
Lan et al. Journal of Cloud Computing (2024) 13:18
https://doi.org/10.1186/s13677-023-00561-0

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

SLA‑ORECS: an SLA‑oriented framework
for reallocating resources in edge‑cloud systems
Shizhan Lan1,3, Zhuoxi Duan2*, Song Lu1, Bin Tan1, Shi Chen1, Yeyu Liang1 and Shan Chen1 

Abstract 

The emergence of the Fifth Generation (5G) era has ushered in a new era of diverse business scenarios, primarily char-
acterized by data-intensive and latency-sensitive applications. Edge computing technology integrates the information
services environment with cloud computing capabilities at the edge of the network. However, the evolving landscape
of business models necessitates a unified edge architecture capable of accommodating diverse requirements, posing
substantial challenges for service providers in meeting Service-Level Agreements (SLAs).In response to these chal-
lenges, we introduce SLA-ORECS. This innovative framework dynamically allocates dedicated and shared resources
within the edge-cloud system to cater to service requests with varying SLAs, thereby facilitating performance isola-
tion. Furthermore, we have developed an optimization algorithm to enhance the efficiency of SLA assurance dur-
ing request dispatch.The evaluation of SLA-ORECS highlights its noteworthy performance improvements, particularly
in terms of system throughput and average time consumption.

Keywords  Edge-cloud system, Service-level agreement (SLA), Performance isolation

Introduction
With the material abundance of life, mankind has become
more focused on the pursuit of smart living, with more
and more smart devices flooding into everyday life. This
trend has led to diverse and urgent requests constantly
being generated at the edge of the network, placing even
greater demands on the already congested backbone and
mobile networks. At present, edge computing technol-
ogy is emerging to diffuse cloud computing capabilities to
edge clusters equipped with computation/storage capac-
ity, allowing service requests to be processed closer to
the data sources. This not only relieves the pressure on
the backbone network but also provides more favorable

service quality assurance (e.g., privacy protection, timely
response) for service requests.

Some pioneer work provide solutions for optimiza-
tion problems within a heterogeneous edge-cloud sys-
tem under various settings and demonstrate significant
performance through simulations. For example, Li et al.
[1] investigate the multi-user dual computation offload-
ing via a hybrid non-orthogonal multiple access and fre-
quency division multiple access transmission. With the
objective of minimizing the overall latency for complet-
ing all wireless devices’ tasks, they also propose a layered
yet cell-based distributed algorithm for finding the opti-
mal dual offloading solution. In order to minimize the
average application response time, Guo et al. [2] focus on
the problem of how to offload computationally intensive
applications and assign the bandwidth and propose an
efficient algorithm to find the optimal solution. In addi-
tion, Kamran et al. [3] propose a framework for joint
computation scheduling, caching, and request forward-
ing within decentralized computing environments and
develop a throughput optimal control policy.

*Correspondence:
Zhuoxi Duan
Daunzhuoxi666@163.com
1 China Mobile Guangxi branch Co., Ltd, Nanning 530012, China
2 School of Computer Science and Technology, Tianjin University,
Tianjin 300354, China
3 School of Software Engineering, South China University of Technology,
Guangzhou 530012, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00561-0&domain=pdf

Page 2 of 10Lan et al. Journal of Cloud Computing (2024) 13:18

The emergence of new technologies like 5G has intro-
duced possibilities to enhance the quality of existing ser-
vices and introduce new ones, such as enhanced mobile
broadband, IoT applications, augmented reality, critical
mission services, cloud gaming, and intelligent infra-
structure. Despite the increased responsiveness to vari-
ous requests, challenges such as network congestion,
bandwidth limitations, scalability issues, service differ-
entiation, or security concerns persist, making it chal-
lenging to accommodate additional users and services
without disrupting normal operations. Service Level
Agreements (SLAs) [4] represent commitments made by
service providers to customers regarding service param-
eters. For instance, Internet service providers will reach
SLAs with customers, which usually have a technical
definition in mean time between failures, throughput, jit-
ter, or similar measurable details. While these previous
works [1–3] show excellent simulation performance in
their settings, none of them focus on SLA-related issues:
1) Different performance requirements between different
services. In reality, services in different scenarios have dif-
ferent SLAs. For example, autonomous driving requires
lower latency, while video transmission requires higher
bandwidth. 2) Service performance guarantee. Only the
service performance guarantee can bring better experi-
ence to users.

The Fifth Generation (5G) is expected to be able to
meet the different SLAs of users. Based on Network
Functions Virtualization (NFV) and Software-Defined
Networking (SDN), network slicing is proposed as a new
paradigm for building service-customized 5G networks.
Some studies have attempted to address SLA-related
issues through resource allocation or resource orches-
tration [5–10], with the aim of improving revenue or
enhancing system performance. Liu et al.. design a con-
straint-aware deep reinforcement learning algorithm that
learns the resource orchestration policy to allow optimi-
zation of network slicing dynamically without violating
the SLAs of slices [8]. Alsaffar et al. present a new strat-
egy for optimizing big data distribution and propose an
algorithm to allocate resources to meet SLA and Quality
of Service (QoS) requirements [10]. However, there is still
a lack of systematic discussion of “dynamic SLA customi-
zation with SLA guarantee” in the edge-cloud system.

The Deep Reinforcement Learning (DRL) algorithm
has demonstrated efficient decision-making capabili-
ties in resource management problems and has seen
widespread application. Liu et al. [11] introduced a
DQN-based algorithm to maximize the long-term com-
putational resource utility in MEC networks. Zhao
et al. [12] employed Dueling Double DQN for efficient
user association in cellular networks. In another study,
[13] proposed an asynchronous advantage actor-critic

scheme for adaptive bandwidth allocation in wireless
access networks, ensuring reliable transmission of video
data streams. Zhang et al. [14] utilized a Deep Weighted
Double Q-learning algorithm to learn dynamic caching
policies in ultra-dense networks, minimizing latency.
Furthermore, in [15], the Deep Deterministic Policy
Gradient (DDPG) algorithm was employed to address
joint resource optimization problems in vehicular net-
works. These DRL-based solutions significantly enhance
resource utilization in wireless networks. However, neu-
ral networks excel in learning but not in search, whereas
conventional search algorithms are adept at search but
not learning. Traditional optimization algorithms tend
to converge faster and exhibit higher stability compared
to DRL. To overcome these limitations, our work com-
bines artificial intelligence with optimization algorithms,
employing DRL for resource customization while utiliz-
ing optimization algorithms for service coordination.

Therefore, this paper investigates the SLA-oriented
resource allocation and a request dispatch problem
within the edge-cloud system to improve system perfor-
mance by implementing dynamic SLA customization and
SLA guarantees. Through SLA customization, resources
are allocated among requests with different SLAs so that
requests with the same SLA can be dispatched within an
identical channel, which we call performance isolation
(PI). At the same time, we study the in-channel sched-
uling problem to provide better user experiences with
guaranteed SLAs.

A dynamic performance isolation effectively avoids
vicious resource competition and thus increases the
number of requests that satisfy the SLA, i.e., the through-
put rate, due to the fact that there is resource competition
between requests with different SLAs. Imagine a scenario
where a service consumes most of the memory resources
on a node. In this case, the scheduling of other services
will be severely adversely affected, even if they require
only a small amount of memory resources. In addition,
requests within the same channel have the same SLA,
which makes it easier to model optimization problems
that take SLA guarantees into account. In addition, under
performance isolation, request scheduling and service
orchestration are channel-oriented; thus, only specific
services within the channel participate in the computa-
tion. Since the channels are independent, they can run
in parallel, thus saving a lot of time. To the best of our
knowledge, this work is the first to study resource man-
agement in edge-cloud systems under the dual conditions
of dynamic performance isolation and SLA guarantees.
Our contributions can be summarized as follows.

•	 We propose a Resource Redefined Edge-Cloud Col-
laborative Framework for Service-Level Agreements,

Page 3 of 10Lan et al. Journal of Cloud Computing (2024) 13:18 	

SLA-ORECS, as shown in Fig. 1, which aims to
dynamically achieve resource allocation among chan-
nels with different SLAs through a two-step process
of resource customization and service orchestration.
Resource customization refers to dividing dedicated
resources among different channels, while service
orchestration depends on the binding of shared and
dedicated resources.

•	 We adopt a two-time-scale mechanism to present an
implementation of the proposed framework, as illus-
trated in Fig. 1. It combines artificial intelligence and
optimization algorithms, using Deep Reinforcement
Learning (DRL) for resource customization and opti-
mization algorithms for service orchestration.

•	 We provide a proof-of-concept evaluation and vali-
date the advantages of SLA-ORECS in terms of sys-
tem performance. It shows promising performance
in system throughput and average time consumption.

Illustration of SLA‑ORECS framework
This section describes SLA-ORECS and introduces its
two major steps: resource customization and service
orchestration.

System overview
Edge computing refers to the provision of low-latency
computing services at or near the physical location of
users or data sources by leveraging the storage and com-
putation capabilities of the edge infrastructure near the
end devices. As shown in Fig. 1, we design SLA-ORECS
based on the traditional edge-cloud system architecture,

which consists of three layers: end-device layer, edge
node layer, and cloud layer.

The end device layer is composed of various user
devices that generate real-time service requests, such
as cameras, mobile phones, etc., which are usually con-
nected to edge clusters through wireless communica-
tions. For example, a camera captures real-time media
data for object detection.

The edge node layer comprises numerous distributed
facilities/infrastructures, such as local servers or base sta-
tions, responsible for receiving requests from end devices
and making decisions about the destination of request
scheduling based on conditions such as resource distri-
bution. As a beneficial supplement to the cloud layer, the
edge node layer is more suitable for local processing of
small-scale delay-sensitive computing tasks. If resources
permit, the edge node layer can independently process
requests without transmitting them to the cloud through
the backbone network.

The cloud layer is generally composed of server clus-
ters with massive computation and storage capacities,
responsible for complex data processing and large-scale
data/service storage. It can cooperate with the edge
nodes to take over service requests that are not delay-
sensitive but resource-intensive. The most common form
of cloud layer is commercial cloud platforms, such as Ali-
baba Cloud or Amazon EC2.

Requirements for SLA‑ORECS
With high bandwidth, high reliability, low latency, and
large-scale interconnection, 5G technology will give

Fig. 1  Framework to support dynamic performance isolation in the edge-cloud system

Page 4 of 10Lan et al. Journal of Cloud Computing (2024) 13:18

consumers more emerging services and more diversi-
fied experiences. Therefore, the service scenarios under
the edge-cloud collaboration will be more diverse in
the QoS requirements and key performance indicators.
For example, an edge-cloud system may simultaneously
require high-quality video streaming, machine-type com-
munications, Internet of Things (IoTs) with ultra-low-
rate communications from a large number of devices,
and automotive and haptic applications with millisecond
latency. At the same time, with the further expansion of
the network scale and the increasing demand for high-
quality network services, the current network is already
facing severe tests. These trends drive the construct of a
dynamically tailored edge-cloud system to support ser-
vices with specific SLAs and the design of intelligent poli-
cies to guarantee SLAs.

Steps to implement SLA‑ORECS
Typically, processing data-intensive service requests (e.g.,
augmented reality, video analytics, distributed machine
learning) requires not only a dedicated share of resources
(CPU cycles, memory for computation, storage resources
for storage) but also a large amount of data on the server
(e.g., object databases, trained machine learning mod-
els). Therefore, we divide the core process of SLA-ORECS
into two steps: 1) resource customization and 2) service
orchestration, where the first step is the allocation of
dedicated resources and the second step is the binding
of service replicas to dedicated resources. With the two
steps, the resources of edge nodes and the cloud are cut
into many mutually isolated combinations of dedicated
and shared resources, each of which we call a resource
cell or cell for short. In addition, the set of cells corre-
sponding to an SLA is called a channel.

Resource customization
Resource customization implies allocating dedicated
resources in advance of request dispatch, not only
between channels but also between cells. We classify cells
into two types based on the combination of resources
within a cell: horizontal and vertical cells. A horizontal
cell means that resources of the cell are all from one edge
node or several edge nodes. For example, some resources
from edge node n1 and some from edge node n2 together
form a joint cell. This horizontal cell means that the cell’s
subject judges that more responsive resources from edge
nodes are needed for the current situation rather than
massive cloud resources. A vertical cell indicates that
resources of the cell are from the edge node layer partly
from the cloud layer. For example, a cell’s subject builds
a cell consisting of the union of cloud resources and
the resources of edge node n1 . This vertical cell prob-
ably indicates most current requests are characterized by

low latency sensitivity but high resource requirements,
so cloud resources are needed more than edge node
resources.

Service orchestration
With the first step, resource customization, each channel
is pre-allocated with some cells containing merely dedi-
cated resources. The next step is to consider the orches-
tration of shared data, and what needs to be done is to
place a wide range of service replicas (shared code, well-
trained machine learning models, etc.) with specific SLA
on cells of the corresponding channel. For each selected
single orchestration, e.g., a replica of service l is placed
on cell m, which we denote as a binary group (l, m). Then
we can define S to be the set of selected single service
orchestrations. Thus the service orchestration problem
can be formulated as a set optimization problem.

Since service orchestration is closely related to subse-
quent request dispatch, we consider it jointly and model
it as an optimization problem, which will be introduced
and solved in the next section.

Formulation
This section first introduces the system model, then
describes the SLA-ORECS designed to achieve dynamic
performance isolation and SLA guarantee. To allocate the
two types of resources required by data-intensive applica-
tions, we design a solution that first implements resource
customization with DRL. According to our proposed
algorithm, an approximately optimal service orchestra-
tion solution is generated within each channel. In this
way, performance isolation is achieved in the edge-cloud
system by combining an artificial intelligence algorithm
and an optimization algorithm. Based on the allocation of
dedicated and shared data results, the in-channel request
scheduling problem to maximize throughput (the num-
ber of requests served with guaranteed SLAs) becomes a
Linear Programming (LP) problem.

System model
As illustrated in Fig. 1, there is an edge-cloud system pro-
viding coverage to a generic geographic region, where a
group of edge clusters covers a set of end devices. We first
consider a basic edge-cloud system that contains an edge
cluster and the cloud data center, with an edge cluster
consisting of a set of edge nodes N = {n1, ..., nN } . Each
edge node has limited storage, computation, and other
dedicated resources, and the capabilities of different edge
nodes can be heterogeneous. The cloud data center has
relatively high capacities compared to edge nodes.

There is a set C of SLAs, one of which c ∈ C consists of
a service subset Lc . Services are heterogeneous from one
another, not only in terms of resources but also in SLAs

Page 5 of 10Lan et al. Journal of Cloud Computing (2024) 13:18 	

such as the maximum response time (the lifecycle of
service). The existence of each SLA implies the need for
a channel, so the set of channels is also C . We use DRL
techniques for resource customization and an optimiza-
tion algorithm for service orchestration, in which each
channel c ∈ C is allocated a set of heterogeneous cells
Mc containing resources such as computation, service
replicas.

A channel containing fixed cells would have poor flex-
ibility, so a dynamic SLA-ORECS is better than a static
SLA-ORECS. In addition, considering cost reduction and
stability, we adopt a two-time-scale mechanism depicted
by Fig. 1 [16] to schedule request dispatch, resource cus-
tomization, and service orchestration. SLA-ORECS per-
forms request dispatch at a smaller scale, slot t while
carrying out resource customization and service orches-
tration at a larger scale, frame f.

Resource customization
Resource customization by DRL
DRL, a combination of Reinforcement Learning (RL) and
Deep Learning (DL), has opened up many new applica-
tions in finance, robotics, healthcare, smart grid, and
other areas. Advanced research results in this field have
been able to solve more complex decision-making tasks
that were previously beyond the reach of machines.

Resource customization is a particularly tedious pro-
cess, with the generation of each cell involving var-
ied channels, multiple nodes (edge nodes or the cloud
center), and various resources selection decisions. If
solved using traditional heuristic algorithms, it suffers
from overly complex modeling and high solution com-
plexity. Therefore, we customize the DRL algorithm for
resource management in edge-cloud systems, i.e., using
DRL for resource customization. Because it does not
require to perform complex modeling but only key fac-
tors as state space inputs, and the DRL model can con-
tinuously learn by exploring and receiving feedback from
the environment to continuously optimize the utility.

However, one key challenge is still pending in practice,
namely the deployment of DRL agents. In this case, we
design the resource customization mechanism under sin-
gle-agent decisions, i.e., deploying a DRL agent on each
edge node responsible for the decision-making of cells
dominated by that edge node.

For rationally managing resources in edge-cloud sys-
tems with numerous SLAs, the agent should make deci-
sions about allocating multiple dedicated resources in
terms of a control action (c, a, r), where c ∈ C is the
channel selection decision, denoting which SLA the cell
serves, a specifies the edge nodes or cloud that jointly
make up the cell, and r is the resource contribution

profile, indicating how much each selected server con-
tributes to various resources of the cell.

The whole problem can be summarized as
follows: according to a fixed control policy
� = (�c(�),�a(�),�r(�)) , the edge node decides
which channel the cell belongs to, the selection of
joint nodes (edge nodes or the cloud center) and the
resource composition of the cell. At the same time, it
keeps observing the current network state � , includ-
ing the request rate of each service and the state of all
cells in each channel. It is worth noting that even for
the same frame the network state perceived by nodes
is different if there is an order of edge nodes build-
ing cells. Because the previous cells change the cur-
rent environment, the later edge node can perceive
cells of the previous one. In addition, we define a util-
ity function ψ(�, (c, a, r)) as reward function to evalu-
ate the overall effectiveness of the system, which is
proportional to the overall throughput rate of the sys-
tem. By taking advantage of DRL algorithms, such as
Proximal Policy Optimization (PPO) [17], the control
policy � = (�c(�),�a(�),�r(�)) can be trained and
achieve increased utility of the system for long-term
performance.

A case of resource customization
As shown in Fig. 2, we offer an example of the entire
process of resource customization. For illustrative pur-
poses, it is assumed that multiple rounds of resource
customization are carried out in numbered order. First,
the edge node n1 takes the observed state �1 as input
and outputs decisions based on the control policy � .
The decision process is as follows: this cell belongs to
the channel 2, the assisting nodes for the joint cell are
edge node n3 and the cloud, and the cell’s composition
of dedicated resources is given. After edge node n1 fin-
ishes this resource customization, it makes a change to
the current environment, so when edge node n2 observes
the environment, the state has been changed to �2 , and
a decision is made accordingly. After multiple rounds of
resource customization, the resources of edge nodes and
the cloud center are allocated to cells of various channels.

Service orchestration
In this subsection, we use the channel c ∈ C as an exam-
ple. We formulate the problem of service orchestration
and request dispatch to maximize throughput. Moreover,
a mechanism is designed to solve the two sub-problems
using the same method. At the same time, we present an
algorithm based on submodular function maximization
[18] to select the service orchestration solution.

Page 6 of 10Lan et al. Journal of Cloud Computing (2024) 13:18

Task model
To maximize the throughput in the channel, we set two
decision variables x and y to model the mathematical
problem, where x are the service orchestration variables
and y are the request dispatch variables. xlm ∈ {0, 1} is 1 if
the replica of service l is placed on cell m and 0 otherwise.
ylnm ∈ [0, 1] represents the probability that a request of
service l submitted to edge node n is dispatched to cell
m. As the channels are independent of each other, it
can simultaneously maximize the edge-cloud system’s
throughput.

The underlying optimization problem of service orches-
tration and request dispatch can be formulated as (1): the
objective is to maximize the expected number of requests
whose SLA is fully guaranteed per slot. Constraint C1

u
ensures that each cell does not store more than its stor-
age capacity, where the cell stores the sum of storage size
of each service replica placed on that cell. Constraint C2

u
guarantees that each cell is not dispatched with more
requests than its resource capacity allows. Constraint C3

u
ensures that a request is successfully dispatched if it ena-
bles guaranteed SLA, and the cell contains the requested
service replica, where 1SLA is the indicator function. If the
SLA of a request can be fully guaranteed, 1SLA is 1, other-
wise 0. Through this constraint, the SLAs of requests are
strictly guaranteed. Constraint C4

u specifies that decision
variables take values within valid ranges.

Since the objective function and constraints of (1),
i.e., Channel Throughput (x, y), contains both integer

(1)

P1 : maxChannel Throughput (x, y)

s.t. C1
u : ReplicaStorage ≤ Storage, foreachcell

C2
u : RequestResource ≤ Resource, foreachcell

C3
u : y ≤ x · 1SLA

C4
u : x, y ∈ ValidRange

variables x and real variables y , it is a mixed integer pro-
gramming problem, which is NP-hard and cannot be
solved in polynomial time. Therefore, we decompose the
problem into two sub-problems of request dispatch and
service orchestration.

Solution for request dispatch
To reduce costs and improve stability, we separate the
time scale of request dispatch (performed per slot) from
resource customization and service orchestration (per-
formed per frame). At each slot, service orchestration is
already selected at the beginning of the frame, i.e., the
decision variables x are known. Therefore, we can solve
the sub-problem of (1) regarding y (see (2)), and perform
probabilistic dispatch, where a request for service l sub-
mitted to edge node n will be dispatched to cell m with
probability ylnm . Since the decision of problem (2) is only
related to the real variables y, it is a linear programming
[16] that can be solved in polynomial time.

where the constraints include resource finiteness C1
p ,

SLA guarantee and service orchestration guarantee C2
p ,

and range validity C3
p . The binary variable µ represents

whether the service replica is placed on the cell to which
the request will be dispatched. As a result, request dis-
patch can strictly guarantee SLAs and meet resource
requirements.

Algorithm for service orchestration
We reformulate the service orchestration problem as a
set optimization. For each selected single orchestration,

(2)

P2 : maxChannel Throughput (y)

s.t. C1
p : RequestResource ≤ Resource, for each cell

C2
p : y ≤ µ · 1SLA

C3
p : y ∈ ValidRange

Fig. 2  A case illustration of resource customization in the edge-cloud system

Page 7 of 10Lan et al. Journal of Cloud Computing (2024) 13:18 	

e.g., a service l is placed on cell m, which we denote as a
binary group (l, m). Then we can define S ⊆ Lc ×Mc to
be the set of selected single service orchestration. Let
Channel Throughput (S), which can be calculated by
solving the request dispatch problem (see (2)), denote
the optimal objective value of (1) under a fixed service
orchestration set S or fixed decision variables x , where
(l,m) ∈ S if and only if xlm = 1 . Then, we can rewrite
the service orchestration problem as:

where the constraints include the finiteness of cells’ stor-
age capacity C1

h and the rationality of service orchestra-
tion set C2

h.
Mechanism: In order to verify how beneficial a ser-

vice orchestration case is to the current frame, we
design an evaluation mechanism, as in Fig. 3. For a ser-
vice orchestration case, we take the average predicted
request rate of that frame to perform request dispatch.
The resulting throughput in the current case is used as
a criterion to evaluate this service orchestration. The
average predicted request rate is the sum of expected
request rates of all slots in the frame divided by the
number of slots. The specific execution flow of the
mechanism and the meaning of each step, as in Fig. 3,
are shown below.

(a)	 Service orchestration variables and known param-
eters are involved as inputs to the problem (2).

(b)	 By solving the problem (2), the dispatch variables
and the throughput rate can be derived.

(3)

P3 : maxChannel Throughput (S)

s.t. C1
h : ServiceStorage ≤ Storage, for each cell

C2
h : S ⊆ DefinitionDomain

(c)	 The throughput rate derived in step (b) is used as a
criterion for judging the service orchestration set.

(d)	 Each service orchestration set iterated by the algo-
rithm is converted to the corresponding service
orchestration variables for participation in step (a).

Algorithm: Due to the submodularity of the objective
function [18], we design a heuristic algorithm, Service
Orchestration founded on Submodular Function Maxi-
mization (SO-SFM). In the process of SO-SFM, different
service orchestration schemes are selected iteratively, and
the approximately optimal one is established through the
evaluation mechanism. To further illustrate, the detailed
flow of the algorithm can be expounded by the following
steps.

•	 Initialize the selected service orchestration set S as an
empty set.

•	 Select the element u from the set (Lc ×Mc) \ S that
makes the set S ∪ {u} not only satisfy constraints of
(3) but also maximize the objective function of (3).

•	 Merge the selected element u to the set S.
•	 Repeat the above two steps until there is no element

in the set (Lc ×Mc) \ S or S is already the most
extensive set satisfying the constraints of (3).

Data‑driven evaluation
Experimental settings
For investigating the performance of SLA-ORECS, simu-
lations on request dispatch are presented for edge-cloud
systems with different SLAs. Among all simulations, the
time horizon is discretized into frames, where a frame
includes 50 slots. We designed the experimental environ-
ment contains the cloud center and an edge cluster with

Fig. 3  Evaluation mechanism for service orchestration within a channel

Page 8 of 10Lan et al. Journal of Cloud Computing (2024) 13:18

four edge nodes. For illustrative purposes, we consider
two kinds of dedicated resources, storage resources and
computational resources and adopt maximum response
time to indicate the difference of SLAs.

To study the role of performance isolation, we assume
that an edge-cloud system contains |C| = 5 SLAs, where
there are |Lc| = 4 or so services within each channel.
To indicate the difference in SLAs, the requests in the 5
channels have different maximum response time. Ser-
vices’ range of data value and request distribution are
based on the Alibaba Cluster Trace [19] to ensure SLA-
ORECS has effective performance in the real environ-
ment. As for the DRL settings in edge nodes, We choose
the PPO algorithm and select Relu as the activation
function and Adam optimizer. For the settings of other
parameters, we refer to the settings of this project [20].

Evaluation results
To collaborate the performance of SLA-ORECS, experi-
ments on request dispatch are carried out under various
settings. Fig. 4 gives the details of performance compari-
son as follows.

1)	 In Fig. 4(a), the performance of request dispatch
under PI with PPO and SO-SFM is compared to No
Performance Isolation (No-PI) with SO-SFM; We
can see that when the DRL agent is trained to con-
vergence, the request dispatch under PI is higher
and more stable than that under No-PI in terms of
throughput rate, which indicates the advantage of
dynamic SLA customization.

2)	 We construct several baselines to show the perfor-
mance advantage of the service orchestration with

SO-SFM. In Fig. 4(b), the performance of SO-SFM is
compared to other solutions: probability orchestra-
tion, simulated annealing, and top-Q. We divide the
storage resource capacity of edge nodes into 6 levels
(higher is better). It can be seen that with the increase
of the storage resource capacity, the throughput rate
shows an upward trend. In addition, the throughput
rate of SO-SFM is always higher than other baselines,
which also demonstrates the superiority of the opti-
mization algorithm. Note: top-Q mentioned above,
which sequentially considers each cell, computes
the total demand for each service that can be dis-
patched, and then perform service orchestration in
descending order until reaching storage limitation;
probability orchestration means to firstly solve the
LP relaxation of (1), and then place service replicas in
descending order of the service orchestration varia-
bles (can be seen as orchestration probability) subject
to the storage constraints; simulated annealing [21] is
a stochastic optimal search strategy for iterative solu-
tions, whose starting point is based on the similarity
between the annealing process of substances in phys-
ics and general combinatorial optimization problems.

3)	 We also collect the computational time during
request dispatch and service orchestration in an
edge-cloud system with heterogeneous SLAs. Under
PI, both request dispatch and service orchestration
are channel-oriented; therefore, only specific services
within channels are involved in the computation.
Since the channels are independent, they can operate
in parallel, thus saving a lot of time under PI. In the
No-PI case, all services within the edge-cloud system
involve in the computation of solving the problem (2)

Fig. 4  Performance of request dispatch in the edge-cloud system: a) comparison of throughput rate under PI or non-PI; b) comparison
of throughput rate of different service orchestration algorithms; c) comparison of average consumed time per frame

Page 9 of 10Lan et al. Journal of Cloud Computing (2024) 13:18 	

and executing algorithm SO-SFM to necessarily con-
sume more computational time, which is showned by
Fig. 4(c).

We find it feasible to implement dynamic SLA customi-
zation and guarantee SLAs through optimization in an
edge-cloud system through the above experimental analysis.
Moreover, there is considerable improvement in the perfor-
mance metrics we are concerned about, such as throughput
rate and average consumed computational time.

Discussion
Performance isolation achieved through SLA-ORECS still
faces challenges, such as the need to deploy DRL agents on
edge nodes to store training and test data, train models, and
update parameters. However, all of the above challenges
are inevitable in the training process of machine learning
applications. For large-scale machine learning applications,
training and testing models can take a lot of time. Still, for-
tunately, there are already many proven distributed and
efficient training solutions to draw from.

On the other hand, there are many opportunities
for SLA-ORECS, such as 1) service orchestration and
resource customization are obtained simultaneously using
DRL decisions so that training results can directly replace
algorithmic predictions; First, service orchestration itself
is a very complex task, which needs to consider the dis-
tribution of requests, the heterogeneity of resources, and
the heterogeneity of edge nodes, and there are limitations
in using traditional heuristic algorithms for optimization.
In addition, there is a strong correlation between service
orchestration and resource customization, and more ser-
vices for orchestrating means more space for resource
customization. Due to the above considerations, using
deep reinforcement learning decisions to obtain both ser-
vice orchestration and resource customization is expected
to be the solution from the present point of view. 2) in
addition to the performance metrics we mentioned in our
experiments, users can feed their more focused metrics to
the DRL reward function to get more satisfactory results
through training. In our experiments, the metric we focus
on is the number of demands. Therefore, we choose the
throughput rate as the reward function in deep reinforce-
ment learning. If the user is more concerned about the
latency, it can be included in the reward function. Even
if the user is more concerned about the combined effect,
other metrics such as throughput and latency can be
included in the reward function. 3) the time scale relation-
ship between SLA-ORECS’s implementation and request
dispatch can dynamically change to better suit reality at
the time; For example, if the current resource customiza-
tion and service orchestration results match the current
request better, then the timescale can be dynamically

adjusted so that a large timescale contains more small
timescales. Accordingly, if the current resource customi-
zation and service orchestration results do not match the
current request well, then the timescale can be dynami-
cally adjusted so that a large timescale contains fewer
small timescales. 4) alternatively, multi-agent decisions
are used instead of single-agent decisions, where multiple
agents interact with each other to decide on the allocation
of resources for maximizing the utility of the edge-cloud
system. In our experiments, we use single-agent decisions.
However, in our subsequent work, we will implement
the mechanism of SLA-ORECS in a multi-agent manner
based on the above points. Whether challenges or oppor-
tunities, these issues remain open questions and areas for
consideration in future.

Conclusions
We have discussed the necessity for dynamic SLA cus-
tomization and SLA guarantee in an edge-cloud system
and mathematically modeled the resource customization,
service orchestration, and request dispatch. We have pro-
posed SLA-ORECS, a scheduling framework that com-
bines artificial intelligence algorithms with optimization
algorithms to achieve dynamic performance isolation
and SLA guarantee in edge-cloud systems. Experimen-
tal results corroborate the effectiveness of SLA-ORECS
and show its promising performance in system through-
put and average time consumption. Our future work will
deploy and enhance SLA-ORECS in Kubernetes-based
multi-cluster edge-cloud systems, focusing on improving
their scheduling timeliness.

Code availability
 Not applicable.

Authors’ contributions
Conceptualization, S.Lan. and B.T.; methodology, Z.D. and Shi.Chen.; investiga-
tion, Y.L.; resources, Shan.Chen.; writing—original draft preparation, Z.D.; writ-
ing—review and editing, S.Lu.; project administration, S.Lan. All authors have
read and agreed to the published version of the manuscript.

Funding
No funds have been received from any agency for this research.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Page 10 of 10Lan et al. Journal of Cloud Computing (2024) 13:18

Received: 7 November 2023 Accepted: 30 November 2023

References
	1.	 Li Y, Wu Y, Dai M, Lin B, Jia W, Shen X (2022) Hybrid NOMA-FDMA assisted

dual computation offloading: a latency minimization approach. IEEE
Trans Netw Sci Eng 9(5):3345–3360

	2.	 Guo K, Yang M, Zhang Y, Cao J (2022) Joint computation offloading and
bandwidth assignment in cloud-assisted edge computing. IEEE Trans
Cloud Comput 10(1):451–460

	3.	 Kamran K, Yeh E, Ma Q (2022) Deco: Joint computation scheduling, cach-
ing, and communication in data-intensive computing networks. IEEE/
ACM Trans Netw 30(3):1058–1072

	4.	 Santos Bernardino J, Correia N (2023) Automated application deploy-
ment on multi-access edge computing: A survey. IEEE. 11:89393–89408.
https://​doi.​org/​10.​1109/​ACCESS.​2023.​33070​23.

	5.	 Yin B, Cheng Y, Cai LX, Cao X (2017) Online sla-aware multi-resource
allocation for deadline sensitive jobs in edge-clouds. In: GLOBECOM
2017-2017 IEEE Global Communications Conference, IEEE, pp 1–6

	6.	 Katsalis K, Papaioannou TG, Nikaein N, Tassiulas L (2016) SLA-driven VM
scheduling in mobile edge computing. In: 2016 IEEE 9th International
Conference on Cloud Computing (CLOUD), IEEE, pp 750–757

	7.	 Liu Q, Choi N, Han T (2021) Constraint-aware deep reinforcement learning
for end-to-end resource orchestration in mobile networks. arXiv preprint
arXiv:2110.04320

	8.	 Liu Q, Han T, Moges E (2020) Edgeslice: Slicing wireless edge comput-
ing network with decentralized deep reinforcement learning. In: 2020
IEEE 40th International Conference on Distributed Computing Systems
(ICDCS), IEEE, pp 234–244

	9.	 Chen X, Zhao Z, Wu C, Bennis M, Liu H, Ji Y, Zhang H (2019) Multi-tenant
cross-slice resource orchestration: a deep reinforcement learning
approach. IEEE J Sel Areas Commun 37(10):2377–2392

	10.	 Alsaffar AA, Hung PP, Huh EN (2017) An architecture of thin client-edge
computing collaboration for data distribution and resource allocation in
cloud. Int Arab J Inf Technol 14(6):842–850

	11.	 Liu Y, Yu H, Xie S, Zhang Y (2019) Deep reinforcement learning for offload-
ing and resource allocation in vehicle edge computing and networks.
IEEE Trans Veh Technol 68(11):11158–11168

	12.	 Zhao N, Liang YC, Niyato D, Pei Y, Wu M, Jiang Y (2019) Deep reinforce-
ment learning for user association and resource allocation in heterogene-
ous cellular networks. IEEE Trans Wirel Commun 18(11):5141–5152

	13.	 Chen J, Wei Z, Li S, Cao B (2020) Artificial intelligence aided joint bit rate
selection and radio resource allocation for adaptive video streaming over
f-rans. IEEE Wirel Commun 27(2):36–43

	14.	 Zhang Z, Chen H, Hua M, Li C, Huang Y, Yang L (2019) Double coded
caching in ultra dense networks: caching and multicast scheduling via
deep reinforcement learning. IEEE Trans Commun 68(2):1071–1086

	15.	 Peng H, Shen X (2020) Deep reinforcement learning based resource
management for multi-access edge computing in vehicular networks.
IEEE Trans Netw Sci Eng 7(4):2416–2428

	16.	 Farhadi V, Mehmeti F, He T, Porta TFL, Khamfroush H, Wang S, Chan
KS, Poularakis K (2021) Service placement and request scheduling for
dataintensive applications in edge clouds. IEEE/ACM Transactions on
Networking 29(2):779–792 https://​doi.​org/​10.​1109/​TNET.​2020.​30486​13

	17.	 Wang Y, He H, Tan X (2020) Truly proximal policy optimization. In: Pro-
ceedings of The 35th Uncertainty in Artificial Intelligence Conference, pp.
113–122. PMLR

	18.	 Krause A, Golovin D (2014) Submodular function maximization. Tractabil-
ity 3:71–104

	19.	 Aliababa-clusterdata. https://​github.​com/​aliba​ba/​clust​erdata. Accessed
10 Oct 2021

	20.	 Ppo-hyperparameter-settings. https://​github.​com/​quant​umira​cle/​Popul​
ar-​RL-​Algor​ithms/​blob/​master/​ppo_​gae_​discr​ete.​py. Accessed 31 Sep
2022

	21.	 Bertsimas D, Tsitsiklis J (1993) Simulated annealing. Stat Sci 8(1):10–15

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/ACCESS.2023.3307023
https://doi.org/10.1109/TNET.2020.3048613
https://github.com/alibaba/clusterdata
https://github.com/quantumiracle/Popular-RL-Algorithms/blob/master/ppo_gae_discrete.py
https://github.com/quantumiracle/Popular-RL-Algorithms/blob/master/ppo_gae_discrete.py

	SLA-ORECS: an SLA-oriented framework for reallocating resources in edge-cloud systems
	Abstract
	Introduction
	Illustration of SLA-ORECS framework
	System overview
	Requirements for SLA-ORECS
	Steps to implement SLA-ORECS
	Resource customization
	Service orchestration

	Formulation
	System model
	Resource customization
	Resource customization by DRL
	A case of resource customization

	Service orchestration
	Task model
	Solution for request dispatch
	Algorithm for service orchestration

	Data-driven evaluation
	Experimental settings
	Evaluation results

	Discussion
	Conclusions
	References

