
non-linear trends in energy forecasting.
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Series decomposition methods for prediction
In the realm of short-term load forecasting (STLF), sev-
eral methodologies have been employed over the years 
to enhance prediction accuracy, such as traditional 
algorithms, Similar Day (SD) selection, Empirical Mode 
Decomposition (EMD) techniques, artificial intelligence 
(AI), and an amalgamation of different forecasting mod-
els [48, 49]. Deep Learning-Based Trees Disease Rec-
ognition and Classification Using Hyperspectral Data. 
Computers, Materials & Continua. 77. 681–697. https:// 
doi. org/ 10. 32604/ cmc. 2023. 037958.). The ever-evolv-
ing energy grids have necessitated the incorporation of 
diverse variables in forecasting models, such as climatic 
conditions, seasonal holidays, and dynamic pricing struc-
tures [50], revealing the inadequacies of conventional 
forecasting approaches that often struggle with non-lin-
ear dynamics [51].

The SD selection method relies on the analysis of his-
torical data, pinpointing past days with load patterns that 
resemble the target day’s expected conditions. Attributes 
like the day of the week and meteorological conditions 
serve as a basis for prediction (Maxwell et al. [52]). This 
method has been refined through the integration of the 
XGB algorithm to determine attribute significance and 
calculate distances for optimal SD selection [53]. Despite 
its utility, the standalone SD method may not fully encap-
sulate the intricate nature of electrical load patterns, 
prompting researchers to suggest its combination with 
other predictive techniques for improved robustness [54].

AI and machine learning (ML) technologies are 
increasingly adopted by electric utility providers to tackle 
complex load forecasting. Despite significant research 
efforts, achieving high accuracy in STLF remains a com-
plex endeavor due to the non-stationarity of electrical 
load data and the prediction of long-term dependencies 
[55]. Models such as Long Short-Term Memory (LSTM) 
networks and their bidirectional variants (BiLSTM) are 
used to forecast demand-side load across different time 
horizons (Ullah I, et  al. [56]). Gated Recurrent Unit 
(GRU) models have found applications in forecasting 
short-term load for electric vehicle (EV) charging sta-
tions and battery state-of-charge predictions [57, 58]. 
Comparative assessments of LSTM, BiLSTM, and GRU 
models indicated the superior performance of BiLSTM in 
predicting the load for EV fleets, despite the challenges 
posed by the complexity of aggregate load data [59].

The EMD method has become a staple in diverse fore-
casting applications, ranging from energy consump-
tion to renewable energy outputs and commodity prices 
[60]. It excels at distilling original datasets into intrinsic 
mode functions (IMFs), facilitating the analysis of unsta-
ble and non-stationary time series data [61]. Among the 
variations of EMD, the Complete Ensemble EMD with 

Adaptive Noise (CEEMDAN) stands out for its efficient 
spectral separation capabilities at a reduced computa-
tional load [62]. Recent advancements have seen the 
CEEMDAN method utilized to enhance the input/output 
data structures for electrical demand forecasting, yield-
ing models with substantially improved accuracy [63].

The convergence of these advanced methodologies sig-
nifies a progressive stride in the field of STLF, highlight-
ing a collective move towards intricate, multi-faceted 
approaches that address the complex nature of power 
consumption patterns. Integrating various models and 
techniques to compensate for individual limitations has 
become a key strategy in developing more reliable and 
precise forecasting systems.

In the early stages of research on time series predic-
tion, researchers first used methods based on statistics to 
complete the task. Nepal B. et al. used an autoregressive 
moving average model (ARMA) to predict power load 
[64]. However, since most time series data have strong 
non-stationarity, ARMA does not have good predictive 
performance for non-stationary time series. In order to 
better handle non-stationary time series data, scholars 
have improved the ARMA model by adding differen-
tial terms to obtain the ARIMA model, which can ana-
lyze the periodicity and oscillations of time series data. 
Saglam M. used the ARIMA model to predict Turkey’s 
energy demand [65]. Although statistical time series pre-
diction models have achieved good predictive perfor-
mance, when faced with time series data with increasing 
volume and complexity, models based on statistics are 
overwhelmed.

With the emergence of machine learning, research-
ers have seen new solutions. Brouno et  al.  66] used the 
support vector machine (SVM) method to predict stock 
trends, while Gupta et al. used SVM to construct a time 
series prediction model [67]. The experiments showed 
that SVM has stronger feature extraction capabilities for 
nonlinear data compared to prediction models based on 
statistics and better robustness to noise in data. Ashfaq 
et al. used the KNN method to predict short-term power 
load [68]. KNN is a non-parametric unsupervised learn-
ing algorithm which is simple, easy to use and has strong 
applicability, while [69] used ANN to predict AQI time 
series data in the air. ANN is a combination of multiple 
neurons capable of non-linear output. Compared with 
classical machine learning methods such as SVM and 
KNN, it has stronger data fitting ability. Deep learn-
ing is an important branch of machine learning. With 
the increase of data volume and computing power, deep 
learning has become increasingly prominent. Deep learn-
ing can learn more complex data features [70]. Recurrent 
neural networks (RNN) can retain previously processed 
information and pass it to the next time step, making 

https://doi.org/10.32604/cmc.2023.037958
https://doi.org/10.32604/cmc.2023.037958


Page 6 of 19Han et al. Journal of Cloud Computing           (2024) 13:20 

them very suitable for solving time series prediction tasks 
However, when the input sequence data is long, RNN 
may encounter the problems of vanishing or exploding 
gradients. To improve this problem, researchers have 
improved RNN and obtained the long short-term mem-
ory network (LSTM). (Zha et  al. [71]) used the convo-
lutional neural network (CNN) combined with LSTM 
to predict natural gas production, using CNN to extract 
data features and further improve the predictive accuracy 
of the LSTM network. Graph convolutional neural net-
work (GCN) has strong learning ability for data relations. 
Zhang et  al. [72] predicted traffic flow using a GCN-
based model.

In recent years, more and more scholars have started 
to use hybrid models to complete time series prediction 
tasks. Hybrid prediction models generally consist of two 
parts: signal decomposition and signal prediction. Com-
monly used signal decomposition methods include EMD, 
EEMD, VMD, etc. Compared with single-structured pre-
diction models, hybrid models often achieve better per-
formance [73, 74] used EMD to decompose the original 
sequence data and then used SVM to predict to achieve 
short-term power load forecasting. Shu et  al. [75] used 
EMD to decompose the original sequence data, then 
extracted features using CNN, and finally used LSTM 
neural network to model the extracted features and 
obtain predictive results. Experiments have shown that 
this model performs significantly better than single mod-
els. However, EMD lacks rigorous mathematical proof 
and may produce mode mixing in some cases. EEMD is 
a method improved from EMD to solve the problem of 
mode mixing. Wu et al. [76] used EEMD combined with 
LSTM to predict oil prices. Yin S. et  al. [77] predicted 
international financial data using a combination model 
of VMD, ARIMA, and TEF. However, VMD cannot effec-
tively decompose the non-periodic parts of non-station-
ary signals.

Proposed methods
Before introducing how the EEMD-CEEMDAN-GCN 
hybrid model predicts time series data, we first briefly 
describe the basic principles of the relevant theories used 
to construct this model, namely, the Ensemble Empirical 
Mode Decomposition (EEMD), the Complete Ensemble 
Empirical Mode Decomposition with Adaptive Noise 
(CEEMDAN), and the principle and application of Graph 
Convolutional Neural Network (GCN).

The Ensemble Empirical Mode Decomposition (EEMD) 
is an advanced time series analysis method used to pro-
cess complex data. It is particularly useful for non-linear 
and non-stationary time series. EEMD is an improvement 
over the original Empirical Mode Decomposition (EMD) 
process, which was developed to decompose a signal into a 

finite set of intrinsic mode functions (IMFs) that are simple 
oscillatory modes.

Here’s an overview of the EEMD method with a focus on 
the mathematical formulae involved:

Empirical Mode Decomposition (EMD)
The EMD method decomposes a signal x(t) into a sum of 
oscillatory components called intrinsic mode functions 
(IMFs) and a residue r(t):

The IMFs are functions that satisfy two conditions:

1. The number of extrema and the number of zero-
crossings must either equal or differ at most by one.

2. At any point, the mean value of envelope defined by 
the local maxima and the envelope defined by the 
local minima is zero.

Ensemble Empirical Mode Decomposition (EEMD)
EEMD improves upon EMD by adding white noise to the 
signal to assist in the sifting process and to prevent mode 
mixing. The steps are as follows:

1. Add white noise:

Add a white noise series Wn(t) to the signal:

where n represents the ensemble number.

2. Decompose:

Decompose each noisy signal Wn(t)  using EMD to get 
IMFs:

where Nn is the number of IMFs obtained for the n-th 
ensemble.

3. Ensemble mean:

Repeat the above steps for N ensembles and take the 
ensemble mean of the.

corresponding IMFs to get the final set of IMFs:

x(t) =
n

i=1
IMFi(t)+ r(t)

xn(t) = x(t)+ wn(t)

xn(t) =
∑Nn

i=1
IMFi,n(t)+ rn(t)

IMFi(t) =
1

N

∑N

n=1
IMFi,n(t)
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where i indicates the i-th IMF.

4. Final decomposition:

The final decomposition of the original signal using 
EEMD is given by:

where NIMFs is the total number of IMFs averaged 
across all ensembles, and r(t) is the residual signal after 
subtracting all IMFs.

The addition of white noise in multiple ensembles 
serves to cancel out the noise in the averaging process, 
allowing for a more stable and robust extraction of the 
IMFs. Each IMF can then be analyzed to understand 
the underlying processes or used in forecasting models 
for prediction.

GCN
Graph Convolutional Networks (GCNs) are a powerful 
neural network architecture for processing data that 
is structured as graphs. They are used to capture the 
dependence of graphs via message passing between the 
nodes of graphs. Here’s a basic overview of the GCN 
methodology along with mathematical formulae:

GCN Overview
In a GCN, every node

Let G = (V, E) be a graph with nodes v ∈ V and edges 
e ∈ E. Let X be the node feature matrix where each row 
represents the feature vector of a node. Let A be the 
adjacency matrix of G, and D be the diagonal degree 
matrix where Dii is the sum of the weights of all edges 
attached to node i.

The graph convolution operation is defined as 
follows:

where:

• H(l) is the matrix of activations in the l-th layer; 
H(0) = X.

• W(l) is the weight matrix for the l-th layer.
• Ã = A + IN is the adjacency matrix of the graph G 

with added self-connections IN(identity matrix).
• D̃ is the diagonal degree matrix of Ã.
• σ(·) is the activation function, such as ReLU σ

(x) = max(0, x).

x(t) =
∑NIMF

i=1
IMFi(t)+ r(t)

H (l+1)
= σ(D̃−

1
2 ÃD̃−

1
2H (l)W (l))

Normalization
The normalization term D̃−

1
2 ÃD̃−

1
2 is crucial as it pre-

vents the scale of the features from increasing with the 
number of nodes.

Multi-layer GCN.
A multi-layer GCN can be constructed by stacking 

multiple graph convolution layers:

where L is the number of layers, and Z is the output 
of the final layer which can be used for tasks like node 
classification, graph classification, or link prediction.

Feature learning
The GCN model learns to map nodes to a space where 
the graph structure is maximally informative about 
the nodes’ final representations, making it effective for 
tasks that require capturing the dependencies in graph-
structured data. This generalized method allows GCNs 
to be applied to any graph, providing a means for the 
nodes to effectively “communicate” with each other and 
thereby learn a representation that is informed by their 
local graph neighborhood.

Proposed EEG‑GCN model
The EEMD-GRU-GCN (Ensemble Empirical Mode 
Decomposition—Gated Recurrent Unit—Graph Con-
volutional Network) prediction algorithm is a complex, 
hybrid model that combines signal processing, recur-
rent neural networks, and graph-based neural networks 
to predict time series data. Below is a conceptual out-
line of how you might implement such an algorithm, 
divided into stages for clarity:

Stage 1: Signal Decomposition with EEMD.
Signal Preprocessing

Prepare your time series data, handling any missing 
values, anomalies, and normalizing if necessary.

Apply EEMD
Use Ensemble Empirical Mode Decomposition to 
decompose the time series into a set of intrinsic mode 
functions (IMFs).

This step helps in handling non-stationary and non-
linear properties of the time series.

H (l+1)
= σ(D̃−

1
2 ÃD̃−

1
2H (l)W (l))

.

.

.

Z = H (L)
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Stage 2: feature learning with GRU 
Prepare data for RNN
Transform the IMFs into sequences suitable for RNN 
processing.

Define a window size that represents how many past 
time steps are used to predict the future value.

Design GRU network
Construct a GRU architecture, which is particularly 
effective in capturing temporal dependencies.

Configure the network with an appropriate number 
of units and layers for your problem.

Train GRU model
Train the GRU on the sequences from the decomposed 
time series.

You may train individual GRU models for each IMF 
or a single GRU model on all IMFs combined, depend-
ing on the complexity and characteristics of the data.

Stage 3: graph‑based learning with GCN
Feature extraction
Extract relevant features from the GRU model’s out-
puts. These features represent learned temporal pat-
terns in the data.

Construct graph
Build a graph where nodes represent different entities 
or time steps in your data.

Define edges based on the relationships or interac-
tions between these entities/time steps.

Design GCN model
Set up a Graph Convolutional Network that can oper-
ate on the graph structure, taking the features extracted 
by the GRU as input.

Train GCN model
Train the GCN to learn the interdependencies repre-
sented in the graph structure.

This stage allows the model to capture complex pat-
terns that are not just temporal but also structured in a 
non-Euclidean space (the graph).

Stage 4: prediction and model evaluation
Combine models for prediction
Integrate the outputs from both the GRU and the GCN 
models.

This could involve a simple concatenation of fea-
tures, a weighted average, or a more complex fusion 
technique.

Make predictions
Use the combined model to make predictions on new 
data.

Post-process these predictions if necessary to ensure 
they are in the correct format or scale.

Evaluate Performance
Assess the model’s accuracy, stability, and generalization 
using appropriate metrics (e.g., R^2, MAE, RMSE).

Stage 5: optimization and refinement
Hyperparameter tuning
Optimize the model by tuning hyperparameters such as 
learning rates, window sizes, and the number of units in 
the GRU and GCN.

Model refinement
Refine the model by incorporating domain-specific 
knowledge into the graph structure or by enhancing the 
signal decomposition step.

Experiment with different architectures or addi-
tional layers like attention mechanisms to improve 
performance.

Stage 6: deployment and monitoring
Deployment
Deploy the model for real-world prediction tasks.

Ensure there’s a pipeline for feeding new data into the 
model and for handling real-time predictions if necessary.

Continuous monitoring
Regularly monitor the model’s performance to detect any 
drift or performance degradation.

Update and retrain the model with new data as it 
becomes available. The overall structure diagram is 
shown in Fig. 1.

Experimental setting and results
Dataset description
In this section, the three standard datasets used in the 
experimental part of this paper are introduced: Air Qual-
ity, Energy and Traffic.

Air quality dataset
The Air Quality dataset contains air quality data recorded 
by sensors in Guangzhou, Guangdong Province, China 
from January 1, 2017 to August 14, 2021, with a sampling 
frequency of once a day.
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Energy dataset
The Energy dataset contains energy data recorded by sen-
sors in Netherlands between August 4, 2022 and April 23, 
2023, with a sampling frequency of once every 15 min.

Traffic dataset
The Traffic dataset contains traffic flow data recorded by 
sensors on roads in London between November 1, 2015 
and June 30, 2017, with a sampling frequency of once an 
hour.

Experimental settings
Python 3.8.5 and Pytorch1.7.0 are used to implement the 
proposed algorithm. The training hardware consists of 
an i7-10700K CPU and an NVIDIA GeForce RTX 3090 
GPU. Table  2 shows the hyperparameter setting for all 
the models used in this study.

In order to compare the performance of various pre-
diction algorithms, this paper selects four evaluation 
metrics, MAE, MSE, MAPE, and R2, to evaluate the pre-
diction performance of the proposed model. They stand 
for Mean Absolute Error, Mean Square Error, Mean 
Absolute Percentage Error, and R Squared, respectively. 
Their formulas are as follows:

1) MAE refers to Mean Absolute Error in machine 
learning, which is a common metric used to evalu-

ate the accuracy of prediction models. It reflects the 
degree of difference between the predicted values 
and actual values of the model, with the calculation 
formula being the absolute difference between the 
predicted and actual values divided by the total num-
ber of samples. A smaller MAE indicates better pre-
dictive ability of the model.

2) MSE stands for Mean Squared Error. It is a common 
metric used in the evaluation of machine learning 
models and other prediction models. MSE measures 
the average of the squared differences between the 
predicted and actual values of a target variable in a 
dataset. A lower MSE score indicates that the model 
is better at making accurate predictions.

3) MAPE stands for Mean Absolute Percentage Error. 
It is a measure of accuracy used in forecasting 
and prediction models to evaluate the difference 
between actual and predicted values. It is calculated 
as the average of the absolute percentage differences 

(1)MAE =
1

n

n∑

i=1

∣∣̂yi − yi
∣∣

(2)MSE =
1

n

n∑

i=1

(
ŷi − yi

)2

Fig. 1 Proposed model
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between the actual and predicted values, expressed 
as a percentage. MAPE values range from 0% (perfect 
accuracy) to 100% (complete inaccuracy).

4) R2, also known as R squared, is a statistical measure 
that represents the proportion of the variance in the 
dependent variable that is explained by the inde-

(3)MAPE =
1

n

n∑

i=1

∣∣̂yi − yi
∣∣

yi

pendent variable(s) in a regression model. It is a value 
between 0 and 1, with higher values indicating a bet-
ter fit of the model to the data. R2 is often used to 
evaluate the accuracy and usefulness of a regression 
model, and it can help to determine how well the 
model predicts the outcomes of interest.

(4)R2
= 1−

∑n
i=1

(
ŷi − yi

)2
∑n

i=1

(
y− yi

)

Fig. 2 Evaluation results of various models on the Air Quality dataset
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In the formula for calculating the four evaluation met-
rics, MAE, MSE, MAPE, and R2, yi represents the actual 
value of the input sample of the model, ŷi represents the 
predicted value output by the model, n represents the 
number of input samples, and i represents the sequence 
number of the sample.

Experimental results
We conducted experiments on three datasets, Air Qual-
ity, Energy, and Traffic, and compared the experimental 

results of five models, including GCN, EEMD-GCN, 
CEEMDAN-GCN, EMD-CEEMDAN-GCN, and the 
proposed EEG-GCN. The performance of these models 
on the Air Quality dataset is shown in Fig. 2, the perfor-
mance on the Energy dataset is shown in Fig. 3, and the 
performance on the Traffic dataset is shown in Fig. 4.

Figure  2 shows the evaluation performances of dif-
ferent models on the Air Quality dataset. Predicting air 
quality is a complex task involving the analysis of data 
on pollutants like particulate matter and gases, along 

Fig. 3 Evaluation results of various models on the Energy dataset
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with environmental factors. This process is challenging 
due to the spatial and temporal variability of air quality, 
influenced by local pollution sources, weather, and sea-
sonal changes. The complexity lies in understanding the 
interdependencies between different pollutants and envi-
ronmental conditions. Moreover, predictions are critical 
for public health, as inaccuracies can have serious impli-
cations. Factors such as changing environmental policies, 
industrial activities, and data collection inconsistencies 
further complicate accurate prediction. Overall, effective 

air quality prediction requires managing variable, com-
plex data while considering public health impact and 
data accuracy. RMSE of the proposed method is the low-
est i.e., 9.48 while other algorithms are higher such as 
GARCH-CEEMDAN-GCN (16.64), EMD-CEEMDAN-
GCN (17.54), EEMD-GCN (14.46), EMD-GCN (15.22) 
and GCN (17.52). Similarly, MAE is the lowest i.e., 7.27 
for the proposed method while for other algorithms are 
higher GARCH-CEEMDAN-GCN (11.26), EMD-CEEM-
DAN-GCN (12.13), EEMD-GCN (10.18), EMD-GCN 

Fig. 4 Evaluation results of various models on the Traffic dataset
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(10.57) and GCN (12.18). For MSE, algorithms are 
GARCH-CEEMDAN-GCN (276.96), EMD-CEEM-
DAN-GCN (307.59), EEMD-GCN (209.2), EMD-GCN 
(231.62) and GCN (306.99) which is highest as compared 
to proposed method i.e. 90.01. MAPE is also the lowest 
for a proposed method which is 31.41 as compared to 
other methods i.e., GARCH-CEEMDAN-GCN (35.32), 
EMD-CEEMDAN-GCN (38.56), EEMD-GCN (35.98), 
EMD-GCN (34.41) and GCN (42.8). R2 of the proposed 
method is the highest among all the methods i.e., 67.10%.

Figure 3 shows the evaluation performances of different 
models on the Energy dataset. Predicting energy needs 
and production from datasets that track various sources 
like fossil fuels and renewables is complex due to the 
diversity of energy types and their unique characteristics. 
Challenges include managing demand fluctuations influ-
enced by factors like weather and economic conditions, 
navigating infrastructure constraints of power grids and 
storage, and adapting to policy changes that affect energy 
markets. Environmental sustainability considerations and 
the rapid evolution of energy technologies, like renewa-
bles and energy-efficient devices, further complicate pre-
dictions. Thus, effective energy sector prediction requires 
sophisticated models capable of adapting to a dynamic 
landscape with varying demands, technological advance-
ments, and regulatory environments. Results for all the 
parameters are high due to complex nature and proposed 
method accuracy is low due to nature of dataset.

Figure  4 shows the evaluation performances of differ-
ent models on the Traffic dataset. Predicting traffic is a 
complex task specifically network traffic, which involves 
the analysis of vast and fast-generated data types such as 
packet counts, byte sizes, and IP addresses. This is crucial 
for managing network performance and security. Chal-
lenges in this field include the high volume and speed 
of data generation, requiring efficient processing tech-
niques; the complexity and variability of traffic due to 
user behavior and external factors like cyber-attacks; the 
need for accurate anomaly detection in a dynamic envi-
ronment; the presence of temporal dependencies where 
past patterns affect future ones; privacy concerns due to 
the sensitivity of the data; and the need for adaptability 
in predictive models due to evolving network technolo-
gies and usage patterns. Therefore, effectively predicting 
network traffic demands handling large-scale, complex 
data while maintaining accuracy, privacy, and adaptabil-
ity in models.  Compared with other models, RMSE for 
the EEMD-GRU-GCN model is lowest with a value of 
4.84, while other methods GARCH-CEEMDAN-GCN 
(5.14), EMD-CEEMDAN-GCN (5.57), EEMD-GCN 
(5.64), EMD-GCN (5.98) and GCN (16.65) are higher 
than proposed. Similarly, MAE is the lowest for the pro-
posed method i.e., 3.72 while GARCH-CEEMDAN-GCN 

(3.69), EMD-CEEMDAN-GCN (4.08), EEMD-GCN 
(4.27), EMD-GCN (4.52) and GCN (12.31) are more 
than proposed method. MSE is 23.488 for the proposed 
algorithm while other methods GARCH-CEEMDAN-
GCN (26.39), EMD-CEEMDAN-GCN (31.01), EEMD-
GCN (31.83), EMD-GCN (35.78) and GCN (277.14) 
is much higher. MAPE follows a different pattern for 
other algorithms i.e., GARCH-CEEMDAN-GCN (9.69), 
EMD-CEEMDAN-GCN (10.48), EEMD-GCN (11.45), 
EMD-GCN (11.97) and GCN (38.29) while proposed 
method 10.24 is second lowest. Since the R2 is the high-
est 95% for the proposed model as compared to GARCH-
CEEMDAN-GCN (95%), EMD-CEEMDAN-GCN (94%), 
EEMD-GCN (94%), EMD-GCN(93%) and GCN(45%) 
which shows the proposed method is outstanding in traf-
fic dataset.

From the experiments conducted on these three data-
sets, it can be observed that on the Air Quality dataset, 
the proposed hybrid model performs best in terms of all 
metrics.

Additionally, Fig. 5 shows the comparison between the 
real and predicted data of all algorithms on a selection of 
150 consecutive data points from the test set of the Air 
Quality dataset. Figure 6 shows the same comparison on 
a selection of 150 consecutive data points from the test 
set of the Energy dataset. Finally, Fig. 7 shows the com-
parison on a selection of 150 consecutive data points 
from the test set of the Traffic dataset.

Discussion
The benefits arising from the EEG-GCN model presented 
in this study are extensive and can be observed in vari-
ous domains that depend on the accurate analysis of time 
series data. Some of the key benefits are detailed below:

Enhanced Forecasting Accuracy: By integrating 
advanced signal decomposition with a graph convo-
lutional neural network, the EEG-GCN model offers 
a marked improvement in forecasting accuracy. This 
is crucial for industries where precision in prediction 
can have significant economic implications, such as 
in stock market trading or energy supply planning.
Noise Reduction and Signal Clarity: The utilization of 
EEMD and CEEMDAN within the EEG-GCN model 
effectively filters out noise, thereby providing clearer 
signals for analysis. This is particularly beneficial in 
environments where data is heavily contaminated 
with noise, such as in medical signal processing or 
environmental monitoring.
Improved Decision-Making: With more reliable fore-
casts, decision-makers in businesses, governments, 
and other organizations can plan with greater con-
fidence. This could mean better inventory manage-
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ment in retail, more effective policy development in 
public health, or enhanced resource allocation in dis-
aster management.
Operational Efficiency: In sectors like manufactur-
ing and logistics, where time series predictions are 

used for demand forecasting, the EEG-GCN model 
can contribute to leaner operations by optimizing 
production schedules and supply chain operations, 
thereby reducing waste and improving customer sat-
isfaction.

Fig. 5 Time series visual comparison of prediction results of 150 points observation of all the algorithms in the Air Quality dataset

Fig. 6 Time series visual comparison of prediction results of 150 points observation of all the algorithms in the Energy dataset
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Energy Sector Advancement: The energy sector can 
greatly benefit from more accurate predictions of 
renewable energy outputs, leading to improved grid 
management and energy storage solutions. This 
could help in balancing supply and demand, thus 
facilitating a transition to greener energy sources.
Risk Mitigation: Financial institutions and insurance 
companies can use the model to better understand 
and predict market dynamics or claim trends, which 
can lead to more effective risk assessment and miti-
gation strategies.
Technological Innovation: The EEG-GCN model’s 
approach encourages further innovation in machine 
learning and artificial intelligence by showcasing the 
effectiveness of hybrid models that can be tailored for 
specific complex data scenarios.
Cross-Disciplinary Applications: Given its flexibility 
and accuracy, the model has potential applications 
across a wide range of disciplines, from climate sci-
ence and healthcare to urban planning and environ-
mental protection.
Resource Management: For sectors like agriculture, 
where time series data can predict seasonal pat-
terns and crop yields, the EEG-GCN model can lead 
to more efficient use of water, fertilizers, and other 
resources, contributing to sustainable practices.
Customizability and Scalability: The model’s archi-
tecture allows for customization to suit the specific 
nuances of various types of time series data, which 

means it can be scaled and adapted for different 
industries and applications.

In essence, the EEG-GCN model’s ability to deliver 
more accurate and reliable time series predictions 
translates into potential economic benefits, operational 
improvements, risk reduction, and the enabling of better 
strategic planning across diverse sectors.

The practical implications of this study are multifac-
eted and have considerable potential to impact various 
domains where time series data play a critical role. At the 
heart of the EEG-GCN model is its ability to manage the 
inherent complexity of temporal data, making it a valu-
able tool for industries and sectors that rely heavily on 
accurate forecasting. First and foremost, the EEG-GCN 
model’s superior handling of noise and non-linearities 
makes it an exceptional candidate for deployment in 
financial markets, where time series data are notori-
ously volatile and noisy. The ability of the EEG-GCN to 
decompose these signals into more manageable compo-
nents means that financial analysts could achieve more 
accurate forecasts of stock prices, market indices, and 
economic indicators. This increased accuracy could sig-
nificantly reduce the risk of unforeseen market volatility 
and allow for better asset allocation and risk manage-
ment strategies.

In the energy sector, particularly in renewable energy 
management, the EEG-GCN model can be leveraged to 
predict energy production from sources such as wind 

Fig. 7 Time series visual comparison of prediction results of 150 points observation of all the algorithms in the Traffic dataset
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and solar power, which are inherently intermittent and 
unpredictable. The model’s decomposition of complex 
weather-related data into simpler sub-signals could lead 
to more accurate predictions of energy availability. This 
could, in turn, facilitate more efficient grid manage-
ment and energy storage, reduce wastage, and ensure 
a steadier supply of renewable energy to consum-
ers. Another area where the EEG-GCN model shows 
promise is in environmental monitoring and climate 
science. Climate datasets are characteristically rich in 
non-linear trends and noise due to the myriad factors 
that affect weather systems. The EEG-GCN’s enhanced 
capability to dissect and understand these datasets can 
assist in more reliable climate modeling and forecast-
ing, which is essential for planning in agriculture, disas-
ter management, and policy-making.

Healthcare could also benefit from this model, particu-
larly in the analysis of medical time series data such as 
heart rate or glucose level monitoring. The EEG-GCN’s 
ability to sift through the ’noise’ of biological variabil-
ity and other artifacts to predict patient-specific events 
could lead to more personalized and timely healthcare 
interventions. Moreover, the incorporation of GRU 
into the EEG-GCN framework, resulting in the EEMD-
GRU-GCN, presents a methodological advancement for 
handling data across time with more nuanced interpre-
tations. This aspect of the model is crucial for real-time 
monitoring systems, such as those used in industrial pro-
cess control or traffic management, where understanding 
the temporal sequence of events is as important as recog-
nizing patterns within them.

In summary, the EEG-GCN model holds significant 
practical utility across a wide array of fields that require 
the forecasting of complex time series data. Its empirical 
strength demonstrated through improved performance 
metrics, positions it as a potentially transformative tool 
for decision-makers seeking to derive actionable insights 
from challenging datasets. The ability to turn complex, 
noisy, and non-linear time series into accurate predic-
tions can lead to more informed decisions, optimized 
operations, and a better understanding of future scenar-
ios in various sectors.

Despite the notable advancements offered by the EEG-
GCN model in time series data prediction, it is essential 
to acknowledge the limitations inherent in this work:

Computational Complexity: The EEG-GCN model 
incorporates complex algorithms such as EEMD and 
GCN, which could be computationally intensive. This 
may require significant computational resources and 
could be a limiting factor for real-time applications 
or for use in environments with limited computing 
infrastructure.

Data Requirement: The efficacy of the model is con-
tingent upon the availability of high-quality, granular 
data. In cases where data is sparse, irregular, or of 
poor quality, the performance of the model might be 
compromised.
Overfitting Risk: As with many sophisticated mod-
els, there is a potential risk of overfitting, where the 
model becomes too closely fitted to the training data, 
impairing its generalization capabilities to unseen 
data.
Interpretability: Neural network-based models, 
including GCNs, are often considered ’black boxes’ 
due to their complex nature, which can make it chal-
lenging to interpret the decision-making process or 
the significance of various inputs.
Dependency on Parameter Tuning: The perfor-
mance of the EEG-GCN model heavily relies on the 
appropriate tuning of parameters. Finding the right 
configuration requires expertise and can be time-
consuming, potentially limiting its accessibility to 
non-experts.
Generalizability: While the model has shown prom-
ising results, the extent to which it can be generalized 
across different domains and datasets without sig-
nificant reconfiguration is unclear. Different types of 
time series data may require bespoke adjustments to 
the model.
Model Adaptation: As data evolves over time, the 
model may require retraining or updating to main-
tain accuracy, which could be a resource-intensive 
process.
Algorithmic Bias: Any predictive model is subject to 
the risk of bias, which can be introduced through the 
training data or the subjective choices in the model 
design process. Such bias could affect the fairness 
and reliability of predictions.
Transferability Across Domains: The adaptability of 
the model across various fields has yet to be thor-
oughly tested. Success in one domain, like energy 
forecasting, doesn’t automatically ensure success in 
another, like financial markets.
Technology Integration: The integration of the EEG-
GCN model into existing systems may pose chal-
lenges, as it might not be compatible with legacy sys-
tems or could require substantial changes to current 
workflows.
Training Time: Given the sophisticated nature of the 
model, the training time might be considerable, espe-
cially for very large datasets, which could be a bottle-
neck for time-sensitive applications.
Susceptibility to Dynamic Changes: Time series data 
can be influenced by sudden, unforeseen events (e.g., 
economic crashes, natural disasters). The model’s 
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ability to quickly adapt to such non-regular, abrupt 
changes is not fully established.

Recognizing these limitations is essential for the ongo-
ing development and application of the EEG-GCN 
model. Addressing these challenges through continued 
research and development can lead to improved versions 
of the model that are more robust, efficient, and widely 
applicable.

Conclusion
In conclusion, the EEG-GCN model represents a sig-
nificant advancement in the field of time series data 
prediction, demonstrating remarkable improvements 
in accuracy and stability over existing models. By intel-
ligently integrating signal decomposition methods with 
the innovative graph convolutional neural network 
approach, the model adeptly navigates the complexities 
of non-linear and periodic data characteristics, while also 
effectively mitigating the influence of noise.

However, the study acknowledges the limitations, 
including computational demand, the necessity for 
high-quality data, the risk of overfitting, challenges with 
interpretability, and the critical need for meticulous 
parameter tuning. These constraints highlight the scope 
for further refinement and optimization of the model.

Future work could focus on several aspects:

Efficiency Optimization: Developing strategies to 
reduce the computational load of the EEG-GCN 
model without compromising prediction accuracy 
could make it more viable for a broader range of 
applications, including those with limited computa-
tional resources.
Data Quality Enhancement: Investigating methods 
to enhance the model’s robustness to data quality, 
potentially through advanced data preprocessing 
techniques or robustness measures, could extend its 
applicability.
Interpretability Improvement: Efforts to increase 
the interpretability of the GCN component, such as 
through the development of visualization tools or 
the integration of explainable AI principles, would be 
beneficial.
Hyperparameter Tuning Automation: Implementing 
automated machine learning (AutoML) techniques 
for hyperparameter optimization could minimize the 
need for manual tuning and open the model’s use to a 
wider audience.
Domain Adaptability: Conducting cross-domain 
studies to test the transferability of the model could 
provide insights into its versatility and adaptability to 
different types of time series data.

Dynamic Adaptation: Enhancing the model to better 
cope with abrupt changes in data patterns by incor-
porating real-time learning capabilities could greatly 
improve its utility in dynamic environments.
Bias Mitigation: Developing methodologies to detect 
and correct biases in both training data and model 
predictions is crucial to ensure fairness and reliability 
in different application scenarios.
System Integration: Addressing the challenges of 
integrating the EEG-GCN model into existing tech-
nological frameworks could accelerate its adoption in 
industry.
Training Time Reduction: Investigating methods to 
decrease model training time, possibly through par-
allel computing or more efficient algorithms, would 
make the model more practical for large datasets and 
real-time applications.
Model Generalization: Further research is needed to 
understand the conditions under which the model 
generalizes best and to develop guidelines for adapt-
ing the model to a variety of situations.

The EEG-GCN model’s promising performance lays a 
solid foundation for future research and potential practi-
cal applications. It opens up new avenues for the predic-
tive analysis of time series data across different sectors 
such as finance, weather forecasting, energy manage-
ment, and beyond. As the model continues to evolve, 
it is poised to become an even more indispensable tool 
for analysts and decision-makers facing the challenge of 
extracting meaningful insights from complex temporal 
data streams.
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