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Abstract 

The detection of different types of concept drift has wide applications in the fields of cloud computing and security 
information detection. Concept drift detection can indeed assist in promptly identifying instances where model 
performance deteriorates or when there are changes in data distribution. This paper focuses on the problem of con-
cept drift detection in order to conduct frequent pattern mining. To address the limitation of fixed sliding windows 
in adapting to evolving data streams, we propose a variable sliding window frequent pattern mining algorithm, which 
dynamically adjusts the window size to adapt to new concept drifts and detect them in a timely manner. Further-
more, considering the challenge of existing concept drift detection algorithms that struggle to adapt to different 
types of drifting data simultaneously, we introduce an additional dual-layer embedded variable sliding window. This 
approach helps differentiate types of concept drift and incorporates a decay model for drift adaptation. The proposed 
algorithm can effectively detect different types of concept drift in data streams, perform targeted drift adaptation, 
and exhibit efficiency in terms of time complexity and memory consumption. Additionally, the algorithm maintains 
stable performance, avoiding abrupt changes due to window size variations and ensuring overall robustness.

Keywords Data Stream, Frequent Pattern Mining (FPM), Dual-layer Variable Sliding Window, Concept Drift Detection 
(CDD), Cloud Computing

Introduction
Multi-type concept drift (CD) detection is widely applied 
in cloud and security applications [1]. The mining of CD 
in frequent patterns (FPs) with latent risks, allows the 
monitoring of changes in potential-risk patterns and 
related data models in cloud environments [2–4]. It is 
used in cloud computing [5], security information detec-
tion [6–9], blockchain-based [10], healthcare data pre-
diction [11], intelligent data processing in IoT [12–15], 
recommendation systems [16, 17], and fault container 
instance seq finding [18]. CD mining reduces data leak-
age risk due to sudden data mutations, and improves 
privacy, and can be used for the timely identification of 
model performance deterioration or data distribution 
changes so that adjustments and optimizations can be 
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applied. The aim of the present study is to address CD 
in hidden risk patterns and provide decision support 
for future research. Challenges in this field include data 
streams’ high velocity and variability, which cause issues 
with computational resource availability. For example, 
data streams may be stored in a temporal DB in a highly 
trusted and low-latency industrial network, but there is 
a risk of data tampering during transmission52, 53. Con-
cept drift [19] is also a prominent issue in decision-mak-
ing within the e-commerce data stream domain [20]. It 
refers to the phenomenon where the underlying concepts 
or relationships in the data change over time. In e-com-
merce data streams [21], CD can occur due to evolving 
user preferences, market trends, or external factors. To 
mitigate the impact of CD on decision-making, it is cru-
cial to develop mining models that can effectively adapt 
to these changes in e-commerce data streams [22]. These 
models should be able to detect and adjust to shifts in 
data patterns, ensuring that the decision-making process 
remains accurate and relevant over time.

Riverola et al. demonstrated an improvement to a suc-
cessful e-mail filtering model to track spam domain CD 
[23], while Gulla et al. discussed a new approach to detect 
semantic drift using concept signatures [24]. A new 
Bayesian framework [25] in data stream pattern recog-
nition was presented for feature selection. Ruano-Ordás 
et  al. presented a detailed study of CD in the e-mail 
domain considering types of CD and message classes 
(spam and ham) [26]. Ding et  al. studied entropy-based 
time domain feature extraction for online CD detection 
[27]. Rabiu et al. aimed to provide a literature review of 
models to guide researchers and practitioners [20]. Two 
variants of the model [28] have been proposed to mini-
mize negative transfers in high-volume model trans-
fer frameworks. CD-tolerant transfer learning, which 
adapts the target model and source domain knowledge 
to changing environments, has not been well explored. A 
hybrid ensemble approach dealt with this problem when 
target domain data were generated chunk by chunk from 
non-stationary environments [21]. In 2023, Liu et  al. 
introduced two new CD handling methods, namely error 
contribution weighting and gradient descent weight-
ing [22], which are based on the principle of continuous 
adaptive weighting and aim to improve detection and 
handling of CD, adapting to changes in data streams in 
constantly evolving environments. There are also other 
classical active detection algorithms, such as the drift 
detection method [29] and the early drift detection 
method [30].

The above mentioned studies were predominantly 
focused on the detection of CD in data streams. How-
ever, there is indeed a research gap when it comes to 
detecting and identifying multiple types of CD during FP 

mining processes in complex data streams. To address 
the challenges encountered in mining FPs on evolving 
data streams [31–33], we propose the dual-layer variable 
sliding window concept drift detection (DLVSW-CDTD) 
algorithm, which utilizes a dual-layer variable sliding 
window whose size is determined dynamically based 
on the occurrence of multi-type CD. The core idea of 
DLVSW-CDTD is to adjust the window size based on the 
stability of the data stream and the utilization of a dual-
layer sliding window. When the data stream is in a stable 
state without CD, the window size continuously increases 
to capture FPs over longer periods. This is done to fully 
utilize longer periods of data for mining FPs and avoid 
prematurely discarding useful information [34].

CD indicates significant changes in data distribution 
or feature relationships, which may render the previ-
ously mined FPs inaccurate or less useful. To adapt to 
such changes, our algorithm automatically adjusts the 
window size to capture the new FPs that emerge due to 
CD [35]. The VSW-CDD algorithm achieves dynamic 
window adjustment by considering the evolution of the 
data stream and the changes in FPs [36]. This approach 
effectively adapts to changes in the data stream and 
maintains high accuracy and efficiency in the process of 
FP mining [37].

Dynamic changes in data and CD is an ongoing prob-
lem in cloud computing environments. CD is a change 
in the statistical characteristics of data over time, which 
can be caused by various factors such as user behavior, 
system configuration, application updates, etc. [38]. Such 
changes may have a significant impact on data analysis 
and decision making, therefore, detecting and respond-
ing to CD is an important task in data analysis and pro-
cessing [39].

FP mining is a method of finding frequently occur-
ring patterns or correlations in big data, and it has a wide 
range of applications in many fields, such as market anal-
ysis, social network analysis, and anomaly detection [40]. 
However, in the process of FP mining, CD may negatively 
affect the mining results, so it is necessary to detect and 
deal with CD [41].

The double-layer variable sliding window strategy 
is an effective method for detecting CD by consider-
ing both local and global statistical properties [42]. 
However, existing dual-layer variable sliding window 
strategies have some problems in dealing with multi-
ple types of CDs, such as not being able to effectively 
deal with CDs at different levels of granularity, or to 
accurately recognize multiple types of CDs that occur 
simultaneously [43].

Aiming at the above problems, in this paper a multi-
type CD detection method is investigated, which can 
effectively deal with CD in FP mining under a dual-layer 
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variable sliding window strategy [44]. The main contri-
bution of this paper is to propose a new multi-type CD 
detection method, which can consider both local and 
global statistical properties, can detect CD at different 
granularity levels, and can accurately identify multiple 
types of simultaneous CDs [45]. The research results in 
this paper will help to improve the efficiency and accu-
racy of FP mining, which is of great theoretical signifi-
cance and important for solving problems in practical 
applications [46]. For example, in recommendation sys-
tems in cloud environments, changes in user behavior 
can be monitored in real time using the proposed multi-
type CD detection method, so as to adjust the recom-
mendation strategy and improve the accuracy and user 
satisfaction with the recommendation system [47]. In 
addition, the method can also be applied in the fields of 
anomaly detection, system monitoring and decision sup-
port in cloud environments [48].

The structure of the remaining paper is as follows: The 
second section provides an introduction to the relevant 
technical background knowledge. The third section pre-
sents the proposed algorithm, where the limitations and 
issues of fixed sliding window mining for data streams 
are first discussed, and then a new window dynamically 
adjusted based on the concept of data stream size is pro-
posed. Subsequently, we propose the DLVSW-CDTD 
algorithms to effectively detect different types of CD dur-
ing the data stream mining process. In the fourth section, 
extensive experiments are conducted using real and syn-
thetic datasets obtained using the open-source data min-
ing library SPMF [25]. The results confirm the efficiency 
and feasibility of the algorithm. In the fifth part, the main 
work of this paper is summarized, and a brief overview 
and prospect of future research directions is given.

Related work and definitions
Overview of the data stream frequent pattern
In cloud computing environments, FP mining faces a 
series of challenges. First, the volume of the data streams 
is huge, and traditional FP mining methods cannot han-
dle such a large amount of data effectively. Second, the 
data in the stream are dynamically changing, i.e., CD 
occurs, which requires real-time monitoring and updat-
ing of FPs. In addition, to ensure the cost-efficient utiliza-
tion of cloud resources, efficient computation and storage 
management is necessary to meet the requirements of 
high concurrency and high throughput.

To address the above challenges, researchers have 
proposed many effective FP mining methods for data 
streams. These methods mainly include: sliding window-
based methods, tree-based methods, statistics-based 
methods, etc. These methods achieve efficient FP min-
ing through the utilization of distributed computing and 

storage resources. For example, sliding window-based 
approaches detect FPs by sliding a window on the data 
stream and statistically learning the data inside the win-
dow; tree-based approaches discover FPs by construct-
ing and traversing a tree structure; and statistics-based 
approaches discover FPs by building a statistical model 
that describes the distribution and changes in the data 
stream [40, 41]. Table 1 shows the symbol overview of FP.

Generally, a set of continuously-arriving data is defined 
as a data stream, expressed as DS = {T1,T2, · · · ,Ti, · · ·} , 
as shown in Table 2. The data in this example contain 5 
transactions. Ti represents the sample arriving at time i. 
Each datum has a unique identity, denoted as a TID.

In the data stream, the FP P is defined as the number of 
samples containing P , denoted as freq(P) . The support of 
the FPs P is expressed as support(P) = freq(P)/n , where 
n is the number of samples included in the data stream. 
The concept of the FP is defined as follows. Given a data 
stream DS which contains n samples, we define a mini-
mum support threshold θ , whose the value range is (0, 1] . 
If the mode P satisfies Eq. 1, it is called the FP.

Introduction of the window model
Window model
In FP mining, a dual-layer variable sliding window strat-
egy for multi-type CD detection is an effective way to 
deal with rapid changes in data streams. Window mod-
eling is a data processing technique that captures changes 

(1)support(P) = freq(P)/n ≥ θ

Table 1 Symbol overview of frequent pattern

Symbol Meaning

DS Data Stream

Ti Transaction that arrives at time i

TID Data Identification

freq(P) frequent pattern P

support(P) Support degree of the frequent pattern P

θ Minimum support threshold

n Number of data in the data stream

Table 2 Data Stream DS

TID Data

1 {a,b}

2 {a,c,d,e}

3 {b,c,d,f }

4 {a,b,c,d}

5 {a,c,f }
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in data by sliding a window over the data stream. In CD 
detection, window modeling can facilitate the tracking 
of changes in data distribution. In multi-type CD detec-
tion, the window model needs to handle different types of 
data, which increases the complexity of processing. How-
ever, this complexity can be handled efficiently through 
the use of a two-layer variable sliding window strategy.

Cloud computing is a computing model that allows 
users to access shared computing resources over the 
Internet. Cloud computing provides powerful comput-
ing power and storage space to handle large-scale data. 
In multi-type CD detection, cloud computing can pro-
vide the required computing resources and storage space 
to handle large-scale data streams. Cloud processing can 
be facilitated through data stream slicing. In multi-type 
CD detection, the combination of window modeling and 
cloud computing can provide an effective solution. First, 
the window model can capture changes in the data, while 
cloud computing can provide the required computational 
resources and storage space to handle these changes. Sec-
ond, by using a dual-layer variable sliding window strat-
egy, we can handle different types of data more efficiently. 
Finally, the distributed computing resources in the cloud 
can accelerate data processing and improve the efficiency 
of CD detection. The combination of window modeling 
and cloud computing plays an important role in multi-
type CD detection. By integrating these two techniques, 
we can effectively cope with rapid changes in the data 
stream and enhance the efficiency of CD detection.

There are three commonly used window models, 
namely the landmark, the sliding and the damped win-
dow models, with the sliding model being the most 
commonly used. The sliding window model is also 
divided into two types, namely the fixed-width sliding 
window, where the number of samples in the window 
is fixed, and the other is the variable sliding window, 
where the number of data in the window is variable. 
Data processing takes place in different ways, as shown 
in Figs. 1 and 2, respectively; the relevant symbols are 
shown in Table 3.

As shown in Fig. 1(a) and Fig.1(b), a fixed-width sliding 
window can handle the latest data by directly removing 
the expired data. Figure 2(a) shows the state of the fixed 
sliding window when there is no new data input. When 
the latest data Tnew′ enters the window, the 

∣

∣new′ − new
∣

∣ 
bars between Tnew−N+1 and Tnew′−N+1 will be removed 
from the window. The details are shown in Fig.  1(b). In 
general, the length of the window N  is not very large to 
avoid the CD of the data within the window.

Assuming that the size of a given window is N  , as 
shown in Fig. 2(a) and Fig. 2(b), variable sliding window-
based methods handle conceptual changes caused by the 
most recent entry window by expanding and contracting 
the window’s width.

As shown in Fig. 2(a), when the recently entered data 
do not cause a conceptual change, the sliding window 
scales from size N  to N  + new′ − new  to handle the 
latest data. As shown in Fig.  2(b), when the data in the 

Fig. 1 a Handling the transaction Tnew. b Handling the transaction Tnew′

Fig. 2 a Handling transactions without concept drift Tnew′. b Handle transactions when there is a concept drift Tnew′
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window change conceptually, the size of the sliding win-
dow shrinks from N  to N ′.

The fixed sliding window approach involves deter-
mining the window size based on prior or experience. 
This can be done by referring to previous studies or 
considering the characteristics of the dataset. Once the 
window size has been set, it remains constant through-
out the mining process. On the other hand, variable 
sliding window algorithms can adjust the window size 
in different ways. For instance, Hui Chen et al. [42] pro-
posed a time decay model to differentiate patterns in 
recent transactions from historical transactions, ensur-
ing that the most recent information in the data stream 
is given prominence. They utilized the concept of FP 
change to dynamically determine the appropriate win-
dow size [43].

Attenuation model
Usually, data stream changes over time are unpredict-
able. In such cases, it is undesirable to treat all samples as 
equally important. In general, the latest data generated is 
more valuable than historical data. Therefore, the attenu-
ation model is an effective method to deal with this kind 
of time-sensitive data streams. In essence, attenuation 
models involve the association of weights of historical 
data or modes with time, and with the passage of time, 
these weight coefficients change accordingly to empha-
size the importance of recent data.

When setting up the attenuation factors, there are usu-
ally three types of settings. Random decay factors are 
stochastic, and may cause instability of the FPs obtained 
by the mining algorithm. Fixed values are usually based 
on previous related studies, and the quality of the effect 
depends on the knowledge of experts. Dynamically cal-
culated are obtained by combining other parameter 
values in the algorithm design. After the experimental 
verification of some studies, this approach was selected 
for the proposed algorithm. In current mining studies of 
data streams, decay models are commonly used in com-
bination with window models.

Conceptual drift processing method for cloud computing
In data stream mining, the arriving data may change 
over time due to the inherent temporal nature of the data 
stream [45]. This phenomenon is generally known as CD. 
In cloud computing environments, the CD encountered 
in data preprocessing is mainly due to the diversity of 
data sources. To address these challenges, the following 
measures can be applied. In the data cleaning stage, by 
removing duplicate, invalid, or erroneous data, the data 
quality can be improved, which mitigates the impact 
of CD. In the feature selection stage, to counteract the 
impact of CD on features, representative and stable 
features can be selected to reduce CD’s impact on the 
model. In the data labeling stage, diverse labeling meth-
ods and labelers should be used to enhance the accuracy 
and reliability of the data.

Currently, CD is generally classified based on the speed 
of concept change [48]. As shown in Fig.  3(a), a solid 
circle marked with numbers is used to represent each 
paragraph of data, and the numbers represent the chron-
ological order. It can be seen that the transition between 
Concept 1 and Concept 2 is fast, and the old Concept 1 
is soon replaced by Concept 2 with a completely differ-
ent data distribution. This type of drift is referred to as 
mutant CD. On the contrary, as shown in Fig.  3(b), the 
transition between Concept 1 and Concept 2 is slow; the 
former is replaced gradually, and the concepts are more 
or less similar before and after the drift, so this drift is 
referred to as gradual CD.

Among the many methods that deal with CD, the win-
dow-based CD monitoring method is one of the common 
methods. Larger windows are associated with higher per-
formance accuracy, but they may also contain unnoticed 
CD, while smaller windows facilitate better detection of 
CD [19]. For example, Husheng et  al. [49] proposed a 
CD-type identification method based on multi-sliding 
windows. The method consisted of three stages; first, 
the drift position was detected during the first detection 
stage by sliding the base window forward. Then, during 
the growth stage, the growth of the accompanying win-
dow was used to detect the drift length and identify the 
drift categories based on the drift length. Finally, during 
the tracking stage, the drift subcategories are identified 
based on the different tracking flow ratio curves gener-
ated during the window tracking process. Therefore, this 
method is able to effectively identify the type of CD, accu-
rately analyze the key information in the online learning 
process, and improve the efficiency and generalization 
performance of streaming data analysis and mining.

Therefore, most existing studies adopt a "circuitous" 
strategy to detect CD. It involves determining whether 
a data stream has experienced CD by considering the 
"possible cause of CD" and the "possible consequences 

Table 3 Symbol description of the window model

Symbol Meaning

N Window length

N′ Length after the window size change

Tnew The latest data at the current moment of the window

Tnew′ The latest data for the new entry window

Tnew−N+1 End data of the current moment of the window

Tnew′−N+1 End data of the new entry window
∣

∣new′ − new
∣

∣ Number of data between Tnew−N+1 and Tnew′−N+1
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after CD" [50]. For instance, Lu et  al. [51] tackle real-
time data and pre-existing CD, focusing on detecting 
causes through a data-driven approach and compre-
hensively handling CD in terms of time, content and 
manner.

Processing model and algorithm
The proposed DLVSW‑CDTD algorithm
The DLVSW-CDTD algorithm is an algorithm for han-
dling CD in cloud computing environments. In the 
following, we will focus on the algorithm’s relation to 
cloud computing.

In cloud computing environments, updating must 
account for the aging and overfitting of the model. To 
enhance the accuracy and robustness of the model, the 
following measures can be adopted. By utilizing the real-
time data processing capabilities of cloud computing, the 
performance of the model is monitored and evaluated 
in real time. This ensures timely detection of aging or 
overfitting phenomena. In practical applications, occur-
rences of CD require corresponding adaptation of the 
data or modification of mining models depending on the 
CD type. Therefore, the new algorithm proposed in this 
paper is suitable for detecting multiple types of CD.

To address the issue of CD in the process of FP min-
ing, the DLVSW-CDTD algorithm (Dual-layer Variable 
Sliding Window-CD Type Detection), which utilizes a 
dual-layer variable sliding window model to handle CD 
phenomena in data streams and applies it to FP mining. 
The model utilizes two algorithms based on CD detection 
and type detection of the variable sliding window, aiming 
to handle various types of CD problems and ensure that 
FPs are based on the latest trends in the data.

The DLVSW‑CDTD algorithm framework
In this section, the proposed FP mining algorithm is 
introduced. The algorithm model framework is primarily 
divided into five parts, as shown in Fig. 4. After the data 
pre-processed, they first pass through the first module, 
which applies the Variable-Size Window Drift Detection 
algorithm (VSW-DD) to detect CD. Upon detecting CD, 
the second module is used to adapt or modify the min-
ing model accordingly for Multi-type Concept Detection. 
This algorithm is suitable for data mining scenarios with 
multiple CDs.

The DLVSW-CDTD is an algorithmic framework for 
handling CD in cloud computing environments. In the 
following, we will focus on the aspects of the framework 
that are specifically related to cloud computing.

In this algorithm, based on the concept of CD detec-
tion, the window size is initially set manually, and is 
then adjusted to adapt to the data stream according to 
the FP changes, the potential distribution changes of the 
data and the type of CD. Then, different types of CD are 
detected using the length of the embedded dual-layer 
window, and different attenuation coefficients are applied 
to reduce the impact of different types of CD, to dig out 
the latest concepts of the FPs, and to reduce the impact 
of CD on mining. When the data are constantly updated, 
at each instance a new data pane is inserted and the  
presence of mutation or gradient is assessed.

In the first stage of the DLVSW-CDTD framework, 
involving the algorithm initialization. The second stage 
is the application of the VSW-CDD algorithm for con-
cept detection with the variable window size, and 
includes two aspects. The first aspect is the FP set min-
ing using the initialized window, and saving the results 
in a monitoring prefix tree through the insertion of a 

Fig. 3 Common type of concept drift
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new data pane, and update the prefix tree (Step1—
Step4). If there is no change, the window size continues 
to increase, and new data panes are inserted continu-
ously (Step 5).

In the fourth stage (Step6- Step12), according to the 
data stream characteristics of the different CD types, 
the embedded dual-layer window is adapted based 
on the detected effect to analyze the data within the  
window. Finally, in the fifth stage, the latest set of FPs is 
output.

Design of the DLVSW‑CDTD algorithm
In the algorithm design of this section, the associated 
symbolic definitions are shown in Table 4.

Step 1: window size initialization and frequent pattern 
mining
The window is defined through its initial size and other 
parameters such as pane size, minimum change thresh-
old and minimum support threshold. The relevant 
parameters are set according to literature values, and can 
be adjusted according to the experimental results. After 
window initialization, the FP-growth algorithm is used to 
mine the FP set and save the results in a simple compact 
prefix tree (SCP-Tree), as described in the following.

Step 2: build the prefix tree
The SCP-Tree structure adopted in this paper is a sim-
ple and compact tree-like data structure similar to FP-
Tree. The FPs are inserted in the SCP-Tree incrementally 
when each data pane arrives, and the tree is dynamically 
adjusted through branch sorting.

Let p be a non-root node in the SCP Tree. If p is a 
regular node, then it contains 5 fields. The structure is 
shown in Fig. 5, where p.item is the project name; p.count 
records the support count of the item; p.next points to 

Fig. 4 DLVSW-CDTD Algorithm Framework

Table 4 Symbol description

Symbol Meaning

θ(i) The weight of the data in bar i  
in the window

CPS Concept drift checkpoint 
within a short window

ms Minimum support threshold

MTh Frequent pattern change rate 
FChange test minimum threshold

Rt Minimum threshold for the concep-
tual drift test index R

LW Long window

SW Short window

� Log-type membership function 
parameter value

SFti Frequent set of items within a short 
window at the time ti

SF+ti (tj)
The set of new frequent term sets 
at tj within a short window relative 
to ti

SF−ti (tj) Within a short window, the set 
of items infrequent at tj , but the set 
of items frequent at ti

SFChangeti (tj) The change rate of the frequent 
term set at the tj within the short 
window relative to the ti

LFChangeti (tj) The change rate of the frequent 
term set at the tj within the long 
window relative to the ti
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the next node of the same project name (represented by a 
link in the tree; if no relevant branch exists, the link to the 
node from the header table is inserted); p.parent records 
the parent node, and p.children is the header pointer of 
the child node.

If p is a tail node, the structure diagram is shown 
in Fig.  6. The tail node contains two additional fields: 
p.precount records the support count before the check-
point and p.curcount represents the support counts after 
recording the checkpoint. The initial values of both these 
fields are 0. The SCP-Tree also contains a Head_Table 
structure, which records the total support count per item 
in the tree and ranks the counts in descending order. 
Starting with an empty tree, each incoming data pane 
needs to be inserted into the SCP-Tree.

Step 3: insert a new pane and update the prefix tree
After completing the window initialization process, new 
data are added to the window by updating the support 
for all the relevant FPs. For new items included in the 
newly-arriving data, a new node is created and the sup-
port count of the items is added to the header table. To 
truly identify all new sets of frequent items, all individ-
ual items in the existing window need to be monitored 
through a support count update. After inserting the full 
pane, the prefix tree is scanned and updated.

Step 4: concept drift detection
CD detection in the DLVSW-CDTD Algorithm is divided 
into two parts, namely the detection of the process vari-
ables that cause CD, and the other is the detection of the 
change of the mining results caused by the CD.

Step 5: detection of variables based on causing conceptual 
drift
Hypothesis testing is a method to infer the distribu-
tion characteristics of the population data based on the 
characteristics of the distribution of the sample data 
[23]. Its purpose is to judge whether there is a sam-
pling error or essential difference between samples, or 
between a sample and the population. The common 
types of test assumptions include the F-test, the T-test 
and the U-test. In CD detection based on the data dis-
tribution, the distance function is commonly adopted to 
quantify the distribution relationship of the old and new 
data samples [24].

Step 6: detection of mining differences based 
on the occurrence of conceptual drift
In data mining, the underlying distribution of the data 
stream changes due to CD, so that the FP set changes 
accordingly. To better reflect recent changes, old con-
cepts must be replaced immediately. In the problem of 
FP mining, the concept of an FP refers to the set of FPs, 
which is used as the target variable of the model descrip-
tion. Then, the change in FPs determines the difference 
between the two concepts. The concept of FP change is 
defined as follows:

Let Ft1 and Ft2 represent the set of frequent terms at time 
points t1 and t2 , respectively. Thus, F+

t1
(t2) = Ft2 − Ft1 is the 

set of new FPs at t2 relative to t1 , while F−
t1
(t2) = Ft1 − Ft2 is 

the set of infrequent terms at t2 but frequent items at t1 . The 
rate of change of the set of frequent terms at t2 relative to t1 
is defined as shown in Eq. 2.

where 
∣

∣Ft1
∣

∣ , is the number of frequent item sets in the set 
Ft1 , and the rate of change is a value between 0 and 1.

The test defining this rate of change is FChange , and 
the return value �FChangetest  is calculated according to Eq. 3.

According to the defined threshold of this change value, 
if the FChange calculated during the mining exceeds the 
threshold given by the user, the concept is considered to 
have changed.

Step 7: concept drift test index
Definition 3.1: The index of test CD R is defined and 
used to determine whether a data sample in the window 
has CD or not. It consists of two parts of the detection 
results, namely the detection results of data distribution 

(2)FChanget1(t2) =

∣

∣F+
t1
(t2)

∣

∣+
∣

∣F−
t1
(t2)

∣

∣

∣

∣Ft1
∣

∣+
∣

∣F+
t1
(t2)

∣

∣

(3)

�
FChange
test =







0,The change rate is smaller than the given threshold

1,The change rate is bigger than the given threshold

Fig. 5 Schematic diagram of the conventional node structure 
in the SCP Tree

Fig. 6 Schematic representation of the tail node structure in the SCP 
Tree
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φ and the detection results of FP mining FChange. The 
corresponding calculations are shown in Eqs. 4 and 5.

Specifically, φ is obtained according to the statistical 
test results of the Euclidean distance between windows, 
and the coefficient values of three tests are �Ftest , �ttest and 
�
U
test , and are used to distinguish the difference form of 

the distance distribution. When the Euclidean distance 
distribution between two windows passes the F-test and 
the t-test, the value of φ is 0; when the F-test but the 
U-test is passed, the value of φ is 1; when the F-test is 
passed, the value of φ is 2; when the F-test and the U-test 
fail, the value of φ is set to 3.

Step 8: window size adjustment
According to the sliding window algorithm design, a 
new window represents new information in the input 
data stream. Since our ultimate goal is to mine the set of 
frequent items on the data stream, after each new inser-
tion pane, the amount of change FChange in the FP set 
is first determined. To improve the efficiency of the algo-
rithm, we use the two sets F+ and F− to represent new 
FPs and new infrequent patterns and track the changes of 
the associated FP sets at checkpoint CP. The two sets are 
updated after each insertion pane.

As shown in Fig. 7, the process of window size change 
is as follows. Concept changes are detected based on 
the associated patterns of the inspection node (CP) 
and are used to determine whether CD has occurred 
within the window when new data are inserted. The 
position of the inspection node is not fixed and moves 
forward accordingly as concept changes are detected. 
The initial position of the inspection node is marked 
using the TID identifier of the last data in the initial-
ized window. The CD test index R is calculated after 
each pane insertion.

(4)R = �
FChange
test + �

F
test + 2�ttest + 2�Utest

(5)ϕ = �
F
test + 2�ttest + 2�Utest

Step 9: long and short embedded dual‑layer window design 
and FPM
In this section, the window design for two common CD 
types in the data stream, mutant drift and gradient drift, 
is introduced. To address the characteristics of these two 
drift types, a dual-layer window structure is designed. 
The window structure is shown in Fig. 8

A long window is divided near its head to create space 
for a short window. Therefore, each time a data input is 
detected, the short window is given priority for detec-
tion. If no CD is detected in the short window, the data 
in the long window are examined. As shown in Fig. 8, the 
dual window has its head on the right and the tail on the 
left. The head of the long window corresponds to a short 
window, which is responsible for detecting abrupt CD in 
the data stream, while the long window is used to detect 
gradual CD.

The long window size is represented by |LW|, the 
short window size by |SW|, and the relative relation-
ship between them is determined through λ, calculated 
as shown in Eq. 6. λ is a preset value that determines the 
shape of the log membership function used, and remains 
unchanged across the split window regardless of the win-
dow size.

When the data stream begins to enter the win-
dow, after initialization in the dual-layer window, the 
parameter settings include the initial window size, the 
relative relationship of the long embedded window λ, 
the minimum support threshold δ, etc., as shown in 
Table 4. The FP-Growth algorithm is still used to mine 
the embedded long and short windows. The initial 
default window data represents the latest data con-
cepts. Furthermore, in the dual-layer window model 
presented in this section, an attenuation module is 
designed for drift adaptation, which calculates the 
relative weighted support of an item by calculating the 
ratio of the weighted support count to the sum of all 
item counts.

(6)|SW | = (1− �)× |LW |

Fig. 7 Schematic diagram of window size change and check node change
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Step 10: concept drift type detection mechanism
According to the designed dual-layer embedded win-
dow, the input data streams are subjected to inspection 
using long and short windows. Equations  7 and 8 are 
used to calculate the concept change of FPs in the long 
and short windows, in order to determine if CD has 
occurred in the window.

If the FP set of two time nodes t1 and t2 are consid-
ered and SFt1 and SFt2 are used to represent short win-
dows at these time points, then SF+

t1
(t2) = SFt2 − SFt1 is 

the set of new sets of FPs with a short window at t2 rela-
tive to t1 and SF−

t1
(t2) = SFt1 − SFt2 is the set of terms 

where short windows are infrequent at t2 , but frequent 
at t1 . Then, the rate of change in the FP set at the short 
window t2 relative to t1 is SFChanget1(t2) . The calcula-
tion is shown in Eq. 7.

where 
∣

∣SFt1
∣

∣ is the number of items in the set SFt1 , and the 
rate of change is a value between 0 and 1. Similarly, the 
formula for the rate of change LFChanget1(t2) at the long 
window t2 versus t1 is shown in formula 8:

(7)SFChanget1(t2) =

∣

∣SF+
t1
(t2)

∣

∣+
∣

∣SF−
t1
(t2)

∣

∣

∣

∣SFt1
∣

∣+
∣

∣SF+
t1
(t2)

∣

∣

(8)LFChanget1(t2) =

∣

∣LF+
t1
(t2)

∣

∣+
∣

∣LF−
t1
(t2)

∣

∣

∣

∣LFt1
∣

∣+
∣

∣LF+
t1
(t2)

∣

∣

When data enter the window, the changes in FPs in 
the embedded short window are first calculated. If the 
rate of change of the FP set is greater than or equal to 
the given threshold, it is considered that the data in 
the short window have undergone a mutation, thus the 
presence of CD is considered to have occurred in the 
entire window. Similarly, if the rate of change of FPs in 
the long window exceeds the threshold, the data in the 
window are gradually drifting. The determination of CD 
types can be seen in Table 5.

Step 11: concept drift adaptation
Based on the design of the CD detection mechanism, when 
CD is detected in the short window, mutant CD occurs. 
For such drift, the drift data in the window are eliminated, 
the detection node CPS of the short window is moved for-
ward, and a new window ω is formed to continue mining.

Figure 9 shows the process of eliminating the effects of 
old data and forming a new window when mutant CD has 
occurred within the window. Consistent with the previ-
ous design, the data pane is inserted from left to right into 
the current window. Concept changes within a short win-
dow are measured against the detection node CPs, and the 
amount of changes to the FP set SFChange is calculated 
after each insertion pane. As shown in Fig. 9, after one or 
more data panes are inserted into the window, if a con-
cept change is detected in the inspection node of a short 
window, the data information between the current check-
point and the previous check node in the window is given a 
weight value of 0, which will eliminate the impact of mutant 
data. Then, a new window ω is formed and the check-
point is moved to a new node CPS where concept change 
is detected. If no concept changes are detected within the 
short window, the FP changes within the long window.

Fig. 8 Schematic diagram of the embedded dual-layer window

Table 5 Concept drift type determination of data in the window

Data drift type in 
the window

Drift was detected in the 
short windows

Drift was detected 
in the long window

mutant yes deny

Gradient type deny yes

No drift occurred deny deny



Page 11 of 19Chen et al. Journal of Cloud Computing           (2024) 13:40  

When When detecting CD in an embedded sliding 
window, the data within the window is considered as 
gradual CD. Therefore, an appropriate decay function is 
adopted to reduce the impact of drift on mining results, 
and then a new window size is formed to continue min-
ing with the decay settings.

In the long and short embedded dual-layer window 
designed in this section, due to the input characteris-
tics of the data stream, each data arrival to the window 
occurs at different times. Since a membership function 
effectively reflects the degree of membership of each ele-
ment in the set, a logarithmic membership function is 
used to assign weights to each sample in the window. The 
calculation method of the weight is shown in Eq. 9.

(9)θ(i) =

{

ln
(

i×(e−1)
�×|LW |

+ 1
)

, i < �× |LW |

1, i � �× |LW |

where θ(i) indicates the weight of the data in bar i in the 
window (the data at the end of the window is considered 
as the first data); e is the natural constant; λ is a preset 
value, and λ determines the shape of the membership 
function used.

Step 12: weighted FP tree formulation
According to the modifications made to the mining 
model in the drift adaptation part of the algorithm 
in this section, a Weighted Simple Compact Pattern 
Tree (WSCP-Tree) is designed and constructed. It is 
also referred to as the weighted FP tree. A fuzzy mem-
bership function is utilized to detect gradient drift in 
the data, assigning different weights accordingly. The 
weight of the detected mutation drift data is set to 0. 
If the current data do not drift and belong to the lat-
est concept, their weight value is set to 1. The weight 
calculation for data exhibiting a gradient CD follows 
Eq. 9.

The structure design of the node and header pointer 
table for the WSCP-Tree proposed in this section is 
depicted in Figs.  10 and 11, respectively. The corre-
sponding names are listed in Table 6.

As shown in Fig.  10, each node in the weighted FP 
tree consists of four regions, namely, the project name, 
the parent node, the weight value, and the next node 
of the same project. In Fig.  11, the weighted FP tree 
header pointer table structure contains the project 
name, weight, and the first node with the same domain 
value as the project name.

In the pseudo-code for DLVSW-CDTD algorithm, 
in lines 1–3 the window is initialized and the relevant 
parameters are set, and the TID of the last data of the 
initial window is set to the initial check node of the 
embedded dual-layer window. Starting from line 4, the 

Fig. 9 Schematic diagram of detecting node change and window size change

Fig. 10 Schematic diagram of the node construction 
of the weighted frequent pattern tree

Fig. 11 Structure diagram of the head pointer table
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process of detecting CD and adaptation drift is iterated; 
in row 5, new data are inserted in the window; in line 6, 
the corresponding FP set is updated. Lines 7–14 pro-
cess the item set that becomes frequent or infrequent 
after the new pane insertion. CD is detected on line 
15, the window is determined and the decay weight is 
assigned, and then the FP mining results are updated.

Experimental results and analysis
Based on the design of several modules, in this section 
a dual-layer variable window FP mining algorithm is 
proposed for CD type detection, the DLVSW-CDTD 
algorithm. The pseudo-code for the algorithm is shown 
below. All the steps described above are represented 
in this pseudo-code as follows, and some of the steps 
use function calls instead of detailed procedures. The 
pseudo-code for DLVSW-CDTD algorithm.

Introduction of the experimental environment and data 
set
Experimental environment
A random transactional data generator provided in the 
open source data mining library SPMF [25] was used 
to generate a comprehensive transactional data set, as 
follows.

The meaning of letters in the name of the data set is: D: 
number of sequences in the data set; T: average number 
of item sets in each transaction datum; I: the average size 
of the item set of a potential frequent sequence; K: abbre-
viation of the number 1000; for example, Article 10,000 is 
denoted as Article 10 K in this paper. The dataset gener-
ated by this section is T20I6D100K. The main software 
environment is shown in Table 7.

Open source data mining library SPMF
We use a random transactional data generator pro-
vided in an open source data mining library SPMF [25] 

to generate a comprehensive transactional data set. 
The relevant information of the data set is introduced 
as follows. I: the average size of the item set in the 
potential frequent sequence, K: the abbreviation of the 
number 1000, such as the data in Article 10,000, are 
represented by the data in Article 10  K in this paper. 
The generated data set in this section is T20I6D100K.

Performance verification of the DLVSW‑CDTD algorithm
In the first set of experiments, the DLVSW-CDTD 
Algorithm was evaluated for its ability to achieve two 
desired functions: detecting CD in the data stream 
and adjusting the window size after detecting the CD. 
To demonstrate how the DLVSW-CDTD Algorithm 
adjusted the window size following a CD occurrence, a 
dataset with a predefined CD at a specific location was 
used for the experiment. It was chosen to highlight the 
algorithm’s effectiveness in adapting the window size 
in response to detected CD.

Dataset setting
For the frequent and infrequent items in the 
T20I6D200K-X dataset generated using the open 
source data mining library SPMF, the minimum sup-
port was set to 2%. Then, 50% of the frequent and 
infrequent items in the dataset were selected and a 
new set of items was formulated formulate, which was 
inserted at the end of the first dataset to synthesize a 
new data set with a clear CD point.

Related parameter setting and description
As per the DLVSW-CDTD algorithm’s design, the 
first check node (i.e. the data of article 20  K) was 
located after the window initialization. When the 
algorithm detects a change in the concept of the data, 
the checkpoint will move to a new location. Accord-
ing to the dataset T20I6D200K-X’s design, in the sec-
tion 70 K data, there is a CD, so the R-value here must 
be greater than or equal to 3, and it is obvious from 
Fig. 12 that the experimental results were as expected. 
At the 70  K data, the R-value was 3, the algorithm 
considered the first 20  K data from the initial node 
to the checkpoint as drift (i.e. expired) data, removed 

Table 6 Introduction to the weighted frequent pattern tree 
node name

Name Meaning

Item-name The name of the project

Count Record the sum of the weights of the transaction 
data set to which all items belong from the root 
node to the path of that node

Pnode Parent node pointer

Snode Pointer to the next project node with the same 
project name

hlink Pointing to the first node with the same value 
as the Hitem-name domain

Hitem-name Project name of the header pointer table

Table 7 Main software environment and the version

Name Edition

OS Window10

PyCharm 6.8.0

matplotlib 2.2.3

pandas 0.25.3
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them from the window, and adjusted the window size 
to 50 K. In addition, the checkpoint was moved to the 
point where the conceptual change was detected (i.e. 
Article 70 K data). Similarly, after Article 200 K data, 
a conceptual change was detected again, and the win-
dow was re-sized to 130 K, marked in bold in Fig. 12.

Window size change
To verify whether the value of the initial window and 
pane sizes will affect the CD detection effect and the pro-
cess of window size adjustment, different values for the 
initial window and pane sizes were used to perform the 
above experiments without changing the minimum sup-
port and correlation thresholds.

The initial window and pane size were changed simul-
taneously to 10 K and 5 K, respectively, and the experi-
mental effect is shown in Fig.  13. Then, only the initial 
window size was changed to 40  K while the pane size 
remained unchanged to 10  K. The experimental results 
are shown in Fig. 14. Finally, the initial window size was 
set to 20 K, and the pane size was changed to 5 K. The 
experimental effect is shown in Fig. 15.

As shown in Figs. 13, 14 and 15, for the same dataset, 
the size of the initial window and the data pane did not 
affect the CD detection effect. Both conceptual changes 
were detected in the data in Articles 70  K and 200  K, 
and the final window size used by the algorithm was 
the same.

In conclusion, the size of the initial window and pane 
will not affect the CD detection and window size adjust-
ment of the DLVSW-CDTD algorithm; the algorithm will 
adaptively adjust the size of the window with the CD. 
Compared to fixed-size sliding window approaches, the 
set of FP obtains reflects the latest concept in the data.

Threshold and correlation analysis
For the experiments presented in this section, the BMS-
Webview-1 dataset was used. For all experiments in this 

data set, taking into account relevant literature studies, 
the pane size, initial window size, minimum support and 
threshold FChange were set to 5  K, 20  K, 2% and 0.1, 
respectively, and then different change thresholds were 
used to show the effect of this parameter on concept 
change detection and window size.

From Figs.  16, 17, 18 and 20, it can be seen that for 
four different CD change thresholds, the window size 
changes as the input data increase. In Figs.  16 and 17, 
the concept change threshold was set to 2, and it can be 
seen that the data stream was detected at 45  K, 65  K, 
65  K and 85  K, and the concept test values exceeded 
2. The size of the window was adjusted to new values, 
i.e. to 25 K, 20 K and 20 K, respectively. In Fig. 18, the 
CD test threshold was 3, and the CD was detected in 
the seventh pane and the last pane, and the window 
size decreased to 35  K and 30  K, respectively. Finally, 
in Fig.  19, no conceptual change was detected during 
the data mining process with a test-of-concept change 
threshold of 4. This is due to the high setting of the 
concept change threshold relative to the data stream. 
Thus, as shown in Fig. 20, the window size continuously 
increases as the pane inserts.

Since the DLVSW-CDTD algorithm performs two 
functions during CD detection section, namely data dis-
tribution analysis and mining result detection, R con-
sists of two parts, namely the FP change index FChange 
and the test index φ of the data distribution. The value 
of R determines whether CD has occurred. Therefore, 
the correlation between the two parameters and R was 
analyzed.

As can be seen from Fig.  20, compared with the 
FP change index FChange , the value of φ, i.e. the test 
index of the data distribution, affects the R-value 
more, which is also in line with the experimental 
expectation. When there are more input data and FP 
tends to saturate, the change of FChange will become 
smaller.

Fig. 12 Performance verification of the Algorithm (initial pane 20 K, pane size 10 K)
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Dual‑layer window concept drift detection
In this experiment, the proposed dual-layer window 
detection algorithm DLVSW-CDTD is compared to 
other algorithms which can timely detect mutant and 
gradient CD. The data in the BMS-Webview-1 were 
used for the comparison. Because part of the detection 
steps of the DLVSW-CDTD algorithm directly call the 
CD detection part of the variable sliding window, the 
size of the window must change with the detected CD, 
thus directly verifying whether the proposed DLVSW-
CDTD algorithm can detect two types of CD.

As shown in Fig. 21, as the data input size increases, 
the length of the embedded window of the FP change 
rate is also changing. The point beyond the threshold 
is marked in red, and corresponds to the mutant and 

gradient CD. According to the design of the algorithm, 
the corresponding window size must change; the effect 
is shown in Fig. 22.

Execution time
To further analyze the performance of the pro-
posed algorithm, this execution time experiment was 
designed to test the running time of each function of 
the proposed DLVSW-CDTD Algorithm. The data vol-
ume was fixed to 60 K, or 60,000 data samples. The test 
content included the proportion of time spent on differ-
ent types of CD detection and processing of dual-layer 
windows, the time ratio of frequent update modes, and 
the proportion of other operation times. The experi-
mental results are shown in Table 8.

In conclusion, in the overall operation of the DLVSW-
CDTD algorithm, the time consumption is mainly con-
centrated in the update of FP modes. The main purpose 
of the algorithm is to construct the weighted FP tree, 
while the time consumed in data reading, CD detection 
and drift adaptation to the modules is small. These pro-
cessing steps are characterized by an overall fast cal-
culation speed and a high processing efficiency, so the 
time proportion spent on them was less than 10%. In 
addition, the absolute operation time of each module 
was also relatively stable, and it did not produce rela-
tively large fluctuations as the size of the initial window 
changed.

Fig. 13 Performance verification of the DLVSW-CDTD Algorithm (initial pane 10 K, pane size 5 K)

Fig. 14 Performance verification of the DLVSW-CDTD Algorithm 
(initial pane 40 K, pane size 10 K)

Fig. 15 Performance verification of the DLVSW-CDTD Algorithm (initial pane 20 K, pane size 5 K)
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Comparative analysis
The DLVSW-CDTD algorithm deals with the CD 
problem by first identifying the CD in the data stream 
through a multi-type CD detection technique. After 
detecting the CD, the algorithm will use a dual-layer 

variable sliding window strategy to smooth the data 
stream. This strategy can effectively handle the real-
time and volatile nature of the data stream while still 
maintaining the accuracy of CD detection.

In the comparison analysis, the same amount of 
transactional data was used and the same minimum 
support was set to test the different algorithms. The 
DLVSW-CDTD algorithm was compared with the 
variable-moment algorithm with a variable window, 
and the FP-Growth algorithm with a fixed sliding win-
dow size. The initial window size was set to 10 K, while 
the unified step size and the pane size were set to 5 K. 
The experimental results are shown in Figs. 23 and 24. 
With the continuous data input, the running time was 
increased.

Conclusion and future work
Summary of research work
The experimental results demonstrate that compared 
to existing data stream mining algorithms based on 
the window model, the proposed DLVSW-CDTD algo-
rithm detects different types of CD in the data stream 
effectively. It achieves this by embedding a dual-layer 
window that allows for window size adjustment and 
applying varying attenuation weights to the drifting 
data, thereby achieving drift adaptation. Additionally, 
the time proportions of each module in the DLVSW-
CDTD algorithm fluctuate by no more than 0.8%. 
Overall, the DLVSW-CDTD algorithm exhibits certain 
advantages in terms of time complexity and memory 
consumption. Furthermore, it maintains stable perfor-
mance, and is unaffected by the initial window size or 
the need for processing large amounts of data.

Fig. 16 The test of concept index R threshold is 1

Fig. 17 The test of concept index R threshold is 2

Fig. 18 The concept index R threshold is 3
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Fig. 19 The concept test index R threshold is 4

Fig. 20 Correlation analysis of FChange and φ with R

Fig. 21 Frequent pattern changes of nested dual-layer windows
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Future research work
There are several potential research directions to fur-
ther explore in this field. Future studies could focus on 
enhancing the DLVSW-CDTD algorithm through the 
incorporation of more advanced techniques for cloud 
computing and security information detection. Some 
possible directions to consider include:

(1) Cloud Computing: Investigate how the DLVSW-
CDTD algorithm can be optimized for cloud 
computing environments. Techniques such as dis-
tributed computing, parallelization, and resource 
allocation strategies can be explored to improve the 
algorithm’s scalability and performance in handling 
large-scale data streams.

(2) Machine Learning Integration: Machine learning 
algorithms can be integrated within the DLVSW-
CDTD algorithm to enhance its capabilities. 
Advanced machine learning techniques, such as 
deep or reinforcement learning, fuzzy set theory 
[52, 53]  can be adopted to improve the accuracy 
and effectiveness of CD detection and adaptation.
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Fig. 22 Window size variation

Table 8 Running time proportion of each function of the 
algorithm under different initial window sizes

Time ratio 10K 20 K 30 K 40 K 50 K

Reading data 5.7% 6.3% 5.2% 5.7% 5.4%

Update the window 0.3% 0.3% 0.3% 0.1% 0.3%

Short-window concept drift 
detection

0.2% 0.1% 0.1% 0.0% 0.1%

Handling of the mutant concept 
drift

8.9% 8.2% 8.9% 9.3% 8.9%

Update frequent pattern 83.9% 84.3% 84.7% 84.1% 84.5%

Long-window concept drift 
detection

0.1% 0.1% 0.1% 0.0% 0.0%

Handle the gradient concept 
drift

0.9% 0.8% 0.7% 0.8% 0.8%

Fig. 23 Comparison of the execution times for the different 
algorithms

Fig. 24 Comparison of the memory consumption of the algorithm
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