
Chen et al. Journal of Cloud Computing (2024) 13:40
https://doi.org/10.1186/s13677-023-00566-9

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Multi-type concept drift detection
under a dual-layer variable sliding window
in frequent pattern mining with cloud
computing
Jing Chen1,3, Shengyi Yang4, Ting Gao3, Yue Ying2, Tian Li5 and Peng Li2*

Abstract

The detection of different types of concept drift has wide applications in the fields of cloud computing and security
information detection. Concept drift detection can indeed assist in promptly identifying instances where model
performance deteriorates or when there are changes in data distribution. This paper focuses on the problem of con-
cept drift detection in order to conduct frequent pattern mining. To address the limitation of fixed sliding windows
in adapting to evolving data streams, we propose a variable sliding window frequent pattern mining algorithm, which
dynamically adjusts the window size to adapt to new concept drifts and detect them in a timely manner. Further-
more, considering the challenge of existing concept drift detection algorithms that struggle to adapt to different
types of drifting data simultaneously, we introduce an additional dual-layer embedded variable sliding window. This
approach helps differentiate types of concept drift and incorporates a decay model for drift adaptation. The proposed
algorithm can effectively detect different types of concept drift in data streams, perform targeted drift adaptation,
and exhibit efficiency in terms of time complexity and memory consumption. Additionally, the algorithm maintains
stable performance, avoiding abrupt changes due to window size variations and ensuring overall robustness.

Keywords Data Stream, Frequent Pattern Mining (FPM), Dual-layer Variable Sliding Window, Concept Drift Detection
(CDD), Cloud Computing

Introduction
Multi-type concept drift (CD) detection is widely applied
in cloud and security applications [1]. The mining of CD
in frequent patterns (FPs) with latent risks, allows the
monitoring of changes in potential-risk patterns and
related data models in cloud environments [2–4]. It is
used in cloud computing [5], security information detec-
tion [6–9], blockchain-based [10], healthcare data pre-
diction [11], intelligent data processing in IoT [12–15],
recommendation systems [16, 17], and fault container
instance seq finding [18]. CD mining reduces data leak-
age risk due to sudden data mutations, and improves
privacy, and can be used for the timely identification of
model performance deterioration or data distribution
changes so that adjustments and optimizations can be

*Correspondence:
Peng Li
lipeng@njupt.edu.cn
1 School of Internet of Things, Nanjing University of Posts
and Telecommunications, Nanjing 210023, China
2 School of Computer Science, Nanjing University of Posts
and Telecommunications, Nanjing 210023, China
3 Baotou Teachers’ College of Inner Mongolia University of Science
and Technology, Baotou 014030, Inner Mongolia, China
4 School of Physics and Mechatronic Engineering, Guizhou Minzu
University, Guiyang 550025, China
5 School of Computer and Software, Nanjing Vocational University
of Industry Technology, Nanjing 210003, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00566-9&domain=pdf

Page 2 of 19Chen et al. Journal of Cloud Computing (2024) 13:40

applied. The aim of the present study is to address CD
in hidden risk patterns and provide decision support
for future research. Challenges in this field include data
streams’ high velocity and variability, which cause issues
with computational resource availability. For example,
data streams may be stored in a temporal DB in a highly
trusted and low-latency industrial network, but there is
a risk of data tampering during transmission52, 53. Con-
cept drift [19] is also a prominent issue in decision-mak-
ing within the e-commerce data stream domain [20]. It
refers to the phenomenon where the underlying concepts
or relationships in the data change over time. In e-com-
merce data streams [21], CD can occur due to evolving
user preferences, market trends, or external factors. To
mitigate the impact of CD on decision-making, it is cru-
cial to develop mining models that can effectively adapt
to these changes in e-commerce data streams [22]. These
models should be able to detect and adjust to shifts in
data patterns, ensuring that the decision-making process
remains accurate and relevant over time.

Riverola et al. demonstrated an improvement to a suc-
cessful e-mail filtering model to track spam domain CD
[23], while Gulla et al. discussed a new approach to detect
semantic drift using concept signatures [24]. A new
Bayesian framework [25] in data stream pattern recog-
nition was presented for feature selection. Ruano-Ordás
et al. presented a detailed study of CD in the e-mail
domain considering types of CD and message classes
(spam and ham) [26]. Ding et al. studied entropy-based
time domain feature extraction for online CD detection
[27]. Rabiu et al. aimed to provide a literature review of
models to guide researchers and practitioners [20]. Two
variants of the model [28] have been proposed to mini-
mize negative transfers in high-volume model trans-
fer frameworks. CD-tolerant transfer learning, which
adapts the target model and source domain knowledge
to changing environments, has not been well explored. A
hybrid ensemble approach dealt with this problem when
target domain data were generated chunk by chunk from
non-stationary environments [21]. In 2023, Liu et al.
introduced two new CD handling methods, namely error
contribution weighting and gradient descent weight-
ing [22], which are based on the principle of continuous
adaptive weighting and aim to improve detection and
handling of CD, adapting to changes in data streams in
constantly evolving environments. There are also other
classical active detection algorithms, such as the drift
detection method [29] and the early drift detection
method [30].

The above mentioned studies were predominantly
focused on the detection of CD in data streams. How-
ever, there is indeed a research gap when it comes to
detecting and identifying multiple types of CD during FP

mining processes in complex data streams. To address
the challenges encountered in mining FPs on evolving
data streams [31–33], we propose the dual-layer variable
sliding window concept drift detection (DLVSW-CDTD)
algorithm, which utilizes a dual-layer variable sliding
window whose size is determined dynamically based
on the occurrence of multi-type CD. The core idea of
DLVSW-CDTD is to adjust the window size based on the
stability of the data stream and the utilization of a dual-
layer sliding window. When the data stream is in a stable
state without CD, the window size continuously increases
to capture FPs over longer periods. This is done to fully
utilize longer periods of data for mining FPs and avoid
prematurely discarding useful information [34].

CD indicates significant changes in data distribution
or feature relationships, which may render the previ-
ously mined FPs inaccurate or less useful. To adapt to
such changes, our algorithm automatically adjusts the
window size to capture the new FPs that emerge due to
CD [35]. The VSW-CDD algorithm achieves dynamic
window adjustment by considering the evolution of the
data stream and the changes in FPs [36]. This approach
effectively adapts to changes in the data stream and
maintains high accuracy and efficiency in the process of
FP mining [37].

Dynamic changes in data and CD is an ongoing prob-
lem in cloud computing environments. CD is a change
in the statistical characteristics of data over time, which
can be caused by various factors such as user behavior,
system configuration, application updates, etc. [38]. Such
changes may have a significant impact on data analysis
and decision making, therefore, detecting and respond-
ing to CD is an important task in data analysis and pro-
cessing [39].

FP mining is a method of finding frequently occur-
ring patterns or correlations in big data, and it has a wide
range of applications in many fields, such as market anal-
ysis, social network analysis, and anomaly detection [40].
However, in the process of FP mining, CD may negatively
affect the mining results, so it is necessary to detect and
deal with CD [41].

The double-layer variable sliding window strategy
is an effective method for detecting CD by consider-
ing both local and global statistical properties [42].
However, existing dual-layer variable sliding window
strategies have some problems in dealing with multi-
ple types of CDs, such as not being able to effectively
deal with CDs at different levels of granularity, or to
accurately recognize multiple types of CDs that occur
simultaneously [43].

Aiming at the above problems, in this paper a multi-
type CD detection method is investigated, which can
effectively deal with CD in FP mining under a dual-layer

Page 3 of 19Chen et al. Journal of Cloud Computing (2024) 13:40

variable sliding window strategy [44]. The main contri-
bution of this paper is to propose a new multi-type CD
detection method, which can consider both local and
global statistical properties, can detect CD at different
granularity levels, and can accurately identify multiple
types of simultaneous CDs [45]. The research results in
this paper will help to improve the efficiency and accu-
racy of FP mining, which is of great theoretical signifi-
cance and important for solving problems in practical
applications [46]. For example, in recommendation sys-
tems in cloud environments, changes in user behavior
can be monitored in real time using the proposed multi-
type CD detection method, so as to adjust the recom-
mendation strategy and improve the accuracy and user
satisfaction with the recommendation system [47]. In
addition, the method can also be applied in the fields of
anomaly detection, system monitoring and decision sup-
port in cloud environments [48].

The structure of the remaining paper is as follows: The
second section provides an introduction to the relevant
technical background knowledge. The third section pre-
sents the proposed algorithm, where the limitations and
issues of fixed sliding window mining for data streams
are first discussed, and then a new window dynamically
adjusted based on the concept of data stream size is pro-
posed. Subsequently, we propose the DLVSW-CDTD
algorithms to effectively detect different types of CD dur-
ing the data stream mining process. In the fourth section,
extensive experiments are conducted using real and syn-
thetic datasets obtained using the open-source data min-
ing library SPMF [25]. The results confirm the efficiency
and feasibility of the algorithm. In the fifth part, the main
work of this paper is summarized, and a brief overview
and prospect of future research directions is given.

Related work and definitions
Overview of the data stream frequent pattern
In cloud computing environments, FP mining faces a
series of challenges. First, the volume of the data streams
is huge, and traditional FP mining methods cannot han-
dle such a large amount of data effectively. Second, the
data in the stream are dynamically changing, i.e., CD
occurs, which requires real-time monitoring and updat-
ing of FPs. In addition, to ensure the cost-efficient utiliza-
tion of cloud resources, efficient computation and storage
management is necessary to meet the requirements of
high concurrency and high throughput.

To address the above challenges, researchers have
proposed many effective FP mining methods for data
streams. These methods mainly include: sliding window-
based methods, tree-based methods, statistics-based
methods, etc. These methods achieve efficient FP min-
ing through the utilization of distributed computing and

storage resources. For example, sliding window-based
approaches detect FPs by sliding a window on the data
stream and statistically learning the data inside the win-
dow; tree-based approaches discover FPs by construct-
ing and traversing a tree structure; and statistics-based
approaches discover FPs by building a statistical model
that describes the distribution and changes in the data
stream [40, 41]. Table 1 shows the symbol overview of FP.

Generally, a set of continuously-arriving data is defined
as a data stream, expressed as DS = {T1,T2, · · · ,Ti, · · ·} ,
as shown in Table 2. The data in this example contain 5
transactions. Ti represents the sample arriving at time i.
Each datum has a unique identity, denoted as a TID.

In the data stream, the FP P is defined as the number of
samples containing P , denoted as freq(P) . The support of
the FPs P is expressed as support(P) = freq(P)/n , where
n is the number of samples included in the data stream.
The concept of the FP is defined as follows. Given a data
stream DS which contains n samples, we define a mini-
mum support threshold θ , whose the value range is (0, 1] .
If the mode P satisfies Eq. 1, it is called the FP.

Introduction of the window model
Window model
In FP mining, a dual-layer variable sliding window strat-
egy for multi-type CD detection is an effective way to
deal with rapid changes in data streams. Window mod-
eling is a data processing technique that captures changes

(1)support(P) = freq(P)/n ≥ θ

Table 1 Symbol overview of frequent pattern

Symbol Meaning

DS Data Stream

Ti Transaction that arrives at time i

TID Data Identification

freq(P) frequent pattern P

support(P) Support degree of the frequent pattern P

θ Minimum support threshold

n Number of data in the data stream

Table 2 Data Stream DS

TID Data

1 {a,b}

2 {a,c,d,e}

3 {b,c,d,f }

4 {a,b,c,d}

5 {a,c,f }

Page 4 of 19Chen et al. Journal of Cloud Computing (2024) 13:40

in data by sliding a window over the data stream. In CD
detection, window modeling can facilitate the tracking
of changes in data distribution. In multi-type CD detec-
tion, the window model needs to handle different types of
data, which increases the complexity of processing. How-
ever, this complexity can be handled efficiently through
the use of a two-layer variable sliding window strategy.

Cloud computing is a computing model that allows
users to access shared computing resources over the
Internet. Cloud computing provides powerful comput-
ing power and storage space to handle large-scale data.
In multi-type CD detection, cloud computing can pro-
vide the required computing resources and storage space
to handle large-scale data streams. Cloud processing can
be facilitated through data stream slicing. In multi-type
CD detection, the combination of window modeling and
cloud computing can provide an effective solution. First,
the window model can capture changes in the data, while
cloud computing can provide the required computational
resources and storage space to handle these changes. Sec-
ond, by using a dual-layer variable sliding window strat-
egy, we can handle different types of data more efficiently.
Finally, the distributed computing resources in the cloud
can accelerate data processing and improve the efficiency
of CD detection. The combination of window modeling
and cloud computing plays an important role in multi-
type CD detection. By integrating these two techniques,
we can effectively cope with rapid changes in the data
stream and enhance the efficiency of CD detection.

There are three commonly used window models,
namely the landmark, the sliding and the damped win-
dow models, with the sliding model being the most
commonly used. The sliding window model is also
divided into two types, namely the fixed-width sliding
window, where the number of samples in the window
is fixed, and the other is the variable sliding window,
where the number of data in the window is variable.
Data processing takes place in different ways, as shown
in Figs. 1 and 2, respectively; the relevant symbols are
shown in Table 3.

As shown in Fig. 1(a) and Fig.1(b), a fixed-width sliding
window can handle the latest data by directly removing
the expired data. Figure 2(a) shows the state of the fixed
sliding window when there is no new data input. When
the latest data Tnew′ enters the window, the

∣

∣new′ − new
∣

∣
bars between Tnew−N+1 and Tnew′−N+1 will be removed
from the window. The details are shown in Fig. 1(b). In
general, the length of the window N is not very large to
avoid the CD of the data within the window.

Assuming that the size of a given window is N , as
shown in Fig. 2(a) and Fig. 2(b), variable sliding window-
based methods handle conceptual changes caused by the
most recent entry window by expanding and contracting
the window’s width.

As shown in Fig. 2(a), when the recently entered data
do not cause a conceptual change, the sliding window
scales from size N to N + new′ − new to handle the
latest data. As shown in Fig. 2(b), when the data in the

Fig. 1 a Handling the transaction Tnew. b Handling the transaction Tnew′

Fig. 2 a Handling transactions without concept drift Tnew′. b Handle transactions when there is a concept drift Tnew′

Page 5 of 19Chen et al. Journal of Cloud Computing (2024) 13:40

window change conceptually, the size of the sliding win-
dow shrinks from N to N ′.

The fixed sliding window approach involves deter-
mining the window size based on prior or experience.
This can be done by referring to previous studies or
considering the characteristics of the dataset. Once the
window size has been set, it remains constant through-
out the mining process. On the other hand, variable
sliding window algorithms can adjust the window size
in different ways. For instance, Hui Chen et al. [42] pro-
posed a time decay model to differentiate patterns in
recent transactions from historical transactions, ensur-
ing that the most recent information in the data stream
is given prominence. They utilized the concept of FP
change to dynamically determine the appropriate win-
dow size [43].

Attenuation model
Usually, data stream changes over time are unpredict-
able. In such cases, it is undesirable to treat all samples as
equally important. In general, the latest data generated is
more valuable than historical data. Therefore, the attenu-
ation model is an effective method to deal with this kind
of time-sensitive data streams. In essence, attenuation
models involve the association of weights of historical
data or modes with time, and with the passage of time,
these weight coefficients change accordingly to empha-
size the importance of recent data.

When setting up the attenuation factors, there are usu-
ally three types of settings. Random decay factors are
stochastic, and may cause instability of the FPs obtained
by the mining algorithm. Fixed values are usually based
on previous related studies, and the quality of the effect
depends on the knowledge of experts. Dynamically cal-
culated are obtained by combining other parameter
values in the algorithm design. After the experimental
verification of some studies, this approach was selected
for the proposed algorithm. In current mining studies of
data streams, decay models are commonly used in com-
bination with window models.

Conceptual drift processing method for cloud computing
In data stream mining, the arriving data may change
over time due to the inherent temporal nature of the data
stream [45]. This phenomenon is generally known as CD.
In cloud computing environments, the CD encountered
in data preprocessing is mainly due to the diversity of
data sources. To address these challenges, the following
measures can be applied. In the data cleaning stage, by
removing duplicate, invalid, or erroneous data, the data
quality can be improved, which mitigates the impact
of CD. In the feature selection stage, to counteract the
impact of CD on features, representative and stable
features can be selected to reduce CD’s impact on the
model. In the data labeling stage, diverse labeling meth-
ods and labelers should be used to enhance the accuracy
and reliability of the data.

Currently, CD is generally classified based on the speed
of concept change [48]. As shown in Fig. 3(a), a solid
circle marked with numbers is used to represent each
paragraph of data, and the numbers represent the chron-
ological order. It can be seen that the transition between
Concept 1 and Concept 2 is fast, and the old Concept 1
is soon replaced by Concept 2 with a completely differ-
ent data distribution. This type of drift is referred to as
mutant CD. On the contrary, as shown in Fig. 3(b), the
transition between Concept 1 and Concept 2 is slow; the
former is replaced gradually, and the concepts are more
or less similar before and after the drift, so this drift is
referred to as gradual CD.

Among the many methods that deal with CD, the win-
dow-based CD monitoring method is one of the common
methods. Larger windows are associated with higher per-
formance accuracy, but they may also contain unnoticed
CD, while smaller windows facilitate better detection of
CD [19]. For example, Husheng et al. [49] proposed a
CD-type identification method based on multi-sliding
windows. The method consisted of three stages; first,
the drift position was detected during the first detection
stage by sliding the base window forward. Then, during
the growth stage, the growth of the accompanying win-
dow was used to detect the drift length and identify the
drift categories based on the drift length. Finally, during
the tracking stage, the drift subcategories are identified
based on the different tracking flow ratio curves gener-
ated during the window tracking process. Therefore, this
method is able to effectively identify the type of CD, accu-
rately analyze the key information in the online learning
process, and improve the efficiency and generalization
performance of streaming data analysis and mining.

Therefore, most existing studies adopt a "circuitous"
strategy to detect CD. It involves determining whether
a data stream has experienced CD by considering the
"possible cause of CD" and the "possible consequences

Table 3 Symbol description of the window model

Symbol Meaning

N Window length

N′ Length after the window size change

Tnew The latest data at the current moment of the window

Tnew′ The latest data for the new entry window

Tnew−N+1 End data of the current moment of the window

Tnew′−N+1 End data of the new entry window
∣

∣new′ − new
∣

∣ Number of data between Tnew−N+1 and Tnew′−N+1

Page 6 of 19Chen et al. Journal of Cloud Computing (2024) 13:40

after CD" [50]. For instance, Lu et al. [51] tackle real-
time data and pre-existing CD, focusing on detecting
causes through a data-driven approach and compre-
hensively handling CD in terms of time, content and
manner.

Processing model and algorithm
The proposed DLVSW‑CDTD algorithm
The DLVSW-CDTD algorithm is an algorithm for han-
dling CD in cloud computing environments. In the
following, we will focus on the algorithm’s relation to
cloud computing.

In cloud computing environments, updating must
account for the aging and overfitting of the model. To
enhance the accuracy and robustness of the model, the
following measures can be adopted. By utilizing the real-
time data processing capabilities of cloud computing, the
performance of the model is monitored and evaluated
in real time. This ensures timely detection of aging or
overfitting phenomena. In practical applications, occur-
rences of CD require corresponding adaptation of the
data or modification of mining models depending on the
CD type. Therefore, the new algorithm proposed in this
paper is suitable for detecting multiple types of CD.

To address the issue of CD in the process of FP min-
ing, the DLVSW-CDTD algorithm (Dual-layer Variable
Sliding Window-CD Type Detection), which utilizes a
dual-layer variable sliding window model to handle CD
phenomena in data streams and applies it to FP mining.
The model utilizes two algorithms based on CD detection
and type detection of the variable sliding window, aiming
to handle various types of CD problems and ensure that
FPs are based on the latest trends in the data.

The DLVSW‑CDTD algorithm framework
In this section, the proposed FP mining algorithm is
introduced. The algorithm model framework is primarily
divided into five parts, as shown in Fig. 4. After the data
pre-processed, they first pass through the first module,
which applies the Variable-Size Window Drift Detection
algorithm (VSW-DD) to detect CD. Upon detecting CD,
the second module is used to adapt or modify the min-
ing model accordingly for Multi-type Concept Detection.
This algorithm is suitable for data mining scenarios with
multiple CDs.

The DLVSW-CDTD is an algorithmic framework for
handling CD in cloud computing environments. In the
following, we will focus on the aspects of the framework
that are specifically related to cloud computing.

In this algorithm, based on the concept of CD detec-
tion, the window size is initially set manually, and is
then adjusted to adapt to the data stream according to
the FP changes, the potential distribution changes of the
data and the type of CD. Then, different types of CD are
detected using the length of the embedded dual-layer
window, and different attenuation coefficients are applied
to reduce the impact of different types of CD, to dig out
the latest concepts of the FPs, and to reduce the impact
of CD on mining. When the data are constantly updated,
at each instance a new data pane is inserted and the
presence of mutation or gradient is assessed.

In the first stage of the DLVSW-CDTD framework,
involving the algorithm initialization. The second stage
is the application of the VSW-CDD algorithm for con-
cept detection with the variable window size, and
includes two aspects. The first aspect is the FP set min-
ing using the initialized window, and saving the results
in a monitoring prefix tree through the insertion of a

Fig. 3 Common type of concept drift

Page 7 of 19Chen et al. Journal of Cloud Computing (2024) 13:40

new data pane, and update the prefix tree (Step1—
Step4). If there is no change, the window size continues
to increase, and new data panes are inserted continu-
ously (Step 5).

In the fourth stage (Step6- Step12), according to the
data stream characteristics of the different CD types,
the embedded dual-layer window is adapted based
on the detected effect to analyze the data within the
window. Finally, in the fifth stage, the latest set of FPs is
output.

Design of the DLVSW‑CDTD algorithm
In the algorithm design of this section, the associated
symbolic definitions are shown in Table 4.

Step 1: window size initialization and frequent pattern
mining
The window is defined through its initial size and other
parameters such as pane size, minimum change thresh-
old and minimum support threshold. The relevant
parameters are set according to literature values, and can
be adjusted according to the experimental results. After
window initialization, the FP-growth algorithm is used to
mine the FP set and save the results in a simple compact
prefix tree (SCP-Tree), as described in the following.

Step 2: build the prefix tree
The SCP-Tree structure adopted in this paper is a sim-
ple and compact tree-like data structure similar to FP-
Tree. The FPs are inserted in the SCP-Tree incrementally
when each data pane arrives, and the tree is dynamically
adjusted through branch sorting.

Let p be a non-root node in the SCP Tree. If p is a
regular node, then it contains 5 fields. The structure is
shown in Fig. 5, where p.item is the project name; p.count
records the support count of the item; p.next points to

Fig. 4 DLVSW-CDTD Algorithm Framework

Table 4 Symbol description

Symbol Meaning

θ(i) The weight of the data in bar i
in the window

CPS Concept drift checkpoint
within a short window

ms Minimum support threshold

MTh Frequent pattern change rate
FChange test minimum threshold

Rt Minimum threshold for the concep-
tual drift test index R

LW Long window

SW Short window

� Log-type membership function
parameter value

SFti Frequent set of items within a short
window at the time ti

SF+ti (tj)
The set of new frequent term sets
at tj within a short window relative
to ti

SF−ti (tj) Within a short window, the set
of items infrequent at tj , but the set
of items frequent at ti

SFChangeti (tj) The change rate of the frequent
term set at the tj within the short
window relative to the ti

LFChangeti (tj) The change rate of the frequent
term set at the tj within the long
window relative to the ti

Page 8 of 19Chen et al. Journal of Cloud Computing (2024) 13:40

the next node of the same project name (represented by a
link in the tree; if no relevant branch exists, the link to the
node from the header table is inserted); p.parent records
the parent node, and p.children is the header pointer of
the child node.

If p is a tail node, the structure diagram is shown
in Fig. 6. The tail node contains two additional fields:
p.precount records the support count before the check-
point and p.curcount represents the support counts after
recording the checkpoint. The initial values of both these
fields are 0. The SCP-Tree also contains a Head_Table
structure, which records the total support count per item
in the tree and ranks the counts in descending order.
Starting with an empty tree, each incoming data pane
needs to be inserted into the SCP-Tree.

Step 3: insert a new pane and update the prefix tree
After completing the window initialization process, new
data are added to the window by updating the support
for all the relevant FPs. For new items included in the
newly-arriving data, a new node is created and the sup-
port count of the items is added to the header table. To
truly identify all new sets of frequent items, all individ-
ual items in the existing window need to be monitored
through a support count update. After inserting the full
pane, the prefix tree is scanned and updated.

Step 4: concept drift detection
CD detection in the DLVSW-CDTD Algorithm is divided
into two parts, namely the detection of the process vari-
ables that cause CD, and the other is the detection of the
change of the mining results caused by the CD.

Step 5: detection of variables based on causing conceptual
drift
Hypothesis testing is a method to infer the distribu-
tion characteristics of the population data based on the
characteristics of the distribution of the sample data
[23]. Its purpose is to judge whether there is a sam-
pling error or essential difference between samples, or
between a sample and the population. The common
types of test assumptions include the F-test, the T-test
and the U-test. In CD detection based on the data dis-
tribution, the distance function is commonly adopted to
quantify the distribution relationship of the old and new
data samples [24].

Step 6: detection of mining differences based
on the occurrence of conceptual drift
In data mining, the underlying distribution of the data
stream changes due to CD, so that the FP set changes
accordingly. To better reflect recent changes, old con-
cepts must be replaced immediately. In the problem of
FP mining, the concept of an FP refers to the set of FPs,
which is used as the target variable of the model descrip-
tion. Then, the change in FPs determines the difference
between the two concepts. The concept of FP change is
defined as follows:

Let Ft1 and Ft2 represent the set of frequent terms at time
points t1 and t2 , respectively. Thus, F+

t1
(t2) = Ft2 − Ft1 is the

set of new FPs at t2 relative to t1 , while F−
t1
(t2) = Ft1 − Ft2 is

the set of infrequent terms at t2 but frequent items at t1 . The
rate of change of the set of frequent terms at t2 relative to t1
is defined as shown in Eq. 2.

where
∣

∣Ft1
∣

∣ , is the number of frequent item sets in the set
Ft1 , and the rate of change is a value between 0 and 1.

The test defining this rate of change is FChange , and
the return value �FChangetest is calculated according to Eq. 3.

According to the defined threshold of this change value,
if the FChange calculated during the mining exceeds the
threshold given by the user, the concept is considered to
have changed.

Step 7: concept drift test index
Definition 3.1: The index of test CD R is defined and
used to determine whether a data sample in the window
has CD or not. It consists of two parts of the detection
results, namely the detection results of data distribution

(2)FChanget1(t2) =

∣

∣F+
t1
(t2)

∣

∣+
∣

∣F−
t1
(t2)

∣

∣

∣

∣Ft1
∣

∣+
∣

∣F+
t1
(t2)

∣

∣

(3)

�
FChange
test =

0,The change rate is smaller than the given threshold

1,The change rate is bigger than the given threshold

Fig. 5 Schematic diagram of the conventional node structure
in the SCP Tree

Fig. 6 Schematic representation of the tail node structure in the SCP
Tree

Page 9 of 19Chen et al. Journal of Cloud Computing (2024) 13:40

φ and the detection results of FP mining FChange. The
corresponding calculations are shown in Eqs. 4 and 5.

Specifically, φ is obtained according to the statistical
test results of the Euclidean distance between windows,
and the coefficient values of three tests are �Ftest , �ttest and
�
U
test , and are used to distinguish the difference form of

the distance distribution. When the Euclidean distance
distribution between two windows passes the F-test and
the t-test, the value of φ is 0; when the F-test but the
U-test is passed, the value of φ is 1; when the F-test is
passed, the value of φ is 2; when the F-test and the U-test
fail, the value of φ is set to 3.

Step 8: window size adjustment
According to the sliding window algorithm design, a
new window represents new information in the input
data stream. Since our ultimate goal is to mine the set of
frequent items on the data stream, after each new inser-
tion pane, the amount of change FChange in the FP set
is first determined. To improve the efficiency of the algo-
rithm, we use the two sets F+ and F− to represent new
FPs and new infrequent patterns and track the changes of
the associated FP sets at checkpoint CP. The two sets are
updated after each insertion pane.

As shown in Fig. 7, the process of window size change
is as follows. Concept changes are detected based on
the associated patterns of the inspection node (CP)
and are used to determine whether CD has occurred
within the window when new data are inserted. The
position of the inspection node is not fixed and moves
forward accordingly as concept changes are detected.
The initial position of the inspection node is marked
using the TID identifier of the last data in the initial-
ized window. The CD test index R is calculated after
each pane insertion.

(4)R = �
FChange
test + �

F
test + 2�ttest + 2�Utest

(5)ϕ = �
F
test + 2�ttest + 2�Utest

Step 9: long and short embedded dual‑layer window design
and FPM
In this section, the window design for two common CD
types in the data stream, mutant drift and gradient drift,
is introduced. To address the characteristics of these two
drift types, a dual-layer window structure is designed.
The window structure is shown in Fig. 8

A long window is divided near its head to create space
for a short window. Therefore, each time a data input is
detected, the short window is given priority for detec-
tion. If no CD is detected in the short window, the data
in the long window are examined. As shown in Fig. 8, the
dual window has its head on the right and the tail on the
left. The head of the long window corresponds to a short
window, which is responsible for detecting abrupt CD in
the data stream, while the long window is used to detect
gradual CD.

The long window size is represented by |LW|, the
short window size by |SW|, and the relative relation-
ship between them is determined through λ, calculated
as shown in Eq. 6. λ is a preset value that determines the
shape of the log membership function used, and remains
unchanged across the split window regardless of the win-
dow size.

When the data stream begins to enter the win-
dow, after initialization in the dual-layer window, the
parameter settings include the initial window size, the
relative relationship of the long embedded window λ,
the minimum support threshold δ, etc., as shown in
Table 4. The FP-Growth algorithm is still used to mine
the embedded long and short windows. The initial
default window data represents the latest data con-
cepts. Furthermore, in the dual-layer window model
presented in this section, an attenuation module is
designed for drift adaptation, which calculates the
relative weighted support of an item by calculating the
ratio of the weighted support count to the sum of all
item counts.

(6)|SW | = (1− �)× |LW |

Fig. 7 Schematic diagram of window size change and check node change

Page 10 of 19Chen et al. Journal of Cloud Computing (2024) 13:40

Step 10: concept drift type detection mechanism
According to the designed dual-layer embedded win-
dow, the input data streams are subjected to inspection
using long and short windows. Equations 7 and 8 are
used to calculate the concept change of FPs in the long
and short windows, in order to determine if CD has
occurred in the window.

If the FP set of two time nodes t1 and t2 are consid-
ered and SFt1 and SFt2 are used to represent short win-
dows at these time points, then SF+

t1
(t2) = SFt2 − SFt1 is

the set of new sets of FPs with a short window at t2 rela-
tive to t1 and SF−

t1
(t2) = SFt1 − SFt2 is the set of terms

where short windows are infrequent at t2 , but frequent
at t1 . Then, the rate of change in the FP set at the short
window t2 relative to t1 is SFChanget1(t2) . The calcula-
tion is shown in Eq. 7.

where
∣

∣SFt1
∣

∣ is the number of items in the set SFt1 , and the
rate of change is a value between 0 and 1. Similarly, the
formula for the rate of change LFChanget1(t2) at the long
window t2 versus t1 is shown in formula 8:

(7)SFChanget1(t2) =

∣

∣SF+
t1
(t2)

∣

∣+
∣

∣SF−
t1
(t2)

∣

∣

∣

∣SFt1
∣

∣+
∣

∣SF+
t1
(t2)

∣

∣

(8)LFChanget1(t2) =

∣

∣LF+
t1
(t2)

∣

∣+
∣

∣LF−
t1
(t2)

∣

∣

∣

∣LFt1
∣

∣+
∣

∣LF+
t1
(t2)

∣

∣

When data enter the window, the changes in FPs in
the embedded short window are first calculated. If the
rate of change of the FP set is greater than or equal to
the given threshold, it is considered that the data in
the short window have undergone a mutation, thus the
presence of CD is considered to have occurred in the
entire window. Similarly, if the rate of change of FPs in
the long window exceeds the threshold, the data in the
window are gradually drifting. The determination of CD
types can be seen in Table 5.

Step 11: concept drift adaptation
Based on the design of the CD detection mechanism, when
CD is detected in the short window, mutant CD occurs.
For such drift, the drift data in the window are eliminated,
the detection node CPS of the short window is moved for-
ward, and a new window ω is formed to continue mining.

Figure 9 shows the process of eliminating the effects of
old data and forming a new window when mutant CD has
occurred within the window. Consistent with the previ-
ous design, the data pane is inserted from left to right into
the current window. Concept changes within a short win-
dow are measured against the detection node CPs, and the
amount of changes to the FP set SFChange is calculated
after each insertion pane. As shown in Fig. 9, after one or
more data panes are inserted into the window, if a con-
cept change is detected in the inspection node of a short
window, the data information between the current check-
point and the previous check node in the window is given a
weight value of 0, which will eliminate the impact of mutant
data. Then, a new window ω is formed and the check-
point is moved to a new node CPS where concept change
is detected. If no concept changes are detected within the
short window, the FP changes within the long window.

Fig. 8 Schematic diagram of the embedded dual-layer window

Table 5 Concept drift type determination of data in the window

Data drift type in
the window

Drift was detected in the
short windows

Drift was detected
in the long window

mutant yes deny

Gradient type deny yes

No drift occurred deny deny

Page 11 of 19Chen et al. Journal of Cloud Computing (2024) 13:40

When When detecting CD in an embedded sliding
window, the data within the window is considered as
gradual CD. Therefore, an appropriate decay function is
adopted to reduce the impact of drift on mining results,
and then a new window size is formed to continue min-
ing with the decay settings.

In the long and short embedded dual-layer window
designed in this section, due to the input characteris-
tics of the data stream, each data arrival to the window
occurs at different times. Since a membership function
effectively reflects the degree of membership of each ele-
ment in the set, a logarithmic membership function is
used to assign weights to each sample in the window. The
calculation method of the weight is shown in Eq. 9.

(9)θ(i) =

{

ln
(

i×(e−1)
�×|LW |

+ 1
)

, i < �× |LW |

1, i � �× |LW |

where θ(i) indicates the weight of the data in bar i in the
window (the data at the end of the window is considered
as the first data); e is the natural constant; λ is a preset
value, and λ determines the shape of the membership
function used.

Step 12: weighted FP tree formulation
According to the modifications made to the mining
model in the drift adaptation part of the algorithm
in this section, a Weighted Simple Compact Pattern
Tree (WSCP-Tree) is designed and constructed. It is
also referred to as the weighted FP tree. A fuzzy mem-
bership function is utilized to detect gradient drift in
the data, assigning different weights accordingly. The
weight of the detected mutation drift data is set to 0.
If the current data do not drift and belong to the lat-
est concept, their weight value is set to 1. The weight
calculation for data exhibiting a gradient CD follows
Eq. 9.

The structure design of the node and header pointer
table for the WSCP-Tree proposed in this section is
depicted in Figs. 10 and 11, respectively. The corre-
sponding names are listed in Table 6.

As shown in Fig. 10, each node in the weighted FP
tree consists of four regions, namely, the project name,
the parent node, the weight value, and the next node
of the same project. In Fig. 11, the weighted FP tree
header pointer table structure contains the project
name, weight, and the first node with the same domain
value as the project name.

In the pseudo-code for DLVSW-CDTD algorithm,
in lines 1–3 the window is initialized and the relevant
parameters are set, and the TID of the last data of the
initial window is set to the initial check node of the
embedded dual-layer window. Starting from line 4, the

Fig. 9 Schematic diagram of detecting node change and window size change

Fig. 10 Schematic diagram of the node construction
of the weighted frequent pattern tree

Fig. 11 Structure diagram of the head pointer table

Page 12 of 19Chen et al. Journal of Cloud Computing (2024) 13:40

process of detecting CD and adaptation drift is iterated;
in row 5, new data are inserted in the window; in line 6,
the corresponding FP set is updated. Lines 7–14 pro-
cess the item set that becomes frequent or infrequent
after the new pane insertion. CD is detected on line
15, the window is determined and the decay weight is
assigned, and then the FP mining results are updated.

Experimental results and analysis
Based on the design of several modules, in this section
a dual-layer variable window FP mining algorithm is
proposed for CD type detection, the DLVSW-CDTD
algorithm. The pseudo-code for the algorithm is shown
below. All the steps described above are represented
in this pseudo-code as follows, and some of the steps
use function calls instead of detailed procedures. The
pseudo-code for DLVSW-CDTD algorithm.

Introduction of the experimental environment and data
set
Experimental environment
A random transactional data generator provided in the
open source data mining library SPMF [25] was used
to generate a comprehensive transactional data set, as
follows.

The meaning of letters in the name of the data set is: D:
number of sequences in the data set; T: average number
of item sets in each transaction datum; I: the average size
of the item set of a potential frequent sequence; K: abbre-
viation of the number 1000; for example, Article 10,000 is
denoted as Article 10 K in this paper. The dataset gener-
ated by this section is T20I6D100K. The main software
environment is shown in Table 7.

Open source data mining library SPMF
We use a random transactional data generator pro-
vided in an open source data mining library SPMF [25]

to generate a comprehensive transactional data set.
The relevant information of the data set is introduced
as follows. I: the average size of the item set in the
potential frequent sequence, K: the abbreviation of the
number 1000, such as the data in Article 10,000, are
represented by the data in Article 10 K in this paper.
The generated data set in this section is T20I6D100K.

Performance verification of the DLVSW‑CDTD algorithm
In the first set of experiments, the DLVSW-CDTD
Algorithm was evaluated for its ability to achieve two
desired functions: detecting CD in the data stream
and adjusting the window size after detecting the CD.
To demonstrate how the DLVSW-CDTD Algorithm
adjusted the window size following a CD occurrence, a
dataset with a predefined CD at a specific location was
used for the experiment. It was chosen to highlight the
algorithm’s effectiveness in adapting the window size
in response to detected CD.

Dataset setting
For the frequent and infrequent items in the
T20I6D200K-X dataset generated using the open
source data mining library SPMF, the minimum sup-
port was set to 2%. Then, 50% of the frequent and
infrequent items in the dataset were selected and a
new set of items was formulated formulate, which was
inserted at the end of the first dataset to synthesize a
new data set with a clear CD point.

Related parameter setting and description
As per the DLVSW-CDTD algorithm’s design, the
first check node (i.e. the data of article 20 K) was
located after the window initialization. When the
algorithm detects a change in the concept of the data,
the checkpoint will move to a new location. Accord-
ing to the dataset T20I6D200K-X’s design, in the sec-
tion 70 K data, there is a CD, so the R-value here must
be greater than or equal to 3, and it is obvious from
Fig. 12 that the experimental results were as expected.
At the 70 K data, the R-value was 3, the algorithm
considered the first 20 K data from the initial node
to the checkpoint as drift (i.e. expired) data, removed

Table 6 Introduction to the weighted frequent pattern tree
node name

Name Meaning

Item-name The name of the project

Count Record the sum of the weights of the transaction
data set to which all items belong from the root
node to the path of that node

Pnode Parent node pointer

Snode Pointer to the next project node with the same
project name

hlink Pointing to the first node with the same value
as the Hitem-name domain

Hitem-name Project name of the header pointer table

Table 7 Main software environment and the version

Name Edition

OS Window10

PyCharm 6.8.0

matplotlib 2.2.3

pandas 0.25.3

Page 13 of 19Chen et al. Journal of Cloud Computing (2024) 13:40

them from the window, and adjusted the window size
to 50 K. In addition, the checkpoint was moved to the
point where the conceptual change was detected (i.e.
Article 70 K data). Similarly, after Article 200 K data,
a conceptual change was detected again, and the win-
dow was re-sized to 130 K, marked in bold in Fig. 12.

Window size change
To verify whether the value of the initial window and
pane sizes will affect the CD detection effect and the pro-
cess of window size adjustment, different values for the
initial window and pane sizes were used to perform the
above experiments without changing the minimum sup-
port and correlation thresholds.

The initial window and pane size were changed simul-
taneously to 10 K and 5 K, respectively, and the experi-
mental effect is shown in Fig. 13. Then, only the initial
window size was changed to 40 K while the pane size
remained unchanged to 10 K. The experimental results
are shown in Fig. 14. Finally, the initial window size was
set to 20 K, and the pane size was changed to 5 K. The
experimental effect is shown in Fig. 15.

As shown in Figs. 13, 14 and 15, for the same dataset,
the size of the initial window and the data pane did not
affect the CD detection effect. Both conceptual changes
were detected in the data in Articles 70 K and 200 K,
and the final window size used by the algorithm was
the same.

In conclusion, the size of the initial window and pane
will not affect the CD detection and window size adjust-
ment of the DLVSW-CDTD algorithm; the algorithm will
adaptively adjust the size of the window with the CD.
Compared to fixed-size sliding window approaches, the
set of FP obtains reflects the latest concept in the data.

Threshold and correlation analysis
For the experiments presented in this section, the BMS-
Webview-1 dataset was used. For all experiments in this

data set, taking into account relevant literature studies,
the pane size, initial window size, minimum support and
threshold FChange were set to 5 K, 20 K, 2% and 0.1,
respectively, and then different change thresholds were
used to show the effect of this parameter on concept
change detection and window size.

From Figs. 16, 17, 18 and 20, it can be seen that for
four different CD change thresholds, the window size
changes as the input data increase. In Figs. 16 and 17,
the concept change threshold was set to 2, and it can be
seen that the data stream was detected at 45 K, 65 K,
65 K and 85 K, and the concept test values exceeded
2. The size of the window was adjusted to new values,
i.e. to 25 K, 20 K and 20 K, respectively. In Fig. 18, the
CD test threshold was 3, and the CD was detected in
the seventh pane and the last pane, and the window
size decreased to 35 K and 30 K, respectively. Finally,
in Fig. 19, no conceptual change was detected during
the data mining process with a test-of-concept change
threshold of 4. This is due to the high setting of the
concept change threshold relative to the data stream.
Thus, as shown in Fig. 20, the window size continuously
increases as the pane inserts.

Since the DLVSW-CDTD algorithm performs two
functions during CD detection section, namely data dis-
tribution analysis and mining result detection, R con-
sists of two parts, namely the FP change index FChange
and the test index φ of the data distribution. The value
of R determines whether CD has occurred. Therefore,
the correlation between the two parameters and R was
analyzed.

As can be seen from Fig. 20, compared with the
FP change index FChange , the value of φ, i.e. the test
index of the data distribution, affects the R-value
more, which is also in line with the experimental
expectation. When there are more input data and FP
tends to saturate, the change of FChange will become
smaller.

Fig. 12 Performance verification of the Algorithm (initial pane 20 K, pane size 10 K)

Page 14 of 19Chen et al. Journal of Cloud Computing (2024) 13:40

Dual‑layer window concept drift detection
In this experiment, the proposed dual-layer window
detection algorithm DLVSW-CDTD is compared to
other algorithms which can timely detect mutant and
gradient CD. The data in the BMS-Webview-1 were
used for the comparison. Because part of the detection
steps of the DLVSW-CDTD algorithm directly call the
CD detection part of the variable sliding window, the
size of the window must change with the detected CD,
thus directly verifying whether the proposed DLVSW-
CDTD algorithm can detect two types of CD.

As shown in Fig. 21, as the data input size increases,
the length of the embedded window of the FP change
rate is also changing. The point beyond the threshold
is marked in red, and corresponds to the mutant and

gradient CD. According to the design of the algorithm,
the corresponding window size must change; the effect
is shown in Fig. 22.

Execution time
To further analyze the performance of the pro-
posed algorithm, this execution time experiment was
designed to test the running time of each function of
the proposed DLVSW-CDTD Algorithm. The data vol-
ume was fixed to 60 K, or 60,000 data samples. The test
content included the proportion of time spent on differ-
ent types of CD detection and processing of dual-layer
windows, the time ratio of frequent update modes, and
the proportion of other operation times. The experi-
mental results are shown in Table 8.

In conclusion, in the overall operation of the DLVSW-
CDTD algorithm, the time consumption is mainly con-
centrated in the update of FP modes. The main purpose
of the algorithm is to construct the weighted FP tree,
while the time consumed in data reading, CD detection
and drift adaptation to the modules is small. These pro-
cessing steps are characterized by an overall fast cal-
culation speed and a high processing efficiency, so the
time proportion spent on them was less than 10%. In
addition, the absolute operation time of each module
was also relatively stable, and it did not produce rela-
tively large fluctuations as the size of the initial window
changed.

Fig. 13 Performance verification of the DLVSW-CDTD Algorithm (initial pane 10 K, pane size 5 K)

Fig. 14 Performance verification of the DLVSW-CDTD Algorithm
(initial pane 40 K, pane size 10 K)

Fig. 15 Performance verification of the DLVSW-CDTD Algorithm (initial pane 20 K, pane size 5 K)

Page 15 of 19Chen et al. Journal of Cloud Computing (2024) 13:40

Comparative analysis
The DLVSW-CDTD algorithm deals with the CD
problem by first identifying the CD in the data stream
through a multi-type CD detection technique. After
detecting the CD, the algorithm will use a dual-layer

variable sliding window strategy to smooth the data
stream. This strategy can effectively handle the real-
time and volatile nature of the data stream while still
maintaining the accuracy of CD detection.

In the comparison analysis, the same amount of
transactional data was used and the same minimum
support was set to test the different algorithms. The
DLVSW-CDTD algorithm was compared with the
variable-moment algorithm with a variable window,
and the FP-Growth algorithm with a fixed sliding win-
dow size. The initial window size was set to 10 K, while
the unified step size and the pane size were set to 5 K.
The experimental results are shown in Figs. 23 and 24.
With the continuous data input, the running time was
increased.

Conclusion and future work
Summary of research work
The experimental results demonstrate that compared
to existing data stream mining algorithms based on
the window model, the proposed DLVSW-CDTD algo-
rithm detects different types of CD in the data stream
effectively. It achieves this by embedding a dual-layer
window that allows for window size adjustment and
applying varying attenuation weights to the drifting
data, thereby achieving drift adaptation. Additionally,
the time proportions of each module in the DLVSW-
CDTD algorithm fluctuate by no more than 0.8%.
Overall, the DLVSW-CDTD algorithm exhibits certain
advantages in terms of time complexity and memory
consumption. Furthermore, it maintains stable perfor-
mance, and is unaffected by the initial window size or
the need for processing large amounts of data.

Fig. 16 The test of concept index R threshold is 1

Fig. 17 The test of concept index R threshold is 2

Fig. 18 The concept index R threshold is 3

Page 16 of 19Chen et al. Journal of Cloud Computing (2024) 13:40

Fig. 19 The concept test index R threshold is 4

Fig. 20 Correlation analysis of FChange and φ with R

Fig. 21 Frequent pattern changes of nested dual-layer windows

Page 17 of 19Chen et al. Journal of Cloud Computing (2024) 13:40

Future research work
There are several potential research directions to fur-
ther explore in this field. Future studies could focus on
enhancing the DLVSW-CDTD algorithm through the
incorporation of more advanced techniques for cloud
computing and security information detection. Some
possible directions to consider include:

(1) Cloud Computing: Investigate how the DLVSW-
CDTD algorithm can be optimized for cloud
computing environments. Techniques such as dis-
tributed computing, parallelization, and resource
allocation strategies can be explored to improve the
algorithm’s scalability and performance in handling
large-scale data streams.

(2) Machine Learning Integration: Machine learning
algorithms can be integrated within the DLVSW-
CDTD algorithm to enhance its capabilities.
Advanced machine learning techniques, such as
deep or reinforcement learning, fuzzy set theory
[52, 53] can be adopted to improve the accuracy
and effectiveness of CD detection and adaptation.

Acknowledgements
We would like to thank MogoEdit (https:// www. mogoe dit. com) for its English
editing during the preparation of this manuscript.

Authors’ contributions
Jing Chen: Writing original draft, Review response, Commentary, Revision.
Shengyi Yang and Ting Gao: Writing original draft, Commentary. Yue Ying:
Writing original draft. Tian Li: Commentary, Revision, Validations. Peng Li : Con-
ceptualization, Funding acquisition, Methodology, Supervision, Review.

Funding
The research is sponsored by the National Natural Science Foundation of
P. R. China (No. 62102194, No. 62102196); Natural Science Foundation of
Inner Mongolia Autonomous Region of China (No.2022MS06010), Natural
Science Research Project of Department of Education of Guizhou Province
(No.QJJ2022015); Scientific Research Project of Baotou Teachers’ College
(BSYKY2021-ZZ01, BSYHY202212, BSYHY202211, BSJG23Z07).

Availability of data and materials
The data presented in this study are available from the open source data min-
ing library SPMF [25].

Declarations

Competing interests
The authors declare no competing interests.

Fig. 22 Window size variation

Table 8 Running time proportion of each function of the
algorithm under different initial window sizes

Time ratio 10K 20 K 30 K 40 K 50 K

Reading data 5.7% 6.3% 5.2% 5.7% 5.4%

Update the window 0.3% 0.3% 0.3% 0.1% 0.3%

Short-window concept drift
detection

0.2% 0.1% 0.1% 0.0% 0.1%

Handling of the mutant concept
drift

8.9% 8.2% 8.9% 9.3% 8.9%

Update frequent pattern 83.9% 84.3% 84.7% 84.1% 84.5%

Long-window concept drift
detection

0.1% 0.1% 0.1% 0.0% 0.0%

Handle the gradient concept
drift

0.9% 0.8% 0.7% 0.8% 0.8%

Fig. 23 Comparison of the execution times for the different
algorithms

Fig. 24 Comparison of the memory consumption of the algorithm

https://www.mogoedit.com

Page 18 of 19Chen et al. Journal of Cloud Computing (2024) 13:40

Received: 10 September 2023 Accepted: 7 December 2023

References
 1. Bao G, Guo P (2022) Federated learning in cloud-edge collaborative

architecture: key technologies, applications and challenges[J]. Journal of
Cloud Computing 11(1):94

 2. Ismaeel S, Karim R, Miri A (2018) Proactive dynamic virtual-machine
consolidation for energy conservation in cloud data centres[J]. Journal of
Cloud Computing 7(1):1–28

 3. Wang F, Wang L, Li G, Wang Y, Lv C, Qi L (2022) Edge-Cloud-enabled
Matrix Factorization for Diversified APIs Recommendation in Mashup
Creation. World Wide Web Journal 25(5):1809–1829

 4. Yang Y, Ding S, Liu Y, Meng S, Chi X, Ma R, Yan C (2022) Fast wireless
sensor for anomaly detection based on data stream in an edge-
computing-enabled smart greenhouse. Digital Commun Netw
8(4):498–507

 5. Zhanyang Xu, Zhu D, Chen J, Baohua Yu (2022) Splitting and placement
of data-intensive applications with machine learning for power system in
cloud computing. Digital Commun Netw 8(4):476–484

 6. Al-Ghuwairi AR, Sharrab Y, Al-Fraihat D et al (2023) Intrusion detection
in cloud computing based on time series anomalies utilizing machine
learning[J]. Journal of Cloud Computing 12(1):127

 7. Xin Su, Jiang Su, Choi D (2022) Location privacy protection of maritime
mobile terminals. Digital Commun Netw 8(6):932–941

 8. Peng LI, Xiaotian YU, He XU et al (2021) Secure Localization Technology
Based on Dynamic Trust Management in Wireless Sensor Networks. Chin
J Electron 30(4):759–768

 9. Miao Y, Bai X, Cao Y, Liu Y, Dai F, Wang F, Qi L, Dou W (2023) A Novel Short-
Term Traffic Prediction Model based on SVD and ARIMA with Blockchain
in Industrial Internet of Things. IEEE Internet Things J. https:// doi. org/ 10.
1109/ JIOT. 2023. 32836 11

 10. Yang N, Yang L, Du X et al (2023) Blockchain based trusted execu-
tion environment architecture analysis for multi-source data fusion
scenario[J]. Journal of Cloud Computing 12(1):1–16

 11. Kong L, Li G, Rafique W, Shen S, He Q, Khosravi MR, Wang R, Qi L (2022)
Time-aware Missing Healthcare Data Prediction based on ARIMA Model.
IEEE/ACM Trans Comput Biol Bioinf. https:// doi. org/ 10. 1109/ TCBB. 2022.
32050 64

 12. Mousavi SN, Chen F, Abbasi M, Khosravi MR, Rafiee M (2022) Efficient
pipelined flow classification for intelligent data processing in IoT. Digital
Commun Netw 8(4):561–575

 13. Kong L, Wang L, Gong W, Yan C, Duan Y, Qi L (2022) LSH-aware Multitype
Health Data Prediction with Privacy Preservation in Edge Environment.
World Wide Web Journal 25(5):1793–1808

 14. Yang Y, Yang X, Heidari M, Srivastava G, Khosravi MR, Qi L (2022) ASTREAM:
Data-Stream-Driven Scalable Anomaly Detection with Accuracy Guar-
antee in IIoT Environment. IEEE Transactions on Network Science and
Engineering. https:// doi. org/ 10. 1109/ TNSE. 2022. 31577 30

 15. Wang F, Li G, Wang Y, Rafique W, Khosravi MR, Liu G, Liu Y, Qi L (2022)
Privacy-aware Traffic Flow Prediction based on Multi-party Sensor Data
with Zero Trust in Smart City. ACM Trans Internet Technol. https:// doi. org/
10. 1145/ 35119 04

 16. Wang F, Zhu H, Srivastava G, Li S, Khosravi MR, Qi L (2022) Robust Col-
laborative Filtering Recommendation with User-Item-Trust Records. IEEE
Transactions on Computational Social Systems 9(4):986–996

 17. Qi L, Lin W, Zhang X, Dou W, Xiaolong Xu, Chen J (2023) A Correlation
Graph based Approach for Personalized and Compatible Web APIs Rec-
ommendation in Mobile APP Development. IEEE Trans Knowl Data Eng
35(6):5444–5457

 18. Chen N, Zhong Q, Liu Y et al (2023) Container cascade fault detection
based on spatial–temporal correlation in cloud environment[J]. Journal
of Cloud Computing 12(1):59

 19. Wares S, Isaacs J, Elyan E (2019) Data stream mining: methods and chal-
lenges for handling concept drift[J]. SN Applied Sciences 1:1–19

 20. Rabiu I, Salim N, Da’u A et al (2020) Recommender system based on
temporal models: a systematic review[J]. Applied Sciences 10(7):2204

 21. Yang C, Cheung Y, Ding J et al (2021) Concept drift-tolerant transfer learn-
ing in dynamic environments[J]. IEEE Transactions on Neural Networks
and Learning Systems 33(8):3857–3871

 22. Liu Z, Godahewa R, Bandara K et al (2023) Handling Concept Drift in
Global Time Series Forecasting[J] (arXiv preprint arXiv:2304.01512)

 23. Fdez-Riverola F, Iglesias EL, Díaz F et al (2007) Applying lazy learning
algorithms to tackle concept drift in spam filtering[J]. Expert Syst Appl
33(1):36–48

 24. Gulla JA, Solskinnsbakk G, Myrseth P et al (2011) Concept signatures
and semantic drift[C]. Web Information Systems and Technologies: 6th
International Conference, WEBIST 2010, Valencia, Spain, April 7–10, 2010,
Revised Selected Papers 6. Springer, Berlin Heidelberg, pp 101–113

 25. Turkov P, Krasotkina O, Mottl V, et al (2016) Feature selection for handling
concept drift in the data stream classification[C]. Machine Learning
and Data Mining in Pattern Recognition: 12th International Conference,
MLDM 2016, New York, NY, USA, July 16–21, 2016, Proceedings. Springer
International Publishing. pp 614–629

 26. Ruano-Ordas D, Fdez-Riverola F, Mendez JR (2018) Concept drift in
e-mail datasets: An empirical study with practical implications[J]. Inf Sci
428:120–135

 27. Ding F, Luo C (2019) The entropy-based time domain feature extraction
for online concept drift detection[J]. Entropy 21(12):1187

 28. McKay H, Griffiths N, Taylor P et al (2020) Bi-directional online transfer
learning: a framework[J]. Ann Telecommun 75:523–547

 29. Gama J, Medas P, Castillo G et al (2004) Learning with drift detection[C].
Advances in Artificial Intelligence–SBIA 2004: 17th Brazilian Symposium
on Artificial Intelligence, Sao Luis, Maranhao, Brazil, September 29-Ocot-
ber 1, 2004. Proceedings 17. Springer, Berlin Heidelberg, pp 286–295

 30. Baena-Garcıa M, del Campo-Ávila J, Fidalgo R, Bifet A, Gavalda R, Morales-
Bueno R (2006) Early drift detection method. In Fourth international
workshop on knowledge discovery from data streams Vol. 6, pp. 77-86

 31. Hulten G, Spencer L, Domingos P (2001) Mining Time-Changing Data
Streams[C]. The Seventh ACM SIGK-DD International Conference on
Knowledge Discovery and Data Mining. pp 97–106

 32. Liang NY, Huang GB, Saratchandran P et al (2006) A Fast and Accurate
Online Sequential Learning Algorithm for Feedforward Networks[J]. IEEE
Trans Neural Networks 17(6):1411–1423

 33. Jie L, Anjin L, Fan D et al (2019) Learning under Concept Drift: A
Review[J]. IEEE Trans Knowl Data Eng 31(12):2346–2363

 34. Ruihua C, Xiaolong Qi, Yanfang L (2023) Online integrated adaptive algo-
rithm for concept drift data flow [J]. Journal of Nanjing University (Natural
Science) 59(1):134–144

 35. Cheng H, Huaiping J, Bin W (2023) An integrated adaptive soft measure-
ment method based on spatiotemporal local learning [J]. J Instrum
44(1):231–241

 36. Xiulin Z, Peipei L, Xuegang H et al (2021) Semi-supervised Classification
on Data Streams with Recurring Concept Drift and Concept Evolution[J].
Knowl-Based Syst 215:1–16

 37. Anjin L, Guangquan Z, Jie L (2017) Fuzzy Time Windowing for Gradual
Concept Drift Adaptation[C]. 2017 IEEE International Conference on
Fuzzy Systems (FUZZ-IEEE). 1–6

 38. Abdualrhman M, Padma MC (2019) Deterministic Concept Drift Detec-
tion in Ensemble Classifier Based Data Stream Classification Process[J].
International Journal of Grid and High Performance Computing
11(1):29–48

 39. Shuliang X, Lin F, Shenglan L et al (2020) Self-adaption Neighborhood
Density Clustering Method for Mixed Data Stream with Concept Drift[J].
Eng Appl Artif Intell 89:1–14

 40. Meng H, Zhihai W, Jian D (2016) A frequent pattern decision tree deals
with variable data streams [J]. J Comput Sci 39(8):1541–1554

 41. Aumann Y, Lindell Y (2003) A Statistical Theory for Quantitative Associa-
tion Rules[J]. Journal of Intelligent Information Systems 20(3):255–283

 42. Chen H, Shu LC, Xia J et al (2012) Mining frequent patterns in a varying-
size sliding window of online transactional data streams[J]. Inf Sci
215:15–36

 43. Deypir M, Sadreddini MH, Hashemi S (2012) Towards a Variable Size Slid-
ing Window Model for Frequent Itemset Mining over Data Streams[J].
Comput Ind Eng 63(1):161–172

 44. Pesaranghader A, Viktor HL, Paquet E (2018) McDiarmid Drift Detection
Methods for Evolving Data Streams[C]. International Joint Conference on
Neural Networks (IJCNN) 2018:1–9

https://doi.org/10.1109/JIOT.2023.3283611
https://doi.org/10.1109/JIOT.2023.3283611
https://doi.org/10.1109/TCBB.2022.3205064
https://doi.org/10.1109/TCBB.2022.3205064
https://doi.org/10.1109/TNSE.2022.3157730
https://doi.org/10.1145/3511904
https://doi.org/10.1145/3511904

Page 19 of 19Chen et al. Journal of Cloud Computing (2024) 13:40

 45. Iwashita AS, Papa JP (2019) An Overview on Concept Drift Learning[J].
IEEE Access 7:1532–1547

 46. Bin L, Guanghui Li (2021) A notional drift data flow classification
algorithm based on the McDiarmid bound [J]. Computer Science and
Exploration 15(10):1990–2001

 47. Zhiqiang C, Han Meng Wu, Hongxin, et al (2023) A conceptual drift
detection method for segment-weighting [J]. Computer Applications
43(3):776–784

 48. Barros R, Santos S (2019) An Overview and Comprehensive Comparison
of Ensembles for Concept Drift[J]. Information Fusion 52:213–244

 49. Husheng G, Hai L, Qiaoyan R et al (2021) Concept Drift Type Identification
Based on Multi-Sliding Windows[J]. Inf Sci 585:1–23

 50. Mao L, Dongbo Z, Yuanyuan Z (2014) A new method for drift detection
based on the concept of overlapping data window distance measure [J].
Computer Applications 34(2):542–545

 51. Lu J, Liu A, Song Y et al (2020) Data-driven Decision Support under
Concept Drift in Streamed Big Data[J]. Complex & Intelligent Systems
6(1):157–163

 52. Chen J, Li P, Fang W, et al (2021) Fuzzy Frequent Pattern Mining Algorithm
Based on Weighted Sliding Window and Type-2 Fuzzy Sets over Medical
Data Stream[J]. Wireless Commun Mobile Comput 1–17

 53. Y Yin, P Li, J Chen (2023) A Variable Sliding Window Algorithm Based on
Concept Drift for Frequent Pattern Mining Over Data Streams[C]. 2022
IEEE 28th International Conference on Parallel and Distributed Systems
(ICPADS). IEEE, 818–825

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	Multi-type concept drift detection under a dual-layer variable sliding window in frequent pattern mining with cloud computing
	Abstract
	Introduction
	Related work and definitions
	Overview of the data stream frequent pattern
	Introduction of the window model
	Window model
	Attenuation model

	Conceptual drift processing method for cloud computing

	Processing model and algorithm
	The proposed DLVSW-CDTD algorithm
	The DLVSW-CDTD algorithm framework
	Design of the DLVSW-CDTD algorithm
	Step 1: window size initialization and frequent pattern mining
	Step 2: build the prefix tree
	Step 3: insert a new pane and update the prefix tree
	Step 4: concept drift detection
	Step 5: detection of variables based on causing conceptual drift
	Step 6: detection of mining differences based on the occurrence of conceptual drift
	Step 7: concept drift test index
	Step 8: window size adjustment
	Step 9: long and short embedded dual-layer window design and FPM
	Step 10: concept drift type detection mechanism
	Step 11: concept drift adaptation
	Step 12: weighted FP tree formulation

	Experimental results and analysis
	Introduction of the experimental environment and data set
	Experimental environment
	Open source data mining library SPMF

	Performance verification of the DLVSW-CDTD algorithm
	Dataset setting
	Related parameter setting and description
	Window size change
	Threshold and correlation analysis
	Dual-layer window concept drift detection
	Execution time
	Comparative analysis

	Conclusion and future work
	Summary of research work
	Future research work

	Acknowledgements
	References

