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Abstract 

The emergence of mobile edge computing (MEC) has brought cloud services to nearby edge servers facilitating 
penetration of real‑time and resource‑consuming applications from smart mobile devices at a high rate. The problem 
of task offloading from mobile devices to the edge servers has been addressed in the state‑of‑the‑art works by intro‑
ducing collaboration among the MEC servers. However, their contributions are either limited by minimization of ser‑
vice latency or cost reduction. In this paper, we address the problem by developing a multi‑objective optimization 
framework that jointly optimizes the latency, energy consumption, and resource usage cost. The formulated problem 
is proven to be an NP‑hard one. Thus, we develop an evolutionary meta‑heuristic solution for the offloading problem, 
namely WOLVERINE, based on a Binary Multi‑objective Grey Wolf Optimization algorithm that achieves a feasible 
solution within polynomial time having computational complexity of O(M3) , where M is an integer that determines 
the number of segments in each dimension of the objective space. Our experimental results depict that the devel‑
oped WOLVERINE system achieves as high as 33.33%, 35%, and 40% performance improvements in terms of execu‑
tion latency, energy, and resource cost, respectively compared to the state‑of‑the‑art.

Keywords Collaborative mobile edge computing, Multi‑objective grey wolf optimization, Latency, Service caching, 
Task offloading

Introduction
The proliferation of seamless internet connectivity tech-
nologies, such as WiFi, 4G, 5G, or LTE, as well as the 
availability of high processing capabilities at the mobile 
edge, has pushed the horizon of a new computing para-
digm called mobile edge computing (MEC) [1–3]. In 

recent years, the penetration of computation-intensive 
real-time applications has increased with the rapid rise 
of massively connected heterogeneous mobile devices 
(MDs) [4]. According to [5], Cisco predicts that by 2030, 
almost 500 billion gadgets will be associated with the 
Internet of Things (IoT). Frequent access to cloud ser-
vices results in an increase in mobile data traffic as well 
as backhaul latency, which in turn diminishes the Qual-
ity of Experience (QoE) of the application users [1]. The 
MEC alleviates these problems by bringing the resources 
closer to the end users [6]. The benefits of MEC can fur-
ther be extended by introducing collaboration among 
edge servers located in different geographical regions, 
called collaborative mobile edge computing (CoMEC) 
[7]. Not only do the edge servers participate in resource 
sharing, but vertical collaboration [8] also takes place 
among the three layers of CoMEC. Vertical collaboration 
in the MEC environment signifies collaboration among 
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multiple layers of IoT computing infrastructure, includ-
ing the IoT devices at the bottom, the edge cloud servers 
at the middle, and the master cloud at the top, as shown 
in Fig. 1.

While CoMEC increases the sustainability of edge 
computing, service caching at the MEC layer favors the 
QoE of the real-time application users [9]. Service cach-
ing refers to caching the information that must be known 
by the edge server to complete the task execution. This 
information includes system settings, the heavy pro-
gram code of the application, and their related databases/
libraries [10]. Figure 1 illustrates some real-life use cases 
where caching is exploited in MEC for better QoE. One 
such case is where the MEC can be exploited for intel-
ligent transportation systems (ITS), such as extending the 
connected vehicle cloud into the mobile network [11]. As 
a result, roadside applications operating directly at the 
MEC may receive local messages from vehicles and road-
side sensors, process them, and broadcast alerts (e.g., an 
accident) to nearby vehicles within the shortest possible 
time [12]. The second case is of virtual reality and face-
recognition data processing in various applications that 
require frequent database access. Both of these applica-
tions are data-intensive and need to deliver output in real 

time to ensure higher QoE to users. In all of the afore-
mentioned cases, service caching can go a long way to 
ensure fast services to users. Caching prevents the same 
data from being offloaded multiple times, thus, both 
transmission latency and energy consumption can be 
reduced.

Computation offloading to a CoMEC network con-
sidering service caching may improve the overall QoE 
by reducing the associated system costs in terms of the 
queuing delay of tasks, energy consumption of devices, 
monetary costs, and so on [13, 14]. Additionally, it is not 
realistic to offload all tasks of MD to MEC all the time 
as the limited storage and computing resources of MEC 
significantly affect the time delay of the offloaded tasks. 
Therefore, an optimal task offloading decision needs 
to be formulated to achieve an efficient network model 
while keeping the aforementioned system costs minimal. 
A large number of researches have been done on caching 
strategies [15, 16] and CoMEC. Content caching, com-
putation offloading, and resource allocation problems 
have been jointly considered in [4] to reduce users’ over-
all task execution time but it lacks collaboration among 
the edge servers. An AI-based task allocation algorithm 
namely iRAF has been proposed in [17] for the CoMEC 

Fig. 1 Real‑life applications of service caching in MEC
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network where the average latency and energy have been 
optimized. Here, either one of the objectives is optimized 
by associating binary weights that create unfairness in 
the result. In [18], monetary cost and execution delay 
has been optimized using the particle swarm optimiza-
tion (PSO) algorithm for a vehicular network. However, 
addressing mobile energy consumption still remains an 
issue. Three prime objectives, that is, execution time, 
energy consumed, and monetary cost have been opti-
mized in a multi-user multi-server environment using a 
multi-objective evolutionary algorithm (MOEA/D) com-
bining simple additive weighting (SAW) and multi-attrib-
ute decision making (MDM) in [19]. This work too lacks 
collaboration among servers and cache resource alloca-
tion which can be crucial to addressing QoE.

This research endeavors to bridge notable gaps that 
have persisted in the existing body of knowledge in the 
MEC environment. In a dynamic environment, where 
heterogeneous mobile devices and edge servers are 
involved in optimizing multiple objectives simultane-
ously, no existing solutions can effectively address the 
problem. Several challenges are encountered while opti-
mizing conflicting objectives together in a complex envi-
ronment where multiple real-time applications operate 
on different user devices. Firstly, real-time applications 
require faster processing than others. If they are com-
putationally expensive, offloading associated data and 
codes frequently creates a significant overhead. Secondly, 
handling offloading decisions while executing tasks can 
slow down the services of edge servers, especially if the 
resources of the edge servers become saturated, thus 
degrading QoE. Thirdly, since multiple objective param-
eters are targeted for optimization, they can be conflict-
ing in nature. Thus, an exhaustive exploration of potential 
solution combinations becomes imperative. Most of the 
studies done so far have opted for single-objective opti-
mization associating scalar weights to multiple objective 
parameters. Some of these depend on multiple deci-
sion criteria for selecting solutions [19]. The parameters 
for such decision-making variables require meticulous 
fine-tuning and the environment saturated with real-
time applications cannot afford to create extra overhead 
as such. Finally without service caching, every request 
for a particular service or content would need to travel 
from the user’s device to the edge server or even further 
to the cloud, resulting in higher latency. This delay can 
be especially problematic for real-time delay-sensitive 
applications.

In this paper, we investigate a problem of joint optimi-
zation of task execution time, energy, and resource usage 
cost while offloading tasks in a CoMEC network. A task 
offloading framework based on grey WOLf optimization 
that exploits VERtical collaboration IN Edge computing, 

namely WOLVERINE system is devised to solve the 
problem. The WOLVERINE stands out from other task-
offloading frameworks due to its innovative features and 
advantages. Traditional task offloading frameworks suffer 
from several drawbacks, which can be categorized into 
three main areas: 1) lack of reproducibility of offloaded 
application codes, 2) lack of collaboration among the 
edge servers, and 3) inability to optimize multiple cru-
cial parameters simultaneously. These limitations have 
negative implications for network systems, resulting in 
decreased QoE, underutilized resources, and suboptimal 
network performance. In response to these challenges, 
WOLVERINE introduces a novel task offloading scheme 
for real-life computationally intensive applications, uti-
lizing an evolutionary algorithm. This scheme addresses 
the collaboration among servers and leverages cached 
application code to minimize time, energy, and resource 
costs in edge computing environments. The main contri-
butions of the WOLVERINE framework are listed below:

• We design a collaborative task offloading framework 
that effectively utilizes cached and computational 
resources to enhance user QoE in a CoMEC system 
where real-time applications are executed.

• We formulate the problem of jointly optimizing 
latency, energy, and resource usage cost as a Multi-
objective Linear Programming (MOLP) problem.

• Due to the NP-hardness of the above MOLP, we 
exploit Binary Multi-Objective Grey Wolf Optimi-
zation (BMOGWO), a meta-heuristic evolutionary 
algorithm, to develop a polynomial time solution to 
the problem, namely WOLVERINE.

• The experimental results depict that the proposed 
WOLVERINE system outperforms in terms of execu-
tion latency, energy, and resource cost in comparison 
with [19] by 33.33%, 35%, and 40%, respectively.

The rest of this paper is organized as follows. “Related 
works”  section illustrates the major existing works. 
“System model”  section describes the system model of 
WOLVERINE. “Design details of WOLVERINE”  sec-
tion elaborates the computational model, multi-objective 
problem formulation, and meta-heuristic task offloading 
scheme. “Performance evaluation”  section describes the 
environmental setup and results of experimental analysis. 
Finally, “Conclusion”  section summarizes the key out-
comes of our work and some future research directions.

Related works
Several works in the field of collaborative edge com-
puting have been done, including optimal task caching 
and task allocation while optimizing a single objective 
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function, trade-offs between two or more objectives, and 
multi-objective optimization.

The first category of works in the literature focused 
on single-objective optimization in collaborative edge 
computing, for example, energy, time, or resource cost 
allocation. In [2], a genetic algorithm based on a data-
aware task allocation strategy has been proposed that 
considers the network congestion control for allocat-
ing sub-tasks. In [20], the authors have focused on the 
reduction of energy consumption for task assignments 
by considering the heterogeneity of users using a heu-
ristic-based greedy approach. An architecture has been 
proposed in [21] that considers unloading resource-
intensive tasks from client devices in the cooperative 
edge space or to the remote cloud depending on users’ 
desire and resource availability. An AI-driven intelli-
gent Resource Allocation Framework (iRAF) [17] has 
been designed to solve complex resource allocation 
problems considering the current network states and 
task characteristics. Another group of authors in [22] 
have utilized a deep reinforcement learning method to 
solve computation offloading and resource allocation 
problems in a blockchain-based multi-UAV-assisted 
dynamic environment.

Computation offloading that focuses on the mini-
mization of system cost comprising the trade-off 
between energy and task execution delay in the form 
of a weighted sum has been proposed in [15]. Collabo-
ration among MEC servers for (data) cache and com-
putational resource allocation are noteworthy in [15]. 
However, caching the content or code of applications 
is not enough due to the limited computational capac-
ity of user devices as well as the delay associated with 
transmitting cached data or code. Hence the idea of 
jointly task offloading and caching needs to be consid-
ered. In [16], a joint service caching, task offloading, and 
system resource allocation scheme to minimize system 
cost comprising of time and energy have been formu-
lated using a MILP problem. In [23], a priority-based 
task offloading and caching scheme is proposed for the 
MEC environment, where computing a task while reduc-
ing energy cost and delay time efficiently is the main 
priority. A new low-complexity hyper-heuristic algo-
rithm has been proposed in [24], where content cach-
ing is performed along with computation offloading 
in an MEC network to optimize the service latency for 
all ground IoT devices. Mobility and user preference-
aware content-caching in MEC are orchestrated in [25]. 
The authors in [26] introduce an enhanced binary PSO 
algorithm, which is designed for optimizing task offload-
ing and content caching in MEC networks. It focuses 
on jointly optimizing task completion delay and energy 
consumption. Additionally, an enhanced binary particle 

swarm optimization (BPSO) algorithm is proposed for 
content caching in parallel task offloading scenarios. 
An alternating-iterative algorithm has been developed 
in [27] for jointly optimizing task caching and offload-
ing in a resource-constraint environment to minimize 
energy consumption. Here task caching indicates cach-
ing of a completed application and relevant data. Subse-
quently, in [4], content caching, computation offloading, 
and resource allocation problems have been jointly con-
sidered to reduce users’ overall task execution time. 
However, caching a complete application, i.e., content 
caching is often incompatible with user requirements. 
Hence, the idea of caching data codes for joint task off-
loading and data caching using the Lyapunov algorithm 
for minimizing task computation delay has been intro-
duced in [28]. The authors have formalized joint service 
caching and task offloading decisions to minimize com-
putation latency while keeping the total computation 
energy consumption low.

Multi-Objective Optimization problems are adopted 
for computation offloading in edge cloud by the authors 
of [29] which focused on the offloading probability of 
tasks to edge cloud from an MD. To optimize execution 
time, energy, and resource cost to maximize utility for 
resource providers in IoT networks, energy harvesting 
properties of unnamed aerial vehicles (UAV) are used in 
[30]. A deep reinforcement learning (DRL) based solu-
tion is used for this system network that is managed by 
blockchain. Multi-objective optimization problems have 
multiple Pareto-optimal solutions which are obtained by 
trade-offs. Hence, evolutionary algorithms can play a sig-
nificant role in reaching a single-preferred solution [31]. 
In [32], time, energy, and cost were minimized for an edge 
cloud environment using the genetic algorithm NSGA-II. 
Minimization of average latency and energy consump-
tion simultaneously for offloading tasks using the Cuckoo 
search algorithm has been proposed in [33]. In [34], 
Grey-Wolf Optimization is used to perform a trade-off 
between the minimization of energy consumption and 
response time in an MEC environment. An Improved 
Multi-Objective Grey Wolf Optimization (IMOGWO) 
is used for sub-task scheduling in an edge computing 
environment introduced in [35] to optimize makespan, 
load balance, and energy simultaneously. Computation 
time and cost minimization have been performed in [18] 
using the Particle Swarm Optimization (PSO) algorithm 
for a Vehicular Edge Computing (VEC) environment. In 
[19], a tri-objective problem has been considered in a 
multi-user and multi-server task offloading environment 
where an application is divided into multiple independ-
ent sub-tasks. A Multi-objective Evolutionary Algorithm 
based on decomposition (MOEA/D) has been developed 
for optimizing the time, cost, and energy expended in 
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the execution of a particular sub-task. MOEA/D is also 
used to minimize latency and energy in [36] for the MEC 
environment, where the ordering of subtasks exists as a 
constraint. It is also used for minimization of latency and 
maximization of rewards for servers and tasks in [37]. 
However, the direct assignment of sub-tasks from mobile 
devices to a server is costly in terms of energy and off-
loading decision-making. The works mentioned above 
that addressed multi-objective optimization do not have 
a system environment similar to that of CoMEC handling 
real-life applications.

The summary of the state-of-the-art works has been 
listed in Tables  1 and 2. Most of the existing literature 
works have either performed single-objective optimiza-
tion or weighted optimization in multi-user multi-server 
networks with and without cache or have performed 
multi-objective optimization without caching and col-
laboration among servers. The problem of jointly opti-
mizing three basic objectives: execution latency, device 
energy, and resource cost has not yet been resolved in the 
CoMEC system incorporating service caching. The gen-
eration of Pareto-optimal solutions for optimizing mul-
tiple objectives simultaneously in a resource-constrained 
environment where servers collaborate and cache ser-
vice is yet to be done. These observations have driven 
us to design a task offloading framework in the CoMEC 
environment for generating Pareto-optimal solutions for 
multi-objective optimization by exploiting service caching 
of computational resources.

System model
In this section, we describe the different entities of a 
CoMEC network and the interactions among them.

Entities of CoMEC network
We consider a CoMEC network consisting of a set of 
collaborative edge servers (CESs), E and a set of mobile 
devices (MDs), U , as shown in Fig. 2. Each mobile device 
k ∈ U is connected with one edge server j ∈ E , which 
is termed as its primary edge server (PES). Let τ be the 
set of M tasks arrived at a PES from mobile devices. 
Each task i ∈ τ is denoted by a four-parameter tuple, 
〈bi,Bi,T

max
i , δi〉 , where bi is the input data size, Bi is the 

size of related data codes, Tmax
i  is the task deadline and δi 

is the task budget. In this work, data code is considered 
to consist of application-related program code, system 
settings, and related databases/libraries.

Each mobile device k has computational resources and 
each edge server j is considered to consist of both compu-
tational and cached resources. Table 3 contains major nota-
tions. A task generated from an MD can be executed either 
on the MD itself or at any edge server where edge servers 
are borrowing resources from the cloud while needed.

Collaboration among entities
Upon receiving a set of task requests, τ from the mobile 
devices, the PES communicates with the other CESs for 
task-related information and checks the availability of 
the resources, i.e., cached and computational resources 
required for the execution of the tasks. After getting 
the resource availability information, the PES runs 
the WOLVERINE task allocation decision algorithm 
and determines the appropriate resource providers to 
execute the tasks considering their requirements. If 
none of the servers has enough resources to complete 
a task, it is forwarded to the master cloud for execu-
tion, implementing a vertical collaborative computation 
environment.

Table 1 Summary of methods exploited

State-of-the-art works Applied technique Cache Multi-
objective 
optimization

Edge 
collaboration

Objective function

[17] Monte Carlo Tree Search + Multi‑Task Learning ✗ ✗ ✓ Traded‑off latency & energy

[4] Modified branch and bound + Modified gen‑
eralized benders decomposition method

✗ ✓ ✗ Minimized task execution latency

[24] Lagrange dual decomposition ✓ ✓ ✗ Minimized latency

[19] Multiobjective Evolutionary Algorithm based 
on Decomposition

✗ ✓ ✗ Minimized latency, energy & cost

[38] Collaborative Filtering + Cosine Similarity & 
Dynamic Time Wrapping

✓ ✓ ✗ Minimized latency & energy

WOLVERINE BMOGWO ✓ ✓ ✓ Minimized latency, energy & cost

Table 2 Summary of targeted performance parameters

State-of-the-art works Execution 
time

Energy 
consumption

Monetary 
cost

[20] ✓ ✗ ✗
[4] ✗ ✓ ✗
[17, 22, 33, 34, 38] ✓ ✓ ✗
[18, 19], WOLVERINE ✓ ✓ ✓
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Design details of WOLVERINE
In this section, we unfold different design components of 
WOLVERINE. First, we present a computational model 
of the proposed WOLVERINE system, then we formu-
late the task offloading problem as a multi-objective 

optimization problem; and finally, we devise a binary 
multi-objective grey wolf optimization-based solution.

Computational model of WOLVERINE
In this section, we unfold different design components of 
WOLVERINE. First, we present a computational model 
of the proposed WOLVERINE system, then we formu-
late the task offloading problem as a multi-objective 
optimization problem; and finally, we devise a binary 
multi-objective grey wolf optimization-based solution.

Figure  3 depicts the functional modules of the pro-
posed WOLVERINE system, where an individual mod-
ule is responsible for performing a specific function. The 
main functional modules of the PES can be grouped into 
two categories: the PES service module and the CES ser-
vice module. The PES service module handles the task 
requests from the MDs and determines the optimal task 
offloading policy with the help of the CES service mod-
ule. The responsibility of the CES service module is to 
manage collaboration between the PES and the CESs. 
Note that any collaborative edge server can work as a 
primary server by installing the PES service module to 
achieve the corresponding functionalities. The function-
alities of each module are described below:

• Task Profiler receives the task-offloading requests 
from the MD first and then checks for the required 

Fig. 2 The structure of CoMEC network over fiber‑wireless connection

Table 3 Description of notations

Notation Description

U Set of mobile devices in the system

τ , E Set of tasks and set of servers, respectively

ci Required CPU‑cycle to complete task i ∈ τ

µk
i

% of CPU‑cycles allocated to task i ∈ τ by MD k ∈ U

�ij % of CPU‑cycles allocated to task i ∈ τ by server j ∈ E

Bij Radio bandwidth allocated to task i by server j

pk Transmission power of MD k ∈ U

f k CPU‑cycle frequency of MD k ∈ U

f j CPU‑cycle frequency of server j ∈ E

bi Size of input data of task i ∈ τ

Bi Size of the data code related to task i ∈ τ

σi,j Cached resource availability for task i at server j

γj Per unit CPU‑cycle cost of server j ∈ E

ηj Per unit storage cost of server j ∈ E

χw Position vector of wolf w ∈ P

xwd Position of wolf w ∈ P at dth dimension
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cached resources for each task using the Resource 
Availability Database (Path 2) and propagates the 
task and resource data to the Optimal Task Allocator 
module (Path 3) for optimal resource allocation.

• Optimal Task Allocator is the core computational 
block of the PES service module. It collects the 
task’s descriptions from the task profiler, queries 
the resource availability of the Collaborative Edge 
Servers (CES) to the Resource Availability Checker 
(Path 4) whose result comes through the Resource 
Availability Database (Path 5-6-7-8-9), formulates 
the WOLVERINE task offloading problem and com-
municates the associated task offloading decision 
vectors to the MDs.

• Resource Availability Database records the availabil-
ity of the computational and cached resources of the 
CES that comes through the Communication Module 
and Resource Availability Checker (Path 6-7-8).

• Resource Availability Checker queries resources to 
other neighboring CESs and updates the cached and 
computational resources periodically or when trig-
gered by the Optimal Task Allocator (Path 16).

• Task Execution Module executes the computational 
tasks offloaded to it by utilizing the available computa-
tional resources (Path 14) and cached data administered 
by Caching Management Module (Path 11-12-13).

• Caching Management Module supplies the cached 
data to the Task Execution Module from the Cached 
Data module (Path 12-13) and maintains the cached 
data repository by performing maintenance functions.

• Cached Data Repository stores the cached data code 
from the Computational Resource module for fur-
ther use (Path 15).

• Computational Resources module stores the serv-
er’s available resources, such as CPU cycle and mem-
ory, for usage by the Task Execution Module.

• Communication Module establishes collaboration 
among multiple edge servers and acts as a commu-
nication medium between the server and the MDs to 
share task data and computational results.

Multi-objective problem formulation
In this section, we calculate total latency Tij , energy 
consumption Eij and monetary cost Cij for offloading 
task i ∈ τ to edge server j ∈ E or for local computation. 
Finally, we formulate the task offloading problem of 
WOLVERINE as a multi-objective optimization problem.

Calculation of Tij
Two different cases for calculating Tij:

Fig. 3 Computational framework of WOLVERINE
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In the first case, the mobile device executes the task 
locally, thus, experiencing no communication delay. So, 
the task computation delay, tkij for executing task i ∈ τ on 
the mobile device k ∈ U locally is calculated as,

Here, ci is the number of computation cycles required 
to compute the task, µk

i  is the ratio of CPU cycles allo-
cated by kth mobile device to complete ith task and f k is 
the CPU-cycle frequency of kth mobile devices.

For the second case, the input data and/or data code 
are offloaded to the MEC servers. If the data code is 
cached at the offloading server, then only the input data 
needs to be transmitted; otherwise, the device sends the 
input data along with the code to the server. For wireless 
transmission between the mobile device and collabora-
tive edge server that follows Orthogonal Multiple Access 
(OMA), we consider the Rayleigh channel, and the trans-
mission rate is calculated as,

where, Bij is the allocated radio bandwidth, pk is the 
transmission power, hk is the channel gain ( k ∈ U ) and 
N0 is the variance complex of white Gaussian channel 
noise. Now, we calculate the communication latency, tcij 
for offloading task i to edge server j as follows,

where, σij ∈ {0, 1} . Its value is 1 when the cached 
resources i.e., data code available in the offloading server, 
otherwise 0. Here, bi and Bi denote the size of the input 
parameters and data code, respectively. Next, we calcu-
late the execution time of task i at the edge server j as,

where, �ij is the resource of server j allocated to task i and 
f j is the total resource of the jth MEC. Finally, we calcu-
late the total latency for completing task i using the fol-
lowing equation:

When calculating execution latency for real-time 
computation-intensive applications in edge comput-
ing, addressing delivery or downloading latency is cru-
cial. However, in this particular scenario, the emphasis 

(1)tkij =
ci

µk
i × f k

.

(2)rij = Bij × log2(1+
pk × hk

N0
),

(3)tcij =
σij × bi + (1− σij)× (bi + Bi)

rij
,

(4)teij =
ci

�ij × f j
,

(5)Tij =
tkij if task is executed locally

tcij + teij if task is executed on server.

is placed more on upload speeds and network latency 
rather than download times. Besides, the execution result 
has typically limited data size and thus it has negligible 
impact on resource parameters.

Calculation of Eij
For calculating total energy consumption Eij , two pos-
sible cases have been brought under consideration. In 
the first case, the mobile device executes the task locally. 
Hence, we consider only task computation energy and it 
is calculated as follows,

where, κ is a co-efficient that depends on device’s chip 
architecture [17] and f k is the CPU-cycle frequency of 
kth mobile device.

For the second case, the task is executed at the server, 
hence, task computation energy is ignored. Thus, the 
energy the device expends due to transmitting input data 
and/or code to the MEC server is calculated as,

where, pk is the power of kth mobile device and tcij is the 
time required to transmit ith task to jth server. Now, the 
total energy consumption for offloading task i to server j 
is calculated as,

The overall energy consumption can include the energy 
consumed for transmitting the tasks to the servers. We 
have prioritized device energy consumption owing to the 
limited battery resources and computational capabilities 
of user devices. As a result, energy consumed for execut-
ing tasks by servers has been less emphasized.

Calculation of Cij
Similar to latency and energy, the calculation of monetary 
cost for task computation can also have two possible cases. 
If the device performs the task locally instead of offloading, 
then it incurs no monetary cost. In the case of offloading, 
the cost of computational resources, i.e., CPU cycle and/or 
storage resources, i.e., memory, sums up the total monetary 
cost. For executing ith task at jth server, the storage cost is 
calculated as follows,

Here, σij ∈ {0, 1} determines the availability of cached 
resource. If the value of σij is 1, storage cost will be incurred 

(6)Ek
ij = κ ×

(

f k
)2

× ci,

(7)Ec
ij = pk × tcij ,

(8)

Ek
ij =

{

Ek
ij if task is executed locally

Ec
ij if task is executed in an edge server.

(9)vsij = σij × (ηj × Bi).
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for the device; otherwise, no storage cost is required. ηj is 
the storage cost of per bit resource. Next, we calculate the 
cost of computing ith task at jth server as follows,

where, γj is the unit CPU cycle cost of server j. Finally, the 
total monetary cost for executing task i at server j can be 
calculated as,

We have not considered cloud servers in our problem 
formulation. Although cloud server adds significant ben-
efits related to scalability, server-health management, 
backup, and service provisioning capabilities, they can cre-
ate hindrances in real-time application environments due 
to long-distance communication where exceptional QoE 
needs to be achieved. Uploading and executing tasks in 
the cloud require extra latency and energy, which impeded 
performance. Hence execution of tasks in user mobile 
devices and edge servers adds leverage to network perfor-
mance. Cloud servers are typically utilized within an edge 
server network only when all other edge resources are 
overwhelmed or during network malfunctions.

Objective function formulation
Our aim is to execute each task i ∈ τ at local or remote 
resource j ∈ E so as to minimize the total execution 
latency, energy expenditure, and incurred monetary cost. 
Thus, WOLVERINE formulates the task execution prob-
lem as a multi-objective minimization problem as follows,

where,

Here, Xij is a binary decision variable whose value is 
1 if task i is allocated to edge server j, otherwise 0. And 
Xij ∈

−→χ w , where −→χ w is a D-dimensional vector, −→χ w = 
(x1, x2, ..., xD) . Each entry xd ∈ −→χ w corresponds to the 
aforementioned decision variable Xij , ∀i ∈ τ , ∀j ∈ E . 
T(−→χ w ), E(−→χ w ), and C(−→χ w ) denotes the objective func-
tions related to task execution latency, execution energy, 

(10)vcij = γj × ci,

(11)Cij =

{

0 if task is executed locally
vcij + vsij if task is executed on server

(12)Minimize {T (−→χ w),E(
−→χ w),C(

−→χ w)}

(13)T (−→χ w) =
∑

i∈τ

∑

j∈E

(Xij × Tij),

(14)E(−→χ w) =
∑

i∈τ

∑

j∈E

(Xij × Eij),

(15)C(−→χ w) =
∑

i∈τ

∑

j∈E

(Xij × Cij).

and monetary cost respectively. Equation (12), which is a 
multi-objective linear optimization problem, is subject to 
the following constraints:

• Assignment Constraint: Task will be executed in 
either an edge server or in the user device. No partial 
assignment of tasks to multiple servers will be done. 

• Budget Constraint: Constraint (17) denotes that the 
monetary cost of task t for executing it to server j 
cannot exceed the task budget, δi . 

• Energy Constraint: Constraint (18) refers to the 
energy expenditure of a device in executing a task is 
limited by a threshold, Emax

i  . 

• Latency Constraint: Constraint (19) denotes that 
a task t needs to be completed within its deadline, 
Tmax
i  . 

Theorem  1 The WOLVERINE task offloading problem 
formulated in Eq. (12) is NP-hard.

Proof
The WOLVERINE task offloading problem aims at mini-
mizing three objectives, yielding a set of Pareto optimal 
solutions. The optimization problem in Eq. (12) can be 
regarded as an assignment problem. To prove the NP-
hardness of the WOLVERINE task offloading problem, we 
first convert Generalized Assignment Problem (GAP), a 
well-known NP-hard problem [39], into a multi-objective 
problem. The GAP assigns M tasks to N agents to mini-
mize the overall assignment costs as follows:

Subject to:

(16)
∑

i∈τ

∑

j∈E

Xij ≤ 1

(17)Cij ≤ δi, ∀i ∈ τ , j ∈ E

(18)Eij ≤ Emax
ij , ∀i ∈ τ , j ∈ E

(19)Tij ≤ Tmax
i , ∀i ∈ τ , j ∈ E

(20)Minimize
∑

i∈M

∑

j∈J

(Cij × Xij)

(21)
∑

i∈M

Aij × Xij ≤ Bj , ∀j ∈ N

(22)Xij ∈ {0, 1}, ∀i ∈ M, ∀j ∈ N
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Here, C indicates the assignment cost of task m ∈ M to 
an agent n ∈ N  , A is the resource capacity function that 
indicates the resource used by task m ∈ M and B indi-
cates the available capacity of an agent. To convert GAP 
to a multi-objective assignment problem, we first con-
sider a bi-objective assignment problem where resource 
and cost constraints of GAP is to be satisfied by convert-
ing the three objectives of WOLVERINE to a single one 
as follows:

where,

Subject to:

Here, the value of ǫi is chosen in such a way that mini-
mizing Zij yields the same result as the multi-objective 
functions. The function u(X) is defined as, u(X) = 1 if 
x ≥ 0 and 0 otherwise.

Note that, we do not consider resource limitation con-
straints of GAP as the constraints of the multi-objective 
optimization problem, rather we consider it as an objec-
tive to be optimized. If the resource limitation con-
straints are satisfied, then z1 is equal to zero and the cost 
of assignment z2 will be considered. If there exists a bet-
ter solution in GAP, a better solution also exists in the 
corresponding multi-objective problem. We consider 

(23)
∑

j∈N

Xij = 1, ∀i ∈ M

(24)

Minimize

−→
Z = (z1, z2) =





�

i∈τ

u





�

j∈E

RijXij − Bi



,
�

i∈τ

�

j∈E

�

Xij × Zij

�





(25)
Z(τ ,E) = ǫ1T (τ ,E)+ ǫ2E(τ ,E)+ ǫ3C(τ ,E)

= ǫ1
∑

i∈τ

∑

j∈E

(Xij × Eij)+ ǫ2
∑

i∈τ

∑

j∈E

(Xij × Tij)+ ǫ3
∑

i∈τ

∑

j∈E

(Xij × Cij)

(26)
∑

j∈E

Xij ≤ nj , ∀j ∈ E

(27)Xij ∈ {0, 1}, ∀i ∈ τ , ∀j ∈ E

(28)
∑

j∈E

Xij = 1, ∀i ∈ τ

two feasible solution, 
−→
Z1 and 

−→
Z2 where cost z1 < z2 . These 

two costs produce solutions (0,z1 ) and (0,z2 ) in multi-
objective assignment problems. If we consider lexico-
graphical minimum, then z1 < z2 . Hence (0,z1 ) is a better 
solution. Thus, GAP is convertible to a multi-objective 
assignment problem.

Therefore, it is shown that GAP can be converted to a 
multi-objective optimization problem. Since GAP is a 
well-known NP-hard problem, the WOLVERINE task 
offloading problem is also an NP-hard one. �

Meta-heuristic task offloading
As the number of MDs or servers increases, the WOL-
VERINE system experiences exponential growth in 
execution time. Many 5G applications can not tolerate 
a single second of delay. The proposed WOLVERINE 
framework attempts to optimize multiple objectives, 
such as minimizing latency, reducing energy consump-
tion, and minimizing monetary costs. These objectives 
can be conflicting, meaning that improving one objec-
tive may degrade the other. Pareto optimal solutions 
help find a set of solutions where no single objective 
can be improved without worsening at least one other 
objective. Evolutionary algorithms help in solving prob-
lems that involve Pareto-optimality as the solution 
choice is based on the population approach [31]. There-
fore, in this section, we develop a smart task offloading 
policy using Binary Multi-Objective Grey Wolf Optimi-
zation that determines the suitable set of resources to 
allocate the computational tasks in polynomial time.

Preliminaries
The Grey Wolf Optimization (GWO) [40] is a bio-
inspired meta-heuristic algorithm that is designed based 



Page 11 of 22Nujhat et al. Journal of Cloud Computing           (2024) 13:23  

on the social leadership and hunting techniques found 
in grey wolves. To mathematically model the social hier-
archy of the wolves, the fittest solution is considered 
the alpha ( α ) wolf. The second and third best solutions 
are named beta ( β ) and delta ( δ ) wolves, respectively. 
The leader selection and position updating of the rest of 
the search agents are done in each iteration, eventually 
converging to a set of Pareto-optimal solutions. Binary 
Multi-objective Grey Wolf Optimization (BMOGWO) is 
a special variant of MOGWO that allows search agents 
to move in a binary space instead of a continuous spec-
trum [41]. In our specific case, where we aim to opti-
mize execution time, energy consumption by devices, 
and monetary cost simultaneously, the BMOGWO algo-
rithm demonstrates superior performance compared to 
other evolutionary algorithms such as MOPSO, BAT, and 
WHALE optimization algorithms [42–44] for tackling 
multi-objective problems, efficiently addressing the opti-
mization of multiple objectives concurrently. It also out-
performs Ant-Colony Optimization (ACO) and Whale 
Optimization (WO) in scenarios where task offloading is 
required to edge servers [34]. The BMOGWO also sur-
passes other evolutionary algorithms in scenarios where 
Pareto-optimal solutions are generated due to better per-
formance in the exploration of solution space and pre-
vention of convergence to local optima [45].

Defining the position vector
We consider a population of wolves denoted by P where 
each wolf, w ∈ P represents a candidate solution [46]. 
The position of a wolf w in the search space is denoted 
by a D-dimensional binary position vector −→χ w where D 
= τ × E . The D-dimensional vector is denoted by −→χ w = 
(x1, x2, ..., xD) where each entry xd ∈ −→χ w corresponds 
to a decision variable Xij , ∀i ∈ τ , ∀j ∈ E such that, 
d = (i − 1)× E+ j.

Updating positions of the wolves
In GWO, the position of each ω wolf is updated by con-
sidering the positions of α , β , and δ wolves. Let −→χ α , −→χ β , 
−→χ δ and −→χ ω denote the position of α , β , δ and ω wolves, 
respectively. Now we calculate the distance of the ω wolf 
from the other three leader wolves as follows.

Here, 
−→
C  is a position vector with values in the range 

[0, 2]. The position vector associates weight to each prey 

(29)−→
Dα =|

−→
C1.

−→χα −−→χω |,

(30)−→
Dβ =|

−→
C2.

−→χβ −−→χω |,

(31)−→
Dδ =|

−→
C3.

−→χδ −
−→χω | .

item, in our case, the three best solutions. The value of 
C is chosen randomly to favor exploration by introduc-
ing randomness in the algorithm’s behavior. This vector 
controls the effect of prey, in this case, the effect of the 
three best solutions on the updating search agents. |

−→
C | 

> 1 emphasizes the effect of best solutions more on the ω 
wolves whereas |

−→
C | < 1 de-emphasizes the effect. This 

prevents local optimum convergence and ensures that 
the entire search space is covered. Besides, the random 
selection of values in C emphasizes exploration not only 
in the initial stages but also during the final iterations 
[40]. The value of C is determined as 

−→
C = 2.−→r2  , where 

−→r2 ∈ [0, 1] . Now the updated position of the ω wolf with 
respect to alpha, beta, and delta wolves is calculated as 
follows.

Here, −→A  is the co-efficient vector that governs conver-
gence or divergence towards the prey, or the best solu-
tions, and has values in the range [-1,1]. The formula 
for calculating A’s value is 

−→
A = 2

−→
a .−→r1 −

−→
a  , where 

−→r1 ∈ [0, 1] . The search space exploration is managed 
using the −→a  parameter. By averaging −→χ α,ω , −→χ β ,ω and 
−→χ δ,ω in −→χ w , the ultimate position of the ω wolf is now 
determined.

Note that each entry xd ∈ −→χ w corresponds to a binary 
decision variable of the MOLP problem and is only 
allowed to have a value of either 0 or 1 as follows.

where, sigmoid(xd) is defined as,

Here, the rand() function provides a uniformly distrib-
uted random number in the range of [0, 1] that improves 
search space exploration with the goal of avoiding local 
optima. The convergence and diversity of the Pareto-
front generated by MOGWO for Pareto-optimal solu-
tions in tri-objective problem are higher than that of 
Multi-Objective Particle Swarm Optimization (MOPSO) 
[45]. Here, convergence indicates how close the obtained 
solutions are to the true Pareto-front. Diversity dem-
onstrates how thoroughly the search space has been 
explored. It shows how much an algorithm is comparing 

(32)−→χ α,ω = −→χ α −
−→
A1.(

−→
Dα),

(33)−→χ β ,ω = −→χ β −
−→
A2.(

−→
Dβ),

(34)−→χ δ,ω = −→χ δ −
−→
A3.(

−→
Dδ).

(35)xd =

{

1 if sigmoid(xd) ≥ rand()
0 otherwise

(36)sigmoid(xd) =
1

1+ e−xd
.
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the trade-offs and setting the wide range of options. 
Higher diversity indicates a greater number of options 
have been explored through a different balance between 
the objective parameters. Grey-Wolf Optimization 
strikes a balance between the two of these. It converges 
toward the true Pareto-front by iteratively computing the 
solutions. As the algorithm progresses, the positions of α , 
β , and δ wolves are updated based on their fitness values. 
These three best solutions found so far guide the search 
process toward finding better solutions and helps to con-
verge towards Pareto-front through optimal trade-offs. 
The exploration and randomness of Grey Wolf Optimiza-
tion prevent convergence to local optima and provides a 
better exploration of a wide range of trade-offs.

Algorithm 1 Archive controller

Controlling the archive
For incorporating multi-objective optimization in 
GWO, an archive of fixed size is used. It is a simple 
storage for storing or retrieving Pareto-dominant solu-
tions obtained so far, which is shown in Algorithm  1. 
In line 1, for each w ∈ P , a set � is initialized that 
stores the archive solutions dominated by −→χ w . A flag 
is also initialized to check if any solution from the 
archive dominates −→χ w . Line 5 checks for the archive 
members dominated by −→χ w and the dominated mem-
bers are added to � . Line 7 checks the opposite and 
sets the flag to 1. In case there is no archive mem-
ber that dominated −→χ w , i.e., flag = 0, the archive is 
updated using procedure UpdateArchive(A,�) in line 
12. Lines 2-13 iterate for every member of the popula-
tion and the updated archive is returned.

In Algorithm 2, UpdateArchive(A,�) procedure is sum-
marized. In lines 2-4, the dominated solutions are removed 
from the archive. The capacity of the archive is checked in 
line 5. If it is not full, then the current non-dominated solu-
tion is added to the archive in line 6; otherwise, the solution 

from the most crowded segment is removed and the cur-
rent non-dominated solution is added to the archive in line 
9. In line 12, if a particular solution is an outlier, the grid is 
updated adaptively to cover the new solution.

Adaptive grid mechanism
An adaptive grid made of hypercubes [47] is generated 
using the archive, where the dimension of each hypercube 
is equal to the number of optimization objectives. The grid 
mechanism divides the objective space of the problem into 
a grid. Each hypercube is interpreted as a geographical 
region that contains the solutions [47]. For our WOLVER-
INE task offloading problem, which has three objectives, 
therefore, the adaptive grid consists of three-dimensional 
hypercubes. The boundary of the objective/target space at 
t-th iteration is determined as (minTt ,minEt ,minCt and 
maxTt ,maxEt ,maxCt) . Now, we calculate the modulus of 
the grid using the same approach [47] as follows,

Here, M is an integer that determines the number 
of segments in each dimension of the objective space. 
Therefore, the total number of hypercubes is M3.

We employ a strategy in which non-dominated solu-
tions are removed from the most crowded segments of 
the archive and leader selection is performed from the 
less crowded segments [45]. Both of these operations 
are based on probabilities to avoid local optima in search 
spaces. The solution density in each segment plays an 
important role in calculating these probabilities [47]. The 
more non-dominated solutions there are in a segment, 
the higher the probability of removing one solution and 
the lower the probability of choosing a leader. The prob-
ability of choosing the i-th segment to remove a solution 
is calculated as follows:

where Ni is the number of obtained pareto-optimal solu-
tions in i-th segment. Note that Eq. (40) assigns a higher 
probability to a crowded segment. On the other hand, the 
probability of selecting a leader from the archive is calcu-
lated in the opposite manner. The roulette-wheel approach 
is used for the selection based on the likelihood for each 
hypercube [45], as expressed by the following equation:

(37)�Tt =
maxTt −minTt

M
,

(38)�Et =
maxEt −minEt

M
,

(39)�Ct =
maxCt −minCt

M
.

(40)Pi =
Ni

c
, c = max(Ni)
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From Eq. (41), it is clear that a segment with fewer solu-
tions has a higher probability of being chosen as the leader.

Algorithm 2 Algorithm for updating archive

Algorithm 3 BMOGWO based task offloading

BMOGWO‑based task execution
The steps of the BMOGWO-based task execution 
scheme of WOLVERINE are presented in Algorithm 3. 

(41)Qi =
1

Ni + 1
.

First, we initialize the archive in line 2. Next, we initial-
ize a population of random position vectors and calcu-
late their fitness values in lines 4 and 5. The archive is 
populated with a set of non-dominated solutions gen-
erated using Algorithm 1 in line 7. Line 8 selects three 
different leaders using a grid mechanism. For each 
dimension of every wolf, the positions are updated in 
line 13. Parameters a, A, and C are updated in line 16. 
Next, we calculate the fitness values of the updated 
position vectors in line 18 and update the archive with 
updated positions using the Algorithm  1 in line 20. 
Hence, from the updated archive, three new leaders are 
selected using Eq. (41) in line 21. Lines 11-21 repeat 
until a maximum number of iterations Imax is reached. 
Finally, the value of entry xd of the best solution −→χ α is 
assigned to the corresponding decision variable in lines 
25-26 and the decision vector X is returned.

Complexity analysis
In this section, we analyze the complexity of the three 
algorithms used in WOLVERINE. In Algorithm  2, 
Line 3 is enclosed within a loop that iterates |A| times 
in the worst case. Line 8 requires M3 time. The rest of 
the statements are of constant time complexity. Thus, 
the overall complexity of Algorithm  2 is O(|A| +M3) . 
Next, we define the complexity of Algorithm  1. Lines 
5-9 are enclosed within a loop that iterates |A| times. 
Line 12 updates the archive using Algorithm  2 that 
takes O(|A| +M3) . Lines 2-13 are also enclosed within 
a loop that takes |P| times. Hence, the computational 
complexity of Algorithm  1 is O(|P| × (|A| +M3)) . 
Finally, we analyze the complexity of Algorithm  3. 
Lines 4 and 5 are enclosed within a loop that iterates 
for |P| times. Line 7 updates the archive that requires 
O(|P| × (|A| +M3))) times. Line 13 is enclosed within 
a nested loop that iterates |P| × |−→χ | times. Line 18 is 
enclosed in another loop that iterates for |P| times. 
Line 20 again calls Algorithm  2. Lines 11-22 are also 
enclosed within a loop that iterates for Imax times. The 
rest of the algorithm takes constant time to run. Thus, 
the total computational complexity of Algorithm  3 is 
O(|P| × (|A| +M

3 + Imax × (−→χ + |A| +M
3))) ≈ O(M3).

Convergence analysis
In this section, we analyze the convergence of the devel-
oped WOLVERINE system, which is measured using 
Inverted Generational Distance (IGD). IGD is a metric 
used for assessing the quality of a set of solutions pro-
duced by an optimization algorithm, particularly in the 
context of multi-objective optimization. It measures the 
convergence and diversity of the obtained solutions con-
cerning the true Pareto front, which represents the opti-
mal trade-off between conflicting objectives. The IGD 
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metric calculates the average distance from each point in 
the obtained solution set to the nearest point in the true 
Pareto front. A lower IGD value indicates a better con-
vergence and diversity of the obtained solutions.

If the IGD value between the obtained Pareto front ρ 
and the true Pareto front ρ∗ is IGD(ρ, ρ∗) , then the con-
vergence ratio (CR) C can be defined as,

where, ρt and ρt+1 denote the Pareto Front value after t 
and (t + 1) iterations, respectively.

Theorem  2 The convergence ratio C of the developed 
BMOGWO-based WOLVERINE system is bounded by 
g(P,

−→
C ,

−→
A , τ ,U,E, t).

Proof
This proof can be done by inductive hypothesis. We need 
to proof that CR C ≤ g(P,

−→
C ,

−→
A , τ ,U,E, t) . It can be 

mathematically denoted as,

Here, g(P,
−→
C ,

−→
A , τ ,U,E, t) indicates the upper bound 

of the solution, where the solution of the algorithm is 
the farthest from the true Pareto front ρ∗ , which can be 
mathematically represented as follows,

where, d( ˆ̺ , ̺∗) denotes the distance between the two solu-
tions ˆ̺ , and ̺ ∗ in the solution space. The IGD value of solution 
ρt after iteration t can be calculated similar to [48] as follows,

Basis Step: Let us assume that ρ0 denotes the initial 
Pareto front approximation and IGD(ρ0, ρ∗) be the initial 
IGD value. Then, Eq. (43) can be modified as follows,

where, P0,
−→
C0,

−→
A0 denote the initial population size, 

position vector, and co-efficient vector, respectively. 

(42)C =
IGD(ρt+1, ρ∗)− IGD(ρt , ρ∗)

IGD(ρt , ρ∗)
,

(43)IGD(ρt+1, ρ∗)− IGD(ρt , ρ∗) ≤ g(P,
−→
C ,

−→
A , τ ,U,E, t)× IGD(ρt , ρ∗).

(44)g(P,
−→
C ,

−→
A , τ ,U,E, t) = max

ˆ̺∈ρt
min
̺∗∈ρ∗

d( ˆ̺ , ̺∗),

(45)IGD(ρt+1, ρ
∗) =

1

|ρ∗|

∑

ˆ̺∈ρt

min
̺∗∈ρ∗

d( ˆ̺ , ̺∗),

(46)IGD(ρ1, ρ∗)− IGD(ρ0, ρ∗) ≤ g(P0,
−→
C0,

−→
A0, τ ,U,E, 0)× IGD(ρ0, ρ∗),

Equation  (46) confirms that the induction hypothesis 
holds true for the base step.

Inductive Step: Assume that the theorem holds up to the 
t-th iteration i.e., IGD(ρt , ρ∗) ≤ g(P,

−→
C ,

−→
A , τ ,U,E, t) . 

Now, we need to express the improvement in perfor-
mance from iteration t to t + 1 , which can be mathemati-
cally represented as,

where, h(.) denotes the improvement function. As 
IGD(ρt , ρ∗) ≤ g(P,

−→
C ,

−→
A , τ ,U,E, t) , therefore, 

IGD(ρt+1, ρ∗) ≤ g(P,
−→
C ,

−→
A , τ ,U,E, t) in Eq. (47). Thus it 

confirms that Eq. (43) holds true for all t and convergence 
ratio C of the developed WOLVERINE system is bounded 
by g(P,

−→
C ,

−→
A , τ ,U,E, t) . �

Performance evaluation
In this section, the performance of our proposed multi-
objective task offloading with the caching approach is 
compared with some of the existing strategies in the lit-

erature: MGBD [4], iRAF [17] and MOEA/D [19]. The 
work presented in [4] focuses on jointly addressing the 
content caching, computation offloading, and resource 
allocation problem to reduce users’ overall task execution 
time. An AI-driven resource allocation framework (iRAF) 
has been developed in [17] to tackle intricate resource 
allocation problems by considering current network con-
ditions and parameters to optimize either execution time 
or energy consumption. In a multi-user and multi-server 
task offloading environment, a tri-objective problem is 
addressed in [19], where time, device energy, and cost are 
optimized using Multi-Objective Evolutionary Algorithm 
(MOEA/D). However, caching the data codes has not 
been considered in this work. The environmental setup, 
performance metrics, and results are discussed below.

Environmental setup
We have implemented our proposed algorithm and per-

formed empirical numerical evaluation using Python 
3.6.0 [49]. For evaluation purposes, we consider a 

(47)
IGD(ρt+1, ρ∗)− IGD(ρt , ρ∗) ≤ h(P,

−→
C ,

−→
A , τ ,U,E, t),

IGD(ρt+1, ρ∗) ≤ h(P,
−→
C ,

−→
A , τ ,U,E, t)+ IGD(ρt , ρ∗)
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scenario where a stationary edge server is centered in a 
1000× 1000m2 urban area. A number of collaborative 
edge servers are randomly located around the primary 
edge server and several mobile devices are connected 
to the edge servers. The path loss model between the 
mobile devices and servers is assumed to follow a log-
normal distribution. In addition to the above metrics, 
we model packet loss on each path using the Gilbert loss 
model [50] and the channels handle the re-transmission 
of lost packets using TCP protocol. 20 channels are 
employed, each with a bandwidth of 2MHz. Our study is 
focused on real-time, delay-sensitive, and computation-
intensive applications, including interactive video gam-
ing, AR/VR applications, medical image processing, and 
face recognition. The task arrivals pattern follows a Pois-
son distribution. The whole experiment has been run 50 
times and the average of all these results is taken to plot 
each graph. Major environment setup parameters used 
in this paper are shown in Table 4. In our simulation set-
ting environment, we have ensured that resources are 
allocated proportionately across different systems. All 
the methods from the literature were implemented and 
performance metrics data were collected in a system 
environment consistent with that of ours.

Performance metrics
We have measured the performance of our algorithm 
based on the following metrics:

• Average latency is defined as the ratio of the total 
delay experienced by the tasks to the number of 
tasks.

• Average Energy Consumption is the average amount 
of energy consumed by each edge device.

• Average Cost Savings is calculated as the difference 
between a device’s budget and the monetary cost 
paid by it divided by the number of tasks. The higher 
value indicates a higher system performance.

• Task Completion Reliability (TCR) is the ratio of the 
number of tasks completed to the submitted ones.

Result analysis
In this section, we have discussed the performance of 
our proposed system by varying the number of tasks, the 
number of servers in the system, and the average compu-
tation power per task.

Impact of a varying number of tasks
In this experiment, we vary the number of tasks of the 
overall network system from 10 to 250 and keep the 
number of servers fixed at 12. The result and comparison 
are shown in Fig. 4.

Figure 4(a) shows that as the number of tasks increases, 
the average latency also increases. Initially, latency 
increases slowly for a smaller number of tasks. However, 
as the number of tasks exceeds 160, latency increases 
exponentially. Latency is lower in MGBD and WOLVER-
INE cases than the iRAF because the former two have 
implemented caching. In the case of MOEA/D, the per-
formance is close to the WOLVERINE. A single mobile 
device user decomposes an application into multiple 
independent sub-tasks and offloads them to various serv-
ers, depending on resource availability. However, as the 
sub-tasks are executed in parallel, the total latency con-
sidered for completing a task is the maximum latency 
among the sub-tasks, and a risk of high delay remains in 
case the system reaches its saturation point. Besides, the 
absence of server-to-server collaboration makes it dif-
ficult to share sub-tasks. Our proposed WOLVERINE 
exploits both collaborative edge computing and cach-
ing. Therefore, if the required data for a specific task is 
not cached at a server or computational resources are not 
present, the server can pass the task to another collabora-
tive server where the task data is cached already, which 
decreases the service delay significantly. Therefore, our 
proposed WOLVERINE outperforms the state-of-the-art 
approaches.

The impact of varying numbers of tasks on aver-
age energy consumption is depicted in Fig.  4(b). With 
the increasing number of tasks, the energy toll is also 
increasing because a large number of tasks need to share 
the same bandwidth and require higher latency to reach 
the edge. Both WOLVERINE and MGBD perform better 
than iRAF because of exploiting caching, which helps the 
system’s users reduce backhaul latency and energy. How-
ever, the energy consumption gap increases significantly 

Table 4 Evaluation parameters

Parameter Value

Simulation area 1000× 1000m2

Number of mobile devices [10‑260]

Number of collaborative edge servers [2‑12]

The transmit power [32mW‑197mW]

A coefficient that affects local energy consump‑
tion ( κ)

10
−26

The required CPU cycles to complete task [6× 10
9‑9× 10

10]Hz

The CPU‑cycle frequency of MD 300MHz

The computation capability of edge servers [3.19GHz‑19.14GHz]

The bandwidth of one channel 2MHz

Size of input data [3MB‑50MB]

Number of Iteration ( Imax) 50

Population size 50
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between WOLVERINE and MGBD when the number 
of tasks rises from 110 to 160 in the network, as MGBD 
needs to request the cloud for task processing owing to 
the unavailability of resources. For MOEA/D, a higher 
number of tasks means sub-tasks are executed in mobile 
devices more frequently, which increases overall energy 
consumption in the system. Besides, when sub-tasks are 
offloaded to multiple servers, the data code needs to be 
offloaded as well. Thus, energy expended for offloading 
data code to edge servers also occurs as an overhead, 
and offloading tasks frequently also incurs some commu-
nication costs with the increasing number of sub-tasks. 
For WOLVERINE, all the tasks requested can be cached 
either at different servers or the data code for computing 
the tasks needs to get transmitted at the servers; that is, 
no access to the cloud is necessary, thus, reducing energy 
consumption. Besides, collaboration among servers facil-
itates lower energy consumption.

In Fig. 4(c), we can observe the impact on average cost 
savings when task numbers are varied. As the number of 
tasks escalates, the average cost savings is reduced as the 
number of offloading tasks is increased, which in turn 
increases monetary costs for memory and computation. 
For the iRAF and MGBD, with increasing tasks, the cost 
goes up faster than WOLVERINE. The reason behind the 
increasing cost in the case of iRAF is the use of DNN and 

Monte Carlo Tree, which incur memory and computa-
tion costs. For MGBD, with an increasing number of 
tasks, device budget savings decrease due to the lack of 
collaboration among servers and offloading to the cloud 
in case of unavailability of server resources. In the case 
of MOEA/D, the cost is lower when the number of tasks 
is high as many of those are locally executed. However, 
offloading to multiple servers from a single user device 
can incur higher costs in terms of memory and compu-
tation depending on the availability of server resources. 
The proposed WOLVERINE offers a higher percentage 
(50%-95% ) of savings compared to MGBD and iRAF due 
to exploiting service caching, binary offloading, and col-
laboration among servers.

In Fig. 4(d), we see that increasing the number of tasks 
reduces Task Completion Reliability (TCR) in all of the 
methods. This happens due to the scarcity of resources 
and the delay sensitivity of tasks. For the iRAF, the TCR 
falls steadily when the number of tasks increases from 10 
to 110 but falls sharply with increasing tasks from 110 to 
260. As the iRAF allows partial offloading, therefore, with 
the increasing number of tasks, the tendency to offload 
the greater portion of a task is also increased, which in 
turn also enhances the task drop rate. The higher task 
drop in iRAF is the higher training time using the DNN 
and Monte Carlo Tree, creating a latency overhead that 

Fig. 4 Impacts of a varying number of tasks
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may cause many applications to exceed their deadlines. 
For MGBD and WOLVERINE, the TCR falls gradually 
with an increasing number of tasks due to caching. How-
ever, a depth-first-search tree is constructed in MGBD, 
which incurs some overhead, resulting in crossing the 
deadline for some tasks. Hence, TCR is lower in compari-
son to WOLVERINE. For MOEA/D, with the gradually 
rising number of tasks, the drop rate of sub-tasks can be 
increased due to the lack of resources and higher queuing 
delay of mobile devices. Since collaboration among edge 
servers and caching cater to the task completion rate bet-
ter, WOLVERINE performs better than MOEA/D in sys-
tem environments that contain rapidly offloaded tasks.

Impact of a varying number of servers
The impact of varying numbers of servers on the objec-
tive parameters is represented in the graphs of Fig. 5. For 
this scenario, the number of tasks is fixed at 50.

For a fixed number of tasks, as the number of resources 
increases, the average latency decreases for all schemes 
as shown in Fig.  5(a). The iRAF has higher latency in 
comparison to both MGBD and WOLVERINE because 
of the higher computational time of DNN and Monte 
Carlo Tree. In the case of MGBD, the construction of the 
search tree and exhaustive searching procedure affect the 
overall latency. In the case of MOEA/D, a task is disin-
tegrated into multiple sub-tasks, which incurs higher 

latency overhead for server-to-device communication, 
and sometimes it faces difficulty to find the most suit-
able server for executing some sub-tasks. On the other 
hand, WOLVERINE exhibits better performance with the 
increasing number of servers as it is a joint implementa-
tion of edge server collaboration and caching.

WOLVERINE also performs better in terms of energy 
consumption, as depicted in Fig. 5(b). With the increas-
ing number of servers, the energy consumption of MDs 
is significantly minimized in all studies. In WOLVER-
INE, more tasks are offloaded to the edge servers when 
the number of collaborative edge servers increases along 
with the increasing availability of cached data. That is 
why, up to a certain increment in the number of serv-
ers, energy consumption reduces. After that, the energy 
level hits a plateau or does not decrease significantly as 
the amount of cached data and computational resources 
increase with the increasing number of servers.

With the increasing number of servers for all schemes, 
the cost of allocating tasks is increased and the aver-
age cost savings is decreased, which is depicted in 5(c). 
In WOLVERINE, the cost of allocating tasks increases 
owing to memory cost and monetary cost for computa-
tion in various CoMEC servers. Nevertheless, the average 
savings remain greater than that of MGBD since the local 
computation of tasks also occurs here, which may incur 
no cost at all, and the cached resource size in MGBD is 

Fig. 5 Impacts of a varying number of servers
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high along with the exhaustive search cost of DFS trees. 
On the other hand, iRAF involves DNN and Monte Carlo 
Tree in an optimization algorithm that occupies some 
extra memory. Therefore, the overall computation and 
memory cost is higher than our proposed method.

The impact on TCR (Task Completion Reliabil-
ity) for varying numbers of servers is demonstrated 
in Fig.  5(d). For WOLVERINE and MGBD, the TCR 
escalates with the increasing number of servers due 
to exploited caching. However, the content cach-
ing in MGBD faces some resource constraint issues 
for highly resource-intensive applications. On the 
other hand, the aforementioned issues for iRAF may 
incur task drops due to exceeding the deadline in 
this scheme. For MOEA/D, TCR is relatively stable in 
comparison to the MGBD and iRAF as sub-tasks are 
offloaded more frequently with increasing tasks in the 
system. However, it is still not better as WOLVERINE 
due to the absence of server-to-server collaboration. 
For WOLVERINE, TCR improves due to incorporating 
caching as well as server collaboration.

Impact of caching
Caching the data code for computation-intensive tasks 
instead of the entire code itself creates a certain impact 
on objective parameters that are to be optimized and the 
impact is depicted here in Fig. 6. In this experiment, we 
varied the average computation per task while fixing the 
number of tasks and servers at 50 and 12, respectively.

Figure  6(a) indicates that if the average computa-
tion cycles per task increase, then average latency will 
increase exponentially without caching. Here, a consid-
erable amount of time will be required for the compu-
tation of tasks along with the offloading of the tasks to 
collaborative servers. On the other hand, if caching is 
performed, then it is observed that the time required 
will be less as some of the data code is already available 

on the cached server; only the input data needs to be 
transmitted. Similarly, for average energy consumption, 
such changes are observed in Fig.  6(b), i.e., if the tasks 
are cached, less energy is wasted in communication 
overhead, which in turn reduces overall average energy 
consumption. Therefore, it is pretty clear from the 
experiments that service caching leverages task comple-
tion notably.

Impact of geographical proximity of users
In this experiment, the geographical area is varied in an 
edge computing environment to measure the perfor-
mance of user service latency and energy consumption. 
A larger area results in an augmented physical distance 
between edge servers and users, leading to extended 
transmission times and subsequently higher average 
latency. Additionally, expanded areas tend to experi-
ence heightened network congestion as a consequence 
of increased user traffic, exacerbating latency concerns. 
This congestion contributes to elevated communication 
overhead, necessitating higher transmission power and, 
consequently, increased energy consumption for devices. 
Furthermore, the scarcity of resources in an extended 
area often necessitates a greater execution of tasks by the 
devices themselves, resulting in amplified energy usage at 
the user end.

A gradual rise in average latency and device energy 
is observed for all the schemes shown in Figs.  7(a) 
and  7(b), respectively. However, for WOLVERINE, the 
increase in average latency and energy are significantly 
lower than the rest of the schemes. Since both collabo-
rative edge computing and caching are exploited in this 
scheme, service delay and energy consumption are low-
ered as increased area multiplies the chances of finding 
appropriate edge servers and cached resources. For the 
rest of the schemes, the drawbacks for a higher value of 
energy and latency can be attributed to transmission to 
cloud, task dependency, higher computation, memory 

Fig. 6 Impacts of caching on the performance
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overhead by algorithms themselves, and local optima 
convergence.

Ablation experiment
As a strategy to retain superior non-dominated solutions 
and to expand the exploration of a broader search space, 
the WOLVERINE system incorporates an adaptive grid 
mechanism. This technique facilitates leader selection 
and enhances the quality of solutions through probabil-
ity-based elimination methods. To conduct an ablation 
experiment, we have adjusted the average number of 
computations per task, maintaining a fixed number of 
tasks and servers at 80 and 16, respectively. Subsequently, 
we have analyzed the effects on latency and energy con-
sumption with and without the adaptive grid mechanism.

The graphs in Fig.  8 state that as the computation 
cycles per task increase, both average latency and aver-
age energy consumption experience an exponential rise 
when the adaptive grid mechanism is not utilized. Con-
versely, its inclusion leads to reduced latency and energy 
consumption. These are achieved by accelerated conver-
gence and exploitation of the most effective solutions. It 

has also notably decreased the number of trial-and-error 
attempts.

Hypervolume and inverted generational distance
In this section, we measure the performance to evaluate 
the quality of Pareto-optimal solutions obtained by the 
developed WOLVERINE system.

In multi-objective evolutionary algorithms (MOEAs), 
hypervolume is a commonly used performance metric, 
which measures the volume of the objective space that is 
dominated by the solutions in the Pareto front approxi-
mation. The hypervolume indicator assesses the effective-
ness of a given set of solutions by calculating the volume 
of the objective space that it covers. It provides a single 
scalar value that represents the spread and diversity of 
the Pareto front approximation. Higher hypervolume val-
ues indicate better coverage and a more comprehensive 
representation of the Pareto front.

In Fig. 9(a), the hypervolume region of the Pareto front 
has been demonstrated in a 3D graph, which is com-
puted based on the covered space by the non-dominated 
solutions, relative to a predefined reference point. This 
reference point represents an ideal state without any 

Fig. 7 Impacts of geographical proximity of users

Fig. 8 Impacts of adaptive grid mechanism
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necessary trade-offs between objectives, which is marked 
green color in the graph for clarity. The shaded region, 
inclusive of the reference point, visually represents the 
hypervolume region, signifying the extent of the objec-
tive space covered by the set of non-dominated solu-
tions. For hypervolume in this case, we have considered 
10 servers with 60 tasks and the scalar value of hypervol-
ume is 24.59 after 50 iterations. This is the highest value 
obtained which became steady after 50 iterations.

For convergence analysis of the developed WOLVER-
INE system, we have calculated IGD in terms of the 
number of iterations. Figure 9(b) illustrates how the IGD 
values change throughout the execution, indicating the 
performance and convergence of the algorithm. From 
this graph, we can observe that the IGD initially starts 
with a high value and gradually decreases throughout the 
first 50 iterations. Subsequently, it stabilizes at a particu-
lar value, indicating that convergence has been achieved. 
Higher values of IGD suggest that the solution set 
obtained for a certain number of iterations is not close 
to convergence. As the optimization algorithm explores 
more of the search space, lower values of IGD are 
obtained, signifying improved convergence and proxim-
ity to the true Pareto front. We have compared IGD val-
ues of MOEA/D with that of WOLVERINE. It is observed 
that IGD values for MOEA/D are higher than those of 
WOLVERINE for similar iteration numbers. The poorer 
distribution of the Pareto front in the case of MOEA/D 
can be attributed to its higher IGD values in compari-
son to WOLVERINE [45]. The value of IGD becomes 
stable after 50 iterations for WOLVERINE whereas for 
MOEA/D the value stabilizes after 65 iterations and at a 
higher value than that of WOLVERINE. Thus the graphi-
cal representations point towards a better convergence 
of WOLVERINE in comparison to MOEA/D, indicating 
that WOLVERINE achieves convergence faster.

Conclusion
This paper introduced an efficient task offloading frame-
work, namely WOLVERINE, that brought about a collab-
oration among the edge servers to share computational 
resources while penetrating real-time applications in 
edge devices with optimal energy consumption and 
resource cost. The multi-objective optimization prob-
lem was proven to be NP-hard; therefore, we formulated 
a Binary Multi-objective Grey Wolf Optimization-based 
meta-heuristic solution that deduced the Pareto optimal 
solutions for time, energy, and cost objectives i.e., the 
tri-objective optimization problem in polynomial time. 
The performance analysis results carried out in Python 
and demonstrated significant performance improvement 
as high as 33.33%, 35%, and 40% in terms of execution 
latency, energy, and resource cost, respectively compared 
to the state-of-the-art.

An improved version of GWO can be exploited on the 
developed system through dynamic weight association 
to multiple objectives and modification to the conver-
gence factor. New scopes can be added by considering 
data loss, security of executed tasks, and so on. Deploy-
ment of a deep-learning model to accurately predict the 
task arrival rate, allocate the tasks, and adjust the cache 
resources following that prediction can be interesting 
future works. Furthermore, we can enhance our current 
framework by hybridizing different evolutionary algo-
rithms to address the strengths of these algorithms in a 
dynamic environment. Consideration of robustness and 
fault tolerances in case of points of failure also adds a 
new edge to our current work.
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