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Abstract 

Digital twins have revolutionized the field of image enhancement by applying their unique capabilities. A digital 
twin refers to a virtual replica of a physical object or system, which can be utilized to simulate and analyze real-world 
scenarios. In image enhancement, digital twins map entities to images, identify damaged areas, and restore them 
to their original state. This process involves utilizing the digital twin method to understand the underlying structure 
and characteristics of the image. The damaged areas can be accurately modeled and repaired using techniques 
like the Cahn-Hilliard equation. Additionally, neural network models are leveraged to measure the effectiveness 
of the image restoration process. Compared with the first-order numerical scheme, the second-order method can 
improve the prediction accuracy by more than 40% in some cases. Through these advancements, digital twins have 
significantly enhanced images’ quality, clarity, and visual appeal, contributing to various photography, healthcare, 
and remote sensing applications.
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Introduction
Digital twins are virtual replicas of physical objects that 
can be used to simulate the behavior and performance 
of their real-world counterparts. Many experts [1–3] 
emphasize that digital twin modeling is the cornerstone 
for accurately representing physical entities. Image 
inpainting, a technique used to restore damaged areas 
in an image by leveraging information from surrounding 
regions, can be applied in digital twin technology. This 
method can be categorized into three types: non-texture 
repair, texture repair, and generative image restoration. 
Non-texture rehabilitation restores structural details 
such as boundaries, corners, and curvature, while texture 
repair corrects global information within the damaged 

region. Recently, generative image restoration based on 
deep learning has also made notable advancements.

One of the traditional approaches for image inpaint-
ing is the PDE-based model introduced by Bertalmio [4]. 
This method can be implemented in digital twins to emu-
late the expertise of museum experts who restore cultural 
artifacts using a nonlinear partial differential equation. 
Its fundamental principle involves diffusing sharp bound-
aries into the areas requiring inpainting. To achieve 
this, the method creates intensity contours around the 
repaired region, gradually spreading the gray level from 
the border of the damaged area to its interior. The isoph-
etes’ direction serves as the boundary condition for the 
inpainted area. As a result, this method can accurately 
model the behavior and performance of physical objects 
in digital twins.

In addition to the aforementioned PDE-based models, 
there are also alternative approaches to image inpainting. 
One such method is the curvature-driven diffusion model 
that employs Euler-Lagrange equations to estimate miss-
ing regions within the image. Another popular approach 
is variational models, which formulate inpainting as an 
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energy minimization problem. The Total Variation (TV) 
denoising and segmentation model, introduced by Chan 
and Shen [5], is a well-known example of such models. 
This model proves effective for image restoration tasks by 
incorporating a penalty term that preserves the solution’s 
approximation outside the inpainted regions.

However, the TV model has limitations in dealing with 
significant gaps or intervals. To address this issue, Chan 
introduced the integral of the curvature along the bound-
ary contour to the penalty term, enhancing the model’s 
ability to bridge larger intervals. This modified TV model 
for image inpainting can be utilized in digital twin tech-
nology to simulate the restoration of damaged objects 
accurately and efficiently.

Combining digital twin technology and image restora-
tion based on the Cahn-Hilliard equation brings a powerful 
approach to enhancing and repairing damaged images. Dig-
ital twin technology provides a virtual replica of the image, 
allowing for a deep understanding of its structure, features, 
and underlying physical phenomena. Applying the Cahn-
Hilliard equation, a mathematical model used to describe 
phase separation and interface dynamics, the damaged 
areas in the image can be effectively modeled and repaired.

The Cahn-Hilliard equation considers factors such 
as diffusion and surface energies, enabling it to capture 
complex patterns and enhance restoration. The equation 
simulates the diffusion of information within the damaged 
regions, promoting the reconstruction of missing details 
and smoothing out irregularities. This modeling approach 
helps restore the image to its original state by minimizing 
the energy associated with the damaged areas.

Existing CH models only have first-order accuracy in 
time, and simulating long-term evolution processes will 
increase the number of calculations. For this purpose this 
paper uses a second-order accuracy numerical model.

Furthermore, the utilization of digital twin technology 
allows for a comprehensive assessment of the effectiveness 
of the image restoration process. Neural network models 
can measure the restored image’s quality, fidelity, and vis-
ual appeal. These models learn from a vast dataset of high-
quality images and their corresponding damaged versions, 
enabling them to evaluate the success of the restoration 
algorithm and provide quantitative metrics for assessment.

In this paper, we make the following contributions:

•	 we give an energy-stable second-order numerical for-
mat of the CH equation for image restoration.

•	 we introduce the multi-grid solution method of 
this numerical format, which can solve the problem 
quickly. Compared with the Newton method, it does 
not need to calculate the Jacobian matrix and saves 
memory.

The full text is organized as follows. Related work sec-
tion introduces related work, Methodology section intro-
duces the numerical format and multigrid algorithm, and 
Results and discussion section gives examples to prove 
the superiority of the second-order format. Finally, we 
provide some discussions and conclusions in Conclusion 
section.

Related work
The combination of digital twin technology and the 
Cahn-Hilliard equation-based image restoration presents 
a promising solution for the enhancement of damaged 
images. By leveraging the virtual representation provided 
by digital twins and the mathematical modeling capabili-
ties of the Cahn-Hilliard equation, it becomes possible 
to restore images with improved accuracy, clarity, and 
visual quality. This application holds significant potential 
in fields like medical imaging, forensics, and historical 
document restoration, where damaged images need to be 
recovered and analyzed.

Gillette and Bertozzi [6] were the first to apply the 
Cahn-Hilliard equation model to image restoration work. 
They added a fidelity item based on the CH equation, 
which has a good repair effect on binary images.

�(x) is the mark of the damaged area, W(u) is the dou-
ble well potential function, and one of the author’s sug-
gestions is u2(u− 1)2

Neumann zero-flux boundary value condition, � is the 
image area, D is the area to be repaired, if

The model can fill in a wide range of information gaps 
very well. In solving the model, the author uses a numeri-
cal format of convex decomposition.

Burger [7] obtained the TV −H−1 model after seeking 
the limit of the energy functional of Bertozzi’s model and 
removed the free energy item. This model can be applied 
to grayscale images. TV −H−1 has the same minimum 
point as the CH equation, but the model slowly con-
verges to a steady state.

Kim [8] pointed out that when repairing an image 
with broken stripes, the non-smooth break at the 
boundary and the smooth repair function can cause 
stepped repair at the edge. For this reason, the author 
introduces a preprocessing method, which first solves 
an anisotropic diffusion equation and then solves the 
improved CH equation.

ut = −�(ǫ�u− 1

ǫ
W (u))+ ���D(u0 − u).

���D(x) =
0, if x ∈ D
�0, if x ∈ �� D



Page 3 of 9Guo and Qi ﻿Journal of Cloud Computing          (2023) 12:177 	

To address the above problems, Zou [9] proposes to 
combine the Perona-Malik equation and the CH equa-
tion. By adding the nonlinear diffusion coefficient before 
the diffusion term, the CH equation of anisotropic dif-
fusion is obtained, which ultimately achieves a smooth 
repair effect at the boundary.

Since then, different scholars have attempted to expand 
the application of the CH equation in image restora-
tion. Since the free energy term in the CH model speci-
fies a stable point, it is only suitable for binary images. 
For gray-scale pictures and color images, it is necessary 
to remove the free energy term or consider the complex-
valued CH model [7, 10] in vector form, or use multi-val-
ued potential functions instead of double-well potentials 
[11]. Other considerations include the inpainting of color 
images using the multiphase flow CH model [12], and the 
consideration of fractional CH equations [13].

The CH equation essentially represents the average cur-
vature, but the steady-state calculation time in the CH 
equation is greatly affected by ǫ . In [6], the author sug-
gested using a two-stage algorithm but did not provide 
specific guidance. This paper proposes selecting the value 
of ǫ based on the size of the damaged area. For larger dam-
aged areas, a multi-stage algorithm can be employed to 
expedite the convergence speed. Additionally, the calcula-
tion of the next stage begins after the previous step enters 
a steady state to prevent oscillation at the boundary.

Carrillo et al. [14] applied the CH model for image pre-
processing in the neural network image recognition task. 
They used the MINIST dataset to verify the CH model 
as a preprocessor, which can improve the recognition 
accuracy of damaged data. The above image inpainting 
models based on the CH equation are all based on the 

convex decomposition method and the numerical format 
with first-order precision on time. Since the spatial step 
is a fixed value of 1 for the image, although the spatial 
accuracy is second-order in the standard discrete format, 
the time step will still affect the overall error. If one use a 
small time step, it will increase a lot of calculations.

This paper presents a time-based second-order numeri-
cal scheme based on a convex decomposition method, 
which has the good properties of unconditional energy 
stability and unique solvability and is solved using a multi-
grid method [15]. Based on the work of Carrillo et al. [14], 
the experimental process of handwritten data is re-exam-
ined, proving that the second-order numerical format can 
achieve a better restoration effect and improve the predic-
tion accuracy of the neural network model (Table 1).

Methodology
Here, we use the second-order numerical scheme of [15] 
and the geometric multigrid solver [16, 17] for the result-
ing nonlinear problem. Consider energy first

The original CH equation is the gradient flow in the 
H−1 space, and it is no longer in the form of gradient flow 
after adding the fidelity item. After the two terms of the 
energy functional are varied in the space of H−1 and L2 
respectively, the equation of the continuous situation is 
obtained:

The boundary condition is the zero-flux Neumann 
boundary (let u = ǫ�φ − 1

ǫ
(φ3 − φ))

E(φ) =
∫

�

φ4

4
−

φ2

2
+ ǫ2|∇φ|2dx + ���D

∫

��D

(φ0 − φ)2

2
dx

φt = −�(ǫ2�φ − (φ3 − φ))+ ���D(φ
0 − φ).

Table 1  Summary of related work

Reference Model Application Key contributions

Gillette and Bertozzi (2007) [6] Cahn-Hilliard equation model Binary image restoration Added fidelity item based on CH equa-
tion for binary image restoration

Burger (2009) [7] TV − H
−1 model Grayscale image restoration Removed free energy term in CH 

model for grayscale image restoration

Kim (2019) [8] CH equation Image with broken stripes restoration Introduced preprocessing method 
using anisotropic diffusion equation 
before solving CH equation

Zou (2021) [9] Perona-Malik equation and CH equa-
tion

Image restoration at boundary Combined nonlinear diffusion coef-
ficient and CH equation for smooth 
repair effect at the boundary

Carrillo et al. (2021) [14] CH model as preprocessor Neural network image recognition Improved recognition accuracy 
of damaged data using CH model 
as preprocessor

This paper Second-order numerical scheme 
based on the convex decomposition 
method

Image restoration Proposed a time-based second-order 
numerical scheme for better restora-
tion effect and improved prediction 
accuracy of the neural network model
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Initial value:

For a detailed definition of discrete function space, please 
refer to [15]. Here is the format after the discretization of 
time and space directly:

ǫ is the interface width parameter, φij is the unknown 
pixel value of the image at position (i, j), φn

ij is the known 
pixel value of the image at position (i, j) at the nth time step, 
and �h is a discrete second-order difference operator.

For CH equations that do not contain fidelity terms, this 
scheme has unconditional energy stability, unique solvabil-
ity [15], and the dependence of the convergence constant 
on the polynomial [18]. After rewriting using the auxiliary 
variable u, we get:

We use the nonlinear geometric multigrid algorithm 
for solving the numerical format above. For the original 
CH equation, which is the gradient flow in H−1 space, 
the numerical scheme processed by convex decomposi-
tion corresponds to the minimization of a convex func-
tional. Then, the convergence of the multigrid solver can 
be obtained. For the geometric multigrid algorithm, in 
addition to the conventional Interpolation and Ristric-
tion operators, it is mainly necessary to define the resid-
ual function and the Smoothing operator in the code 
implementation.

After arranging the known and unknown items in the 
equation, the following form is obtained:

Express the residual function r as the difference 
between the Operator and Source term r = N − S.

For the sake of simplicity, the definition is as follows:

∂φ

∂n
= 0 on ∂�,

∂u

∂n
= 0 on ∂�

φ(0) = φ0

φij − φn
ij

dt
=

φ2

ij + (φn
ij)

2

4ǫ
(φij + φn

ij)− (
3

2
φn
ij −

1

2
φn−1

ij )/ǫ

− ǫ�h

3φij + φn−1

ij

4
+ ���D(φ

0

ij − φij).

φij−φn
ij

dt
= −ǫ�huij + �

(
φ0

ij − φij

)

uij =
φ2
ij+

(
φn
ij

)2

4ǫ

(
φij + φn

ij

)
−

(
3

2
φn
ij −

1

2
φn−1

ij

)
/ǫ − ǫ�h

3φij+φn−1

ij

4

(1+ �dt)φij − dtǫ�huij = φn
ij + �dtφ0

ij

φ2
ij+

(
φn
ij

)2

4ǫ

(
φij + φn

ij

)
+ 3ǫ

4
�hφij + uij = −

(
3

2
φn
ij −

1

2
φn−1

ij

)
/ǫ − ǫ

4
�hφ

n−1

ij

χ̃

(
φi,j ,φ

n
i,j

)
= 1

4ε

(
φ2
i,j +

(
φn
i,j

)2)

χ

(
φi,j ,φ

n
i,j

)
= 1

4ε

(
φ2
i,j +

(
φn
i,j

)2)(
φi,j + φn

i,j

)

The Operator term is defined as a nonlinear operator 
N = (N 1,N 2)T of shape 2× N × N  , and the component 
form is:

The Source term is defined as the source 
S = (S(1,n), S(2,n))T of shape 2× N × N  , and the compo-
nent form is

Solving the residual equation is equivalent to solving 
N (φ) = Sn The Smooth operator is the local linearization 
of the Operator term, defined as:

Zero-flux Neumann boundary condition:

The initial value is the input data φ(0) = φ0 . A multi-
grid algorithm in the format of the V-cycle full approxi-
mation scheme (FAS) is used here. Unlike the multigrid 
iteration using Newton’s method for global linearization, 
a nonlinear disturbance equation is solved on the coarse 
grid in the FAS format:

In the FAS format, only local linearization is done in 
the smoothing operator.

Multigrid works on grids with hierarchies. It does 
not solve the equations precisely on the coarsest mesh 
but still uses the smoothing step to obtain an approxi-
mate solution. Then, use the standard interpolation 
and restriction operators to transfer the information 
between the two layers of grids. The calculation process 
of the multigrid cycle can refer to [17]. with the second-
order extrapolation formula to establish initial value 
estimates at different time points, we could obtain the 
complete multigrid process with time step iterations 

N 1
i,j(φ,φ

n) = (1+ �dt)φi,j − dtǫ�hui,j

N 2
i,j(φ,φ

n) = ui,j − χ

(
φi,j ,φ

n
i,j

)
+ ǫ�hφi,j

S
(1,n)
i,j = (1+ �dt)φn

i,j

S
(2,n)
i,j = −

(
3
2φ

n
ij −

1
2φ

n−1
ij

)
/ǫ − ǫ

4�hφ
n−1
i,j

(1+ �dt)φi,j + εdt
h2

4µi,j

= S
(1,n)
i,j + εdt

h2

[
µn
i+1,j + µi−1,j + µn

i,j+1 + µi,j−1

]
[
−χ̃

(
φi,j ,φ

n
i,j

)
− 9ε

2h2

]
φi,j + µi,j

= S
(2,n)
i,j + χ̃

(
φi,j ,φ

n
i,j

)
φn
i,j

− 3ε
4h2

[
φn
i+1,j + φi−1,j + φn

i,j+1 + φi,j−1

]

φi,0 = φi,1 φi,N+1 = φi,N
φ0,j = φ1,j φN+1,j = φN ,j

ui,0 = ui,1 ui,N+1 = ui,N
u0,j = u1,j uN+1,j = uN ,j

NH(φH) = IHh (Sh −Nh(φh))+NH

(
IHh φh

)
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with an outer cycle. The stop condition is defined by the 
norm of the residual function using normalization.

Parameters and Neural Network Models  In the origi-
nal CH equation, ǫ describes the width δ of the bound-
ary layer, and there is an approximate relationship 
δ = 4.164

√
ǫ2 . Meanwhile, in the energy, ǫ is Used to 

weight the gradient term, and the gradient term |∇φ| is 
used to describe the boundary. The corresponding energy 
minimization process requires a reduction in the number 
of edges. The original physical change is in two stages. 
The first stage is phase separation, and the stable state of 
interfaces with multiple δ is rapidly formed in the region; 
the second stage is coarsening, and the boundary in the 
steady state is merging, showing that small areas merge 
into larger sizes.

Since ǫ determines the width of the boundary layer, 
smaller epsilon values correspond to sharper bounda-
ries. A two-stage algorithm is used in the image resto-
ration process: the first stage sets a considerable ǫ value 
so that the boundaries connect by diffusion. The sec-
ond stage sets a small ǫ value to make the edges sharper 
after reconnection.

Since the smallest unit is a pixel point in the image, 
the grid space step size h in the corresponding differ-
ence method is a fixed value of 1. In the CH equation, 
the more points on the boundary, the smaller the error. 
According to the relationship between the boundary 
layer thickness and the parameter ǫ , it is necessary to 
set a more significant ǫ value when repairing a large 
damaged area.

The image processing steps are as follows: Step 1, input 
the image to be repaired and the mask image. Step 2, 
transform the pixel value of the image to be repaired into 
the range of [-1,1]. Step 3, uses the transformed result as 
the initial value and the mask image pixel value to set the 
indication coefficient. Step 4, establish the numerical for-
mat of the Cahn-Hilliard equation and use the FAS for-
mat multi-grid solution. Step 5, transform the calculation 
result into the original image value range.

In the following experiments, the inpainting effect 
of the second-order CH scheme is verified by using the 
prediction effect changes before and after preprocess-
ing on the neural network model. To this end, a neural 
network model is trained on the handwritten digit data-
set MINIST. Then, make different damage patterns to 
the test data, use the neural network model to predict, 
and obtain the prediction accuracy of the damaged data; 
then use the CH model to perform image restoration and 
get the prediction accuracy of the repaired data. Finally, 
compare the improvement in prediction accuracy before 

and after restoration. The neural network model building 
and calculation process following Carrillo et al. [14].

We use two random damage modes: 1) Destroy rows 
randomly select several rows for shading. 2) Destroy pix-
els and randomly select several pixels for masking.

The MNIST dataset is handwritten digit data. Each 
image is a 28*28 grayscale image.

In the numerical solution of the CH equation, the time 
step dt = 0.1 , the space step h = 1 , and the definition 
domain is a square area of [0,28]*[0,28]. Using a two-
stage approach, ǫ1 = 1.5, ǫ2 = 0.5 , values changed at time 
point t = 2 . Termination time T = 6 . Penalty coefficient

We use the prediction accuracy of the neural network 
model to evaluate the effect of image restoration. The 
evaluation index used here is the improvement rate:

postAcc is the prediction accuracy rate after process-
ing, and preAcc is the prediction accuracy rate before 
processing.

The signal-to-noise ratio of an image is defined as:

where z is the original image and u is the inpainted image.

Results and discussion
Comparison of effect with and without CH filter
The evaluation index used here is the lift rate(Lift). It 
is defined as the relative change value of the prediction 
accuracy of the neural network model before and after 
preprocessing.

Because each time a new random number is used for 
the damaged position of each picture, the prediction 
accuracy rate obtained by each execution of the pro-
gram is different. The mean of five experiments is used 
here as the final result. From Tables 2 and 3, the results 
show that the second-order format’s improvement rate is 
higher. Moreover, in the first-order form, the promotion 
rate obtained is negative when the number of damaged 
lines is 24 or 26 in the broken line mode. In the pixel-bro-
ken way, the pixel ratio is 30%, 40% , the promotion rate 
is zero. Both are positive values here. Combined with the 
previous signal-to-noise ratio analysis, we found that the 
first-order format may not have selected the optimal time 
point for prediction.

���D(x) =
{

0, if x ∈ D
9000, if x ∈ �� D

Lift =
postAcc − preAcc

preAcc

SNR = 10LOG10
�z�2

�z − u�2
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Note: Compared with the original paper [14] , the ini-
tial prediction accuracy is different from that given here 
due to the use of different initial values.

The tabular data verifies that using the CH model to 
paint the image can improve the prediction effect of the 
image, and the improvement rate is higher than that of 
the first-order scheme. In addition, in the first-order 
format [14], the promotion rate obtained is negative 
when the number of lines breaks into 24 and 26 lines. 
When the pixel destruction ratio is 30%, 40%, the pro-
motion rate is zero. In the second-order format, both 
are positive values. It shows the superiority of the sec-
ond-order scheme in terms of accuracy improvement. 
In terms of calculation speed, use the fsolve function 
in the scipy package to solve nonlinear equations. After 
Carrillo et  al. [14] changed the direct solution to the 
alternate direction row solution, they reduced the pro-
cessing time of an image from 25s to 8s. In this paper, 
the nonlinear multi-grid algorithm is used, and the cal-
culation time of each print is 1s.

Case Analysis
A single image is compared before and after using the 
CH filter, and a larger value is used before the first time 
point t = 2 , and the change process is dominated by dif-
fusion. With smaller values after the first time point, the 
region edges sharpen quickly, forming sharp boundaries.

There will be marks on thicker banded edges. We can 
see that the image has a clearer boundary after 60 steps 
of evolution.

Comparison of results in pixel destruction mode. It can 
be seen from Figs. 1 and 2 that: a). A large ǫ at the first 
time point makes the image blurred, and a small ǫ value 
at the following few time points makes the picture gradu-
ally more evident, and the boundary sharper. b). Suc-
cessive row corruption can make repairs difficult. Leave 
traces at intermediate time points.

SNR analysis
SNR is the signal-to-noise ratio initially used to measure 
the percentage of signal-to-noise. The larger the signal-
to-noise ratio, the better the image quality. The SNR is 
used here to measure how close the repaired image is 
to the original image. The signal-to-noise ratio was used 
to compare the difference in image processing effects 
between the first-order and second-order schemes of the 
CH equation.

The mean value of SNR at different time points for 
2000 samples in row corruption mode was calculated. 
The abscissa is the number of time steps, and the number 
of damaged lines is 22, 24, and 26, respectively. It can be 
seen from the Fig. 3: a. At the first three time points, the 
SNR of the second-order scheme is higher than that of 
the first-order form [14] and reaches the maximum at the 
second time point. It shows that the 2nd order scheme 
has a better repair effect in the first stage of the calcula-
tion. b. The entire SNR curve rises first and then falls. The 
best repair effect is at the middle time point. c. The more 
destroyed rows, the smaller the maximum SNR that can 
be achieved. The more damaged points, the worse the 
repair effect.

The above analysis suggests that using the repair value 
of the last time point is unnecessary when using neural 
network prediction, and a better prediction effect can 
be obtained by using the repair value of the second time 
point.

Compared with the restoration effect of other CH models
A comparison of the repair effects of different variants of 
the CH model is shown in Fig. 4. The time step is 0.1, the 
end time is 110, and the image size is 128*128. All mod-
els are solved using the method based on time evolution. 
Table  4 show that the repair effect of the fractional CH 
equation [13] is the worst. The existence of the fractional 

Table 2  Damaged with rows

Damaged 
rows

Without 
CH filter

With 2ndCH Lift rate 2ndCH Lift rate 
1stCH [14]

6 0.84 0.95 13% 8%

8 0.79 0.94 19% 13%

10 0.74 0.93 26% 25%

12 0.68 0.91 34% 32%

14 0.61 0.88 43% 45%

16 0.56 0.83 47% 47%

18 0.49 0.73 49% 45%

20 0.43 0.62 44% 20%

22 0.35 0.49 40% 15%

24 0.29 0.36 25% -21%

26 0.2 0.21 7% -40%

Table 3  Damaged with pixels

Damaged 
pixels

Without 
CH filter

With 2ndCH Lift rate 
2ndCH

Lift rate 
1stCH [14]

30% 0.92 0.96 4% 0%

40% 0.89 0.95 7% 0%

50% 0.85 0.95 12% 4%

60% 0.80 0.94 17% 18%

70% 0.70 0.92 31% 24%

80% 0.58 0.84 45% 45%

90% 0.40 0.62 56% 18%

92% 0.35 0.52 50% 16%

94% 0.30 0.44 49% 3%

96% 0.24 0.34 41% 15%
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term increases the difficulty of solving and introduces a 
larger parameter search space. The same problem exists 
in the PeronaMalik method [9] and the preprocessing CH 
[8] method. The introduction of nonlinear terms increases 
the difficulty of solving the original equation and increases 
the parameter search space. In contrast, the problem of the 
CH model exists only in the choice of two-stage param-
eters. Regarding calculation speed, the solution of the CH 
equation using the geometric multigrid algorithm is faster.

Discussion
In the previous section, we have highlighted the effective-
ness of the CH high-precision numerical model in binary 
image restoration. This model offers a more accurate and 
efficient solution than traditional first-order formats. 
Using a second-order format, we can achieve higher 
signal-to-noise ratios and greater prediction accuracy 
for image restoration tasks, resulting in superior output 
quality.

Fig. 1  Row Damage:the 1st image is the original image, the 2nd image is the damaged image (with 12 random rows of data masked), 
and the 3rd-8th images are the repaired images, corresponding to time points 1-6, respectively

Fig. 2  Pixel Damage:the first image is the original image, the second is the damaged image (covering 30% of the pixels), and the third-eighth 
images are the repaired images, corresponding to time points 1-6, respectively
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We can further enhance its capabilities by integrating 
the CH high-precision numerical model with a nonlin-
ear multigrid solver that accelerates data preprocessing 
tasks. The multigrid solver enables faster calculations 
for large datasets by approximating solutions on suc-
cessively coarser grids. This approach reduces the num-
ber of measures required, significantly improving 
computational efficiency.

In digital twin technology, integrating the CH high-
precision numerical model and the nonlinear multigrid 
solver can be applied to various areas, such as medical 
imaging and engineering. For instance, in medical imag-
ing, this approach can be used to restore damaged or 
degraded images, diagnose anomalies, and improve the 
accuracy of medical models. Similarly, in engineering, 

digital twins can be created to simulate system behavior 
and predict potential issues, such as equipment failure or 
performance degradation, allowing for proactive mainte-
nance and minimizing the risk of downtime.

Conclusion
This paper introduces a digital twin-based approach 
with a modeling method by CH equation in image res-
toration tasks with high temporal precision. The pro-
posed method utilizes a nonlinear multigrid solver, 
which enhances the signal-to-noise ratio and prediction 
accuracy compared to the first-order format. Addition-
ally, the multigrid solver enables faster data preprocess-
ing, making it particularly beneficial for handling large 
datasets. This study applies advanced techniques to 
image restoration for the first time by adopting a high-
order numerical scheme for the CH equation.

The FAS format offers advantages by eliminating 
the need to calculate the Jacobian matrix and reduc-
ing memory requirements for extensive computations. 
However, its implementation for application problems 
faces challenges due to the demand for custom smooth-
ing operators for different dimensions and equations, 
which may affect code implementation.

Furthermore, this article primarily focuses on a limited 
number of examples, mainly simple textures in handwrit-
ten datasets, and concentrates on addressing local tex-
ture restoration. Further investigations are necessary to 
showcase the full potential of high-precision solutions 
of the CH equation. Future work will apply the proposed 
approach to more complex datasets to comprehensively 
demonstrate its advantages.
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