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Abstract 

The emergence of the Fifth Generation (5G) era has ushered in a new era of diverse business scenarios, primarily char-
acterized by data-intensive and latency-sensitive applications. Edge computing technology integrates the information 
services environment with cloud computing capabilities at the edge of the network. However, the evolving landscape 
of business models necessitates a unified edge architecture capable of accommodating diverse requirements, posing 
substantial challenges for service providers in meeting Service-Level Agreements (SLAs).In response to these chal-
lenges, we introduce SLA-ORECS. This innovative framework dynamically allocates dedicated and shared resources 
within the edge-cloud system to cater to service requests with varying SLAs, thereby facilitating performance isola-
tion. Furthermore, we have developed an optimization algorithm to enhance the efficiency of SLA assurance dur-
ing request dispatch.The evaluation of SLA-ORECS highlights its noteworthy performance improvements, particularly 
in terms of system throughput and average time consumption.
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Introduction
With the material abundance of life, mankind has become 
more focused on the pursuit of smart living, with more 
and more smart devices flooding into everyday life. This 
trend has led to diverse and urgent requests constantly 
being generated at the edge of the network, placing even 
greater demands on the already congested backbone and 
mobile networks. At present, edge computing technol-
ogy is emerging to diffuse cloud computing capabilities to 
edge clusters equipped with computation/storage capac-
ity, allowing service requests to be processed closer to 
the data sources. This not only relieves the pressure on 
the backbone network but also provides more favorable 

service quality assurance (e.g., privacy protection, timely 
response) for service requests.

Some pioneer work provide solutions for optimiza-
tion problems within a heterogeneous edge-cloud sys-
tem under various settings and demonstrate significant 
performance through simulations. For example, Li et al. 
[1] investigate the multi-user dual computation offload-
ing via a hybrid non-orthogonal multiple access and fre-
quency division multiple access transmission. With the 
objective of minimizing the overall latency for complet-
ing all wireless devices’ tasks, they also propose a layered 
yet cell-based distributed algorithm for finding the opti-
mal dual offloading solution. In order to minimize the 
average application response time, Guo et al. [2] focus on 
the problem of how to offload computationally intensive 
applications and assign the bandwidth and propose an 
efficient algorithm to find the optimal solution. In addi-
tion, Kamran et  al. [3] propose a framework for joint 
computation scheduling, caching, and request forward-
ing within decentralized computing environments and 
develop a throughput optimal control policy.
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The emergence of new technologies like 5G has intro-
duced possibilities to enhance the quality of existing ser-
vices and introduce new ones, such as enhanced mobile 
broadband, IoT applications, augmented reality, critical 
mission services, cloud gaming, and intelligent infra-
structure. Despite the increased responsiveness to vari-
ous requests, challenges such as network congestion, 
bandwidth limitations, scalability issues, service differ-
entiation, or security concerns persist, making it chal-
lenging to accommodate additional users and services 
without disrupting normal operations. Service Level 
Agreements (SLAs) [4] represent commitments made by 
service providers to customers regarding service param-
eters. For instance, Internet service providers will reach 
SLAs with customers, which usually have a technical 
definition in mean time between failures, throughput, jit-
ter, or similar measurable details. While these previous 
works [1–3] show excellent simulation performance in 
their settings, none of them focus on SLA-related issues: 
1) Different performance requirements between different 
services. In reality, services in different scenarios have dif-
ferent SLAs. For example, autonomous driving requires 
lower latency, while video transmission requires higher 
bandwidth. 2) Service performance guarantee. Only the 
service performance guarantee can bring better experi-
ence to users.

The Fifth Generation (5G) is expected to be able to 
meet the different SLAs of users. Based on Network 
Functions Virtualization (NFV) and Software-Defined 
Networking (SDN), network slicing is proposed as a new 
paradigm for building service-customized 5G networks. 
Some studies have attempted to address SLA-related 
issues through resource allocation or resource orches-
tration [5–10], with the aim of improving revenue or 
enhancing system performance. Liu et al.. design a con-
straint-aware deep reinforcement learning algorithm that 
learns the resource orchestration policy to allow optimi-
zation of network slicing dynamically without violating 
the SLAs of slices [8]. Alsaffar et al. present a new strat-
egy for optimizing big data distribution and propose an 
algorithm to allocate resources to meet SLA and Quality 
of Service (QoS) requirements [10]. However, there is still 
a lack of systematic discussion of “dynamic SLA customi-
zation with SLA guarantee” in the edge-cloud system.

The Deep Reinforcement Learning (DRL) algorithm 
has demonstrated efficient decision-making capabili-
ties in resource management problems and has seen 
widespread application. Liu et  al. [11] introduced a 
DQN-based algorithm to maximize the long-term com-
putational resource utility in MEC networks. Zhao 
et  al. [12] employed Dueling Double DQN for efficient 
user association in cellular networks. In another study, 
[13] proposed an asynchronous advantage actor-critic 

scheme for adaptive bandwidth allocation in wireless 
access networks, ensuring reliable transmission of video 
data streams. Zhang et al. [14] utilized a Deep Weighted 
Double Q-learning algorithm to learn dynamic caching 
policies in ultra-dense networks, minimizing latency. 
Furthermore, in [15], the Deep Deterministic Policy 
Gradient (DDPG) algorithm was employed to address 
joint resource optimization problems in vehicular net-
works. These DRL-based solutions significantly enhance 
resource utilization in wireless networks. However, neu-
ral networks excel in learning but not in search, whereas 
conventional search algorithms are adept at search but 
not learning. Traditional optimization algorithms tend 
to converge faster and exhibit higher stability compared 
to DRL. To overcome these limitations, our work com-
bines artificial intelligence with optimization algorithms, 
employing DRL for resource customization while utiliz-
ing optimization algorithms for service coordination.

Therefore, this paper investigates the SLA-oriented 
resource allocation and a request dispatch problem 
within the edge-cloud system to improve system perfor-
mance by implementing dynamic SLA customization and 
SLA guarantees. Through SLA customization, resources 
are allocated among requests with different SLAs so that 
requests with the same SLA can be dispatched within an 
identical channel, which we call performance isolation 
(PI). At the same time, we study the in-channel sched-
uling problem to provide better user experiences with 
guaranteed SLAs.

A dynamic performance isolation effectively avoids 
vicious resource competition and thus increases the 
number of requests that satisfy the SLA, i.e., the through-
put rate, due to the fact that there is resource competition 
between requests with different SLAs. Imagine a scenario 
where a service consumes most of the memory resources 
on a node. In this case, the scheduling of other services 
will be severely adversely affected, even if they require 
only a small amount of memory resources. In addition, 
requests within the same channel have the same SLA, 
which makes it easier to model optimization problems 
that take SLA guarantees into account. In addition, under 
performance isolation, request scheduling and service 
orchestration are channel-oriented; thus, only specific 
services within the channel participate in the computa-
tion. Since the channels are independent, they can run 
in parallel, thus saving a lot of time. To the best of our 
knowledge, this work is the first to study resource man-
agement in edge-cloud systems under the dual conditions 
of dynamic performance isolation and SLA guarantees. 
Our contributions can be summarized as follows.

•	 We propose a Resource Redefined Edge-Cloud Col-
laborative Framework for Service-Level Agreements, 
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SLA-ORECS, as shown in Fig.  1, which aims to 
dynamically achieve resource allocation among chan-
nels with different SLAs through a two-step process 
of resource customization and service orchestration. 
Resource customization refers to dividing dedicated 
resources among different channels, while service 
orchestration depends on the binding of shared and 
dedicated resources.

•	 We adopt a two-time-scale mechanism to present an 
implementation of the proposed framework, as illus-
trated in Fig. 1. It combines artificial intelligence and 
optimization algorithms, using Deep Reinforcement 
Learning (DRL) for resource customization and opti-
mization algorithms for service orchestration.

•	 We provide a proof-of-concept evaluation and vali-
date the advantages of SLA-ORECS in terms of sys-
tem performance. It shows promising performance 
in system throughput and average time consumption.

Illustration of SLA‑ORECS framework
This section describes SLA-ORECS and introduces its 
two major steps: resource customization and service 
orchestration.

System overview
Edge computing refers to the provision of low-latency 
computing services at or near the physical location of 
users or data sources by leveraging the storage and com-
putation capabilities of the edge infrastructure near the 
end devices. As shown in Fig. 1, we design SLA-ORECS 
based on the traditional edge-cloud system architecture, 

which consists of three layers: end-device layer, edge 
node layer, and cloud layer.

The end device layer is composed of various user 
devices that generate real-time service requests, such 
as cameras, mobile phones, etc., which are usually con-
nected to edge clusters through wireless communica-
tions. For example, a camera captures real-time media 
data for object detection.

The edge node layer comprises numerous distributed 
facilities/infrastructures, such as local servers or base sta-
tions, responsible for receiving requests from end devices 
and making decisions about the destination of request 
scheduling based on conditions such as resource distri-
bution. As a beneficial supplement to the cloud layer, the 
edge node layer is more suitable for local processing of 
small-scale delay-sensitive computing tasks. If resources 
permit, the edge node layer can independently process 
requests without transmitting them to the cloud through 
the backbone network.

The cloud layer is generally composed of server clus-
ters with massive computation and storage capacities, 
responsible for complex data processing and large-scale 
data/service storage. It can cooperate with the edge 
nodes to take over service requests that are not delay-
sensitive but resource-intensive. The most common form 
of cloud layer is commercial cloud platforms, such as Ali-
baba Cloud or Amazon EC2.

Requirements for SLA‑ORECS
With high bandwidth, high reliability, low latency, and 
large-scale interconnection, 5G technology will give 

Fig. 1  Framework to support dynamic performance isolation in the edge-cloud system
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consumers more emerging services and more diversi-
fied experiences. Therefore, the service scenarios under 
the edge-cloud collaboration will be more diverse in 
the QoS requirements and key performance indicators. 
For example, an edge-cloud system may simultaneously 
require high-quality video streaming, machine-type com-
munications, Internet of Things (IoTs) with ultra-low-
rate communications from a large number of devices, 
and automotive and haptic applications with millisecond 
latency. At the same time, with the further expansion of 
the network scale and the increasing demand for high-
quality network services, the current network is already 
facing severe tests. These trends drive the construct of a 
dynamically tailored edge-cloud system to support ser-
vices with specific SLAs and the design of intelligent poli-
cies to guarantee SLAs.

Steps to implement SLA‑ORECS
Typically, processing data-intensive service requests (e.g., 
augmented reality, video analytics, distributed machine 
learning) requires not only a dedicated share of resources 
(CPU cycles, memory for computation, storage resources 
for storage) but also a large amount of data on the server 
(e.g., object databases, trained machine learning mod-
els). Therefore, we divide the core process of SLA-ORECS 
into two steps: 1) resource customization and 2) service 
orchestration, where the first step is the allocation of 
dedicated resources and the second step is the binding 
of service replicas to dedicated resources. With the two 
steps, the resources of edge nodes and the cloud are cut 
into many mutually isolated combinations of dedicated 
and shared resources, each of which we call a resource 
cell or cell for short. In addition, the set of cells corre-
sponding to an SLA is called a channel.

Resource customization
Resource customization implies allocating dedicated 
resources in advance of request dispatch, not only 
between channels but also between cells. We classify cells 
into two types based on the combination of resources 
within a cell: horizontal and vertical cells. A horizontal 
cell means that resources of the cell are all from one edge 
node or several edge nodes. For example, some resources 
from edge node n1 and some from edge node n2 together 
form a joint cell. This horizontal cell means that the cell’s 
subject judges that more responsive resources from edge 
nodes are needed for the current situation rather than 
massive cloud resources. A vertical cell indicates that 
resources of the cell are from the edge node layer partly 
from the cloud layer. For example, a cell’s subject builds 
a cell consisting of the union of cloud resources and 
the resources of edge node n1 . This vertical cell prob-
ably indicates most current requests are characterized by 

low latency sensitivity but high resource requirements, 
so cloud resources are needed more than edge node 
resources.

Service orchestration
With the first step, resource customization, each channel 
is pre-allocated with some cells containing merely dedi-
cated resources. The next step is to consider the orches-
tration of shared data, and what needs to be done is to 
place a wide range of service replicas (shared code, well-
trained machine learning models, etc.) with specific SLA 
on cells of the corresponding channel. For each selected 
single orchestration, e.g., a replica of service l is placed 
on cell m, which we denote as a binary group (l, m). Then 
we can define S to be the set of selected single service 
orchestrations. Thus the service orchestration problem 
can be formulated as a set optimization problem.

Since service orchestration is closely related to subse-
quent request dispatch, we consider it jointly and model 
it as an optimization problem, which will be introduced 
and solved in the next section.

Formulation
This section first introduces the system model, then 
describes the SLA-ORECS designed to achieve dynamic 
performance isolation and SLA guarantee. To allocate the 
two types of resources required by data-intensive applica-
tions, we design a solution that first implements resource 
customization with DRL. According to our proposed 
algorithm, an approximately optimal service orchestra-
tion solution is generated within each channel. In this 
way, performance isolation is achieved in the edge-cloud 
system by combining an artificial intelligence algorithm 
and an optimization algorithm. Based on the allocation of 
dedicated and shared data results, the in-channel request 
scheduling problem to maximize throughput (the num-
ber of requests served with guaranteed SLAs) becomes a 
Linear Programming (LP) problem.

System model
As illustrated in Fig. 1, there is an edge-cloud system pro-
viding coverage to a generic geographic region, where a 
group of edge clusters covers a set of end devices. We first 
consider a basic edge-cloud system that contains an edge 
cluster and the cloud data center, with an edge cluster 
consisting of a set of edge nodes N = {n1, ..., nN } . Each 
edge node has limited storage, computation, and other 
dedicated resources, and the capabilities of different edge 
nodes can be heterogeneous. The cloud data center has 
relatively high capacities compared to edge nodes.

There is a set C of SLAs, one of which c ∈ C consists of 
a service subset Lc . Services are heterogeneous from one 
another, not only in terms of resources but also in SLAs 
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such as the maximum response time (the lifecycle of 
service). The existence of each SLA implies the need for 
a channel, so the set of channels is also C . We use DRL 
techniques for resource customization and an optimiza-
tion algorithm for service orchestration, in which each 
channel c ∈ C is allocated a set of heterogeneous cells 
Mc containing resources such as computation, service 
replicas.

A channel containing fixed cells would have poor flex-
ibility, so a dynamic SLA-ORECS is better than a static 
SLA-ORECS. In addition, considering cost reduction and 
stability, we adopt a two-time-scale mechanism depicted 
by Fig. 1 [16] to schedule request dispatch, resource cus-
tomization, and service orchestration. SLA-ORECS per-
forms request dispatch at a smaller scale, slot t while 
carrying out resource customization and service orches-
tration at a larger scale, frame f.

Resource customization
Resource customization by DRL
DRL, a combination of Reinforcement Learning (RL) and 
Deep Learning (DL), has opened up many new applica-
tions in finance, robotics, healthcare, smart grid, and 
other areas. Advanced research results in this field have 
been able to solve more complex decision-making tasks 
that were previously beyond the reach of machines.

Resource customization is a particularly tedious pro-
cess, with the generation of each cell involving var-
ied channels, multiple nodes (edge nodes or the cloud 
center), and various resources selection decisions. If 
solved using traditional heuristic algorithms, it suffers 
from overly complex modeling and high solution com-
plexity. Therefore, we customize the DRL algorithm for 
resource management in edge-cloud systems, i.e., using 
DRL for resource customization. Because it does not 
require to perform complex modeling but only key fac-
tors as state space inputs, and the DRL model can con-
tinuously learn by exploring and receiving feedback from 
the environment to continuously optimize the utility.

However, one key challenge is still pending in practice, 
namely the deployment of DRL agents. In this case, we 
design the resource customization mechanism under sin-
gle-agent decisions, i.e., deploying a DRL agent on each 
edge node responsible for the decision-making of cells 
dominated by that edge node.

For rationally managing resources in edge-cloud sys-
tems with numerous SLAs, the agent should make deci-
sions about allocating multiple dedicated resources in 
terms of a control action (c,  a,  r), where c ∈ C is the 
channel selection decision, denoting which SLA the cell 
serves, a specifies the edge nodes or cloud that jointly 
make up the cell, and r is the resource contribution 

profile, indicating how much each selected server con-
tributes to various resources of the cell.

The whole problem can be summarized as 
follows: according to a fixed control policy 
� = (�c(�),�a(�),�r(�)) , the edge node decides 
which channel the cell belongs to, the selection of 
joint nodes (edge nodes or the cloud center) and the 
resource composition of the cell. At the same time, it 
keeps observing the current network state � , includ-
ing the request rate of each service and the state of all 
cells in each channel. It is worth noting that even for 
the same frame the network state perceived by nodes 
is different if there is an order of edge nodes build-
ing cells. Because the previous cells change the cur-
rent environment, the later edge node can perceive 
cells of the previous one. In addition, we define a util-
ity function ψ(�, (c, a, r)) as reward function to evalu-
ate the overall effectiveness of the system, which is 
proportional to the overall throughput rate of the sys-
tem. By taking advantage of DRL algorithms, such as 
Proximal Policy Optimization (PPO) [17], the control 
policy � = (�c(�),�a(�),�r(�)) can be trained and 
achieve increased utility of the system for long-term 
performance.

A case of resource customization
As shown in Fig.  2, we offer an example of the entire 
process of resource customization. For illustrative pur-
poses, it is assumed that multiple rounds of resource 
customization are carried out in numbered order. First, 
the edge node n1 takes the observed state �1 as input 
and outputs decisions based on the control policy � . 
The decision process is as follows: this cell belongs to 
the channel 2, the assisting nodes for the joint cell are 
edge node n3 and the cloud, and the cell’s composition 
of dedicated resources is given. After edge node n1 fin-
ishes this resource customization, it makes a change to 
the current environment, so when edge node n2 observes 
the environment, the state has been changed to �2 , and 
a decision is made accordingly. After multiple rounds of 
resource customization, the resources of edge nodes and 
the cloud center are allocated to cells of various channels.

Service orchestration
In this subsection, we use the channel c ∈ C as an exam-
ple. We formulate the problem of service orchestration 
and request dispatch to maximize throughput. Moreover, 
a mechanism is designed to solve the two sub-problems 
using the same method. At the same time, we present an 
algorithm based on submodular function maximization 
[18] to select the service orchestration solution.
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Task model
To maximize the throughput in the channel, we set two 
decision variables x and y to model the mathematical 
problem, where x are the service orchestration variables 
and y are the request dispatch variables. xlm ∈ {0, 1} is 1 if 
the replica of service l is placed on cell m and 0 otherwise. 
ylnm ∈ [0, 1] represents the probability that a request of 
service l submitted to edge node n is dispatched to cell 
m. As the channels are independent of each other, it 
can simultaneously maximize the edge-cloud system’s 
throughput.

The underlying optimization problem of service orches-
tration and request dispatch can be formulated as (1): the 
objective is to maximize the expected number of requests 
whose SLA is fully guaranteed per slot. Constraint C1

u 
ensures that each cell does not store more than its stor-
age capacity, where the cell stores the sum of storage size 
of each service replica placed on that cell. Constraint C2

u 
guarantees that each cell is not dispatched with more 
requests than its resource capacity allows. Constraint C3

u 
ensures that a request is successfully dispatched if it ena-
bles guaranteed SLA, and the cell contains the requested 
service replica, where 1SLA is the indicator function. If the 
SLA of a request can be fully guaranteed, 1SLA is 1, other-
wise 0. Through this constraint, the SLAs of requests are 
strictly guaranteed. Constraint C4

u specifies that decision 
variables take values within valid ranges.

Since the objective function and constraints of (1), 
i.e., Channel Throughput (x, y), contains both integer 

(1)

P1 : maxChannel Throughput (x, y)

s.t. C1
u : ReplicaStorage ≤ Storage, foreachcell

C2
u : RequestResource ≤ Resource, foreachcell

C3
u : y ≤ x · 1SLA

C4
u : x, y ∈ ValidRange

variables x and real variables y , it is a mixed integer pro-
gramming problem, which is NP-hard and cannot be 
solved in polynomial time. Therefore, we decompose the 
problem into two sub-problems of request dispatch and 
service orchestration.

Solution for request dispatch
To reduce costs and improve stability, we separate the 
time scale of request dispatch (performed per slot) from 
resource customization and service orchestration (per-
formed per frame). At each slot, service orchestration is 
already selected at the beginning of the frame, i.e., the 
decision variables x are known. Therefore, we can solve 
the sub-problem of (1) regarding y (see (2)), and perform 
probabilistic dispatch, where a request for service l sub-
mitted to edge node n will be dispatched to cell m with 
probability ylnm . Since the decision of problem (2) is only 
related to the real variables y, it is a linear programming 
[16] that can be solved in polynomial time.

where the constraints include resource finiteness C1
p , 

SLA guarantee and service orchestration guarantee C2
p , 

and range validity C3
p . The binary variable µ represents 

whether the service replica is placed on the cell to which 
the request will be dispatched. As a result, request dis-
patch can strictly guarantee SLAs and meet resource 
requirements.

Algorithm for service orchestration
We reformulate the service orchestration problem as a 
set optimization. For each selected single orchestration, 

(2)

P2 : maxChannel Throughput (y)

s.t. C1
p : RequestResource ≤ Resource, for each cell

C2
p : y ≤ µ · 1SLA

C3
p : y ∈ ValidRange

Fig. 2  A case illustration of resource customization in the edge-cloud system
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e.g., a service l is placed on cell m, which we denote as a 
binary group (l, m). Then we can define S ⊆ Lc ×Mc to 
be the set of selected single service orchestration. Let 
Channel Throughput (S), which can be calculated by 
solving the request dispatch problem (see (2)), denote 
the optimal objective value of (1) under a fixed service 
orchestration set S or fixed decision variables x , where 
(l,m) ∈ S if and only if xlm = 1 . Then, we can rewrite 
the service orchestration problem as:

where the constraints include the finiteness of cells’ stor-
age capacity C1

h and the rationality of service orchestra-
tion set C2

h.
Mechanism: In order to verify how beneficial a ser-

vice orchestration case is to the current frame, we 
design an evaluation mechanism, as in Fig. 3. For a ser-
vice orchestration case, we take the average predicted 
request rate of that frame to perform request dispatch. 
The resulting throughput in the current case is used as 
a criterion to evaluate this service orchestration. The 
average predicted request rate is the sum of expected 
request rates of all slots in the frame divided by the 
number of slots. The specific execution flow of the 
mechanism and the meaning of each step, as in Fig. 3, 
are shown below. 

(a)	 Service orchestration variables and known param-
eters are involved as inputs to the problem (2).

(b)	 By solving the problem (2), the dispatch variables 
and the throughput rate can be derived.

(3)

P3 : maxChannel Throughput (S)

s.t. C1
h : ServiceStorage ≤ Storage, for each cell

C2
h : S ⊆ DefinitionDomain

(c)	 The throughput rate derived in step (b) is used as a 
criterion for judging the service orchestration set.

(d)	 Each service orchestration set iterated by the algo-
rithm is converted to the corresponding service 
orchestration variables for participation in step (a).

Algorithm: Due to the submodularity of the objective 
function [18], we design a heuristic algorithm, Service 
Orchestration founded on Submodular Function Maxi-
mization (SO-SFM). In the process of SO-SFM, different 
service orchestration schemes are selected iteratively, and 
the approximately optimal one is established through the 
evaluation mechanism. To further illustrate, the detailed 
flow of the algorithm can be expounded by the following 
steps.

•	 Initialize the selected service orchestration set S as an 
empty set.

•	 Select the element u from the set (Lc ×Mc) \ S that 
makes the set S ∪ {u} not only satisfy constraints of 
(3) but also maximize the objective function of (3).

•	 Merge the selected element u to the set S.
•	 Repeat the above two steps until there is no element 

in the set (Lc ×Mc) \ S or S is already the most 
extensive set satisfying the constraints of (3).

Data‑driven evaluation
Experimental settings
For investigating the performance of SLA-ORECS, simu-
lations on request dispatch are presented for edge-cloud 
systems with different SLAs. Among all simulations, the 
time horizon is discretized into frames, where a frame 
includes 50 slots. We designed the experimental environ-
ment contains the cloud center and an edge cluster with 

Fig. 3  Evaluation mechanism for service orchestration within a channel
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four edge nodes. For illustrative purposes, we consider 
two kinds of dedicated resources, storage resources and 
computational resources and adopt maximum response 
time to indicate the difference of SLAs.

To study the role of performance isolation, we assume 
that an edge-cloud system contains |C| = 5 SLAs, where 
there are |Lc| = 4 or so services within each channel. 
To indicate the difference in SLAs, the requests in the 5 
channels have different maximum response time. Ser-
vices’ range of data value and request distribution are 
based on the Alibaba Cluster Trace [19] to ensure SLA-
ORECS has effective performance in the real environ-
ment. As for the DRL settings in edge nodes, We choose 
the PPO algorithm and select Relu as the activation 
function and Adam optimizer. For the settings of other 
parameters, we refer to the settings of this project [20].

Evaluation results
To collaborate the performance of SLA-ORECS, experi-
ments on request dispatch are carried out under various 
settings. Fig. 4 gives the details of performance compari-
son as follows. 

1)	 In Fig.  4(a), the performance of request dispatch 
under PI with PPO and SO-SFM is compared to No 
Performance Isolation (No-PI) with SO-SFM; We 
can see that when the DRL agent is trained to con-
vergence, the request dispatch under PI is higher 
and more stable than that under No-PI in terms of 
throughput rate, which indicates the advantage of 
dynamic SLA customization.

2)	 We construct several baselines to show the perfor-
mance advantage of the service orchestration with 

SO-SFM. In Fig. 4(b), the performance of SO-SFM is 
compared to other solutions: probability orchestra-
tion, simulated annealing, and top-Q. We divide the 
storage resource capacity of edge nodes into 6 levels 
(higher is better). It can be seen that with the increase 
of the storage resource capacity, the throughput rate 
shows an upward trend. In addition, the throughput 
rate of SO-SFM is always higher than other baselines, 
which also demonstrates the superiority of the opti-
mization algorithm. Note: top-Q mentioned above, 
which sequentially considers each cell, computes 
the total demand for each service that can be dis-
patched, and then perform service orchestration in 
descending order until reaching storage limitation; 
probability orchestration means to firstly solve the 
LP relaxation of (1), and then place service replicas in 
descending order of the service orchestration varia-
bles (can be seen as orchestration probability) subject 
to the storage constraints; simulated annealing [21] is 
a stochastic optimal search strategy for iterative solu-
tions, whose starting point is based on the similarity 
between the annealing process of substances in phys-
ics and general combinatorial optimization problems.

3)	 We also collect the computational time during 
request dispatch and service orchestration in an 
edge-cloud system with heterogeneous SLAs. Under 
PI, both request dispatch and service orchestration 
are channel-oriented; therefore, only specific services 
within channels are involved in the computation. 
Since the channels are independent, they can operate 
in parallel, thus saving a lot of time under PI. In the 
No-PI case, all services within the edge-cloud system 
involve in the computation of solving the problem (2) 

Fig. 4  Performance of request dispatch in the edge-cloud system: a) comparison of throughput rate under PI or non-PI; b) comparison 
of throughput rate of different service orchestration algorithms; c) comparison of average consumed time per frame



Page 9 of 10Lan et al. Journal of Cloud Computing           (2024) 13:18 	

and executing algorithm SO-SFM to necessarily con-
sume more computational time, which is showned by 
Fig. 4(c).

We find it feasible to implement dynamic SLA customi-
zation and guarantee SLAs through optimization in an 
edge-cloud system through the above experimental analysis. 
Moreover, there is considerable improvement in the perfor-
mance metrics we are concerned about, such as throughput 
rate and average consumed computational time.

Discussion
Performance isolation achieved through SLA-ORECS still 
faces challenges, such as the need to deploy DRL agents on 
edge nodes to store training and test data, train models, and 
update parameters. However, all of the above challenges 
are inevitable in the training process of machine learning 
applications. For large-scale machine learning applications, 
training and testing models can take a lot of time. Still, for-
tunately, there are already many proven distributed and 
efficient training solutions to draw from.

On the other hand, there are many opportunities 
for SLA-ORECS, such as 1) service orchestration and 
resource customization are obtained simultaneously using 
DRL decisions so that training results can directly replace 
algorithmic predictions; First, service orchestration itself 
is a very complex task, which needs to consider the dis-
tribution of requests, the heterogeneity of resources, and 
the heterogeneity of edge nodes, and there are limitations 
in using traditional heuristic algorithms for optimization. 
In addition, there is a strong correlation between service 
orchestration and resource customization, and more ser-
vices for orchestrating means more space for resource 
customization. Due to the above considerations, using 
deep reinforcement learning decisions to obtain both ser-
vice orchestration and resource customization is expected 
to be the solution from the present point of view. 2) in 
addition to the performance metrics we mentioned in our 
experiments, users can feed their more focused metrics to 
the DRL reward function to get more satisfactory results 
through training. In our experiments, the metric we focus 
on is the number of demands. Therefore, we choose the 
throughput rate as the reward function in deep reinforce-
ment learning. If the user is more concerned about the 
latency, it can be included in the reward function. Even 
if the user is more concerned about the combined effect, 
other metrics such as throughput and latency can be 
included in the reward function. 3) the time scale relation-
ship between SLA-ORECS’s implementation and request 
dispatch can dynamically change to better suit reality at 
the time; For example, if the current resource customiza-
tion and service orchestration results match the current 
request better, then the timescale can be dynamically 

adjusted so that a large timescale contains more small 
timescales. Accordingly, if the current resource customi-
zation and service orchestration results do not match the 
current request well, then the timescale can be dynami-
cally adjusted so that a large timescale contains fewer 
small timescales. 4) alternatively, multi-agent decisions 
are used instead of single-agent decisions, where multiple 
agents interact with each other to decide on the allocation 
of resources for maximizing the utility of the edge-cloud 
system. In our experiments, we use single-agent decisions. 
However, in our subsequent work, we will implement 
the mechanism of SLA-ORECS in a multi-agent manner 
based on the above points. Whether challenges or oppor-
tunities, these issues remain open questions and areas for 
consideration in future.

Conclusions
We have discussed the necessity for dynamic SLA cus-
tomization and SLA guarantee in an edge-cloud system 
and mathematically modeled the resource customization, 
service orchestration, and request dispatch. We have pro-
posed SLA-ORECS, a scheduling framework that com-
bines artificial intelligence algorithms with optimization 
algorithms to achieve dynamic performance isolation 
and SLA guarantee in edge-cloud systems. Experimen-
tal results corroborate the effectiveness of SLA-ORECS 
and show its promising performance in system through-
put and average time consumption. Our future work will 
deploy and enhance SLA-ORECS in Kubernetes-based 
multi-cluster edge-cloud systems, focusing on improving 
their scheduling timeliness.
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