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Abstract 

Cyber‑physical systems (CPSs) are emergent systems that enable effective real‑time communication and collabora‑
tion (C&C) of physical components such as control systems, sensors, actuators, and the surrounding environment 
through a cyber communication infrastructure. As such, autonomous vehicles (AVs) are one of the fields that have 
significantly adopted the CPS approach to improving people’s lives in smart cities by reducing energy consump‑
tion and air pollution. Therefore, autonomous vehicle‑cyber physical systems (AV‑CPSs) have attracted enormous 
investments from major corporations and are projected to be widely used. However, AV‑CPS is vulnerable to cyber 
and physical threat vectors due to the deep integration of information technology (IT), including cloud computing, 
with the communication process. Cloud computing is critical in providing the scalable infrastructure required for real‑
time data processing, storage, and analysis in AV‑CPS, allowing these systems to work seamlessly in smart cities. CPS 
components such as sensors and control systems through network infrastructure are particularly vulnerable to cyber‑
attacks targeted by attackers using the communication system. This paper proposes an intelligent intrusion detection 
system (IIDS) for AV‑CPS using transfer learning to identify cyberattacks launched against connected physical com‑
ponents of AVs through a network infrastructure. First, AV‑CPS was developed by implementing the controller area 
network (CAN) and integrating it into the AV simulation model. Second, the dataset was generated from the AV‑CPS. 
The collected dataset was then preprocessed to be trained and tested via pre‑trained CNNs. Third, eight pre‑trained 
networks were implemented, namely, InceptionV3, ResNet‑50, ShuffleNet, MobileNetV2, GoogLeNet, ResNet‑18, 
SqueezeNet, and AlexNet. The performance of the implemented models was evaluated. According to the experimen‑
tal evaluation results, GoogLeNet outperformed all other pre‑rained networks, scoring an F1‑ score of 99.47%.

Keywords Cyber‑physical system (CPS), Cyber security (CSec), Intrusion detection system (IDS), Autonomous vehicle 
(AV), Deep learning (DL), Transfer learning (TL), Controller area network (CAN)

Introduction
Autonomous Vehicles (AVs) have recently been devel-
oping rapidly, and some smart or self-driving cars can 
be found on public roads [1]. Furthermore, AVs have 
been a trending topic in academia and business as many 
people have started understanding the unlimited bene-
fits of this technology [2]. AVs can execute sophisticated 
tasks like lane departure warnings, traffic sign identifi-
cation, and avoiding collisions, and they can also reduce 
the workload of human drivers [3]. Furthermore, the 
operation of AVs positively impacts the environment by 
reducing energy consumption and air pollution [4]. AVs 
typically have sophisticated computing, sensing, and 
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actuating systems based on heterogeneous architec-
tural designs. However, numerous inherent difficulties 
exist with networking and communication technolo-
gies, including security, privacy, data transmission, 
real-time data analytics, and bandwidth restrictions [5]. 
In response to technological advancements in smart 
transportation systems, AVs may transmit data via vari-
ous communication protocols. A cyber-physical sys-
tem (CPS) is a system that uses contemporary sensor, 
computation, and network technology to merge cyber 
and physical components seamlessly [6]. AV provides 
the perfect fit model of a CPS when integrated with 
electronic and physical equipment [7]. Several vehicle 
network systems, like sensors, actuators, and electronic 
control units (ECUs), can connect AV components. The 
most popular network systems are controller area net-
works (CAN), Time-Triggered CAN (TTCAN), Local 
Interconnect Networks (LIN), and FlexRay [8]. CAN 
protocol was invented by Bosch researchers in 1985 to 
replace the wires in the automotive system because the 
number of wires started to increase, resulting in a deg-
radation in reliability [9]. CAN is a standard commu-
nications protocol that can be used for vehicle control 
sensor data [10]. However, the CAN can process a small 
number of real-time sensor data [10].

Additionally, the data flow from numerous automotive 
core control systems, including the engine, transmission 
system, body system, and other electrical equipment, is 
collected via the CAN bus, and every bit of information 
is broadcast to the CAN bus. Every node has perpetual 
access to the network, which states that harmful internal 
or external information might attack any CAN network 
node in a vehicle [11]. Understandably, the AVs must be 
equipped with more sensing and communication equip-
ment to function independently. Figure 1 shows essential 
AV components. However, when the degree of autonomy 
increases, so do the security dangers [12]. Attack sources 
are often negative internal components or external events 
intended to undermine the AV’s expected autonomy [11]. 
The attack surfaces of AVs can be Airbag ECU, USB, 
Bluetooth, Vehicle access system ECU, etc., as identified 
in [13].

In the context of smart cities, AVs are a key applica-
tion of CPS principles, helping to improve urban living 
by decreasing energy consumption and minimizing air 
pollution. Integrating information technology (IT) and 
communication processes in AV-CPS, including cloud 
computing, is crucial in providing the scalable infrastruc-
ture required for real-time data processing, storage, and 
analysis in AV-CPS, allowing these systems to operate 

Fig. 1 Autonomous vehicle architecture
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seamlessly in smart cities. Furthermore, AVs are sus-
ceptible to cyberattacks such as key fob cloning attacks, 
radar attacks, telematics service attacks, sensors spoofing 
attacks, ultrasonic sensor attacks, lidar sensor attacks, 
camera sensor attacks, and others, also new risks like 
ransomware and vehicle theft [14]. Therefore, this paper 
proposes a method based on a pre-trained convolutional 
neural network (CNN), which helps to detect cyberat-
tacks conducted through the CAN communication pro-
tocol to target the connected physical components of 
AVs. With the power of transfer learning, it is possible to 
use pre-trained models with different types of systems. 
Therefore, transfer is an important concept in deep learn-
ing, and it arises from insufficient data and starting train-
ing from scratch. Transfer learning transforms learning 
from a pre-trained model to a new related model. So, it is 
a learner trained on data from different domains because 
sometimes it is difficult and expensive to train data 
with the traditional machine learning technique, which 
assumes training data in the same domain [15].

Our contribution
The following is a summary of this paper’s contributions:

• We implemented the CAN communication protocol 
using the CAN communication toolbox in Simulink 
[16] and integrated it into an AV simulation model 
developed by MathWorks, Inc. [17]. This allows con-
nected physical devices such as sensors, the adap-
tive cruise control (ACC) system, and actuators to 
interact and collaborate, called autonomous vehicle 
cyber-physical systems (AV-CPS).

• We generate the dataset from the AV-CPS and pre-
process it by converting signals into images to be fed 
to the pre-trained CNNs.

• We implemented an intelligent intrusion detection 
system (IIDS) using eight pre-trained networks and 
performed each network’s performance analysis. Our 
experiment found that GoogLeNet performed best 
because it recorded 99.47% based on the F1-score 
parameter.

Paper structure
The rest of this paper is structured as follows: Sect.  2 
contains the literature review, which discusses the most 
recent works and the research gaps in the security of 
autonomous vehicles. Then, Sect. 3 presents the research 
methodology, including the implementation of the auton-
omous vehicle cyber-physical system (AV-CPS), and dis-
cusses the process of collecting preprocess of the dataset, 
followed by the findings and discussion in Sect. 4. Finally, 
the conclusions and remarks are drawn in Sect. 5.

Related research
The continued advancement in artificial intelligence, 
communication, and remote sensing have significantly 
improved the development cycle of smart cities and 
their applications and services. Several smart services 
have surfaced and industrialized recently to enhance the 
standard of living in smart cities, covering diverse sec-
tors such as communication, cybersecurity, smart grids, 
healthcare, and transportation systems [18–20]. Much of 
the efforts were directed toward developing smart mobil-
ity and intelligent transportation systems such as autono-
mous vehicles [21]. Over 250 million automobiles will be 
connected to roadside units in a few years [22]. Despite 
this enormous growth of the autonomous vehicles indus-
try, they are susceptible to a broad scale of cyberattacks 
with impacts ranging from minor control commands to 
strict control that threaten individuals’ lives and well-
being. Hence, various studies and systems have been 
suggested to examine, recognize, and alleviate the cyber-
attacks and threats against autonomous vehicle systems. 
The majority of the conducted studies were developed by 
coupling the different machine learning (ML) methods 
with cybersecurity practices to build security and defense 
systems.

In [23], an intelligent intrusion detection mechanism 
to secure external communications for autonomous vehi-
cles was proposed and developed. The detection mecha-
nism is based on a hybrid intelligent intrusion system 
that combines multi-layer perceptron (MLPs) with the 
overlapping proportional scores (POS) technique [24] 
and fuzzy sets to recognize the actions of connected, 
communicating autonomous vehicles. Specifically, their 
hybrid IDS utilizes the backpropagation neural networks 
to identify Denial of Service (DoS) attacks. Their experi-
mental evaluation showed that their proposed detection 
showed high detection rates for DoS attacks in autono-
mous vehicles. However, their model has high inferencing 
overhead due to the computational processing through 
diverse subsystems such as the preprocessing subsystem, 
feature extortion subsystem with POS module, fuzzifica-
tion subsystem [25] to reduce the features of data, MLP 
training subsystem, and finally, the detection subsystem 
(identify the traffic to either normal or anomaly).

In [26], the authors presented and implemented a 
detection method for false data injection in autonomous 
vehicles. Their system is composed of three subsystems. 
First, the false data injection (FDI) [27] subsystem, in 
which they inject simulated attacks into an autono-
mous vehicle. Second, the cyberattack dataset collec-
tion (CDC) subsystem generates and collects the dataset 
from a simulation model under two modes of opera-
tion (normal mode and attack mode). Third, the intru-
sion detection mechanism (IDM) subsystem employ the 
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long short-term memory (LSTM) deep networks [28] 
to detect cyberattack, which is FDI attacks targeting the 
control system of autonomous vehicles. Their IDS sys-
tem categorizes the data sample as normal and abnormal. 
Their investigational evaluation proved the superiority of 
their model, scoring high detection rates outperforming 
other state-of-the-art models. However, their proposed 
system used only a simulated dataset without implement-
ing the control communication system over autonomous 
vehicles.

In [29], the authors described a machine learning-
based intrusion detection system (ML-IDS) developed 
mainly to minimize the risk of traffic disturbance and 
collisions triggered by the presence of cyber-attacks. 
Their proposed IDS can identify two types of cyberat-
tacks commonly deliberated against connected autono-
mous vehicles: spoofing attacks and jamming attacks. 
The IDS mechanism was developed using four differ-
ent learning techniques, including Random Forest (RF), 
k-nearest Neighbors (k-NN), One-Class Support Vector 
Machine (OCSVM), and Data Fusion (DF) in a cross-
layer approach. Their experimental assessment showed 
that the based DF technique obtained the best perfor-
mance factors, scoring more than 90% accuracy using 
training datasets with known and unknown attacks. 
However, the detection accuracy obtained by the author 
needs to be more competent, as it has been overcome 
by several other intelligent models, such as [30]. In the 
same context, the authors of [31,  32] proposed another 
ML-IDS to detect malicious traffic in the CAN bus net-
work. Their proposed ML-IDS system employs a naïve 
Bayes algorithm and random decision trees to detect 
three types of cyber-attacks: impersonation attacks, DoS 
attacks, and fuzzy attacks. According to their experimen-
tal assessment, the authors conclude that their proposed 
ML-IDS is scalable and adaptable to various new attacks 
on autonomous vehicles. However, their model uti-
lized imbalanced classes of the used dataset, which may 
affect the results attained for the performance evaluation 
indicators.

In [33], another machine learning-based intrusion 
detection system (ML-IDS) for autonomous vehicle 
communication is established on the realistic network 
dataset called the ToN-IoT dataset [34]. To reduce the 
number of features, the Chi-square (Chi2) method is 
used for feature selection [35]. Also, to avoid outweigh-
ing features with higher values over features with lower 
values, data normalization normalizes all numerical 
data records in the dataset. Moreover, since the ToN-
IoT dataset is imbalanced, the Synthetic minority over-
sampling technique (SMOTE) [36] was used for class 
balancing. Besides, the model has been configured to 
provide binary classification (normal vs. anomaly) and 

multiclassification (normal, password attack, scanning, 
distributed denial of service (DDoS), data injection, 
backdoor, Cross-site Scripting (XSS), denial of service 
(DoS), and man-in-the-middle (MITM), and ransom-
ware). To this end, the contributors have characterized 
the performance of eight supervised machine learning 
techniques: naive Bayes (NB), decision tree (DT), logis-
tic regression (LR), support vector machine (SVM), 
k-nearest neighbor (kNN), random forest (RF), Ada-
Boost, and XGBoost techniques. Based on the simula-
tion results, the XGBoost method outperformed other 
ML methods. However, their best model could per-
form better on sparse and unstructured data (such as 
outliers).

In [37], an automated cloud-based intrusion detec-
tion framework with continuous service availability for 
autonomous vehicles is developed and suggested to pro-
vide defense services at users’ quality of service (QoS) 
and quality of experience (QoE) requirements. The pro-
posed technique is developed by clustering autonomous 
vehicles into service-specific clusters, each with a cluster 
head to communicate with a trusted third party (TTP). 
This mediates the service between requesters and pro-
viders. Also, the proposed IDS comprises three modules, 
including traffic analysis, reduction, and classification 
(identifying good and bad requests). Specifically, their 
detection model employed the deep belief networks 
(DPN) for traffic reduction and decision tree techniques 
for classification purposes. Their validation process dem-
onstrated the usefulness of their IDS, scoring high posi-
tive (around 99%) and low false detection rates (less than 
1.6%).

In [38], a cost-effective, lightweight intrusion detec-
tion scheme was built to identify abnormalities in the 
autonomous vehicular system. The model design aimed 
to mitigate the risks of cyberattacks against the Internet 
of Vehicles (IoV) [39], which might cause fatal errors in 
vehicle control systems such as braking control, steer-
ing control, air conditioning control, and locking control 
elements. To do so, they suggested a model based on a 
three-layer neural network with a Softmax classifier to 
provide a binary detection of the input data records into 
either normal or abnormal or multi-classification into 
normal, reconnaissance attack, denial of service (DoS) 
attack, and fuzzing attack. They evaluate their IDS model 
on a simulated In-Vehicle Network (IVN) dataset origi-
nally generated from the control area network (CAN). 
They reported several evaluation outcomes, including 
detection accuracy, recall, precision, and F-1 score. Based 
on their comparative analysis, they concluded that their 
proposed scheme surpasses other classification schemes. 
However, their shallow model must provide accurate 
detection and classification for large-scale attack vectors 
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developed with minor mutation of previously developed 
attacks [40].

In [41], the authors focused on identifying malicious 
cyber-attacks targeting the electronic control units 
(ECUs) composing the autonomous vehicular system and 
connected via in-vehicle networks (controller area net-
work-CAN). To that end, they proposed a hybrid anom-
aly-based intrusion detection system (HAIDS) using 
rule-based and supervised learning-based methods. Their 
model aims to attain a high identification ratio at mini-
mal computational complexity. Their experimental setup 
comprised the collected CAN traffic from four different 
simulated vehicles. The rule-based part of the model was 
developed using three main rules, including Valid vehicle 
ID, Time Interval for message communication in CAN, 
and the valid data length code, which specifies the length 
of the messages in bytes. The machine learning part of 
the model was implemented as a three-layer neural net-
work. As a result, they concluded that their hybrid IDS is 
effective and efficient in detecting anomalous over CAN 
communications.

Similarly, another hybrid anomaly-based intrusion 
detection system (HAIDS) employing rule-based IDS and 
machine learning IDS is suggested in [42]. In addition to 
the rule-based model, this system has characterized the 
performance of the supervised learning methods, viz., 
decision tree, random forest, and XGboost. As a result, 
they reported that their system could detect malicious 
CAN traffic with an accuracy of more than 90%. How-
ever, these proposed systems can not detect attacks that 
drop aperiodic messages that leverage the periodicity of 
CAN messages, which is still an open research problem.

Another noticeable research direction that has 
recently emerged is the use of blockchain technology to 
provide detection for several cyber-and physical attacks 
on the Internet of Things (IoT) in general [43] and in 
autonomous vehicles in specific [44, 45]. For instance, 
researchers in [44] focused on analyzing privacy and 
trust issues in autonomous transportation systems 
(ATS). They mainly investigated the cyberattacks on 
several communication techniques employed in auton-
omous vehicles, such as WLANs (Wireless Local Area 
Networks), WPANs (Wireless Personal Area Networks), 
WSNs (Wireless Sensor Networks), and RFID (Radio 
Frequency Identification). Therefore, they proposed a 
new IDS system (PChain) based on Blockchain Tech-
nology. PChain IDS protects IoT and ATS/ Vehicular 
Edge Computing (mainly autonomous vehicles). As a 
result, the model evaluation revealed that the detection 
accuracy rate changes with data size, which peaked at 
95.5% for 10,000 data sizes and 40 training epochs. A 
similar tendency for precision and recall factors, which 
scored 94% and 95% for precision and recall, peaked 

at 10,000 data sizes and 40 training epochs. However, 
the researchers in this research have evaluated their 
model’s performance on the KDDCup99 dataset [46], 
which comprises old common cyber-attacks that might 
be outdated in the current era. In the same context, 
the authors in [45] proposed a cooperative IDS sys-
tem for autonomous vehicular networks tailored to the 
increased attack surface from common cyber-attacks. 
The proposed IDS system uses a decentralized feder-
ated-based methodology to decrease the resource utili-
zation overhead of the main server by distributing the 
training load into distributed edge devices. To guaran-
tee the security of the accumulation mechanism, block-
chain is employed for storing and sharing the training 
loads. However, blockchain technology is vulnerable to 
cyber-attacks, such as ransomware attacks [47].

Furthermore, authors in [61] investigated anticipat-
ing and adjusting to users’ interests and preferences in 
location-based social networks using copious amounts of 
user check-in data from Internet of Things (IoT) devices 
like cell phones. One important component of the Aug-
mented Intelligence of Things (IoT) is the recommen-
dation of successive points of interest (POIs), which is 
examined. Limitations of existing methodologies are 
emphasized and examined, including recurrent neural 
network-based approaches and graph neural network-
based methods. The abstract suggests an Interaction-
enhanced and Time-aware Graph Convolution Network 
(ITGCN) for successive POI suggestions to overcome 
these drawbacks. ITGCN integrates a self-attention 
aggregator to embed high-order connectivity into node 
representation and an enhanced graph convolution net-
work for dynamic representation learning. The system 
aims to help corporate management anticipate user pref-
erences so that better development and planning may 
occur. According to their experimental results, ITGCN 
performs better regarding suggestion accuracy than cur-
rent approaches. To sum up, the following table, Table 1, 
provides a very short summary of the key points in the 
related works.

In [62], the authors addressed how the growing num-
ber of Connected and Autonomous Vehicles (CAVs) 
exposes Internet of Vehicles (IoV) environments to 
cyberattacks. The study suggests an Intelligent Intrusion 
Detection System (IIDS) that uses a modified Convolu-
tional Neural Network (CNN) with hyperparameter tun-
ing to address this issue. In a 5G Vehicle-to-Everything 
(V2X) setting, the IIDS efficiently identifies and classifies 
malevolent Autonomous Vehicles (AVs), assisting in traf-
fic safety monitoring and collision avoidance. Accord-
ing to experimental results, attacks can be detected with 
98% accuracy. In the same context, the authors of [63] 
investigated the increasing risk of cyberattacks on in-car 
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Table 1 A very short summary of the key points in the related works

Ref. Key Attributes Strengths Weaknesses

[23] ‑ Hybrid IDS using MLPs and POS techniques
‑ Detection of DoS attacks in autonomous 
vehicles

‑ High detection rates for DoS attacks
‑ Experimental validation

‑ High inferencing overhead
‑ Computational processing through diverse 
subsystems

[26] ‑ Detection method for false data injection
‑ Use of LSTM deep networks

‑ Superior detection rates
‑ Categorization of data samples as normal 
or abnormal

‑ Use of simulated dataset without real‑world 
implementation

[29] ‑ ML‑IDS to minimize traffic disturbance 
and collisions
‑ Identification of spoofing and jamming 
attacks

‑ Four learning techniques used
‑ DF technique achieved over 90% accuracy

‑ Detection accuracy needs improvement 
compared to other models

[31, 32] ‑ ML‑IDS for detecting malicious traffic 
in the CAN bus network
‑ Naïve Bayes and random decision trees 
used

‑ Scalable and adaptable to various attacks ‑ Utilization of imbalanced classes in the data‑
set

[33] ‑ ML‑IDS for autonomous vehicle commu‑
nication
‑ Based on ToN‑IoT dataset
‑ Use of the Chi‑square method for feature 
selection

‑ Performance of eight supervised ML tech‑
niques evaluated
‑ XGBoost outperformed other methods

The best model may need more sparse 
and unstructured data

[37] ‑ Cloud‑based intrusion detection framework
‑ Clustering of autonomous vehicles
‑ Use of DPN and decision tree techniques

‑ Continuous service availability
‑ High positive and low false detection rates

‑ Specific to cloud‑based detection

[38] ‑ Cost‑effective, lightweight intrusion detec‑
tion scheme
‑ Three‑layer neural network with Softmax 
classifier

‑ Detection accuracy, recall, precision, 
and F‑1 score reported
‑ Outperformed other classification schemes

‑ Shallow model may struggle with large‑scale 
attack vectors

[41] ‑ Hybrid anomaly‑based IDS for electronic 
control units
‑ Rule‑based and supervised learning‑based 
methods

‑ High identification ratio
‑ Minimal computational complexity

‑ Specific to anomalous CAN communications

[42] ‑ Hybrid anomaly‑based IDS with rule‑based 
and machine‑learning IDS
‑ Decision tree, random forest, and XGBoost 
used

‑ Detection of malicious CAN traffic 
with over 90% accuracy

‑ Unable to detect attacks leveraging the peri‑
odicity of CAN messages

[44] ‑ PChain IDS based on Blockchain Technol‑
ogy
‑ Focus on privacy and trust issues in autono‑
mous transportation systems

‑ Evaluation revealed high detection accu‑
racy
‑ Use of blockchain for security

‑ Evaluation based on an old dataset of com‑
mon cyber‑attacks

[45] ‑ Cooperative IDS for autonomous vehicular 
networks
‑ Decentralized federated‑based methodol‑
ogy
‑ Use of blockchain for storing and sharing 
training loads

‑ Decreased resource utilization overhead
‑ Distributed edge devices for training load

‑ Vulnerability of blockchain to cyber‑attacks 
like ransomware

[61] ‑ Exploration of user check‑in data for POI 
recommendations
‑ Critique of recurrent and graph neural 
network‑based methods

‑ Introduction of ITGCN for successive POI 
suggestions
‑ Experimental results show improved 
accuracy

‑ Limitations of existing methodologies 
highlighted

[62] ‑ Addresses cybersecurity risks in IoV due 
to CAVs
‑ Proposes IIDS with modified CNN for AV 
classification
‑ Operates in a 5G V2X environment

‑ Efficiently identifies and classifies malicious 
AVs
‑ Enhances traffic safety monitoring and col‑
lision avoidance
‑ Achieves 98% accuracy in attack detection

‑Limited Security Measures
‑ Focusing on specific CNN hyperparameters 
may limit its adaptability to emerging cyber 
threats

[63] ‑ Focuses on cyberattacks on in‑car networks 
due to electronics integration
‑ Targets vulnerabilities in the CAN bus
‑ Proposes DCNN‑based IDS for the CAN bus

‑ DCNN learns network traffic patterns with‑
out human feature design
‑ Outperforms traditional machine‑learning 
techniques
‑ Demonstrates lower false negative 
and error rates

‑ Limited information on the scale or diversity 
of experiments
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networks due to the integration of electronics into con-
temporary cars, which is covered in this abstract. Com-
monly found in automobiles, the controller area network 
(CAN) is vulnerable to assaults since it lacks crucial secu-
rity measures. The study suggests a deep convolutional 
neural network (DCNN)–based intrusion detection sys-
tem (IDS) specially designed for the CAN bus. Without 
human feature design, the DCNN learns network traffic 
patterns, simplifying the architecture and optimizing for 
excellent detection performance. Based on real-world 
car datasets, experimental results demonstrate that the 
suggested IDS performs better than traditional machine-
learning techniques, with notably lower false negative 
and error rates.

In another noticeable research, in [64], the researcher 
emphasized the necessity of an efficient Intrusion Detec-
tion System (IDS) by highlighting the vulnerability of the 
Controller Area Network (CAN) bus in automobiles due 
to its lack of security measures. Vehicle networks with 
limited known attack signatures might not fit traditional 
internet-based intrusion detection systems well. The sug-
gested remedy is a new intrusion detection system (IDS) 
model dubbed GIDS (GAN-based Intrusion Detection 
System) that uses Generative Adversarial Nets, a deep 
learning model. With just regular data, GIDS can learn 
and identify unknown assaults. Experimental findings 
address the problem of guaranteeing safety in in-vehicle 
networks by demonstrating GIDS’s excellent detection 
accuracy for four unknown assaults. In [65], the authors 
have discussed the limitations of recurrent neural net-
works (RNN) in developing efficient intrusion detection 
systems for in-vehicle networks are discussed in this 
abstract. These limitations originate from RNNs’ intri-
cate structure and high processing costs. Additionally, 

it mentions that temporal linkages are difficult for con-
volutional neural networks (CNN) to capture and that 
important regions have insufficient feature representa-
tion. To solve these problems, the research suggests a 
novel model named TCAN-IDS (Temporal Convolu-
tional Network with Global Attention). Real-time moni-
toring is made possible by TCAN-IDS, which encodes 
19-bit characteristics of data fields and arbitration bits 
into a message matrix. By concentrating on important 
areas, the global attention mechanism enhances feature 
extraction. TCAN-IDS has demonstrated strong detec-
tion performance on attack datasets that are known to 
exist, according to experimental results. This means that 
it can be used for real-time monitoring and to maintain 
the delicate balance between information security and 
preventing unauthorized intrusions.

Furthermore, in [66], the authors highlighted the dif-
ficulties caused by various attack techniques while 
underlining the significance of intrusion detection for 
vehicle communications security. The limits of previous 
approaches, which consider local characteristics or map 
multi-features poorly, are critiqued. Spatial and temporal 
interactions are simultaneously encoded by the encod-
ing-detection architecture of the proposed model, STC-
IDS (Spatial–Temporal Correlation Intrusion Detection 
System). Attention-based convolutional networks and 
attention-long short-term memory produce strong spa-
tial–temporal attention features for anomaly classifica-
tion. Both single- and multi-frame architectures have 
specific benefits. Empirical investigations on real-world 
vehicle assault datasets show that STC-IDS outper-
forms baseline approaches with automatic hyperparam-
eter selection based on Bayesian optimization, delivering 
lower false-alarm rates while maintaining efficiency.

Table 1 (continued)

Ref. Key Attributes Strengths Weaknesses

[64] ‑ Emphasizes IDS necessity for the vulnerable 
CAN bus.—Introduces GIDS, a GAN‑based 
IDS for in‑vehicle networks
‑ GIDS learns and identifies unknown attacks 
with regular data

‑ GIDS achieves excellent detection accuracy 
for unknown assaults
‑ Addresses the lack of security measures 
in the CAN bus

‑ Needs more details on the specific architec‑
ture of GIDS

[65] ‑ Discusses limitations of RNNs in in‑vehicle 
intrusion detection
‑ Proposes TCAN‑IDS, a Temporal Convolu‑
tional Network with Global Attention
‑ Addresses real‑time monitoring challenges

‑ TCAN‑IDS encodes 19‑bit characteristics 
for real‑time monitoring
‑ Global attention mechanism enhances 
feature extraction
‑ Demonstrates strong detection perfor‑
mance on known attack datasets

‑ No details were provided on the scale 
or diversity of experiments

[66] ‑ Highlights difficulties in intrusion detection 
for vehicle communications
‑ Proposes STC‑IDS for spatial–temporal 
correlation
‑ Addresses challenges in local feature con‑
sideration and poor multi‑feature mapping

‑ STC‑IDS encodes spatial and temporal 
interactions simultaneously
‑ Outperforms baseline approaches
‑ Achieves lower false alarm rates while main‑
taining efficiency

‑ Needs more specific details on the architec‑
ture of STC‑IDS
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While the above-stated systems are established and 
focused on developing Attack-Aware systems [48] utiliz-
ing different computational intelligence schemes such as 
fuzzy inference systems (FISs), neural network systems 
(NNS), and machine learning systems (MLS) over pre-
defined accumulated datasets that are composed using 
the most conventional attributes for the common cyber-
attacks of communication networks on the IoT, CPS, and 
others, nevertheless, these systems do not support the 
identification of new real-time cyberattacks targeting 
the autonomous vehicle-cyber physical system’s control-
ler area network (CAN) communication system. In this 
research, we improve the security of autonomous vehi-
cle control by developing a high-performance intelligent 
intrusion detection system (IIDS) using non-traditional 
machine learning techniques.

Particularly, we first develop our autonomous vehicle 
cyber-physical systems (AV-CPS) by implementing the 
controller area network (CAN) communication protocol 
and then integrating it into an autonomous vehicle simu-
lation model. This, in turn, enables the other connected 
physical devices (e.g., sensors and actuators) to com-
municate and collaborate (C&C) successfully. Second, 
we produce and collect our novel dataset from launch-
ing AV-CPS in normal and attack modes. The generated 
dataset comprising of normal data samples accumulated 
from the normal operational mode of AV-CPS and false 
data samples injected by the attacker then undergoes 
consecutive preprocessing operations to end up with all 
samples transformed into unitized images that the deep 
neural networks can process. Finally, we implement an 
intelligent intrusion detection system (IIDS) using the 
transfer learning process from pre-trained deep con-
volutional networks (DCNNs). Specifically, we char-
acterized the performance of eight DCNNs, including 
InceptionV3 CNN, ResNet-50 CNN, ShuffleNet CNN, 
MobileNetV2 CNN, GoogLeNet CNN, ResNet-18 CNN, 
SqueezeNet CNN, and AlexNet CNN. Our simulation 

results demonstrated high detection performance for our 
IIDS-based GoogLeNet model after we validated it with 
other implemented DCNNs and existing models in the 
same study area.

Methodology
This section explains the AV simulation scheme used 
in this research. Also, it represents the process of using 
the CPS concept with the selected AV simulation. This 
is accomplished by implementing and integrating com-
munication network nodes into the AV simulation, and 
we named the new model the autonomous vehicle cyber-
physical system (AV-CPS). Additionally, this section 
explains the procedure for generating the dataset from 
the AV-CPS simulation model. Finally, it shows the pro-
cess of using transfer learning.

AV Simulation scheme
A simulation is a software-based model that can be used 
to study and evaluate a model’s performance before it 
reaches the production stage [49]. There are several 
benefits of using a simulation model compared with an 
actual model, such as less cost-effectiveness and simplic-
ity in implementation, testing, and maintenance [50]. The 
simulation model used in this research is a self-driving 
car system consisting of a lead vehicle and an ego vehi-
cle (self-driving car). In ideal conditions, the ego vehicle 
should maintain its distance from the lead vehicle using 
the ACC. Therefore, the ego vehicle should keep track 
of the position of the lead vehicle. This study focuses on 
the ego vehicle, which consists of three essential com-
ponents: ACC, position sensor, and velocity sensor, as 
shown in Fig. 2. The position sensor senses the position 
of the lead vehicle and ego vehicles’ positions. Further-
more, the velocity sensor records the velocity of the lead 
and ego vehicles. The sensor measurements are sent to 
the ACC to adjust the speed of the ego vehicle when fol-
lowing the lead vehicle.

Fig. 2 AV simulation scheme
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CAN communication network
MathWorks AV simulation does not include a com-
munication system component; therefore, to apply 
the CPS concept, we implemented and integrated a 
communication system based on CAN protocol using 
the vehicle network toolbox built on Simulink [16]. 
The vehicle network toolbox contains techniques and 
tools to design, analyze, architect, simulate, and vali-
date communications systems. The toolbox has several 
components: CAN communication, CAN Flexible Data 
(FD) communication, J1939 communication, and Uni-
versal Measurement and Calibration Protocol (XCP) 
communication. This research concentrates on using 
the CAN communication component to build the 
communication system of the AV-CPS. Table  2 lists 
the CAN block used, and Fig.  3 shows the sending 
and receiving messages of the CAN communication 
subsystem. Initially, the signal is packed to the CAN 
message stander using the CAN pack; then, the CAN 
message is transmitted to the assigned CAN device 
using the CAN transmit component. The CAN con-
figuration configures particular CAN devices’ param-
eters for sending and receiving CAN messages. Finally, 

the CAN message is received from the particular CAN 
device, and the CAN unpack is used to unpack the 
CAN message to signals.

Autonomous vehicle cyber‑physical system
The AV-CPS architecture implemented in this research 
comprises the following subsystems: sensors, two CAN 
communication nodes, a controller, and actuators. Nodes 
A and B receive and send signals between the AV sub-
system, as shown in Fig. 4. Nodes A and B are integrated 
to simulate the activity of the CAN communication 
within the AV-CPS. Therefore, node A’s functionality is to 
receive and send the following signals:

• The actual location of the ego vehicle (from the sensor).
• The actual position of the lead vehicle (from the sensor).
• The actual speed of the ego vehicle (from the sensor).
• The actual speed of the lead vehicle (from the sensor).
• The time gap (constant value).
• The desired speed (constant value).

The actual position of the ego vehicle is measured in 
meters, and the velocity is measured in m/s. The time gap 
between the lead vehicle and the ego vehicle is equal to 
1.4 s. The desired speed is equal to 30 m/s. After the sig-
nals are transmitted to the ACC, it is responsible for pro-
ducing a control signal to adjust the ego vehicle’s speed 
concerning the desired speed and the position of the lead 
vehicle. Finally, the ACC output is received and sent to 
the actuators by node B. The actuators convert the sig-
nal to mechanical movement to accelerate or reduce the 
speed. We showed a single closed-loop operation of the 
simulation, and those steps are repeated until the end, 
which runs for 81 s.

Table 2 CAN communication component

CAN Block CAN Configuration

CAN Pack Signals should be packed within a CAN message

CAN Transmit Send a CAN message to a particular CAN device

CAN Configuration Configure parameters of particular CAN devices 
for sending/receiving messages

CAN Receive Receive CAN messages from the particular CAN 
device

CAN Unpack Unpacked CAN message to signals

Fig. 3 CAN send and receive messages
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Generating dataset
As shown in Fig. 5, it is assumed that a threat actor com-
promised node A. Thus, the threat actor inserted inac-
curate data into the position sensor of the ego vehicle 
through node A. Therefore, the ACC received fault data 
about the position of the ego vehicle, and as a result, the 
ACC produced imperfect control signals. Figure  4 and 
Fig.  5 represent two different scenarios. Figure  4 shows 
the normal status when there is no cyberattack, whereas 
Fig. 5 illustrates the anomaly status when there is a cyber-
attack. More information about the implementation of 
the cyberattack was presented in our previous research 
[26]. The raw dataset is 1-dimensional, and its size is 
80,000. The dataset is balanced; therefore, 40,000 is nor-
mal, and the rest is attack data. The dataset consists of 
four features: (1) the actual position, (2) the actual veloc-
ity of the ego vehicle, (3) the actual position, and (4) the 
actual velocity of the lead vehicle. Table  3 lists the raw 
dataset along with its unit.

To prepare the pre-trained neural network input, 
we must transform the numerical 1-dimensional data 
into 2-dimensional data (images). Figure  6 illustrates 
the steps undertaken to convert signals into images. In 

step 1, the AV-CPS simulation runs. Step 2 records the 
response of the features as mentioned earlier as numeri-
cal 1-dimensional data in a matrix. Step 3 then reshapes 
this stored data from a 1D matrix to a 2D matrix. Step 
4 involves saving the 2D matrix as an image; each image 
has a size of 4 × 81. We have the size of 4 × 81 because 
we have four features, and the simulation runs for 81 s 
each time. Finally, step 5 stores the resulting normal 
and anomaly images in separate folders.

Algorithm  1 illustrates how the 1-dimensional data 
was converted to 2-dimensional data (image). Ini-
tially, ’im_counter’ is set to 0 to name the image. The 
’start_row’ and ’last_row’ variables are used as coun-
ters because we aim to combine all four dataset rows. 
Subsequently, the normal and attack data are loaded for 
use. The ’normal’ directory contains images with nor-
mal data, and the ’attack’ directory is created to hold 
attack images. The while loop starts with one and con-
tinues up to the length of the data source, either nor-
mal or attack. Consequently, 20 thousand images will 
be created: 10 thousand labeled as normal and 10 thou-
sand labeled as attack, and each image will be created 
in jpg format.

Algorithm 1 Convert 1‑D data to a 2‑D image



Page 11 of 18Alsulami et al. Journal of Cloud Computing          (2023) 12:181  

Fig. 4 Autonomous vehicle cyber‑physical system(AV‑CPS)

Fig. 5 Cyberattack vs. autonomous vehicle CPS model
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Figure  7 highlights the process of preparing images 
for each pre-trained neural network model used in this 
research. In the beginning, the images are imported into 
MATLAB. The original size of the images is 4 × 81, but 
to ensure compatibility with each model, each image is 
resized to match the input size of the specific model. This 
resizing is performed by MATLAB using the augmented-
ImageDatastore function.

Figure  8 illustrates the process of the proposed IIDS. 
After the data is received from the CAN protocol, it will 
be sent to the IIDS for scanning the traffic. The 1-dimen-
sional data is converted to an image and transmitted to 
the pre-trained CNN model. The CNN is responsible for 
detecting whether there is an attack or not.

Transfer learning
Transfer learning is an important concept in deep learn-
ing, and it arises from insufficient data and starting 
training from scratch [15]. The proposed work utilizes 
transfer learning by leveraging pre-trained models to 
enhance the IIDS performance for AV-CPSs. Transfer 
learning involves using knowledge gained from solving 
one problem (in this case, pre-trained models trained 
on large-scale datasets) to improve the performance on 
a different but related problem, detecting cyberattacks 
on AV-CPSs as depicted in Figs.  9 and 10 which illus-
trate the architecture of the pre-trained models used in 
this research named inceptionV3, resNet-50, shuffleNet, 
mobileNetV2, GoogLeNet, ResNet-18, squeezeNet, and 
alexNet. The Relu layer activates to omit any negative 
values from the images and replace them with zeros. A 
Pooling layer serves as a filter to reduce the size of the 
input image. Therefore, Relu and Pooling layers reduce 

Table 3 1‑Dimensional dataset

Feature Vehicle Unit

Actual position Ego vehicle Meter

Actual velocity Ego vehicle Meter/Second

Actual position Lead vehicle Meter

Actual velocity Lead vehicle Meter/Second

Fig. 6 Conversion into image steps

Fig. 7 Image resizing process
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the computation costs. The Fully connected layer is 
used by all pre-trained models except squeezeNet, 
which uses a Convolutional 2D layer, and they help to 
classify images correctly [51]. Table 4 summarizes each 
model ordered by the number of layers [52]. The final 
layer of each model was altered to serve our purpose. 
For example, in inceptionV3, we replaced the fully con-
nected layer and the classification layer to produce only 
two outputs (normal, anomaly).

This research used eight pre-trained CNNs; therefore, 
the generated dataset was trained, tested, and validated 
with each network.

Results and discussion
This section discusses the experimental setup, such as the 
software and hardware used to perform this research’s 
experiments. Also, the results and discussion of the 
research findings were investigated.

Fig. 8 IIDS procedure

Fig. 9 CNN Pre‑trained model
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Experiment
The experiments were performed using MATLAB and 
Simulink. MATLAB is a high-level programming lan-
guage platform, and Simulink is a MATLAB model-
based design platform [53]. The AV simulation model 
was developed by MathWorks using MATLAB and 
Simulink. However, this research implemented the 
CAN component protocol using the Simulink network 
toolbox, which was then integrated into the AV simula-
tion. We used MATLAB to implement and test the pre-
trained CNNs. We conducted the training and testing 

Fig. 10 SqueezeNet layer architecture

Table 4 Summary of pre‑trained CNN models used in this research

Model Name Depth Number of Layers Image Size Replace Final Layer

InceptionV3 48 316 299 X 299 Fully connected layer, Classification layer

ResNet‑50 50 177 224 X 224 Fully connected layer, Classification layer

ShuffleNet 50 173 224 X 224 Fully connected layer, Classification layer

MobileNetV2 53 155 224 X 224 Fully connected layer, Classification layer

GoogLeNet 22 144 224 X 224 Fully connected layer, Classification layer

ResNet‑18 18 72 224 X 224 Fully connected layer, Classification layer

SqueezeNet 18 68 227 X 227 Convolution2dLayer, Classification layer

AlexNet 8 25 227 X 227 Fully connected layer, Classification layer

Table 5 Summary of components used to perform the 
experiments

Components Type Description

MATLAB Software Programming language platform

Simulink Software Model‑based platform

CAN Software Simulink Network Toolbox

CPU Hardware Intel® Core™ i7‑9750H

Memory Hardware 16.0 Gigabytes

GPU Hardware NVIDIA GeForce RTX 2070 
GDDR6 @ 8 Gigabytes
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procedure using a computer system with a Graphics 
processing unit (GPU) to reduce the computation time 
and increase the experiment’s performance. Table  5 
summarizes the software and hardware used in this 
research.

Figure 11 summarizes the overall steps of our experi-
ments used in this research. In the beginning, the data-
set was imported to the MATLAB namespace, and as 
mentioned, the dataset was stored in two folders: nor-
mal and anomaly. Then, the dataset was preprocessed. 
Therefore, all images were resized to fit the appropri-
ate input size of each pre-trained network. Each pre-
trained model expected two class outcomes, anomaly 
and normal. The dataset was split into two parts: 70% 
of the images were used for training and 30% for testing 
and validation. The data size was 20,000 images; 10,000 
was normal, and 10,000 was anomalous. A fivefold 
cross-validation technique was used to ensure the valid-
ity of our training process. Finally, the expected output 
of each model is either normal or anomalous. Normal 
means there is no attack and anomalous means there is 
an attack.

Result and evaluation
The detection outcomes of the eight pre-trained models 
used in this research were analyzed based on precision, 
recall, f1-score, and accuracy classification as follows [26]:

(1)Precision = TP/(TP + FP)x100

(2)Recall = TP/(TP + FN )x100

Fig. 11 Overall steps of the experiment

Table 6 Accuracy performance outcomes

Pre‑trained Precision Recall F1‑Score Accuracy

GoogLeNet 100.00% 98.94% 99.47% 99.47%

AlexNet 100.00% 98.85% 99.42% 99.42%

SqueezeNet 100.00% 98.78% 99.39% 99.38%

InceptionV3 100.00% 98.75% 99.37% 99.37%

ResNet‑50 100.00% 98.75% 99.37% 99.37%

ShuffleNet 100.00% 98.62% 99.30% 99.30%

MobileNetV2 100.00% 98.62% 99.30% 99.30%

ResNet‑18 100.00% 98.59% 99.29% 99.28%
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TP is a true positive that calculates the number of 
normal images classified correctly. FP is a false posi-
tive that calculates the number of normal images clas-
sified incorrectly. FN refers to a false negative that 
calculates the number of abnormal images classified 
incorrectly. Finally, TN is a true negative that calculates 
the number of abnormal images classified correctly 
[54]. Table 6 represents the calculation accuracy of the 
pre-trained models based on four metrics of accuracy 
analysis. While all pre-trained models have approxi-
mately comparable performance results, GoogLeNet 
has an outperformed performance compared with 
other pre-trained models. The precision parameter has 
an identical value of 100.00% because every pre-trained 
model could classify every "normal image" as normal. 
However, the value of the recall parameter range from 
98.94% to 98.59% due to several "anomaly image" being 
classified as normal. F1 score depends on parameters 
precision and recall, as shown in Eq.  3, and accuracy 
classification was calculated using Eq. 4.

To validate our work, we compared the performance 
outcomes of this research with recent existent IDS meth-
ods used with AV systems. Overall, pre-trained CNNs 
such as research 1,6 and 7 scored better than others, such 
as ANN and Bayesian networks, as listed in Table 7.

Conclusions and remarks
In conclusion, this research proposed an intelligent intru-
sion detection system (IIDS) to detect cyberattacks target-
ing physical components of an AV through controller area 
network CAN. Firstly, the CAN was implemented and inte-
grated into an AV simulation developed by MathWorks to 
apply the CPS concept. Therefore, the new system is called 
an autonomous vehicle cyber-physical system (AV-CPS). 
Secondly, the dataset was generated from the AV-CPS and 
preprocessed by converting signals into images to be fed 

(3)FScore = 2 ∗ (Precision × Recall)/((Precision + Recall))x100

(4)Accuarcy = (TP + TN )/(TP + TN + FP + FN )x100

to pre-trained CNNs. Thirdly, eight pre-trained networks 
were implemented: InceptionV3, ResNet-50, ShuffleNet, 
MobileNetV2, GoogLeNet, ResNet-18, SqueezeNet, and 
AlexNet, and the performance analysis of each network 
was discussed. Our experiment found that GoogLeNet 
performed best because it recorded 99.47% based on 
the F1-score parameter. This research’s resilient security 
concept can be used and applied to any CPS framework 
because each component of the system (AV-CPS) was 
built based on block architecture. Therefore, each subsys-
tem, i.e., controller, sensors, actuators, and communica-
tion nodes, is independent and can be a breakdown. For 
feature work, we recommend applying the architecture of 
our system (AV-CPS) with different CPS domains, such as 
smart grids and drones.

Limitations
Our work primarily focuses on developing an IIDS by 
employing a transfer learning approach, specifically 
using pre-trained neural networks. The IIDS devel-
oped in this research, which is expected to collaborate 
with the ACC, aims to detect the network traffic locally 
(within the AV) emanating from sensors assumed to 
be compromised by attackers. Therefore, the IIDS is 
designed to scan network traffic transferred by the CAN 
model that is entering the ACC model. The anomaly 
detection technique conducted by the IIDS is confined 
to the data read by sensors; however, cyberattacks may 
be executed through various other components, a topic 
warranting future research. Additionally, research-
ers might consider designing an intelligent intrusion 
prevention system (IIPS) to mitigate the effects of 
cyberattacks.
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