
Zhang et al. Journal of Cloud Computing (2024) 13:6
https://doi.org/10.1186/s13677-023-00567-8

RESEARCH Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Context-aware environment online
monitoring for safety autonomous vehicle
systems: an automata-theoretic approach
Yu Zhang1, Sijie Xu1, Hongyi Chen1, Uzair Aslam Bhatt2* and Mengxing Huang2

Abstract

Intelligent Transport System (ITS) is a typical class of Cyber-Physical Systems (CPS), and due to the special charac-
teristics of such systems, higher requirements are placed on system security. Runtime verification is a lightweight
verification technique which is used to improve the security of such systems. However, current runtime verification
methods often ignore the effects of the physical environment (e.g., the effects of rain, snow, and other weather
changes on road conditions), which results in the inability of the monitor to effectively monitor the system according
to the changes in the environment. To address this problem, this paper proposes a method for constructing a runtime
monitor with environmental context-awareness capability. First, the physical environment factors affecting the sys-
tem are formally described and constructed into an environment model, then the system statute is transformed
into a Büchi automaton, and then a synthesis algorithm combining the environment model and the Büchi automaton
is designed based on the network of automatons, and the corresponding monitor is generated. Finally, the proposed
method is applied and verified on simulation and real objects. The experimental results show that the monitors
generated based on the method of this paper can effectively monitor unsafe events in different environments, thus
improving the safety of intelligent driving systems.

Keywords ITS, Runtime monitoring, Environmental modelling, Automata

Introduction
ITS is a complex CPS that combines awareness of the
physical environment with intelligent computing. CPS
enables interaction and control between physical enti-
ties and computing systems by integrating sensors, com-
puting elements and communication networks. CPS has
wide applications in various sectors such as transport,
healthcare, manufacturing, energy and infrastructure.
It relies on advanced technologies such as the Internet
of Things (IoT), cloud computing, data analytics and

artificial intelligence to achieve real-time data processing,
intelligent decision-making and adaptive control. How-
ever, due to continuous changes in the system’s internal
behaviour and environmental conditions, the system’s
decision-making behaviour may become unpredictable.
Therefore, appropriate responses must be made at runt-
ime to ensure system safety [1, 2].

Runtime verification is a lightweight software veri-
fication technique that detects anomalies and reports
problems by monitoring the system’s current trajectory
to repair runtime errors. Unlike traditional software
reliability assurance techniques, runtime verification
is primarily applied to deployed systems and can effec-
tively monitor uncertain context changes [3]. Typically,
runtime verification uses temporal logic, such as Lin-
ear Temporal Logic (LTL), to describe the properties
to be monitored. However, when intelligent systems

*Correspondence:
Uzair Aslam Bhatt
uzairaslambhatti@hotmail.com
1 School of Computer Science and Technology, Haikou 570228, China
2 School of Information and Communication Engineering, Haikou 570228,
China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00567-8&domain=pdf

Page 2 of 18Zhang et al. Journal of Cloud Computing (2024) 13:6

face security threats in uncertain environments, real-
time monitoring of environmental parameter changes
becomes a challenge in generating and operating effi-
cient monitors. Existing runtime verification methods
have limited consideration of environmental factors,
making it difficult to ensure system safety and reliability
[4, 5].

To address the problem of system behaviour mis-
match with the actual environment due to environ-
mental influences on intelligent systems, this paper
proposes the following approach. The paper abstracts
and represents environmental information and trans-
forms the environmental model into a probabilistic
finite automaton (PFA). The paper uses LTL to describe
system properties and transforms it into a Büchi
automaton (BA). Then, the synthesized algorithm for
combining environmental modeling with Büchi autom-
ata and generating monitors is designed through the
idea of synthesis. Finally, the monitor code is instru-
mented in the executable program to achieve real-time
monitoring. The main innovations of our work are as
follows:

• We innovatively integrate environment models with
system properties, which are accurately represented
and translated into monitor form by modeling and
quantitatively analyzing the environment.

• By optimizing the monitor insertion algorithm, we
succeeded in significantly reducing the average exe-
cution time of the monitor, which is only 41.1% of the
pre-optimization execution time.

The rest of the paper is structured as follows: Background
section introduces the relevant basic theories, which
provide the theoretical basis for the runtime verifica-
tion model and environment modeling method proposed
in this paper. Related work section reviews research
in related fields. The environment modeling approach
is described in detail in Context-aware environmen-
tal modeling method section. Monitor generation sec-
tion describes the monitor build and insert process. In
Evaluation section, the validity of the proposed method
is demonstrated through simulation and physical experi-
ments. Finally, the work of this paper is summarized in
Conclusion section.

Background
This section presents the theoretical foundation for the
environment modeling methods used in this paper, by
introducing formalization tools for sequential logic, runt-
ime verification techniques, and a framework for runtime
verification tools.

Linear temporal logic
Linear Temporal Logic (LTL) is a type of Temporal
Logic that represents time as a sequence of states and
employs temporal operators to specify constraints that
a system must satisfy in the past, present, and future, as
well as the temporal relationships between events.

Since its inception, numerous scholars have thor-
oughly studied and developed LTL. Pnueli [6] first
introduced LTL and proposed the syntax and semantics
of linear temporal logic. His work laid the foundation
for LTL in formal verification and provided a theoreti-
cal framework for subsequent research.LTL allows for a
more precise expression of the desired system’s proper-
ties or constraints, given a set of atomic propositions
denoted as AP. An LTL formula on the set AP can be
recursively defined as follows:

In the above definition, p ∈ AP,ϕ,ϕ1,ϕ2 are both LTL
formulas.The standard operators logic and (∧), logic
or (∨), non (¬), and implication (→) are propositional
logic tokens. Operators X, U, F, G, and R are temporal
operators, representing some properties of time [7].

• Gp: p must be true throughout the timeline
• Fp: p must be true at some point in the present or

future
• Xp: p must be true at the next time point
• pUq: q is true at present, or q becomes true at some

point in the future before p stops being true

Suppose we have a sensor that periodically measures
a certain variable, and we want to check whether that
variable fluctuates with a certain periodicity. We can
use LTL to represent this periodic behavior. For exam-
ple, the following LTL formula indicates that the vari-
able should fluctuate every 5 time steps.

Here, Time represents time steps, and Measurement
is the measured value. This LTL formula ensures the
periodic fluctuation property.

Büchi Automaton
Büchi Automaton is a commonly used formal tool for
describing and verifying behavioral specifications of
systems. In past research, many scholars have exten-
sively studied and applied Büchi Automaton. Vardi
and Wolper [8] proposed the theoretical framework of
Büchi Automaton and proved its equivalence to Linear
Temporal Logic (LTL). Their work laid the foundation
for the use of Büchi Automaton in model checking and

ϕ : :=p|¬ϕ|ϕ1 ∧ ϕ2|ϕ1 → ϕ2|ϕ1 ↔ ϕ2|Gϕ|Fϕ|Xϕ|ϕ1Uϕ2 | ϕ1Rϕ2

G(F(((Time%5) == 0)&&(Measurement > Threshold)))

Page 3 of 18Zhang et al. Journal of Cloud Computing (2024) 13:6

runtime verification. Alur and Dill [9] introduced con-
struction methods for deterministic Büchi Automaton
and applied them to model checking. Their work has
had a profound impact on automata theory and for-
mal verification. Baier and Katoen [10] investigated the
modeling of Büchi Automaton for stochastic systems.
They explored how Büchi Automaton can be used to
describe and verify systems with stochastic proper-
ties. Piterman et al. [11] introduced an enhanced ver-
sion of Büchi Automaton called Aggressive Automaton.
Their work aimed to improve the practicality and effi-
ciency of Büchi Automaton in runtime verification. Joël
D. Allred et al. [12] proposed a simple algorithm that
complements Büchi automata by directly manipulat-
ing subsets of state sets (similar to slices) and generat-
ing deterministic automata. Büchi automaton is a tuple
B = (Q,Q0,�, σ , F) , where

• Q is a finite nonempty set of states,
• Q0 ⊆ Q is a set of initial states,
• � : � = 2AP is the input alphabet (set of atomic

propositions),
• σ : σ ⊆ Q ×�× Q is nondeterministic transfer

relationship,
• F : F ⊆ Q is a set of accepting states.

Runtime verification
Runtime verification is a novel formal verification tech-
nique that relies less on the environment. Leucker and
Schallhart [13] provide a concise introduction to runtime
verification, discussing its foundations, techniques, and
challenges. They highlight the role of runtime verification
in complementing formal verification and testing meth-
ods. Like model checking, runtime verification employs a
formal approach to describe the behavior constraints that
software systems are expected to satisfy. Linear temporal
logic (LTL) is a common formalism used for this purpose.
In theory, runtime verification aims to monitor an infi-
nite sequence w of the system and check whether it sat-
isfies the constraint ϕ . If w satisfies ϕ , the result is true;
otherwise, it is false.

Runtime verification can be divided into two applica-
tions based on the type of object being monitored by
the monitor. The first application is real-time moni-
toring of the executing behavior sequence to verify
whether the current behavior satisfies the property
constraints. In case of a violation, an alert is triggered.
This type of runtime verification is referred to as online
verification. The second application involves monitor-
ing the historical execution sequence and analyzing
the stored execution paths offline. It is used in offline
automatic evaluation testing and is known as offline

verification [14]. For intelligent systems, it is crucial to
detect behaviors that violate safety properties as early
as possible, enabling proactive measures to be taken.
Therefore, this paper focuses on the online verification
approach.

Related work
A monitor is a tool or device used for supervising and
managing a system or component. It operates concur-
rently with the system or component, continuously
monitoring and recording their operations and behaviors
in real-time [15]. Early monitoring methods primarily
involved tracking and logging critical execution paths,
function calls, and events during system runtime, along
with sampling and data collection [16]. However, these
methods are not well-suited for complex distributed sys-
tems. Therefore, Snodgrass [17] proposed a more effi-
cient and scalable approach by collecting runtime data
from the system and transforming it into instance data
in relational schemas to monitor the system’s state and
behavior, extracting dynamic information from complex
systems.

In addition, runtime verification has become an impor-
tant topic in achieving accurate monitoring of complex
temporal properties. In the context of runtime moni-
toring, a monitor can be defined more specifically as a
device that reads finite execution traces generated by the
system at runtime and provides corresponding conclu-
sions or judgments based on these traces [13]. For the
design and construction of monitors, Basin et al. [18]
proposed a runtime monitoring algorithm for metric
first-order temporal logic, overcoming the limitations
in the expressiveness of previous algorithms regarding
property specification languages. Dong et al. [19] intro-
duced a closed-loop feedback prediction and prevention
framework that can monitor system behavior in real-time
and dynamically adjust and intervene based on predictive
results. Pedro et al. [20] introduced a combined moni-
toring framework (CMF) that integrates runtime moni-
toring and static analysis to ensure time isolation and
response time guarantees in real-time systems. By using
metric temporal logic with durations (MTL-), they con-
ducted schedulability analysis and static checks on CMF,
generating monitors with explicit durations. This repre-
sents the first application of combining MTL-

∫

 with the
generation of monitors with explicit durations for runt-
ime verification in hard real-time systems. Vierhauser
et al. [21] proposed a model-driven framework (GRuM)
for generating customized runtime monitoring plat-
forms that support data collection and analysis and can
be extended and updated when the monitored system
changes.

Page 4 of 18Zhang et al. Journal of Cloud Computing (2024) 13:6

In recent years, there has been increasing emphasis on
runtime monitoring of unmanned systems. Heffernan
et al. [22] utilized real-time runtime verification monitors
to monitor and verify functional safety requirements of
automotive embedded control systems. DONG et al. [7]
conducted a series of studies on security threat detection
in the UAV domain. Vierhauser et al. [21, 23, 24] focus
on achieving flexible and adaptive runtime monitoring
in CPS, enhancing monitoring efficiency and adaptabil-
ity through model-driven techniques and the automated
generation of monitoring platforms. Ayhan Mehmed
et al. [25] proposed the Safe Driving Envelope-Verifica-
tion (SDE-V) method for runtime validation of auto-
mated driving system (ADS) path planning compliance
with safety rules. The approach, which focuses on reduc-
ing false positives, assessing monitor quality, designing
scalable monitoring architecture, and addressing sensor
fusion challenges, introduces notable advances in ADS
safety and reliability. Mathilde Machin et al. [26] pro-
posed a versatile method for high-level safety monitor
specification generation, incorporating hazard analysis to
ensure correctness. The approach, adaptable to complex
systems with multiple variables and interventions, lacks
real-world application and necessitates further refine-
ment for practical system dynamics and environmental
adaptability.

In general, current research still faces limitations in
dealing with complex environments, primarily reflected
in insufficient exploration of how to accurately describe
the environment and ensure the safety and correctness
of system execution under uncertain conditions. Most
studies focus on specific domains or specific scenarios,
without considering highly variable and uncertain envi-
ronments. The presence of uncertainty and randomness
in system behavior increases the complexity of runtime
monitoring and poses significant challenges.

Context‑aware environmental modeling method
To address the issue of mismatched system data and the
actual environment caused by environmental influences
in intelligent systems, this paper proposes a combined
approach that leverages context-aware information and
runtime verification technology.

System framework
Runtime verification is an effective approach for system
safety verification, as it enables the evaluation and vali-
dation of systems. However, current methods often over-
look the influence of the environment, which makes it
challenging to ensure the security and reliability of the
system in the face of environmental factors. Therefore,
this paper aims to address the following issues:

• How to model and quantitatively analyze the system’s
operating environment.

• How to accurately characterize and describe the task
properties of the system.

• How to design an algorithm that combines two
automata to generate a monitor.

To tackle these challenges, this study proposes the
method framework shown in Fig. 1.

According to the diagram of the validation frame-
work, the environmental information is abstracted in
this paper. The environmental abstract model can repre-
sent the influence relationship between the environment
and the system, and the environmental model is trans-
formed into a finite automaton. This study describes the
properties of the system using linear temporal logic and
transforms them into Buchi automata. Then the algo-
rithm is designed to combine the two automata by cross-
multiplication and optimize the search path to generate
the optimal monitor code. Finally, the monitor code is
inserted into the executive program to realize real-time
monitoring.

Environment modeling
The performance of an intelligent system may be influ-
enced by the physical environment in which it operates.
Factors such as temperature, humidity, and pressure
can cause variations in system parameters, including
input, output, and state, among others. These variations
can impact the control system’s decision-making pro-
cess and result in suboptimal actions. To eliminate such
effects and enable the system to adapt to environmental
changes, it is necessary to define and model the relation-
ship between the environment and the system.

This paper adopts a method of establishing a relation-
ship model between the environment and the system.
Firstly, it is necessary to clarify the relationship between
environmental changes and the system, delineate the
boundaries between environmental information and the
system, and subsequently model the environmental fac-
tors accordingly. There are various types of environmen-
tal information, and to facilitate distinction, this paper
refers to the definition of environmental information
provided in the reference [27].

Definition 1 The environment information is defined
as a quadruple Enifo = (loc, tab, time, behavior) , where
loc, tab, time, and behavior represent location informa-
tion, identification information, time feature information,
and behavior information, respectively.

Environmental information serves as a crucial foun-
dation for intelligent systems to carry out perception,

Page 5 of 18Zhang et al. Journal of Cloud Computing (2024) 13:6

decision-making, and control actions. It enables the
system to infer the current state and characteristics of
the external environment, facilitating better adaptation
and response to diverse situations. While the types and
sources of environmental information may vary across
different application scenarios, they share a common fea-
ture of providing real-time feedback on the external envi-
ronment to intelligent systems, thereby aiding in making

more accurate and rational decisions.
To facilitate the identification of data as environmen-

tal information, Table 1 presents specific classification
methods. These methods assist in determining whether
the given data information qualifies as environmental
information.

Definition 2 The formal description of the environ-
ment abstraction model is a tuple M = (Senv ,CE) . Here,
Senv represents the static structure formal description
of the environment model, which establishes a mapping
relationship with the system properties based on the
classification information of the environment. CE is a
probabilistic finite automaton (PFA) that conforms to the
definition and is used to describe the dynamic behavior
of the environment model. Each state of CE represents a
state of the environment model.

Definition 3 The static structural formal represen-
tation of the environment model is given by a triple

Senv = (E, S,R) . Here, E = {e1, e2, . . . , en} is the set of
environment states, S = {s1, s2, . . . , sn} is the set of
affected system parameter states, and R = {r1, r2, . . . , rn}
is the set of mapping relations between E and S.

Definition 4 The dynamic structural formal repre-
sentation of the environment model is given by a tuple
CE = �D,D0,T ,�, δ,µ0� , where

• D : Set of states.
• D0 : Initial state.
• T : State transition function D × T → D.
• � : Input alphabet, where � = 2AP.
• δ : Labeled probabilistic transition function

Q ×�× Q → [0, 1].
• µ0 : Probability distribution over D0.

Let’s illustrate an example of environment modeling
using the Adaptive Cruise Control (ACC) system. ACC is
a cruise control system that allows the vehicle to travel at
a specified speed while maintaining a reasonable and safe
distance from the vehicle ahead. The braking distance
required by the vehicle may vary depending on the road
and weather conditions. The road and weather conditions
are assessed using the Road and Weather Index, which is
a weather-based index that provides valuable information
on road conditions by analyzing real-time weather data.
It is categorized into five levels, as shown in Table 2.

Fig. 1 Runtime verification framework considering environmental factors

Page 6 of 18Zhang et al. Journal of Cloud Computing (2024) 13:6

According to the definition of the environmental
model, E = {e1, e2, . . . , en} represents five states of road
conditions, S = {s1, s2, . . . , sn} represents the braking
safety distance, and R=(r) represents the different brak-
ing safety distances caused by different road conditions.
The functional relationship is expressed as s = v2/2∗u∗g.

The finite probabilistic automaton for the environ-
mental model can be represented as shown in Fig. 2.
D =

{

d1, d2, . . . , dn
}

 represents the transitions between

five different levels in the environment, where d1 is the
initial state. T = {t1, t2, . . . , tn} represents different trig-
gering transition events, and each transition is marked
in the form of p\ti , where p represents the probability of
transition between states.

Task formalization description
Traditional task formalization descriptions often use
linear temporal logic to express goals, constraints, and

Table 1 Classification and description of environmental information

Category Description

loc Information about specific physical positions, such as location data from GPS sensors and the distances
measured between two sensors.

tab Information are identified by sensors, such as temperature and facial recognition.

time Information about time-related features, such as request time and data read from a clock.

behavior Information about actions obtained from sensors, such as action information and door opening and closing.

Table 2 Road condition meteorological index

Classification Description Recommendation

Level 1 Sunny: visibility greater than 10km, wind force less than level 4 Observe the city traffic speed limit

Level 2 Cloudy: small amount of standing water Do not exceed 50km/hour

Level 3 Light rain or snow: obvious standing water Do not exceed 40km/hour

Level 4 Moderate rain or snow: blurry vision, easy to slip Do not exceed 30km/hour

Level 5 Heavy rain or snow: covered with water or snow, poor visibility Do not exceed 20km/hour

Fig. 2 Automata form of road weather

Page 7 of 18Zhang et al. Journal of Cloud Computing (2024) 13:6

operability in mathematical or logical expressions.
However, traditional binary logic may not provide
results when dealing with infinite paths. When moni-
toring a system in a runtime application, only the sys-
tem’s running state and behavior can be obtained, and
what will happen next is not yet determined. Therefore,
monitoring the current state is necessary to evalu-
ate whether the subsequent behavior satisfies safety
properties. In this case, using ternary logic can more
accurately express this description than binary logic.
Therefore, extending linear time logic LTL with ternary
semantics is necessary. For a property ϕ and its nega-
tion ¬ϕ , if the current prefix violates the property, the
system does not satisfy the property ϕ and outputs false;
otherwise, it outputs true. If the current prefix satisfies
both ϕ and ¬ϕ , no correct judgment can be made, and
the output is inconclusive. In summary, properties can
be divided into three cases, illustrated with a finite path
u and property ϕ:

• If property ϕ can be proven on the current observed
finite path u, there is no need to consider future
events, and the output is true.

• If property ϕ can be proven on the current observed
finite path u that it will not hold on any subsequent
path, the output is false.

• If it is impossible to prove whether property ϕ holds
on the current observed finite path u, the output is
inconclusive, and continuous monitoring is necessary
in the future.

The following is the formal task description of Adaptive
Cruise Control (ACC). During automatic cruise mode,
the vehicle will accelerate to the predetermined cruis-
ing speed (TLV) if there is no vehicle ahead or if the dis-
tance between vehicles is greater than the safe distance.
However, if there is a vehicle in front and the distance
between vehicles is less than the safe distance, the vehicle
will decelerate until it reaches an appropriate cruising
speed (VPL). The scenario description is shown in

Fig. 3. The property specifications can be expressed as
follows:

The formulas ϕ1 = G((!exist ∨ (dis > ST)) → F(| speed

−TLV |< 0.1)) and ϕ2 = G((exist ∧ dis ≤ ST) → F(| speed

−VPL |< 0.1)) ensure that the vehicle’s speed can be
adaptively adjusted based on the distance and the vehi-
cles ahead in the automatic cruise control mode. In this
context, exist represents an obstacle ahead, dis repre-
sents the distance to the vehicle in front, ST represents
the safe following distance, TLV represents the cruising
speed, VPL represents the appropriate cruising speed,
and | speed − VPL |< 0.1 represents increasing the vehicle
speed to the cruising speed and maintaining it within a
certain threshold range.

Monitor generation
In order to ensure the safety of the system under the
influence of environmental factors, the environment
model should be used together with the monitoring spec-
ification so that the system can meet the specification.
Therefore, to generate a runtime monitor that meets the
requirements, the defined environment model should be
combined with the system specification, which has been
formalized into an automaton, and then appropriately
inserted at the desired locations. The monitor will be able
to effectively monitor and control the system’s operating
state to ensure its safety and reliability. Figure 4 shows
the process of improved monitor generation.

Algorithm for generating monitors
The article proposes a formal verification model that
combines the environment model represented by CE
and the system model represented by B, to enable
unified verification of the system’s response to environ-
mental influences in a feedback loop. The concept of
synchronous labeling and synchronous labeling function
is introduced.

G((!exist ∨ (dis > ST)) → F(| speed − TLV |< 0.1))∨

G((exist ∧ dis ≤ ST) → F(| speed − VPL |< 0.1))

Fig. 3 Scenario Description

Page 8 of 18Zhang et al. Journal of Cloud Computing (2024) 13:6

Converting LTL to Büchi automaton can be divided
into three steps as shown in Fig. 5. First, it is necessary
to convert the LTL formula to an alternating automaton,
which can represent all the semantics of the LTL formula.
Secondly, by using the equivalence between generalized
Büchi automata and alternating automata, the alternating
automaton is converted to a generalized Büchi automa-
ton. Finally, the generalized Büchi automaton needs to be
converted to a Büchi automaton for more efficient runt-
ime monitoring.

LTL to AA

Definition 5 Alternating Automaton(AA) is repre-
sented by the quintuple Aϕ = (S,�, δ, I , F),where

• S is the set of states,
• � represents an alphabet,
• I ⊆ Pf (S)represents the initial state(s), and Pf (events)

represents events that can occur simultaneously,

• F ⊆ S represents a set of accepting states,
• δ : S → Pf

(

Pf (S ×�)
)

 represents a transition func-
tion.

Before performing the transformation from the LTL for-
mula to alternating automaton, it is necessary to define
the subformula form ψ of property ϕ . Both ϕ and ψ
should accept the alternating automaton Aϕ , and their
accepting language should have the initial state I = ψ̄.

Given an LTL formula ϕ over a set of atomic proposi-
tions AP, Aϕ = (S,�, δ, I , F) is transformed into an alter-
nating automaton. After the transformation is completed,
the accepting language of the alternating automaton A
satisfies the LTL formula ϕ.

AA to GBA
To transform the alternating automaton Aϕ = (S,�, δ, I , F)
into a generalized Büchi automaton BG = (S,�, δ′, I , F) , the
key is that the accepting states are ordered. Each state in Aϕ
is split into two states: one state represents all even rounds,
and the other represents all odd rounds. For each transition

Fig. 4 Improved monitor generation process

Fig. 5 LTL to Büchi automata process

Page 9 of 18Zhang et al. Journal of Cloud Computing (2024) 13:6

in Aϕ , two transitions in BG are created: one goes from the
even state of the initial state to the odd state of the target
state, and the other goes from the odd state of the initial state
to the even state of the target state. All terminating states in
Aϕ are marked as terminating states in BG , regardless of par-
ity. A special initial state is added to BG , which includes the
even and odd states of the initial state in Aϕ . After comple-
tion, the automaton is made equivalent. To transform the
alternating automaton Aϕ = (S,�, δ, I , F) into a generalized
Büchi automaton BG = () , the key is that the accepting states
are ordered. For each state in Aϕ , it is split into two states:
one state represents all even rounds, and the other state rep-
resents all odd rounds. For each transition in Aϕ , two transi-
tions in BG are created: one goes from the even state of the
initial state to the odd state of the target state, and the other
goes from the odd state of the initial state to the even state
of the target state. All terminating states in Aϕ are marked as
terminating states in BG , regardless of parity. A special initial
state is added to BG , which includes the even and odd states
of the initial state in Aϕ . After completion, the automaton is
made equivalent. The generalized Büchi automaton trans-
formed from the ACC task property specification ϕ given in
Section Task formalization description is shown in Fig. 6.

GBA to BA
To construct the monitor, using the Büchi automaton B is
the most convenient way. B is easier to implement and opti-
mize compared to BG , which can simplify the structure of
the automaton and improve readability and maintainabil-
ity. The method of converting BG into B has been widely
researched and implemented and can be referred to the the-
oretical research to provide the conversion approach [28].

The state transition function δ′ is represented as

and the next function is defined as follows:

δ′(q, j) =
{(

α,
(

q′, j′
))

|
(

α, q′
)

∈ δ(q), j′ = next
(

j,
(

q,α, q′
))}

After the transformation process described above,
the non-deterministic generalized Büchi automaton
BG can be generalized to the Büchi automaton B. The
LTL formula can be transformed into a Büchi automa-
ton B = (Q,Q0,�, σ , F) to determine whether the input
sequence satisfies the task requirements. The Büchi
automaton obtained from the ACC task property speci-
fication ϕ , as given in Section Task formalization descrip-
tion, is shown in Fig. 7.

The integrated algorithm for synthesizing the environment
model and Büchi automaton
One method for combining two automata is through
synchronous composition. Synchronous composition
involves the merging of two automata in such a way that
the resulting automaton can only be in an accepting state
when both original automata are simultaneously in an
accepting state. This process can be achieved through the
following steps:

Firstly, the state sets of the two automata are used to
compute the Cartesian product, yielding a new set of
states. Then, a new transition function is defined based
on the transition functions of the original automata. This
new function ensures that the composite automaton only
transitions when both automata satisfy the transition
conditions simultaneously.

In addition, the initial and accepting states are defined
by combining the initial states of the two original autom-
ata. Accepting states are determined by states where both
automata are accepting simultaneously.

By following this systematic process, two valid-state
automata can be effectively combined to create a new
automaton. The resulting composite automaton seam-
lessly integrates the specifications of both original

next(j, f) =

{

max
{

j ≤ i ≤ r | ∀j < k ≤ i, f ∈ Fk
}

j �= r

max
{

0 ≤ i ≤ j | ∀0 < k ≤ i, f ∈ Fk
}

j = r

Fig. 6 Transformed Generalized Büchi Automata

Page 10 of 18Zhang et al. Journal of Cloud Computing (2024) 13:6

automata, requiring both automata to be in sync for the
composite automaton to reach an accepting state.

Building upon this theoretical foundation, this sec-
tion presents a comprehensive algorithm that combines
the environment model CE and the Büchi automaton
B, allowing verification within a feedback loop. To con-
struct the comprehensive algorithm, the first step is to
define synchronous labels.

Definition 6 The synchronous label ε of the environ-
ment model CE is defined as a set of transition condition
events on the transitions of the Büchi automaton B.

Synchronous labels serve as interaction indicators
between the environment model and the Büchi automa-
ton, determining whether a state transition can occur at
a specific time point. By defining synchronous labels, it
becomes possible to combine the environment model and
the Büchi automaton into a new representation. In this
new model, the combination of states from the environ-
ment model and the Büchi automaton forms the states,
and the synchronous labels define the transition condi-
tions between states. Additionally, formal verification tech-
niques can be applied to validate the interaction behavior
between the environment model and the Büchi automaton
and ensure compliance with specific properties.

Below is the definition of the combination of the envi-
ronment model CE = �D,D0,T ,�, δ,µ0� and the Büchi
automaton B = (Q,Q0,�, σ , F).

Definition 7 The product of the environment model
CE and the Büchi automaton B denoted as CEB can be
represented by a tuple as follows:

• Qξ is the set of states,
• Q

ξ
0 : Q

ξ
0 = (Q0,D0) ∈ Qξ is the set of initial states,

• � : � = 2AP is the input alphabet (set of atomic
propositions),

• δ : Q ×�× Q → [0, 1] is the labeled probabilistic
transition function

• σ = σ × D × T represents the transition relation-
ship,

• F is the set of accepting states.
• µ0 is the probability distribution over Qξ

0

Combining the environment model CE and Büchi
automaton B results in CEB, which contains both the
information of the operating environment and the prop-
erty constraints of the LTL formula.

The combination of the environment model CE and
Büchi automaton B is not strictly a Cartesian prod-
uct because a simple Cartesian product may lead to
invalid transitions. The synthesis algorithm described
in Algorithm 1 is designed for a given environment
model CE and Büchi automaton B. The algorithm ini-
tializes the current state node and the previous state
node and then iterates over all nodes in the state set.
The transition relationship between the current node
and the previous state node is considered. If it does
not satisfy the synchronization mapping, it is regarded
as unreachable, and the automaton form and transi-
tion are modified. Otherwise, a new transition form is
added.

CEB = CE ⊗ B =

(

Qξ ,Q
ξ
0,�, δ, σ , F ,µ0

)

Fig. 7 Transformed Büchi automata

Page 11 of 18Zhang et al. Journal of Cloud Computing (2024) 13:6

Algorithm 1 Synthetic algorithm

Insertion process
In the context of formal system verification, the inser-
tion of monitors is an important step. Inserting monitors
allows for dynamic monitoring and verification of the
system by inserting a runtime monitor into specific tran-
sitions of the system. The process of insertion is typically
achieved by defining insertion points and insertion rules.
The insertion points specify where the monitor should be
inserted, while the insertion rules specify how the moni-
tor is inserted at those points.

In the previous section, a monitor was constructed
using the synthesis algorithm that combines the environ-
mental model CE and the Büchi automaton B. To moni-
tor the entire system, it is necessary to insert the monitor
at appropriate locations. However, a generic insertion
method that inserts the monitor after every executed
statement would result in significant redundancy and
overhead. In reality, many program statements, such as
parameter initialization and variable assignments, do not
affect the system’s behavior. Therefore, it is crucial to sim-
plify the insertion algorithm. To reduce the complexity of
verification, this paper introduces the concept of visible
variables VisibleVar.

Definition 8 For a system being monitored, let’s
refer to it as System. If the current statement does
not cause any changes in the states of the monitor
(L(system) ∪ L(CEB) = ∅), the current execution point
is considered invisible to the monitor. However, if the

current code has the potential to alter the state of the
monitor, it is considered visible to the monitor.

L(system) ∪ L(CEB) = ∅ represents that when the
value at the current execution point of the system
changes, it does not affect the values in the monitor.
By using visible variables to identify the visible set of
the program, it clearly defines which data and which
parts of the program are necessary. The monitor can
only access them in specific contexts, thereby avoiding
erroneous data access, reducing the time required for
evaluations, and improving efficiency and safety.

Through optimization, the goal is to assess the impact
of runtime verification on system performance while
maintaining accuracy and completeness in the verifica-
tion process. Removing unnecessary insertion points
and only instrumenting at critical locations makes
it possible to significantly reduce the size of the state
space and improve the system’s runtime speed. Spe-
cifically, the instrumentation process is depicted in
Fig. 8. The insertion points specify where the monitor
is inserted, allowing instrumentation only in the corre-
sponding intersecting portions, which greatly reduces
the scale of instrumentation.

Instrumenting monitors make it possible to dynami-
cally monitor and verify the system, thus enhancing its
reliability and security. Moreover, inserting the monitors

VisibleVar =

{

false When and only when L(system) ∩ L(CEB) = ∅

true otherwise

Page 12 of 18Zhang et al. Journal of Cloud Computing (2024) 13:6

only at appropriate locations within the system and eval-
uating properties based on violation cases means there is
no need to insert the monitor program after every state-
ment. This approach avoids unnecessary computations,
significantly reducing the scale of verification and better
addressing the complexity and practical requirements of
the system.

Evaluation
To validate the effectiveness of the proposed method,
we conducted experimental verification of simulation
scenarios using the CoppeliaSim simulation software.
Furthermore, we performed validation studies in real-
world scenarios using the physical robot RoboMasterEP.
By modeling and monitoring environmental factors, we
demonstrated the feasibility and practicality of our pro-
posed method.

Simulation experiment
CoppeliaSim is a powerful general-purpose robot simu-
lation platform used in various fields such as robotics,
mechanics, physics, and electronics. It provides a range
of APIs and scripting interfaces, including Python, Lua,
and C/C++, allowing developers to easily write their con-
trol programs or algorithms and interact with the simula-
tion environment.

CoppeliaSim provides the ability to control each node
in the vehicle (e.g., engine, shaft) by assigning names to
them. By modifying the relevant kinematic parameters

and calling the corresponding nodes, the vehicle can be
controlled for motion. The kinematic model of the vehi-
cle is shown in Fig. 9. The map coordinates of the vehi-
cle’s location can be directly obtained from CoppeliaSim
and represented as (x, y). The coordinates of the detected
object are represented as (xi, yi) . In the model, d repre-
sents the distance between the center point of the vehi-
cle and the object, α represents the angle between the
forward direction and the object, β represents the angle
between the object direction and the horizontal axis, and
γ represents the angle between the forward direction and
the horizontal axis.

To create an accurate simulation environment in Cop-
peliaSim, it is necessary to set the parameters of the
entities based on real-world values. Therefore, in the
experiment, the simulation vehicle utilizes the intelli-
gent car model. To improve the accuracy of the simula-
tion, infrared sensors, and vision sensors are added to the
vehicle during the experiment to simulate environmental
perception in the real world. These measures enable bet-
ter simulation of the vehicle’s movement and facilitate
various tests and experiments. The simulation scene is
depicted in Fig. 10.

The controller designed in this section is implemented
using the Python programming language. By modifying
the wheel dynamics parameters of the vehicle in the sim-
ulation environment through Python code, the vehicle’s
motion can be controlled. The interaction between mod-
ules is illustrated in Fig. 11. After obtaining sensor data,

Fig. 8 Insertion form

Page 13 of 18Zhang et al. Journal of Cloud Computing (2024) 13:6

it is processed, and control commands are generated to
make decision control for the simulated vehicle.

The experimental design involves the operation of a
moving vehicle in an automatic cruise mode, where each
execution utilizes vision sensors and infrared sensors to
perceive the surrounding environment. The designed
safety property states that if there are no vehicles in

front of the vehicle, or if there is a vehicle ahead and the
distance is greater than the safety distance, the vehicle
accelerates until it reaches the maximum cruise speed
TLV. If there is a vehicle ahead and the distance is less
than the safety distance, the ACC system controls the
vehicle to decelerate until it reaches the safe cruising
speed VPL.

Fig. 9 Vehicle dynamics parameters

Fig. 10 CoppeliaSim Simulation scenario

Page 14 of 18Zhang et al. Journal of Cloud Computing (2024) 13:6

Analyze the influence of different environmental fac-
tors on the safety braking distance in the safety prop-
erty. Establish an environmental model with road and
weather conditions that affect the safety braking distance
and integrate it into the system model. Table 3 shows an
experiment comparing the simulation results with and
without the monitor and different environmental fac-
tors. The symbols � and × in the table indicate whether
the monitor was added. It can be concluded from the
results that the addition of the monitor can effectively
detect system violations and provide timely feedback
and responses. The reasons for the occurrence of less-
thansafedistance and collision in the table are that the
simulated vehicles did not respond differently to different
environments when detecting vehicles in front, resulting
in the same strategy being applied, which led to inad-
equate braking distance.

To further analyze the reasons for the different simu-
lation results, this paper will further elaborate on the

G((!exist ∨ (dis > ST)) → F(| speed− TLV |< 0.1))∨

G((exist ∧ dis ≤ ST) → F(| speed− VPL |< 0.1))

simulation scenario situation based on Fig. 12, and
obtain detailed data through the simxGetObjectPosition
interface.

Figure 12a shows a schematic diagram in which the
black car can maintain a safe distance from the red
car after adding the monitor. The minimum distance
between the red car and the black car is 19.831m, which
always meets the minimum interval for a safe distance.
Figure 12b shows that due to changes in environmen-
tal parameters, the black car brakes just in time when it
reaches a close distance from the red car. At this time,
the distance is already 10.386m, which is not enough to
ensure a safe braking distance. Figure 12c shows a col-
lision situation where the black car fails to adapt to
changes in environmental parameters, leading to a colli-
sion with the front car due to the delayed braking.

As the monitor is inserted as a program into the sys-
tem, this will cause more consumption during system
operation. If the performance and efficiency of the moni-
tor itself are not high, it will lead to inadequate monitor-
ing or inaccurate monitoring, and thus cannot provide
useful monitoring data and warning information, fail-
ing to effectively ensure the execution efficiency of the
system.

As shown in Fig. 13, the time consumption issue
caused by adding the monitor is demonstrated. The
experiment was designed to run a fixed path length while
obtaining the system’s relative time ticks and interpolat-
ing and smoothing the discrete points. It can be seen that
as the number of monitors increases, the required time
consumption will increase exponentially, and optimiza-
tion of the monitor can effectively reduce the time con-
sumption. Initially, adding an unoptimized monitor code

Fig. 11 Interaction between calculation and control

Table 3 Monitor effectiveness analysis

Environmental parameters Monitor Simulation result

Index 1, Friction Coefficient 0.65 � Maintain Distance

Index 1, Friction Coefficient 0.65 × Maintain Distance

Index 3, Friction Coefficient 0.41 � Maintain Distance

Index 3, Friction Coefficient 0.41 × Less than Safety Distance

Index 5, Friction Coefficient 0.3 � Maintain Distance

Index 5, Friction Coefficient 0.3 × Collision Occurs

Page 15 of 18Zhang et al. Journal of Cloud Computing (2024) 13:6

requires about 23.6ms of time consumption, while adding
20 monitors requires 554.1ms. As the number of moni-
tors increases, the time consumption does not increase
linearly with a constant but shows an exponential trend.
This is because when the number of monitors increases,
the computational complexity of each monitor’s attribute

verification will also increase, and storing data related to
system behavior will increase memory requirements and
reduce performance. After optimization, adding an opti-
mized monitor takes about 13.9ms, and the average time
consumption of an optimized monitor is about 41.1% of
that before optimization.

Fig. 12 Interaction between calculation and control

Fig. 13 Time consumption of monitor

Page 16 of 18Zhang et al. Journal of Cloud Computing (2024) 13:6

Experimental analysis shows that after modeling the
environment, the monitor formed by combining the
environment model and system specification can still
effectively monitor the system and make corrections
in complex environments. This ensures the safety and
reliability of the system when facing environmental
influences.

Physical experiments
In this paper, the RoboMaster EP launched by DJI Inno-
vation Technology Co., Ltd. is adopted as the physical
simulation platform. As shown in Fig. 14, The EP robot
is equipped with open interfaces, sensor interfaces, and
programmable components. Its control system is based
on the Linux operating system, using ROS as middle-
ware, providing a complete platform for robot control
and programming. The experiment utilizes a platform
communication mode, establishing a TCP/IP connection
with the EP robot and enabling communication through
a plaintext SDK. The running code is transmitted to the
intelligent central controller. The monitoring algorithm
proposed in this study is implemented in Python for
monitoring through code instrumentation. All experi-
ments were conducted on a machine with an Intel Xeon
W-2225 CPU and 16GB RTX5000.

Figure 15 depicts the physical experimental setup.
Due to the susceptibility of the robot’s operational
state to environmental factors, it is crucial to monitor
the robot’s behavior to promptly detect and address
any issues that may arise. The experiment aims to
assess whether the robot can maintain stability and

make correct decisions when subjected to environ-
mental changes. Therefore, the formulated property is
G(V < speed) , where V represents the robot’s velocity
and speed denotes the desired speed threshold. This
property ensures that the robot’s velocity remains
consistently below the specified speed threshold, indi-
cating that it is maintaining a stable and controlled
motion. In this experiment, the environmental fac-
tors in the scene are set to random values represent-
ing different conditions such as slippery, normal, and
sandy. Each weather condition is assigned acceptance
values (f1, f2, f3) such that f1 + f2 + f3 = 1 . A section of
slippery terrain is introduced along the path of the EP
robot to simulate the effects of environmental interfer-
ence. Based on the contextual information, a monitor
is constructed and inserted into the executing code.

Figure 16 illustrates the variations in the robot’s
driving speed under the influence of environmen-
tal factors, considering the presence or absence of the
monitor constraint. Since the vehicle’s speed can be
sampled periodically, the global speed changes can
be observed intuitively. To capture the speed changes
within shorter time intervals, the experiment adopts a
fixed step size for sampling. The arrows in the figure
represent moments when the environmental informa-
tion changes, impacting the robot’s driving speed. From
the graph, it can be observed that the EP robot initially
travels at a limited speed. However, upon entering
the slippery terrain, the robot’s actual speed increases
beyond the safe speed threshold. It is only after pass-
ing through the slippery terrain that the robot returns
to a safe speed. With the addition of the monitor, safety
property violations are promptly detected, allowing
corrective actions to be taken regarding the behavior of
the EP robot.Fig. 14 EP robot

Fig. 15 Experimental scene

Page 17 of 18Zhang et al. Journal of Cloud Computing (2024) 13:6

Conclusion
This paper presents a kind of runtime monitor with
environment awareness for ITS. By modelling and quan-
titative analysis of the environment, combined with
runtime verification techniques, we have successfully
inserted precisely expressed monitors into the target
program. The construction of these monitors is based
on the conversion process from LTL to Büchi autom-
ata, using an algorithm that combines the environ-
ment model with the Büchi automata. We also simplify
the insertion algorithm by defining the visible variable
VisibleVar. Simulation experiments in the CoppeliaSim
environment and physical experiments with the actual
EV robot verify the effectiveness of the proposed moni-
tor. The experimental results show that the monitor can
accurately monitor and control the system behaviour in
real time and ensure the correct operation of the system
under uncertain environments. This provides an effec-
tive solution for the safety and reliability of unmanned
systems.

However, this paper employs LTL for descriptive pur-
poses; nevertheless, limitations exist in characteris-
ing certain properties. Further research should aim to
broaden the attributes’ description to accommodate mul-
tifarious variations in intricate environments.

In conclusion, the context-aware environment online
monitoring method proposed in this paper provides
an effective solution for the safety and reliability of
ITS. The real-time monitoring of system behaviour

can ensure the normal operation of the system under
uncertain environments and improve the performance
and efficiency of the system. Future research will fur-
ther advance the development and application of
monitors to address more complex and diverse envi-
ronmental challenges and promote the development of
unmanned systems.

Authors’ contributions
Yu Zhang ,Sijie Xu and Hongyi Chen wrote the main manuscript text. Uzair
Aslam Bhatt and Mengxing Huang mainly responsible for revising and check-
ing articles. All authors reviewed the manuscript.

Funding
This work was supported in part by the National Natural Science Founda-
tion of China (Grant #: 62062030), in part by the Key R &D Project of Hainan
province (Grant #: ZDYF2021SHFZ243), in part by the Major Science and
Technology Project of Haikou (Grant #: 2020-009).

Availability of data and materials
No data were used to support this study. Data availability is not applicable to
this article as no new data were created or analyzed in this study.

Declarations

Ethics approval and consent to participate
This article does not contain any studies with human participants or animals
performed by any of the authors.

Consent for publication
The authors read and approved the fnal manuscript.

Competing interests
The authors declare no competing interests.

Fig. 16 Experiment result

Page 18 of 18Zhang et al. Journal of Cloud Computing (2024) 13:6

Received: 27 October 2023 Accepted: 7 December 2023

References
 1. Cheng M, Li D, Zhou N, Tang H, Wang G, Li S, Bhatti UA, Khan MK (2023)

Vision-motion codesign for low-level trajectory generation in visual
servoing systems. IEEE Trans Instrum Meas 72:1–14

 2. Bhatti UA, Huang M, Neira-Molina H, Marjan S, Baryalai M, Tang H, Wu G,
Bazai SU (2023) Mffcg-multi feature fusion for hyperspectral image clas-
sification using graph attention network. Expert Syst Appl 229:120496

 3. Liu K, Li P, Zhang Y, Ren J, Wang X, Bhatti UA (2023) Self-awakened particle
swarm optimization bn structure learning algorithm based on search
space constraint. Comput Mater Continua 76(3):3257–3274

 4. Bhatti UA, Tang H, Wu G, Marjan S, Hussain A (2023) Deep learning with
graph convolutional networks: An overview and latest applications in
computational intelligence. Int J Intell Syst 2023:1–28

 5. Bhatti UA, Marjan S, Wahid A, Syam M, Huang M, Tang H, Hasnain A (2023)
The effects of socioeconomic factors on particulate matter concentration
in china’s: new evidence from spatial econometric model. J Clean Prod
417:137969

 6. Pnueli A (1977) The temporal logic of programs. In: 18th Annual Sympo-
sium on Foundations of Computer Science (sfcs 1977). pp 46–57.
https:// doi. org/ 10. 1109/ SFCS. 1977. 32

 7. Yang D, Shi H, Dong W, Liu ZL, Zhou G (2018) Security and safety threat
detection method for unmanned aerial system based on runtime verifi-
cation. J Softw 29(5):1360–1378. http:// www. jos. org. cn/ 1000- 9825/ 5508. htm

 8. Vardi MY, Wolper P (1986) An automata-theoretic approach to automatic
program verification. In: Proceedings of the First Symposium on Logic in
Computer Science. IEEE Computer Society, New York, p 322–331

 9. Alur R, Dill DL (1994) A theory of timed automata. Theor Comput Sci
126(2):183–235

 10. Baier C, Katoen JP (2008) Principles of Model Checking. MIT press,
Cambridge

 11. Bloem R, Jobstmann B, Piterman N, Pnueli A, Sa’Ar Y (2012) Synthesis of
reactive(1) designs. J Comput Syst Sci 78(3):911–938

 12. Allred JD, Ultes-Nitsche U (2018) A simple and optimal complementa-
tion algorithm for büchi automata (LICS ’18). Association for Computing
Machinery, New York, pp 46–55

 13. Leucker M, Schallhart C (2009) A brief account of runtime verification.
J Logic Algebraic Program 78(5):293–303

 14. Wang Z (2014) Research on runtime verification of real-time systems.
Master’s thesis, Huazhong Normal University, Wuhan, in Chinese with
English abstract

 15. (1990) IEEE Standard Glossary of Software Engineering Terminology. In:
IEEE Std 61012-1990. pp 1–84. https:// doi. org/ 10. 1109/ IEEES TD. 1990. 101064

 16. Bayat B, Crasta N, Crespi A, Pascoal AMS, Ijspeert AJ (2017) Environmental
monitoring using autonomous vehicles: a survey of recent searching
techniques. Curr Opin Biotechnol 45:76–84. https:// api. seman ticsc holar.
org/ Corpu sID: 43128 79

 17. Snodgrass R (1988) A relational approach to monitoring complex systems.
ACM Trans Comput Syst 6(2):157–195. https:// doi. org/ 10. 1145/ 42186. 42323

 18. Basin D, Klaedtke F, Müller S, Zălinescu E (2015) Monitoring metric first-
order temporal properties. J ACM 62(2). https:// doi. org/ 10. 1145/ 26994 44

 19. Zhao C, Dong W, Qi Z (2010) Active monitoring for control systems under
anticipatory semantics. In: 2010 10th International Conference on Quality
Software. pp 318–325. https:// doi. org/ 10. 1109/ QSIC. 2010. 82

 20. Matos Pedro A, Pereira D, Pinho LM, Pinto JS (2014) A compositional moni-
toring framework for hard real-time systems. In: Proceedings of the 6th Inter-
national Symposium on NASA Formal Methods - Volume 8430. Springer-
Verlag, Berlin, pp 16–30. https:// doi. org/ 10. 1007/ 978-3- 319- 06200-6_2

 21. Vierhauser M, Garmendia A, Stadler M, Wimmer M, Cleland-Huang J
(2023) Grum - a flexible model-driven runtime monitoring framework
and its application to automated aerial and ground vehicles. J Syst Softw
203:111733. https:// doi. org/ 10. 1016/j. jss. 2023. 111733

 22. Heffernan D (2014) Runtime verification monitoring for automotive
embedded systems using the iso 26262 functional safety standard
as a guide for the definition of the monitored properties. IET Softw
8:193–203(10). https:// digit al- libra ry. theiet. org/ conte nt/ journ als/ 10. 1049/
iet- sen. 2013. 0236

 23. Vierhauser M, Wohlrab R, Stadler M, Cleland-Huang J (2023) Amon: A
domain-specific language and framework for adaptive monitoring of
cyber-physical systems. J Syst Softw 195(C). https:// doi. org/ 10. 1016/j. jss.
2022. 111507

 24. Stadler M, Vierhauser M, Garmendia A, Wimmer M, Cleland-Huang J
(2022) Flexible model-driven runtime monitoring support for cyber-
physical systems. In: Proceedings of the ACM/IEEE 44th International
Conference on Software Engineering: Companion Proceedings (ICSE ’22).
Association for Computing Machinery, New York, pp 350–351. https:// doi.
org/ 10. 1145/ 35104 54. 35286 47

 25. Mehmed A (2020) Runtime monitoring for safe automated driving
systems. PhD thesis, Mälardalen University

 26. Machin M, Dufossé F, Blanquart JP, Guiochet J, Powell D, Waeselynck
H (2014) Specifying safety monitors for autonomous systems using
model-checking. In: Proceedings of the 33rd International Conference
on Computer Safety, Reliability, and Security - Volume 8666 (SAFECOMP
2014). Springer-Verlag, Berlin, pp 262-277. https:// doi. org/ 10. 1007/ 978-3-
319- 10506-2_ 18

 27. Luo C, Wang R, Guan Y, Li X, Shi Z, Xiaoyu S (2019) Integrated modeling
method of cps for real-time data. J Softw 30(7):1966–1979. http:// www.
jos. org. cn/ 1000- 9825/ 5753. htm

 28. Gastin P, Oddoux D (2001) Fast ltl to büchi automata translation. In: Berry
G, Comon H, Finkel A (eds) Proc. of the 13th Int’l Conf. on Computer
Aided Verification, LNCS, vol 2102. Springer-Verlag, Heidelberg, pp 53–65

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/SFCS.1977.32
http://www.jos.org.cn/1000-9825/5508.htm
https://doi.org/10.1109/IEEESTD.1990.101064
https://api.semanticscholar.org/CorpusID:4312879
https://api.semanticscholar.org/CorpusID:4312879
https://doi.org/10.1145/42186.42323
https://doi.org/10.1145/2699444
https://doi.org/10.1109/QSIC.2010.82
https://doi.org/10.1007/978-3-319-06200-6_2
https://doi.org/10.1016/j.jss.2023.111733
https://digital-library.theiet.org/content/journals/10.1049/iet-sen.2013.0236
https://digital-library.theiet.org/content/journals/10.1049/iet-sen.2013.0236
https://doi.org/10.1016/j.jss.2022.111507
https://doi.org/10.1016/j.jss.2022.111507
https://doi.org/10.1145/3510454.3528647
https://doi.org/10.1145/3510454.3528647
https://doi.org/10.1007/978-3-319-10506-2_18
https://doi.org/10.1007/978-3-319-10506-2_18
http://www.jos.org.cn/1000-9825/5753.htm
http://www.jos.org.cn/1000-9825/5753.htm

	Context-aware environment online monitoring for safety autonomous vehicle systems: an automata-theoretic approach
	Abstract
	Introduction
	Background
	Linear temporal logic
	Büchi Automaton
	Runtime verification

	Related work
	Context-aware environmental modeling method
	System framework
	Environment modeling
	Task formalization description

	Monitor generation
	Algorithm for generating monitors
	LTL to AA
	AA to GBA
	GBA to BA

	The integrated algorithm for synthesizing the environment model and Büchi automaton
	Insertion process

	Evaluation
	Simulation experiment
	Physical experiments

	Conclusion
	References

