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Abstract 

Mangroves are ecosystems that grow in the intertidal areas of coastal zones, playing crucial ecological roles and pos-
sessing unique economic and social values. They have garnered significant attention and research interest. Semantic 
segmentation of mangroves is a fundamental step for further investigations. However, mangrove remote sens-
ing images often have large dimensions, with a substantial portion of the image containing mangrove features. 
Deep learning convolutional kernels may lead to inadequate receptive fields for accurate mangrove recognition. 
In mangrove remote sensing images, various challenges arise, including the presence of small and intricate details 
aside from the mangrove regions, which intensify the segmentation complexity. To address these issues, this paper 
primarily focuses on two key aspects: first, the exploration of methods to achieve a large receptive field, and second, 
the fusion of multi-scale information. To this end, we propose the Multi-Scale Fusion Attention Network (MSFANet), 
which incorporates a multi-scale network structure with a large receptive field for feature fusion. We emphasize 
preserving spatial information by integrating spatial data across different scales, employing separable convolutions 
to reduce computational complexity. Additionally, we introduce an Attention Fusion Module (AFM). This module 
helps mitigate the influence of irrelevant information and enhances segmentation quality. To retain more semantic 
information, this paper introduces a dual channel approach for information extraction through the deep structure 
of ResNet. We fuse features using the Feature Fusion Module (FFM) to combine both semantic and spatial information 
for the final output, further enhancing segmentation accuracy. In this study, a total of 230 images with dimensions 
of 768 pixels in width and height were selected for this experiment, with 184 images used for training and 46 images 
for validation. Experimental results demonstrate that our proposed method achieves excellent segmentation results 
on a small sample dataset of remote-sensing images, with significant practical value. This paper primarily focuses 
on three key aspects: the generation of mangrove datasets, the preprocessing of mangrove data, and the design 
and training of models. The primary contribution of this paper lies in the development of an effective approach 
for multi-scale information fusion and advanced feature preservation, providing a novel solution for mangrove remote 
sensing image segmentation tasks. The best Mean Intersection over Union (MIoU) achieved on the mangrove dataset 
is 86%, surpassing other existing models by a significant margin.
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Introduction
The mangrove forest is an ecosystem that thrives in 
intertidal zones along coastal areas, characterized 
by evergreen trees and shrubs. China represents the 
northernmost extent of global mangrove distribution, 
with primary habitats in Hainan, Guangdong, Guangxi, 
Zhejiang, Fujian, as well as Macau, Hong Kong, and 
Taiwan. Mangrove coastal ecosystems offer various 
essential values. Studies have demonstrated that man-
groves play a crucial role in mitigating the impact of 
tropical storms and hurricanes by effectively reduc-
ing storm surges, minimizing inundated areas, and 
safeguarding inland wetlands [1, 2]. They also possess 
some resistance to tsunami incursions [3] and pro-
mote sediment deposition, thereby preventing coastal 
erosion and enhancing community safety in coastal 
regions [4, 5]. Furthermore, mangroves exhibit signifi-
cant carbon sequestration capabilities, contributing to 
the mitigation of global warming [6]. The establish-
ment of mangrove coastal ecosystems is economically 
advantageous compared to conventional coastal engi-
neering practices [7]. In summary, mangroves serve as 
effective buffers against the adverse effects of storm 
surges and other disasters, bolster coastal defenses, 
and enhance the overall climate environment. They 
hold profound ecological significance, unique eco-
nomic value, and have attracted considerable atten-
tion and research. In recent times, mangroves have 
faced disturbances due to human activities, render-
ing them fragile natural ecosystems. The preservation 
of mangroves has become an urgent issue requiring 
resolution.

Accurate identification of mangrove areas through effi-
cient methods is of paramount importance for mangrove 
preservation. Semantic segmentation, a vital technique, 
allows for the precise delineation of mangrove areas. 
However, the intricate textures, variations in illumina-
tion, indistinct boundaries between tidal flats and water 
bodies, the dense vegetation within mangrove regions, 
and significant alterations in the shape and position of 
mangroves in remote sensing images introduce formi-
dable challenges to semantic segmentation. Moreover, 
remote sensing images of mangroves are often exten-
sive, with mangrove sections occupying a substantial 
portion of the entire image. In deep learning, employing 
small convolution kernels may result in limited recep-
tive fields for mangroves, adversely affecting recognition 
rates. Furthermore, apart from the mangrove segments, 
remote sensing images of mangroves often contain 
numerous intricate features, further complicating the 
segmentation task.

To address these issues, this study primarily focuses 
on two aspects: exploring a large receptive field and 

fusing multi-scale information. Therefore, we propose 
a multi-scale fusion attention network (MSFANet), 
a network designed for efficient feature fusion. In the 
MSFANet network, a multi-scale large receptive field 
network structure is employed for multi-feature fusion. 
This network structure combines spatial information 
between different scales to maximize the retention of 
spatial features and utilizes separable convolutions 
to reduce computational complexity. Furthermore, 
an Attention Fusion Module (AFM) is introduced to 
reduce the influence of irrelevant information and 
enhance the quality of segmentation results. To pre-
serve more semantic information, a dual pathway is 
additionally incorporated, which utilizes the deep-level 
structure of ResNet for feature extraction and employs 
a Feature Fusion Module (FFM) for feature fusion, 
combining semantic and spatial information for output, 
further improving segmentation performance. On the 
mangrove dataset, our method achieves a best mean 
intersection over union (Miou) of 86%, significantly 
surpassing other models. Experimental results dem-
onstrate that the proposed approach achieves excellent 
segmentation results on remote sensing image datasets 
and holds significant practical value. This study’s con-
tributions also include the creation of the mangrove 
dataset, the processing of mangrove image data, and 
the design and training of the model. Our work offers 
a novel solution for mangrove forest remote sensing 
image segmentation tasks.

The application of the Multi-Scale Fusion Attention 
Network (MSFANet) in the semantic segmentation of 
remote sensing images in mangrove ecosystems holds 
profound significance. This method has shown immense 
potential in addressing the challenges of mangrove 
image segmentation, potentially impacting environ-
mental monitoring, protection, and other related appli-
cations.Firstly, through the multi-scale feature fusion 
of MSFANet, we can comprehensively capture surface 
information in mangrove areas. This is crucial for under-
standing the structure and evolution of ecosystems, pro-
viding scientists and environmental researchers with 
more accurate data to support ecological studies, habi-
tat monitoring, and climate change impact assessments.
Secondly, the efficiency and accuracy of MSFANet 
are crucial for real-time monitoring and protection of 
the ecological environment. By enhancing the seman-
tic segmentation accuracy of remote sensing images, 
this method helps promptly detect potential ecologi-
cal threats, such as illegal logging, land development, 
or other destructive activities. This provides a power-
ful tool for protecting mangrove ecosystems, aiding in 
the formulation of more effective conservation strate-
gies and management plans. Lastly, the application of 
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MSFANet substantially contributes to the sustainable 
management and resource planning of mangroves. By 
providing high-quality remote sensing image segmen-
tation results, decision-makers can better understand 
land use patterns and ecosystem dynamics in mangrove 
areas, thereby supporting the achievement of sustainable 
development goals.

Therefore, the Multi-Scale Fusion Attention Network 
is not merely an image processing technique but also a 
powerful tool supporting the management and protec-
tion of mangrove ecosystems. It has the potential to 
impact various fields such as environmental monitoring, 
sustainable development, and ecological research.

The overall workflow of this specific work is shown in 
Fig.  1. Firstly, mangrove images used in this study were 
obtained from Google Earth, with a focus on the man-
grove forest in Dongzhaigang and Wenchang River, 
Hainan Province, China. Image data processing involved 
the removal of low-quality and duplicate images, result-
ing in a total of 230 images. All original images were 
resized to 768× 768 pixels, and image categories were 
defined into six classes based on the most prominent fea-
tures in the images. Fine labels were added to all images 
using the Labelme tool. During the model design phase, 

our MSFANet model drew inspiration from several clas-
sic models, adapting them to the characteristics of man-
grove forest image segmentation. After preparing the 
data, it was input into the model for training, yielding 
the optimal model. The best model was then used to pre-
dict image categories, ultimately generating segmented 
mangrove images. These segmented mangrove images 
were evaluated from both visual and data metric perspec-
tives, leading to conclusions about the performance of 
the MSFANet model in mangrove forest image segmen-
tation. In this research paper, we present three primary 
contributions:

• We introduce the Multi-Scale Large Receptive Field 
Network, designed to effectively preserve spatial 
information across varying scales. This innovative 
network architecture capitalizes on a substantial 
receptive field to optimize the retention of spatial 
details while concurrently leveraging separable con-
volution to significantly curtail computational com-
plexity.

• Our work incorporates the Attention Fusion Mod-
ule, which enhances fusion efficiency and efficacy. 
Traditional fusion methods such as simple addi-
tion or direct channel connections can introduce 
undesirable interference information, thereby nega-
tively impacting segmentation results. The Attention 
Fusion Module effectively mitigates this interference, 
leading to improved segmentation outcomes.

• We introduce a Dual Channel Design that facili-
tates the comprehensive integration of both seman-
tic and spatial information. This design choice leads 
to enhanced output results by synergizing these two 
critical types of information in the segmentation pro-
cess.

The rest of this paper is organized as follows. “Related 
work” section introduces the related work of remote 
sensing image segmentation. “Methodology” section 
details the methodology of the MSFANet model. “Experi-
mental results and analysis” section shows the extensive 
experiments and analysis of our proposal. We conclude 
in “Conclusion” section.

Related work
Traditional machine learning methods have held a sig-
nificant position in the field of remote sensing image 
segmentation, encompassing threshold-based segmenta-
tion [8–10], edge-based segmentation [11–13], region-
based segmentation [14, 15], and clustering-based 
segmentation methods [16]. Threshold-based segmenta-
tion methods, due to their intuition, simplicity, and com-
putational speed, are commonly used in traditional image Fig. 1 Overall flowchart of our work
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segmentation algorithms. The Otsu method [8], known 
for its simplicity and robustness to variations in image 
brightness and contrast, has found extensive applications 
in digital image processing. The significant advantages 
of Otsu have attracted many researchers. Yang et al. [9] 
improved the Otsu algorithm, resulting in better segmen-
tation of test images, competitive misclassification errors, 
Dice Similarity Coefficient (DSC) values, and reduced 
computational time. Pratiwi et  al. [10] applied the Otsu 
method to segment mangrove ecosystems captured by 
unmanned aerial vehicles, demonstrating that it effec-
tively separates mangrove areas from others while pre-
serving mangrove details.

Commonly used improved edge detection operators 
include the Canny operator [11], the Prewitt operator 
[12], and Sobel operator [13], which not only correctly 
detect object edges but also suppress image noise effec-
tively, striking a balance between the two. Xue et al. [14] 
proposed an improved watershed algorithm for accu-
rately extracting land boundaries in high-resolution 
remote sensing images, resulting in improved segmen-
tation performance and time efficiency. In the realm of 
region-based segmentation, Dong Yang et al. [15] intro-
duced an enhanced region-growing method that incor-
porates improved median filtering for smoother image 
processing, increased internal consistency within targets, 
texture information retention, and automatic seed selec-
tion, followed by fragment merging to obtain diverse 
object segmentation results. Clustering-based image 
segmentation methods [16] categorize all pixels in an 
image into different regions based on grayscale values, 
spatial positions, and other information, ensuring similar 
structures within the same region and significant differ-
ences between different regions, thereby achieving image 
segmentation.

Traditional machine learning methods have made 
notable contributions to image segmentation, but fea-
ture extraction often depends heavily on the algorithm 
designer’s expertise. Each method is usually tailored to 
specific applications, resulting in limited generalization 
and robustness. In contrast, deep learning relies on data-
driven feature extraction, deriving deep, dataset-specific 
feature representations from extensive sample learning. 
These abstract features exhibit stronger robustness and 
better generalization, making them more efficient and 
accurate. However, traditional deep learning methods are 
not well-suited to mangrove remote sensing images due 
to their limited receptive field and the challenges asso-
ciated with effective high-level feature extraction, along 
with the presence of numerous difficult samples. Recent 
advances in computing power, coupled with the wide-
spread use of deep learning specialized hardware such as 
GPUs and TPUs, have led to remarkable achievements 

in various tasks, making deep learning-based semantic 
segmentation a primary focus in remote sensing image 
analysis.

Deep learning-based semantic segmentation methods 
typically explore multiple aspects, including multi-scale 
information and attention mechanisms. Multi-scale 
exploration involves recognizing that different scales 
can better identify target information for segmentation, 
enhancing the accuracy of information for each cat-
egory. For example, Chen et  al. introduced the Atrous 
Spatial Pyramid Pooling (ASPP) mechanism in the Dee-
pLabv3 [17] and DeepLabv3 + [18] series, which utilizes 
different receptive fields to extract features from feature 
maps, allowing for the acquisition of information at dif-
ferent scales. Zhao et  al. [19] proposed the Pyramid 
Scene Parsing Network (PSPNet) with a pyramid pool-
ing module that integrates global contextual information. 
Other models, such as DenseASPP [20], combine ASPP 
from the DeepLab series and dense connections from 
DenseNet, resulting in larger receptive fields and denser 
sampling points. Despite these similarities in pyramid 
pooling methods, they have drawbacks, as they introduce 
a large number of channels, which increases parameter 
count, and global average pooling can lead to a significant 
loss of positional information [21]. In addition to pyra-
mid structures, many models use multi-scale fusion tech-
niques to improve segmentation accuracy, such as OCNet 
[22], EMANet [23], which employ multi-scale fusion 
techniques to enhance accuracy. Attention mechanisms, 
which weigh the importance of information in the input 
data, can help networks better understand key informa-
tion, thereby improving performance, efficiency, inter-
pretability, and adaptability. Attention mechanisms can 
be categorized into two main types: channel attention, 
which weights channels in convolution, and pixel atten-
tion, which weights pixels. In terms of channel attention, 
representative models include DANet [24], CCNet [25], 
DFN [26], DSANet [27], and BiSeNet [28], all of which 
employ channel attention to improve segmentation accu-
racy. DANet contributes a dual attention mechanism to 
handle multiscale information and channel relationships. 
CCNet introduces a Criss-Cross attention module, mod-
eling cross-channel relationships to improve segmenta-
tion accuracy. DFN addresses intraclass inconsistency 
by introducing attention mechanisms and global average 
pooling to select more representative features. DSANet 
and BiSeNet also use channel attention to enhance seg-
mentation accuracy. For pixel-level attention mecha-
nisms, OCNet introduces Object Context Attention 
(OCA) to capture relationships between objects. This 
mechanism calculates the similarity between each pixel 
and all other pixels, adjusting the feature map’s weights 
based on these similarities to capture object relationships 
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effectively. Fan et  al. [29] proposed a mangrove image 
segmentation model based on domain adaptation, com-
bining self-attention mechanisms and remote sensing 
spectral indices. Self-attention mechanisms enable the 
model to focus on more important image channels, while 
spectral indices address potential edge information loss 
in domain adaptation. Numerous experiments related to 
attention mechanisms have demonstrated their effective-
ness in improving image segmentation.

In addition to convolutional neural networks (CNNs), 
transformer-based methods have also gained popular-
ity in deep learning-based image segmentation. Utilizing 
Transformer structures for pixel-level weighting is a cur-
rent research focus, starting with the Vision Transformer 
[30]. Various Transformer variations have been applied 
to image segmentation, including TransUNet [31], which 
improves upon the UNet model, and pure Transformer 
structures like Swin-UNet [32]. SpectralFormer [33] was 
the first to apply the transformer structure to hyper-
spectral image classification. SpectralFormer’s structure 
is simple, efficient, and nearly identical to the original 
transformer structure, yet it has demonstrated outstand-
ing performance and attracted significant attention. 
Zhong et al.’s model [34] is both simple and efficient, and 
the study extensively verifies the performance of various 
transformer combinations, providing valuable insights 
for researchers. Sun et  al. [35] proposed a method that 
cleverly combines the main CNN and transformer struc-
tures. CNN captures low-level spectral-spatial features 
and transforms them into semantic labels, while the 
transformer structure models high-level semantic fea-
tures. In a dual-branch structure, Wang et al. [36] intro-
duced the Hyper-ES2T network, harnessing the power 
of Transformers. The fusion of Transformer and dual-
branch architecture showcased robust generalization 
capabilities and superior feature representation. Yang 
et  al. [37] proposed the Hyperspectral Image Trans-
former (HiT) network, incorporating CNN operations 
within the Transformer framework. This approach effec-
tively captures subtle spectral distinctions and conveys 
localized spatial context information.

In the domain of mangrove image segmentation [38], 
the UNet-based neural network model has garnered 
substantial acclaim. UNet leverages both spatial and 
spectral information to facilitate semantic segmenta-
tion through an encoder-decoder architecture. As an 
illustration of this paradigm, Dong et  al. [39] intro-
duced the GC-UNet model, which incorporates global 
contextual blocks into the UNet framework, thereby 
capturing long-range dependencies. Their approach 
utilizes SPConv to emphasize intrinsic details and 
employs adaptive spatial feature fusion to address 

disparate feature levels. A pivotal contribution to the 
field was made by Moreno [40], who conducted a pio-
neering deep-learning investigation into mangrove 
image segmentation using radar time-series data. This 
study harnessed the UNet model in conjunction with 
spatial, temporal, and polarization datasets, revealing 
that when coupled with Efficient-net-B7, UNet out-
performs competing architectures such as ResNet-101 
and VGG16.

Receptive field research is a crucial direction, with 
receptive field size significantly impacting neural net-
work performance. Smaller receptive fields capture 
image details but may sacrifice global contextual infor-
mation. In contrast, larger receptive fields extract more 
contextual information at the potential cost of fine-
grained details. The size of the receptive field is directly 
influenced by convolutional kernel size, prompting 
the exploration of dilated convolutions and large ker-
nel designs. RepLKNet [41] reevaluated large kernel 
designs in modern Convolutional Neural Networks 
(CNNs) from a sparsity perspective, proposing an 
extremely large kernel approach, expanding kernels to 
61 × 61, with improved experimental results. GCN [42] 
discussed the advantages of large convolutional kernels 
compared to smaller ones, achieving global convolution 
effects by using convolutional kernels of the same reso-
lution as feature maps in the deepest network layers. 
Experiments on standard datasets demonstrated con-
current state-of-the-art segmentation results.

In summary, based on the diverse body of literature 
encompassing image segmentation methods discussed 
earlier, it becomes evident that several critical factors 
significantly influence the efficacy of image segmenta-
tion. These key factors include multi-scale considera-
tions, the incorporation of attention mechanisms, the 
architectural design of the model, and the extent of the 
receptive field. Notably, when dealing with the chal-
lenges posed by the vast dimensions of remote sensing 
images capturing mangrove ecosystems, an important 
observation emerges. These images often contain a 
substantial proportion of mangrove regions, result-
ing in potential limitations associated with inadequate 
receptive fields for mangrove areas. This limitation can 
hinder the extraction of nuanced features and compli-
cate the segmentation process, particularly given the 
presence of numerous complex samples. To address 
these aforementioned challenges, our study focuses 
on the strategic integration of multi-scale methodolo-
gies, attention mechanisms, model network structures, 
and the enhancement of receptive fields. These aspects 
collectively contribute to a more effective and precise 
mangrove image segmentation approach.



Page 6 of 20Fu et al. Journal of Cloud Computing           (2024) 13:27 

Methodology
GCN model
The GCN model proposes a global convolutional net-
work to solve classification and localization problems for 
semantic segmentation. The application of large kernel 
convolution is considered. The core modules of the GCN 
model are the GCN and BR modules, which utilize the 
large receptive field convolution of the GCN module to 
obtain multi-scale features. The residual-based boundary 
refinement network BR module is used to further refine 
the boundaries of the image. Figure 2 shows the network 
architecture of the entire GCN model.

The detailed process of image segmentation by GCN 
model is introduced later. Firstly, the backbone network 
uses ResNet to extract features, and ResNet is adjusted 
to a five-layer network structure, i.e., Layer0- Layer4. 
Because the last classification layer of ResNet is not used, 
so the last layer is discarded. The size of the downsam-
pled feature maps in each layer of the image is 1/2 of the 
original size, and the number of channels is expanded by 
two times from 64 in the Layer0 layer, and the number 
of channels finally reaches 2048 in the Layer4 layer. The 
dashed part of the figure shows the different scales of 
feature maps from Layer1 to Layer4 extracted using the 
GCN module respectively. And it makes the number of 
output channels equal to the number of categories, which 
are classified into six categories in this paper. Then BR 
module is used to receive the output of the GCN mod-
ule for further feature extraction, it does not change the 
number of channels and feature map size. The feature 

map is up-sampled twice in Layer4 using Deconv inverse 
convolution, so that it is the same size as the feature map 
of Layer3, 48 × 48, and the two feature maps are summed 
up, and then the residuals are connected to the previous 
layer through the BR module and the inverse convolution 
to achieve the fusion of different scales. Then the final 
output is obtaineded after three BR modules and two 
inverse convolution modules.

Each GCN module uses two 15 × 15 size convolu-
tional kernels to extract features. Due to the use of sep-
arable convolutions [43] in the GCN module instead of 
commonly used convolutional forms, the advantage is 
that it reduces computational complexity while ensur-
ing the quality of extracted features. Finally, the features 
extracted from the two convolutions are added and 
fused to obtain the final result. The BR module is sim-
pler by using two convolutions with an activation func-
tion added to the original feature map to form a residual 
structure. These two modules have been used multiple 
times throughout the GCN model, and the experimental 
data in the GCN of literature [35] shows that good results 
have been obtained on different datasets.

MSFANet model
Inspired by the GCN model and combined with the 
characteristics of mangrove remote sensing images, this 
paper proposes a multi-scale fusion attention network 
MSFANet (Multi-Scale Fusion Attention Network) suit-
able for the segmentation of mangrove remote sensing 
images. Usually, the networks we design tend to use small 

Fig. 2 Diagram of GCN network architecture
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convolutional kernels (such as 1 × 1 or 3 × 3). However, 
the biggest difference between segmentation and clas-
sification is that image segmentation not only classifies 
pixel points but also locates image pixels. Convolutional 
neural networks have been proven to have no translation 
invariance, which inevitably results in the loss of more 
positional information for small convolutional kernels 
compared to large convolutional kernels. Therefore, this 
paper will also consider how to use large convolutional 
kernels. After extracting sufficient information, how to 
preserve and fully utilize it is also a problem. This paper 
will use attention mechanisms to solve this problem. The 
MSFANet model was ultimately obtained by combining 
the idea of large convolutional kernels with the attention 
fusion module.

The detailed process of image segmentation using the 
MSFANet model is illustrated in Fig. 3. Firstly, ResNet-50 
was used as the backbone network, and the ResNet layer 
was adjusted to reduce the output feature map size of 
Layer0 to half of the original size, with a channel count 
of 64. The combination of the ResNet maximum pool-
ing layer and ResNet Layer1 forms a new Layer1. The 
entire ResNet is divided into five layers: Layer0, Layer1, 
Layer2, Layer3, and Layer4. This paper will use the first 
four layers, with a resolution reduction by half, for each 
layer, while featuring channel counts of 64, 256, 512, and 
1024, respectively. As depicted in group (a) of Fig.  3, 
three Atrous Large Receptive Field Convolutional Net-
work (ALRFCN) modules are utilized, forming a multi-
scale large receptive field network. For the outputs of 
Layer0, Layer1, and Layer2, feature extraction is per-
formed using convolutions with dilated rates of 12, 6, and 

3, respectively, and the corresponding convolution kernel 
sizes with dilated convolutions are 49, 25, and 13, whose 
original convolution kernel size is 5. This can preserve 
the position information as much as possible, and the 
number of output channels is unified to 64. Then, using 
the same three ALRFCN network modules as shown in 
group (b) in Fig. 4, adjust the dilated rates to 8, 4, and 2, 
and unify the output channels to 6, which exactly corre-
sponds to the six categories to be divided.

Layer 3, as a deep-level network, has rich advanced 
features and semantic information. It performs double 
upsampling through transposed convolution, and the 
number of channels is adjusted from 1024 to 512. Then, 
through the ARM (Attention Refinement Module) atten-
tion refinement module, weights are assigned to the input 
channels, and the output channel is set to 256. The output 
results of the ARM module are upsampled and transmit-
ted to the AFM module and ARM module respectively. 
The AFM module fuses the output of ALRFCN and the 
output of ARM and assigns weights to the fused chan-
nels. Simultaneously, another branch passes through two 
ARM modules, achieving four-fold upsampling, attain-
ing half of the original image resolution, and maintain-
ing a channel count of 6. Both branches converge at the 
Feature Fusion Module (FFM), where two-fold upsam-
pling is applied to the final output result. The output of 
the two branches is fused at the Feature Fusion Module 
(FFM), where two-fold upsampling is applied to achieve 
the final output result. This model incorporates two 
upsampling methods: bilinear interpolation and trans-
pose convolution. Feature maps processed by the ARM 
module exclusively use transpose convolution-based 

Fig. 3 MSFANet network architecture
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upsampling, while other parts of the network employ 
bilinear interpolation.

The dual-path design in the MSFANet network aims 
to maximize the utilization of high-level and low-level 
feature information, ensuring both accurate preserva-
tion of positional information and effective extraction 
of low-level features such as image contours. Moreover, 
high-level features are fused with low-level features using 
channel attention mechanisms after deep-level network 
extraction, as illustrated by Path1 and Path2 in Fig.  3, 
enhancing the quality of image segmentation.

ALRFCN model
The ALRFCN (Atrous Large Receptive Field Convolu-
tional Network) module, compared to the GCN module 
in the GCN paper and the ASPP (Atrous Spatial Pyramid 
Pooling) module in Deeplabv3 + , offers a unique com-
bination of advantages from both the GCN module and 
the ASPP module, effectively mitigating their respec-
tive limitations. In contrast to the GCN module, which 
significantly reduces the number of channels to a small 
classification count for different-scale feature maps, thus 
accelerating computation but also causing severe infor-
mation loss, and the ASPP module, which requires the 
computation of five feature maps followed by concatena-
tion, thus greatly preserving the multi-scale information 
of the maps, but also leading to substantial computa-
tional load. The MSFANet method employs the ALRFCN 
module in a two-step, two-component approach.

In this approach, three ALRFCN modules form a 
multi-scale large receptive field network, as depicted in 
Fig.  4, group (a). These modules process feature maps 
from Layer0, Layer1, and Layer2, extracting features and 

maintaining an equal number of channels. The first com-
ponent yields an output channel count of 64, preventing 
severe channel reduction and significant information 
loss. Subsequently, another set of three ALRFCN mod-
ules processes the output from group (a), equalizing the 
output channel count with the classification count, which 
is set to 6 in this paper.

Moreover, while using large convolutional kernels 
directly for achieving a large receptive field is effective, it 
inevitably incurs a substantial increase in computational 
load. To address this concern, the MSFANet method 
improves upon this concept by employing dilated con-
volutions instead of large convolutional kernels. This 
approach leverages the advantages of atrous convolu-
tions, which expand the receptive field without increas-
ing kernel size, while also enhancing computational 
efficiency through the use of separable convolutions.

The ALRFCN network adopts a serial fusion approach, 
as illustrated in Fig. 4. In each ALRFCN module, the size 
of a feature map is w × h × c as initial input. This feature 
map undergoes feature extraction via two separable con-
volutions, utilizing convolution kernel sizes of (1,5) and 
(5,1) to replace a traditional (5,5) convolution kernel. The 
adoption of depth-wise separable convolutions signifi-
cantly enhances computational efficiency. The parameter 
count can be analyzed as follows. suppose an input fea-
ture map with the size w × h × c and convolution kernel 
sizes of k × k × ck, the parameter count per convolution 
layer can be calculated using Eq. 1:

Where c0 represents the input channel count, kw rep-
resents the convolution kernel width, and kh represents 

(1)Params = C0 × (kw × kh × Ci + 1);

Fig. 4 ALRFCN modul



Page 9 of 20Fu et al. Journal of Cloud Computing           (2024) 13:27  

the convolution kernel height. The “ + 1” term accounts 
for bias parameters. For depth-wise separable convo-
lutions, the parameter count is significantly reduced. 
Given that the values of k are all greater than 5, it 
becomes evident that depth-wise separable convolu-
tions result in significantly fewer parameters compared 
to regular convolutions.

The first stage of output is w × h × 64, serving as 
a transitional phase to ensure effective information 
retention while avoiding excessive information loss. 
The second stage yields an output of w × h × 6, repre-
senting the final classification count, or the final num-
ber of output channels.

Figure  4 illustrates the ALRFCN module alongside 
standard 5 × 5 convolution (rate = 1) and atrous convo-
lutions of the same size but with different dilation rates 
(rate = 3). Figure 4a illustrates the receptive field of the 
standard 5 × 5 convolution, while Fig.  4b shows the 
receptive field of the convolution with a correspond-
ing dilation rate of 3. It is evident from the figure that 
the receptive field with dilated convolution significantly 
increases. The ALRFCN module is composed of two 
groups, denoted as group(a) and group(b). Each group 
consists of three modules. In group(a), the modules 
receive the outputs from Layer0, Layer1, and Layer2, 
and employ dilations of 12, 6, and 3, respectively, 
with an original kernel size of 5 for feature extraction. 
According to Eq. (2), this results in dilated convolution 
kernel sizes of 49, 25, and 13, and receptive field sizes 
of 48, 24, and 12, as determined by Eq. (3). In group(b), 
the dilation rates are 8, 4, and 2, leading to convolution 
kernel sizes and receptive field sizes, as calculated by 
the formulas, to be 33, 17, and 9, and 80, 56, and 20, 
respectively.

The formula for calculating the receptive field with 
atrous convolutions in the module is shown in Eq. 2.

The convolution kernel size corresponding to the 
dilation rate represents the actual calculated ker-
nel size, which is the original kernel size., and "rate" 

(2)knew = kori + (kori-1)(rate-1)

denotes the dilation rate. The calculation of the recep-
tive field is shown in Eq. 3.

Where RFi+1 is the actual receptive field, RFi is the 
receptive field of the previous layer, kernel_size is the size 
of the convolutional kernel, and stride is the stride of the 
convolution, with a default value of one.

In summary, the two groups, group (a) and group (b), 
composing the ALRFCN module can effectively address 
the challenge of insufficient receptive fields for mangrove 
image recognition associated with a small convolutional 
kernel.

ARM module
During the process of feature extraction, a significant 
number of channels are generated. Taking ResNet as an 
example, it can even utilize up to 2048 channels. How-
ever, it’s essential to recognize that not all channels con-
tain the same amount of information. This necessitates 
the identification of important channels while downplay-
ing less critical ones, focusing attention on the significant 
parts. This concept is the core of the channel attention 
mechanism [17]. The aforementioned process can be 
expressed as shown in Eq. 4.

Wherein g(x) represents the process of generating 
attention over the input feature x , while f(g(x),x) rep-
resents the operation of enhancing the input feature x 
based on the generated attention g(x) , thus strengthening 
the features in the salient regions.

The ARM module leverages the fundamental principles 
of the attention mechanism, where the weights across 
different channels are unequal, enhancing important 
features while attenuating less important ones, thereby 
improving feature quality. As illustrated in Fig.  5, the 
computation process of the ARM module involves a 
h × w × c feature map passing through convolution and 
average pooling to yield a 1 × 1 × c vector. Subsequently, 
further feature extraction occurs through convolution, 

(3)RFi+1 = RFi + (kernel_size− 1)× stride

(4)Attention = f(g(x), x)

Fig. 5 ARM module
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employing the Sigmoid function for weight allocation and 
normalization. The resulting weight vector is then multi-
plied element-wise with the original feature map, result-
ing in an output with the size of h × w × c. The core of 
this module lies in the weight allocation across channels 
using the Sigmoid function, which embodies the central 
idea of channel attention. The specific procedure of the 
ARM structure is shown in Table  1. In summary, the 
Attention Refinement Module (ARM) adjusts the impor-
tance of different regions in the feature map by introduc-
ing an attention mechanism, directing the module’s focus 
toward relevant information in mangrove areas. The uti-
lization of adaptive average pooling in ARM simultane-
ously reduces spatial dimensions while preserving overall 
feature information, facilitating adaptability to varying 
input image sizes. Through element-wise multiplication 
after Sigmoid activation, ARM diminishes attention to 
background or irrelevant details, ensuring a heightened 
focus on mangrove regions. This contributes to enhanc-
ing the differentiation from other categories in mangrove 
remote sensing image segmentation under challeng-
ing conditions, such as complex textures and variations 
in illumination. Additionally, it aids in addressing issues 

related to the ambiguous boundaries of mudflats and 
water bodies.

The Sigmoid function used in this module is repre-
sented as Eq. 5, wherein x corresponds to the vector after 
average pooling. The output of the Sigmoid function falls 
within the range of 0 to 1. Because the output values are 
confined to this range, it normalizes the output of each 
neuron.

AFM module
The AFM is responsible for fusing high-level and low-
level features by redistributing channel weights through 
an attention mechanism. As depicted in Fig.  6a, it ini-
tially takes two feature maps, high-level feature f1, and 
low-level feature f2, and concatenates them to obtain 
the f3 feature map. This direct concatenation implies 
equal weights for different channels. However, in real-
ity, features at different stages possess varying degrees 
of discriminative power, leading to differing prediction 
consistency. To achieve intra-class prediction consist-
ency, it’s crucial to extract discriminative features and 
suppress non-discriminative ones. To achieve this, an 
average pooling is performed, generating a weight vec-
tor WV. This weight vector undergoes convolution, ReLU 
activation, and another convolution, followed by sig-
moid activation for weighting. The convolution is used to 
match the channel count of the weight vector to that of 
the high-level feature f1. The unweighted weight vector 
is then multiplied element-wise with the low-level feature 
f2 to produce a new weighted feature map WF. The WF is 
added to f1 to obtain the final fused feature FF. The entire 
process can be represented by Eqs. 6, 7, 8,  9 and 10:

(5)s(x) =
1

1+ ex

Table 1 The specific procedure of the ARM

Algorithm: Attention Refinement Module

Input: input

Output: x

1. Apply Conv2d operation to input, resulting in input1

2. Apply AdaptiveAvgPool2d operation to input1, obtaining x

3. Apply Conv2d operation to x. x = Conv2d(x, kernel_size = 1)

4. Apply Sigmoid activation to x

5. Element-wise multiply input1 by x

6. Return x

Fig. 6 AFM and FFM a AFM b FFM
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Wherein AvgPool represents global average pooling, 
WV is the weight vector, WF is the weighted feature map, 
FF is the final output, δ signifies a 1 × 1 convolution, α 
denotes the ReLU activation function, β represents the 
sigmoid activation function, ⨂ represents element-wise 
multiplication, and ⨁ signifies element-wise addition.

In summary, through global average pooling, AFM 
can capture global information, facilitating the fusion of 
multi-scale features and enhancing the model’s adapt-
ability to different scale information. The weights gener-
ated by the Sigmoid activation function are used to adjust 
the importance of input features, directing the model’s 
attention to regions contributing to the segmentation 
of mangroves, thereby improving the segmentation 
performance.

The FFM structure, illustrated in Fig.  6b, serves to 
receive the ultimate high-level and low-level features and 
performs the final feature fusion. It operates based on 
the same principles as the AFM module. The key differ-
ence lies in the part where high-level feature f1 and low-
level feature f2 are concatenated, as it involves feature 
extraction. This primarily involves a convolution block, 
depicted by the dashed line in Fig. 6a, which includes a 
3 × 3 convolution, BatchNorm layer, and ReLU layer. This 
enhances the feature information of the two pathways 
to ensure a more comprehensive final output, ultimately 
improving the overall output quality. The specific proce-
dure of the FFM structure is shown in Table 2.

(6)f3 = concat[f1, f2]

(7)WV = AvgPool(f3)

(8)WV = β(δ(α(δ(Wv))))

(9)WF = Wv ⊗ f1

(10)FF = Wf ⊕ f2

FFM integrates low-level features from Path1 and high-
level features from Path2, ensuring a balance between 
semantic information from high-level features and spatial 
information from low-level features. The combination 
of both through the FFM module enhances the recogni-
tion of small targets in mangrove images while preserv-
ing the contour information of large targets.n general, the 
Feature Fusion Module provides an effective mechanism 
by integrating features at different levels or channels, 
enhancing the modeling capability of deep learning mod-
els for input data. This contributes to improving the per-
formance and generalization ability of the model.

Experimental results and analysis
Study area
Mangrove vegetation is widespread in Southeast Asian 
coastal areas and subtropical regions of China, includ-
ing those found in Hainan Province, which serves as 
the primary study area for this research. Remote sens-
ing images of mangroves from within Hainan Province, 
such as Dongzhaigang and Wenchang River located at 
the red star in Fig. 7, were selected for analysis. To diver-
sify the dataset, some foreign mangrove images were 
also included as supplementary data. Figure  8 shows a 
schematic diagram of the labels used for different clas-
sifications in the images. Image labels were meticulously 
annotated using the labelme tool. The dataset was divided 
into six classes based on the content in the images, 
including mangroves, rivers and oceans, buildings and 
roads, ponds, tidal flats, and background. Mangroves are 
depicted in light green, rivers and oceans in green, build-
ings and roads in blue, ponds in magenta, tidal flats in yel-
low, and the background in black. This dataset employs 
six criteria for classification. Firstly, the identification 
of mangrove areas is based on a scale of approximately 
100 m on Google Earth. Images are selected to ensure the 
presence of multiple categories, with a focus on delin-
eating the boundaries of entire mangrove forest regions 

Table 2 The specific procedure of the FFM

Algorithm: Feature Fusion Module

Input: input_1, input_2

Output: x

1. Concatenate input_1 and input_2 along the channel dimension to create a new tensor x

2. Apply ConvBlock operation to x, yielding a feature tensor

3. Utilize the AdaptiveAvgPool2d operation on the feature tensor, resulting in x

4. Apply Conv2d with ReLU and Sigmoid activations to x
x = Sigmoid(Conv2d(ReLU(Conv2d(AdaptiveAvgPool2d(ConvBlock([input_1,input_2])),kernel_size = 1)), kernel_size = 1))

5. Perform element-wise multiplication of the result of ConvBlock([input_1, input_2]) by x

6. Conduct element-wise addition of the above result to ConvBlock([input_1, input_2])

7. Return x
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rather than isolated trees. Open areas within mangrove 
regions are classified as mudflats, including the intertidal 
zones between mangroves and rivers or the ocean. Ponds 
are delineated by the boundaries of their water bodies. 
Buildings are primarily identified by the structures of 

houses and are delimited by the boundaries around the 
buildings. The dataset is designed to represent the most 
common scenarios in mangrove ecosystems, capturing 
typical features to ensure it is representative of real-world 
scenes.

Fig. 7 Location of the study and Mangrove images a Location of the study b Mangrove images

Fig. 8 Schematic diagram of fine labels
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A total of 230 images were selected for this experiment, 
with 184 images used for training and 46 images for vali-
dation, divided in an 80:20 ratio. The image dimensions 
were set to 768 pixels, and the mangrove image data 
sources were obtained from Google Earth [44], consisting 
of high spatial resolution (0.3 m) remote sensing images 
captured on June 6, 2021.

The research area of Dongzhaigang is situated at the 
intersection of Wenchang City and Haikou City in the 
northeastern part of Hainan Province, China, whose 
longitude ranges from E110°32’ to E110°37’ and latitude 
ranges from N19°51’ to N20°1’. Covering a total area of 
3337.6 hectares, the core zone occupies 1635 hectares 
and the mangrove coverage extends over a substantial 
1771 hectares, coexisting harmoniously with the coast-
line and spanning a length of 28 km.

Experiment and evaluation indicators
The experiment of this study was implemented on the 
operating system of Windows 11 Professional Edition, 
version 21H2. The employed CPU is an Intel(R) Xeon(R) 
E5-2680 v3, with a memory size of 32.0  GB. The stor-
age disk was a Samsung SSD 870 EVO with a capacity of 
500 GB. The used GPU is an NVIDIA GeForce RTX 4090 
with 24 GB of dedicated graphics memory.

The overall procedural flowchart for the deep learn-
ing-based experiments conducted in this paper is 
depicted in Fig. 9. The dataset for mangroves is divided 
into two parts: the training set and the validation set. 

The procedure begins by initializing model parameters, 
followed by loading the training data into the model for 
iterative computations of the loss values and parameter 
updates to refine the model. Subsequently, the valida-
tion set is input into the model with updated param-
eters, and the Mean Intersection over Union (Miou) 
evaluation metric is employed to select the model 
with the highest value after each epoch as the optimal 
model. In addition to the Miou indicator, this experi-
ment also selected several important indicators such as 
pixel accuracy (PA), F1 score (F1_Score), and class pixel 
accuracy (CPA). Through these different evaluation 
indicators, the model’s advantages and disadvantages 
can be more comprehensively evaluated. The model 
uses ResNet as the backbone network and initializes the 
model parameters using ResNet’s pre-trained model. 
The optimizer selected a more stable Adam algorithm. 
The cross-entropy loss function was chosen as the loss 
function for this experiment, and the expression is 
shown in Eq. 11. Cross entropy loss has the character-
istics of stability and fast learning speed, and is also the 
mainstream loss function in current deep learning. The 
selected batch size was 8, and the training duration was 
approximately four hours.The learning rate is reduced 
by 40% using a fixed iteration of 80 times, with an ini-
tial value of 0.001 and a total of 450 iterations. The 
selection of the optimal model is based on Miou as the 
only indicator. Select the Miou with the largest valida-
tion set as the optimal model.

Fig. 9 Flow chart of the experiment in this study
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The formula for the cross-entropy loss function is as 
follows:

Where M is the number of classes, which is 6 for clas-
sification in this paper; N represents the total number 
of samples, signifying the number of images; yic takes a 
value of 0 or 1, if the true class of sample i is equal to c, 
take 1, otherwise take 0; pic is the prediction probability 
of the observed sample i belonging to class c.

The evaluation metrics for this model include the 
Mean Intersection over Union (Miou) for average class 
IoU, Pixel Accuracy (PA), Class Pixel Accuracy (CPA) 
for individual classes, and the F1 score. These metrics 
are computed using a confusion matrix. The terms used 
in these metrics are defined as follows: True Positives 
(TP), True Negatives (TN), False Positives (FP), and 
False Negatives (FN).

The Intersection over Union (IoU) represents the 
ratio of the intersection to the union of the model’s pre-
diction and the ground truth for a specific class. Miou, 
which stands for the mean IoU, represents the aver-
age IoU among the model’s predictions and the ground 
truth for all classes. It is calculated as the sum of IoU 
values for all classes divided by the number of classes, 
as shown in Eq. 12, where k represents the number of 
categories.

PA measures the proportion of correctly predicted 
pixels for all classes over the total number of pixels. It is 
defined as shown in Eq. 13. CPA is a metric that specifi-
cally assesses the accuracy of predicting pixels belong-
ing to a particular class. In this study, the primary focus 
was on the mangrove class.

(11)L=-
1

N i

M

c=1
yiclog(pic)

(12)Miou =
1

k

∑k

i=1

TP

(TP + FP + FN)

The F1 Score (F1_Score) is a statistical metric used to 
evaluate the accuracy of a model, taking into account 
both the precision and recall of a classification model. It 
can be seen as a weighted average of a model’s precision 
and recall, with a maximum value of 1 and a minimum 
value of 0. A higher F1_Score indicates better overall 
performance of the model. The definition of F1_Score is 
shown in Eq. 16, where Eq. 14 represents precision, and 
Eq. 15 represents recall.

Comparison of experimental results for different models
Firstly, eight models were selected for different compara-
tive experiments, and the experiments of different models 
on mangroves were evaluated from multiple indicators. 
The experimental data of these eight models are shown 
in Table 3, displaying the data for five metrics: Miou, PA, 
F1_score, Mangrove CPA, and River & Ocean CPA. The 
backbone networks for MSFANet, GCN, and ExFuse 
are either ResNet-50 or ResNet-101. UNET and Deep-
Labv3 + are models that establish their backbone net-
works. From the experimental results, it can be seen that 
the Miou of the MSFANet model is significantly higher 
than that of the other models, reaching over 80%, and the 
performance of PA is also one percentage point ahead of 
other best models. From the experimental results, it can 

(13)PA =
(TP + TN)

(TP + TN + FP + FN)

(14)Precision =
TP

TP+FP

(15)Recall =
TP

TP+FN

(16)F1_score =
2× Precision× Recall

Precision+Recall

Table 3 Experimental results of different models on the mangrove dataset

Model Miou(%) PA(%) F1_score(%) Mangrove(CPA) (%) River & 
Ocean(CPA) 
(%)

MSFANet ResNet-50 0.86015 0.96419 0.92029 0.98981 0.96425

MSFANet ResNet-101 0.84928 0.96261 0.91238 0.98951 0.94620

UNET 0.68159 0.91982 0.77046 0.98508 0.91875

GCN ResNet-50 0.78231 0.95376 0.86321 0.98847 0.94395

GCN ResNet-101 0.78443 0.95078 0.86935 0.98013 0.93630

DeepLabv3 + 0.73638 0.92917 0.83042 0.98569 0.93651

ExFuse ResNet-50 0.72884 0.94070 0.80712 0.98487 0.93891

ExFuseResNet-101 0.78559 0.94418 0.86893 0.98364 0.94242
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be seen that MSFANet has a significant improvement in 
experimental data when using ResNet-50 as the back-
bone network compared to ResNet-101 as the backbone 
network. The experimental data of different backbone 
networks in GCN models do not differ significantly, and 
the main reason for this result is that MSFANet has too 
many parameters when using ResNet-101 as the back-
bone network, resulting in poor overfitting results.

In the testing results of these eight models, the Miou 
metric is the most critical indicator for image segmenta-
tion experiments. The bar chart of the data, as shown in 
Fig. 10, illustrates the Miou values. From these data, it can 
be observed that the MSFANet ResNet-50 model performs 
the best in terms of the Miou metric, achieving a score 
of 0.86015. The MSFANet ResNet-101 model also yields 
good results, with a Miou of 0.84928. The performance 
of the GCN ResNet-50 and GCN ResNet-101 models is 
relatively good as well, with scores of 0.78231 and 0.78443, 
respectively. However, the UNET model exhibits relatively 
poorer performance, with a Miou of only 0.68159. The 
MIoU scores for the DeepLabv3 + and ExFuse ResNet-50 
models are 0.73638 and 0.72884, respectively, slightly 
lower than the other models. The ExFuse ResNet-101 
model achieves a Miou score of 0.78559, which is compa-
rable to the GCN ResNet-101 model.

In summary, the MSFANet ResNet-50 and MSFANet 
ResNet-101 models perform the best in this dataset, 
while the UNET model exhibits relatively poorer per-
formance. However, to comprehensively assess the per-
formance of these models, other metrics such as PA and 
F1_Score need to be considered. The bar chart in Fig. 10 

illustrates the PA and F1_Score metrics. From these 
data, it can be observed that the MSFANet ResNet-50 
and MSFANet ResNet-101 models perform the best in 
terms of PA and F1_Score metrics, exhibiting high accu-
racy and comprehensive performance. The performance 
of the GCN ResNet-50 and GCN ResNet-101 models is 
also relatively good, approaching the performance of the 
MSFANet models. The UNET model performs relatively 
poorly in terms of PA and F1_Score, indicating lower 
accuracy and overall performance. The DeepLabv3 + and 
ExFuse ResNet-50 models score slightly lower on PA 
and F1_Score, while the performance of the ExFuse 
ResNet-101 model is relatively good, approaching that of 
the GCN ResNet-101 model.

In conclusion, the MSFANet ResNet-50 and MSFANet 
ResNet-101 models perform the best across all metrics. 
They achieve high scores in Miou, PA, and F1_Score, as 
well as high scores in the mangrove (CPA) metric. This 
indicates their strong accuracy and overall performance 
in the mangrove segmentation task. The performance of 
other models is relatively lower.

Figure 11a displays the training and validation loss varia-
tion for the MSFANet ResNet-50 model. The loss values are 
sampled every 25 epochs. From the experimental data, it is 
evident that the validation set initially exhibits significant 
deviation during the early stages of training. After approxi-
mately 100 epochs, the loss curve gradually stabilizes and 
slowly reduce. Beyond 400 epochs, the validation loss 
approaches that of the training set, and both losses converge 
to near-zero values. This indicates that the MSFANet model 
fits the data well, demonstrating its excellent performance.

Fig. 10 Comparison of Miou, PA, and F1_score for different models
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Figure 11b depicts the Miou values, also sampled every 
25 epochs during training. The Miou values exhibit an 
overall upward trend during the training phase, stabi-
lizing at over 90% towards the end. While there is some 
fluctuation in the Miou values during the validation 
phase, the overall trend remains positive. These fluctua-
tions may be attributed to the relatively small dataset.

Figure  12 shows the visual segmentation results of 
the MSFANet and GCN models on four images using 
ResNet-50 and ResNet-101. In Fig. 12a, it is evident that 
MSFANet performs best on ResNet-50. It accurately 
classifies ponds, red mangroves, and buildings, with 
clear category contours. It also identifies the tidal flats 
accurately, although some less distinct tidal flats remain 
unclassified. However, on ResNet-101, there are noticea-
ble classification errors, such as classifying dried portions 
of ponds as tidal flats. While it generally maintains cor-
rect category contours, its performance is slightly inferior 
to that of ResNet-50.

The GCN model on ResNet-50 exhibits numerous clas-
sification errors. While it performs well in the mangrove 
category, its pond classification is relatively poor, with 
unclear boundaries between the background and ponds. 
On ResNet-101, it similarly encounters many classifi-
cation errors, misclassifying some ponds as rivers and 
recognizing only a small portion of the buildings. Nev-
ertheless, its mangrove classification remains relatively 
accurate, most of them can be correctly identified.

In Fig.  12b, the two models with ResNet-50 as the 
backbone network have made significant errors in pond 
classification. However, these four models exhibit excel-
lent recognition of mangroves and rivers in this image. 
In Fig. 12c, these four models perform well, demonstrat-
ing accurate recognition of tidal flats and rivers, indicat-
ing their strong performance in simpler scenes. It can be 
seen in Fig. 12d that the MSFANet ResNet-50 model has 
a better recognition effect on smaller tidal flats, while 

the performance of the other three models has little 
difference.

In summary, the comparative data from above differ-
ent models indicate that the MSFANet ResNet-50 model 
exhibits the best overall performance. It accurately iden-
tifies mangroves and rivers, achieves good results in 
recognizing buildings and ponds, and performs well in 
identifying smaller targets. The MSFANet ResNet-101 
model is slightly inferior to the ResNet-50 model in iden-
tifying ponds but excels in accurately identifying crucial 
targets like red mangroves and rivers, delivering an over-
all good performance. The two GCN models struggle 
with pond recognition, displaying several classification 
errors, but they do fairly well in identifying mangroves 
and rivers, albeit with an overall lower performance com-
pared to the MSFANet model.

Comparison experiment of ALRFCN module ablation 
for different void rates
To validate the effectiveness of the ALRFCN module 
while ensuring experimental fairness and preserving 
the network structure, three alternative schemes were 
employed to replace the ALRFCN module in this study. 
Scheme one involved using three 5 × 5 convolutions to 
receive the outputs of Layer0, Layer1, and Layer2, replac-
ing both groups (a) and (b) of modules. This was done 
primarily to maintain the integrity of the network struc-
ture and verify the effectiveness of the two sets of ALR-
FCN modules. The second option was to employ two 
sets of three 5 × 5 convolutions to replace groups (a) and 
(b). The main purpose of this was to assess the impact of 
separable convolutions on parameter quantity and the 
advantages of large receptive fields provided by dilated 
convolutions. The ResNet-50 architecture was chosen as 
the backbone network, while other parameters remained 
constant. The experimental results are presented in 
Table 4.

Fig. 11 Loss value and Miou value change graphs for MSFANet ResNet-50 training and verification
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The Miou score of Scheme One was 85%, which was 
one percentage point lower than the ALRFCN module’s 
86%. The parameter count of the ALRFCN module was 
lower than that of scheme one. This result validates that 
the ALRFCN module effectively improves performance. 
In scheme two, with the addition of two sets of modules, 
Miou did not show a significant improvement, and com-
pared to ALRFCN, the parameter quantity of the two 
sets of modules increased by 6 MB. Both schemes exhib-
ited similar trends in the PA (%) indicator as Miou. The 

Fig. 12 Segmentation results of MSFANet and GCN models in different backbone networks

Table 4 Experimental comparison results of ALRFCN module 
ablation

Scheme Backbone 
network

Miou(%) PA(%) Parameter 
quantity

ALRFCN ResNet-50 0.86015 0.96419 129 M

5 × 5 mono-
group

ResNet-50 0.85064 0.95294 130 M

5 × 5 bilgroup ResNet-50 0.85259 0.95680 135 M

GCN monogroup ResNet-50 0.84909 0.95869 130 M
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experimental results confirmed that separable convolu-
tions can reduce parameter count and that dilated convo-
lutions are effective for performance.

The third scheme used the GCN module, but due to the 
large convolutional kernel of the global receptive field, 
this experiment sets the convolution size of the GCN to 
15 × 15. The experimental results show that Miou is close 
to 85%, and the parameter quantity has not significantly 
increased due to the separable convolution. Although the 
receptive field has increased, it is still not as effective as 
the ALRFCN module.

The selection of dilation rates also has an undeniable 
impact on the results. In this study, three different groups 
of dilation rates were selected to verify the optimal com-
bination, and the results are shown in Table 5. Group 1 
selected a smaller void fraction, Group 3 selected a larger 
void fraction, and Group 2 chose a compromise between 
the two extremes. From the experimental data, it can be 
observed that the Miou and PA scores for Group 2 were 
significantly better, with a Miou of 86% and a PA of 96%, 
outperforming the other two sets in terms of these indi-
cators. Therefore, the optimal model in this study also 
happens to be the one that chose the Group 2 of dilation 
rates.

Discussing the computational efficiency of the proposed 
method
In the presented experiment, we evaluated the spending 
time of our method under various image sizes, as shown 
in Table  6. The results demonstrate a clear relationship 
between the image size and the corresponding time. Spe-
cifically, as the image size increases, the spending time 
also exhibits an upward trend. For instance, at the small-
est size of 128 × 128, the method achieves a millisecond 
time of 58.84, while at the largest size of 1024 × 1024, the 
time extends to 2639.95 ms.

Discussing the computational efficiency of our pro-
posed method, we observe that the inference time grows 
with larger image sizes. This indicates a trade-off between 
computational speed and image resolution. While our 

method performs efficiently for smaller image sizes, there 
is an increase in computational cost for larger images. 
It’s essential to note that the method remains effective in 
handling a variety of image sizes, offering flexibility for 
diverse applications. However, for larger datasets, com-
putational resources need to be considered, and optimi-
zation strategies may be explored to enhance efficiency.

Conclusion
This paper focuses on the mangrove forest in the Dong-
zhaigang area of Hainan Province, China, and utilizes 
satellite data from Google Earth to construct a dataset 
for mangrove samples. A multi-Scale fusion attention 
network MSFANet is proposed by the improved GCN 
model. Through training on the dataset, an optimal net-
work model with ResNet-50 as the backbone is obtained. 
When compared to various classic models, MSFANet 
consistently outperforms them in all evaluated met-
rics. Moreover, visual comparisons of the segmentation 
results for the study area clearly demonstrate the signifi-
cant superiority of the MSFANet network model over 
other models.

The main contribution of this paper: one is to propose 
the multi-scale large receptive field network, which can 
preserve spatial information between different scales. 
The large receptive field maximizes the retention of spa-
tial information while using separable convolution to sig-
nificantly reduce computational complexity. Secondly, 
the introduction of the attention fusion module improves 
fusion efficiency and improves fusion effectiveness. Sim-
ple additions or connections with a low channel number 
can introduce more interference information, leading to 
worse segmentation results due to this unnecessary data. 
And the attention fusion module reduces interference 
information. Thirdly, the dual channel design allows for 
the full integration of semantic and spatial information, 
thereby achieving better output results. The experiments 
on the mangrove dataset show that the model designed 
in this paper has a significant improvement in segmen-
tation data compared to other models, whether in Miou, 
PA, F1_ Score or mangrove (CPA) are superior to other 
models.

In summary, MSFANet proves to be an excellent neu-
ral network model suitable for mangrove segmentation. 
However,there is still room for further improvement in 
this research. MSFANet’s performance in identifying 

Table 5 Experimental comparison results of different dilation 
rates

Group Dilation rates 
for group(a) and 
group(b)

Backbone 
network

MIoU(%) PA(%)

Group 1 (6, 3, 1)
(4, 2, 1)

ResNet-50 0.84718 0.95696

Group 2 (12, 6, 3)
(8, 4, 2)

ResNet-50 0.86015 0.96419

Group 3 (18, 9, 5)
(12, 6, 3)

ResNet-50 0.84286 0.95985

Table 6 Spending time under different image sizes

Image size 128 × 128 256 × 256 512 × 512 768 × 768 1024 × 1024

Millisecond 58.84 178.52 634.27 1402.79 2639.95
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boundary regions with complex architectural features is 
relatively poor, possibly due to the insufficient represen-
tation of such samples in the dataset, leading to incom-
plete learning. ResNet-101 is prone to overfitting too 
early, resulting in poor performance. Future work could 
involve augmenting the dataset and balancing class sam-
ples to enhance model accuracy.
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