
Nujhat et al. Journal of Cloud Computing (2024) 13:23
https://doi.org/10.1186/s13677-023-00570-z

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Task offloading exploiting grey wolf
optimization in collaborative edge computing
Nawmi Nujhat1, Fahmida Haque Shanta1, Sujan Sarker2, Palash Roy1,3, Md. Abdur Razzaque1*,
Md. Mamun‑Or‑Rashid1, Mohammad Mehedi Hassan4 and Giancarlo Fortino5

Abstract

The emergence of mobile edge computing (MEC) has brought cloud services to nearby edge servers facilitating
penetration of real‑time and resource‑consuming applications from smart mobile devices at a high rate. The problem
of task offloading from mobile devices to the edge servers has been addressed in the state‑of‑the‑art works by intro‑
ducing collaboration among the MEC servers. However, their contributions are either limited by minimization of ser‑
vice latency or cost reduction. In this paper, we address the problem by developing a multi‑objective optimization
framework that jointly optimizes the latency, energy consumption, and resource usage cost. The formulated problem
is proven to be an NP‑hard one. Thus, we develop an evolutionary meta‑heuristic solution for the offloading problem,
namely WOLVERINE, based on a Binary Multi‑objective Grey Wolf Optimization algorithm that achieves a feasible
solution within polynomial time having computational complexity of O(M3) , where M is an integer that determines
the number of segments in each dimension of the objective space. Our experimental results depict that the devel‑
oped WOLVERINE system achieves as high as 33.33%, 35%, and 40% performance improvements in terms of execu‑
tion latency, energy, and resource cost, respectively compared to the state‑of‑the‑art.

Keywords Collaborative mobile edge computing, Multi‑objective grey wolf optimization, Latency, Service caching,
Task offloading

Introduction
The proliferation of seamless internet connectivity tech-
nologies, such as WiFi, 4G, 5G, or LTE, as well as the
availability of high processing capabilities at the mobile
edge, has pushed the horizon of a new computing para-
digm called mobile edge computing (MEC) [1–3]. In

recent years, the penetration of computation-intensive
real-time applications has increased with the rapid rise
of massively connected heterogeneous mobile devices
(MDs) [4]. According to [5], Cisco predicts that by 2030,
almost 500 billion gadgets will be associated with the
Internet of Things (IoT). Frequent access to cloud ser-
vices results in an increase in mobile data traffic as well
as backhaul latency, which in turn diminishes the Qual-
ity of Experience (QoE) of the application users [1]. The
MEC alleviates these problems by bringing the resources
closer to the end users [6]. The benefits of MEC can fur-
ther be extended by introducing collaboration among
edge servers located in different geographical regions,
called collaborative mobile edge computing (CoMEC)
[7]. Not only do the edge servers participate in resource
sharing, but vertical collaboration [8] also takes place
among the three layers of CoMEC. Vertical collaboration
in the MEC environment signifies collaboration among

*Correspondence:
Md. Abdur Razzaque
razzaque@du.ac.bd
1 Green Networking Research Group, Department of Computer Science
and Engineering, University of Dhaka, Dhaka 1000, Bangladesh
2 Department of Robotics and Mechatronics Engineering, University
of Dhaka, Dhaka 1000, Bangladesh
3 Department of Computer Science and Engineering, Green University
of Bangladesh, Narayanganj‑1461, Dhaka, Bangladesh
4 Information Systems Department, College of Computer and Information
Sciences, King Saud University, Riyadh, Saudi Arabia
5 Department of Informatics, Modeling, Electronics, and Systems,
University of Calabria, 87036 Rende, Italy

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00570-z&domain=pdf

Page 2 of 22Nujhat et al. Journal of Cloud Computing (2024) 13:23

multiple layers of IoT computing infrastructure, includ-
ing the IoT devices at the bottom, the edge cloud servers
at the middle, and the master cloud at the top, as shown
in Fig. 1.

While CoMEC increases the sustainability of edge
computing, service caching at the MEC layer favors the
QoE of the real-time application users [9]. Service cach-
ing refers to caching the information that must be known
by the edge server to complete the task execution. This
information includes system settings, the heavy pro-
gram code of the application, and their related databases/
libraries [10]. Figure 1 illustrates some real-life use cases
where caching is exploited in MEC for better QoE. One
such case is where the MEC can be exploited for intel-
ligent transportation systems (ITS), such as extending the
connected vehicle cloud into the mobile network [11]. As
a result, roadside applications operating directly at the
MEC may receive local messages from vehicles and road-
side sensors, process them, and broadcast alerts (e.g., an
accident) to nearby vehicles within the shortest possible
time [12]. The second case is of virtual reality and face-
recognition data processing in various applications that
require frequent database access. Both of these applica-
tions are data-intensive and need to deliver output in real

time to ensure higher QoE to users. In all of the afore-
mentioned cases, service caching can go a long way to
ensure fast services to users. Caching prevents the same
data from being offloaded multiple times, thus, both
transmission latency and energy consumption can be
reduced.

Computation offloading to a CoMEC network con-
sidering service caching may improve the overall QoE
by reducing the associated system costs in terms of the
queuing delay of tasks, energy consumption of devices,
monetary costs, and so on [13, 14]. Additionally, it is not
realistic to offload all tasks of MD to MEC all the time
as the limited storage and computing resources of MEC
significantly affect the time delay of the offloaded tasks.
Therefore, an optimal task offloading decision needs
to be formulated to achieve an efficient network model
while keeping the aforementioned system costs minimal.
A large number of researches have been done on caching
strategies [15, 16] and CoMEC. Content caching, com-
putation offloading, and resource allocation problems
have been jointly considered in [4] to reduce users’ over-
all task execution time but it lacks collaboration among
the edge servers. An AI-based task allocation algorithm
namely iRAF has been proposed in [17] for the CoMEC

Fig. 1 Real‑life applications of service caching in MEC

Page 3 of 22Nujhat et al. Journal of Cloud Computing (2024) 13:23

network where the average latency and energy have been
optimized. Here, either one of the objectives is optimized
by associating binary weights that create unfairness in
the result. In [18], monetary cost and execution delay
has been optimized using the particle swarm optimiza-
tion (PSO) algorithm for a vehicular network. However,
addressing mobile energy consumption still remains an
issue. Three prime objectives, that is, execution time,
energy consumed, and monetary cost have been opti-
mized in a multi-user multi-server environment using a
multi-objective evolutionary algorithm (MOEA/D) com-
bining simple additive weighting (SAW) and multi-attrib-
ute decision making (MDM) in [19]. This work too lacks
collaboration among servers and cache resource alloca-
tion which can be crucial to addressing QoE.

This research endeavors to bridge notable gaps that
have persisted in the existing body of knowledge in the
MEC environment. In a dynamic environment, where
heterogeneous mobile devices and edge servers are
involved in optimizing multiple objectives simultane-
ously, no existing solutions can effectively address the
problem. Several challenges are encountered while opti-
mizing conflicting objectives together in a complex envi-
ronment where multiple real-time applications operate
on different user devices. Firstly, real-time applications
require faster processing than others. If they are com-
putationally expensive, offloading associated data and
codes frequently creates a significant overhead. Secondly,
handling offloading decisions while executing tasks can
slow down the services of edge servers, especially if the
resources of the edge servers become saturated, thus
degrading QoE. Thirdly, since multiple objective param-
eters are targeted for optimization, they can be conflict-
ing in nature. Thus, an exhaustive exploration of potential
solution combinations becomes imperative. Most of the
studies done so far have opted for single-objective opti-
mization associating scalar weights to multiple objective
parameters. Some of these depend on multiple deci-
sion criteria for selecting solutions [19]. The parameters
for such decision-making variables require meticulous
fine-tuning and the environment saturated with real-
time applications cannot afford to create extra overhead
as such. Finally without service caching, every request
for a particular service or content would need to travel
from the user’s device to the edge server or even further
to the cloud, resulting in higher latency. This delay can
be especially problematic for real-time delay-sensitive
applications.

In this paper, we investigate a problem of joint optimi-
zation of task execution time, energy, and resource usage
cost while offloading tasks in a CoMEC network. A task
offloading framework based on grey WOLf optimization
that exploits VERtical collaboration IN Edge computing,

namely WOLVERINE system is devised to solve the
problem. The WOLVERINE stands out from other task-
offloading frameworks due to its innovative features and
advantages. Traditional task offloading frameworks suffer
from several drawbacks, which can be categorized into
three main areas: 1) lack of reproducibility of offloaded
application codes, 2) lack of collaboration among the
edge servers, and 3) inability to optimize multiple cru-
cial parameters simultaneously. These limitations have
negative implications for network systems, resulting in
decreased QoE, underutilized resources, and suboptimal
network performance. In response to these challenges,
WOLVERINE introduces a novel task offloading scheme
for real-life computationally intensive applications, uti-
lizing an evolutionary algorithm. This scheme addresses
the collaboration among servers and leverages cached
application code to minimize time, energy, and resource
costs in edge computing environments. The main contri-
butions of the WOLVERINE framework are listed below:

• We design a collaborative task offloading framework
that effectively utilizes cached and computational
resources to enhance user QoE in a CoMEC system
where real-time applications are executed.

• We formulate the problem of jointly optimizing
latency, energy, and resource usage cost as a Multi-
objective Linear Programming (MOLP) problem.

• Due to the NP-hardness of the above MOLP, we
exploit Binary Multi-Objective Grey Wolf Optimi-
zation (BMOGWO), a meta-heuristic evolutionary
algorithm, to develop a polynomial time solution to
the problem, namely WOLVERINE.

• The experimental results depict that the proposed
WOLVERINE system outperforms in terms of execu-
tion latency, energy, and resource cost in comparison
with [19] by 33.33%, 35%, and 40%, respectively.

The rest of this paper is organized as follows. “Related
works” section illustrates the major existing works.
“System model” section describes the system model of
WOLVERINE. “Design details of WOLVERINE” sec-
tion elaborates the computational model, multi-objective
problem formulation, and meta-heuristic task offloading
scheme. “Performance evaluation” section describes the
environmental setup and results of experimental analysis.
Finally, “Conclusion” section summarizes the key out-
comes of our work and some future research directions.

Related works
Several works in the field of collaborative edge com-
puting have been done, including optimal task caching
and task allocation while optimizing a single objective

Page 4 of 22Nujhat et al. Journal of Cloud Computing (2024) 13:23

function, trade-offs between two or more objectives, and
multi-objective optimization.

The first category of works in the literature focused
on single-objective optimization in collaborative edge
computing, for example, energy, time, or resource cost
allocation. In [2], a genetic algorithm based on a data-
aware task allocation strategy has been proposed that
considers the network congestion control for allocat-
ing sub-tasks. In [20], the authors have focused on the
reduction of energy consumption for task assignments
by considering the heterogeneity of users using a heu-
ristic-based greedy approach. An architecture has been
proposed in [21] that considers unloading resource-
intensive tasks from client devices in the cooperative
edge space or to the remote cloud depending on users’
desire and resource availability. An AI-driven intelli-
gent Resource Allocation Framework (iRAF) [17] has
been designed to solve complex resource allocation
problems considering the current network states and
task characteristics. Another group of authors in [22]
have utilized a deep reinforcement learning method to
solve computation offloading and resource allocation
problems in a blockchain-based multi-UAV-assisted
dynamic environment.

Computation offloading that focuses on the mini-
mization of system cost comprising the trade-off
between energy and task execution delay in the form
of a weighted sum has been proposed in [15]. Collabo-
ration among MEC servers for (data) cache and com-
putational resource allocation are noteworthy in [15].
However, caching the content or code of applications
is not enough due to the limited computational capac-
ity of user devices as well as the delay associated with
transmitting cached data or code. Hence the idea of
jointly task offloading and caching needs to be consid-
ered. In [16], a joint service caching, task offloading, and
system resource allocation scheme to minimize system
cost comprising of time and energy have been formu-
lated using a MILP problem. In [23], a priority-based
task offloading and caching scheme is proposed for the
MEC environment, where computing a task while reduc-
ing energy cost and delay time efficiently is the main
priority. A new low-complexity hyper-heuristic algo-
rithm has been proposed in [24], where content cach-
ing is performed along with computation offloading
in an MEC network to optimize the service latency for
all ground IoT devices. Mobility and user preference-
aware content-caching in MEC are orchestrated in [25].
The authors in [26] introduce an enhanced binary PSO
algorithm, which is designed for optimizing task offload-
ing and content caching in MEC networks. It focuses
on jointly optimizing task completion delay and energy
consumption. Additionally, an enhanced binary particle

swarm optimization (BPSO) algorithm is proposed for
content caching in parallel task offloading scenarios.
An alternating-iterative algorithm has been developed
in [27] for jointly optimizing task caching and offload-
ing in a resource-constraint environment to minimize
energy consumption. Here task caching indicates cach-
ing of a completed application and relevant data. Subse-
quently, in [4], content caching, computation offloading,
and resource allocation problems have been jointly con-
sidered to reduce users’ overall task execution time.
However, caching a complete application, i.e., content
caching is often incompatible with user requirements.
Hence, the idea of caching data codes for joint task off-
loading and data caching using the Lyapunov algorithm
for minimizing task computation delay has been intro-
duced in [28]. The authors have formalized joint service
caching and task offloading decisions to minimize com-
putation latency while keeping the total computation
energy consumption low.

Multi-Objective Optimization problems are adopted
for computation offloading in edge cloud by the authors
of [29] which focused on the offloading probability of
tasks to edge cloud from an MD. To optimize execution
time, energy, and resource cost to maximize utility for
resource providers in IoT networks, energy harvesting
properties of unnamed aerial vehicles (UAV) are used in
[30]. A deep reinforcement learning (DRL) based solu-
tion is used for this system network that is managed by
blockchain. Multi-objective optimization problems have
multiple Pareto-optimal solutions which are obtained by
trade-offs. Hence, evolutionary algorithms can play a sig-
nificant role in reaching a single-preferred solution [31].
In [32], time, energy, and cost were minimized for an edge
cloud environment using the genetic algorithm NSGA-II.
Minimization of average latency and energy consump-
tion simultaneously for offloading tasks using the Cuckoo
search algorithm has been proposed in [33]. In [34],
Grey-Wolf Optimization is used to perform a trade-off
between the minimization of energy consumption and
response time in an MEC environment. An Improved
Multi-Objective Grey Wolf Optimization (IMOGWO)
is used for sub-task scheduling in an edge computing
environment introduced in [35] to optimize makespan,
load balance, and energy simultaneously. Computation
time and cost minimization have been performed in [18]
using the Particle Swarm Optimization (PSO) algorithm
for a Vehicular Edge Computing (VEC) environment. In
[19], a tri-objective problem has been considered in a
multi-user and multi-server task offloading environment
where an application is divided into multiple independ-
ent sub-tasks. A Multi-objective Evolutionary Algorithm
based on decomposition (MOEA/D) has been developed
for optimizing the time, cost, and energy expended in

Page 5 of 22Nujhat et al. Journal of Cloud Computing (2024) 13:23

the execution of a particular sub-task. MOEA/D is also
used to minimize latency and energy in [36] for the MEC
environment, where the ordering of subtasks exists as a
constraint. It is also used for minimization of latency and
maximization of rewards for servers and tasks in [37].
However, the direct assignment of sub-tasks from mobile
devices to a server is costly in terms of energy and off-
loading decision-making. The works mentioned above
that addressed multi-objective optimization do not have
a system environment similar to that of CoMEC handling
real-life applications.

The summary of the state-of-the-art works has been
listed in Tables 1 and 2. Most of the existing literature
works have either performed single-objective optimiza-
tion or weighted optimization in multi-user multi-server
networks with and without cache or have performed
multi-objective optimization without caching and col-
laboration among servers. The problem of jointly opti-
mizing three basic objectives: execution latency, device
energy, and resource cost has not yet been resolved in the
CoMEC system incorporating service caching. The gen-
eration of Pareto-optimal solutions for optimizing mul-
tiple objectives simultaneously in a resource-constrained
environment where servers collaborate and cache ser-
vice is yet to be done. These observations have driven
us to design a task offloading framework in the CoMEC
environment for generating Pareto-optimal solutions for
multi-objective optimization by exploiting service caching
of computational resources.

System model
In this section, we describe the different entities of a
CoMEC network and the interactions among them.

Entities of CoMEC network
We consider a CoMEC network consisting of a set of
collaborative edge servers (CESs), E and a set of mobile
devices (MDs), U , as shown in Fig. 2. Each mobile device
k ∈ U is connected with one edge server j ∈ E , which
is termed as its primary edge server (PES). Let τ be the
set of M tasks arrived at a PES from mobile devices.
Each task i ∈ τ is denoted by a four-parameter tuple,
〈bi,Bi,T

max
i , δi〉 , where bi is the input data size, Bi is the

size of related data codes, Tmax
i is the task deadline and δi

is the task budget. In this work, data code is considered
to consist of application-related program code, system
settings, and related databases/libraries.

Each mobile device k has computational resources and
each edge server j is considered to consist of both compu-
tational and cached resources. Table 3 contains major nota-
tions. A task generated from an MD can be executed either
on the MD itself or at any edge server where edge servers
are borrowing resources from the cloud while needed.

Collaboration among entities
Upon receiving a set of task requests, τ from the mobile
devices, the PES communicates with the other CESs for
task-related information and checks the availability of
the resources, i.e., cached and computational resources
required for the execution of the tasks. After getting
the resource availability information, the PES runs
the WOLVERINE task allocation decision algorithm
and determines the appropriate resource providers to
execute the tasks considering their requirements. If
none of the servers has enough resources to complete
a task, it is forwarded to the master cloud for execu-
tion, implementing a vertical collaborative computation
environment.

Table 1 Summary of methods exploited

State-of-the-art works Applied technique Cache Multi-
objective
optimization

Edge
collaboration

Objective function

[17] Monte Carlo Tree Search + Multi‑Task Learning ✗ ✗ ✓ Traded‑off latency & energy

[4] Modified branch and bound + Modified gen‑
eralized benders decomposition method

✗ ✓ ✗ Minimized task execution latency

[24] Lagrange dual decomposition ✓ ✓ ✗ Minimized latency

[19] Multiobjective Evolutionary Algorithm based
on Decomposition

✗ ✓ ✗ Minimized latency, energy & cost

[38] Collaborative Filtering + Cosine Similarity &
Dynamic Time Wrapping

✓ ✓ ✗ Minimized latency & energy

WOLVERINE BMOGWO ✓ ✓ ✓ Minimized latency, energy & cost

Table 2 Summary of targeted performance parameters

State-of-the-art works Execution
time

Energy
consumption

Monetary
cost

[20] ✓ ✗ ✗
[4] ✗ ✓ ✗
[17, 22, 33, 34, 38] ✓ ✓ ✗
[18, 19], WOLVERINE ✓ ✓ ✓

Page 6 of 22Nujhat et al. Journal of Cloud Computing (2024) 13:23

Design details of WOLVERINE
In this section, we unfold different design components of
WOLVERINE. First, we present a computational model
of the proposed WOLVERINE system, then we formu-
late the task offloading problem as a multi-objective

optimization problem; and finally, we devise a binary
multi-objective grey wolf optimization-based solution.

Computational model of WOLVERINE
In this section, we unfold different design components of
WOLVERINE. First, we present a computational model
of the proposed WOLVERINE system, then we formu-
late the task offloading problem as a multi-objective
optimization problem; and finally, we devise a binary
multi-objective grey wolf optimization-based solution.

Figure 3 depicts the functional modules of the pro-
posed WOLVERINE system, where an individual mod-
ule is responsible for performing a specific function. The
main functional modules of the PES can be grouped into
two categories: the PES service module and the CES ser-
vice module. The PES service module handles the task
requests from the MDs and determines the optimal task
offloading policy with the help of the CES service mod-
ule. The responsibility of the CES service module is to
manage collaboration between the PES and the CESs.
Note that any collaborative edge server can work as a
primary server by installing the PES service module to
achieve the corresponding functionalities. The function-
alities of each module are described below:

• Task Profiler receives the task-offloading requests
from the MD first and then checks for the required

Fig. 2 The structure of CoMEC network over fiber‑wireless connection

Table 3 Description of notations

Notation Description

U Set of mobile devices in the system

τ , E Set of tasks and set of servers, respectively

ci Required CPU‑cycle to complete task i ∈ τ

µk
i

% of CPU‑cycles allocated to task i ∈ τ by MD k ∈ U

�ij % of CPU‑cycles allocated to task i ∈ τ by server j ∈ E

Bij Radio bandwidth allocated to task i by server j

pk Transmission power of MD k ∈ U

f k CPU‑cycle frequency of MD k ∈ U

f j CPU‑cycle frequency of server j ∈ E

bi Size of input data of task i ∈ τ

Bi Size of the data code related to task i ∈ τ

σi,j Cached resource availability for task i at server j

γj Per unit CPU‑cycle cost of server j ∈ E

ηj Per unit storage cost of server j ∈ E

χw Position vector of wolf w ∈ P

xwd Position of wolf w ∈ P at dth dimension

Page 7 of 22Nujhat et al. Journal of Cloud Computing (2024) 13:23

cached resources for each task using the Resource
Availability Database (Path 2) and propagates the
task and resource data to the Optimal Task Allocator
module (Path 3) for optimal resource allocation.

• Optimal Task Allocator is the core computational
block of the PES service module. It collects the
task’s descriptions from the task profiler, queries
the resource availability of the Collaborative Edge
Servers (CES) to the Resource Availability Checker
(Path 4) whose result comes through the Resource
Availability Database (Path 5-6-7-8-9), formulates
the WOLVERINE task offloading problem and com-
municates the associated task offloading decision
vectors to the MDs.

• Resource Availability Database records the availabil-
ity of the computational and cached resources of the
CES that comes through the Communication Module
and Resource Availability Checker (Path 6-7-8).

• Resource Availability Checker queries resources to
other neighboring CESs and updates the cached and
computational resources periodically or when trig-
gered by the Optimal Task Allocator (Path 16).

• Task Execution Module executes the computational
tasks offloaded to it by utilizing the available computa-
tional resources (Path 14) and cached data administered
by Caching Management Module (Path 11-12-13).

• Caching Management Module supplies the cached
data to the Task Execution Module from the Cached
Data module (Path 12-13) and maintains the cached
data repository by performing maintenance functions.

• Cached Data Repository stores the cached data code
from the Computational Resource module for fur-
ther use (Path 15).

• Computational Resources module stores the serv-
er’s available resources, such as CPU cycle and mem-
ory, for usage by the Task Execution Module.

• Communication Module establishes collaboration
among multiple edge servers and acts as a commu-
nication medium between the server and the MDs to
share task data and computational results.

Multi-objective problem formulation
In this section, we calculate total latency Tij , energy
consumption Eij and monetary cost Cij for offloading
task i ∈ τ to edge server j ∈ E or for local computation.
Finally, we formulate the task offloading problem of
WOLVERINE as a multi-objective optimization problem.

Calculation of Tij
Two different cases for calculating Tij:

Fig. 3 Computational framework of WOLVERINE

Page 8 of 22Nujhat et al. Journal of Cloud Computing (2024) 13:23

In the first case, the mobile device executes the task
locally, thus, experiencing no communication delay. So,
the task computation delay, tkij for executing task i ∈ τ on
the mobile device k ∈ U locally is calculated as,

Here, ci is the number of computation cycles required
to compute the task, µk

i is the ratio of CPU cycles allo-
cated by kth mobile device to complete ith task and f k is
the CPU-cycle frequency of kth mobile devices.

For the second case, the input data and/or data code
are offloaded to the MEC servers. If the data code is
cached at the offloading server, then only the input data
needs to be transmitted; otherwise, the device sends the
input data along with the code to the server. For wireless
transmission between the mobile device and collabora-
tive edge server that follows Orthogonal Multiple Access
(OMA), we consider the Rayleigh channel, and the trans-
mission rate is calculated as,

where, Bij is the allocated radio bandwidth, pk is the
transmission power, hk is the channel gain (k ∈ U) and
N0 is the variance complex of white Gaussian channel
noise. Now, we calculate the communication latency, tcij
for offloading task i to edge server j as follows,

where, σij ∈ {0, 1} . Its value is 1 when the cached
resources i.e., data code available in the offloading server,
otherwise 0. Here, bi and Bi denote the size of the input
parameters and data code, respectively. Next, we calcu-
late the execution time of task i at the edge server j as,

where, �ij is the resource of server j allocated to task i and
f j is the total resource of the jth MEC. Finally, we calcu-
late the total latency for completing task i using the fol-
lowing equation:

When calculating execution latency for real-time
computation-intensive applications in edge comput-
ing, addressing delivery or downloading latency is cru-
cial. However, in this particular scenario, the emphasis

(1)tkij =
ci

µk
i × f k

.

(2)rij = Bij × log2(1+
pk × hk

N0
),

(3)tcij =
σij × bi + (1− σij)× (bi + Bi)

rij
,

(4)teij =
ci

�ij × f j
,

(5)Tij =
tkij if task is executed locally

tcij + teij if task is executed on server.

is placed more on upload speeds and network latency
rather than download times. Besides, the execution result
has typically limited data size and thus it has negligible
impact on resource parameters.

Calculation of Eij
For calculating total energy consumption Eij , two pos-
sible cases have been brought under consideration. In
the first case, the mobile device executes the task locally.
Hence, we consider only task computation energy and it
is calculated as follows,

where, κ is a co-efficient that depends on device’s chip
architecture [17] and f k is the CPU-cycle frequency of
kth mobile device.

For the second case, the task is executed at the server,
hence, task computation energy is ignored. Thus, the
energy the device expends due to transmitting input data
and/or code to the MEC server is calculated as,

where, pk is the power of kth mobile device and tcij is the
time required to transmit ith task to jth server. Now, the
total energy consumption for offloading task i to server j
is calculated as,

The overall energy consumption can include the energy
consumed for transmitting the tasks to the servers. We
have prioritized device energy consumption owing to the
limited battery resources and computational capabilities
of user devices. As a result, energy consumed for execut-
ing tasks by servers has been less emphasized.

Calculation of Cij
Similar to latency and energy, the calculation of monetary
cost for task computation can also have two possible cases.
If the device performs the task locally instead of offloading,
then it incurs no monetary cost. In the case of offloading,
the cost of computational resources, i.e., CPU cycle and/or
storage resources, i.e., memory, sums up the total monetary
cost. For executing ith task at jth server, the storage cost is
calculated as follows,

Here, σij ∈ {0, 1} determines the availability of cached
resource. If the value of σij is 1, storage cost will be incurred

(6)Ek
ij = κ ×

(

f k
)2

× ci,

(7)Ec
ij = pk × tcij ,

(8)

Ek
ij =

{

Ek
ij if task is executed locally

Ec
ij if task is executed in an edge server.

(9)vsij = σij × (ηj × Bi).

Page 9 of 22Nujhat et al. Journal of Cloud Computing (2024) 13:23

for the device; otherwise, no storage cost is required. ηj is
the storage cost of per bit resource. Next, we calculate the
cost of computing ith task at jth server as follows,

where, γj is the unit CPU cycle cost of server j. Finally, the
total monetary cost for executing task i at server j can be
calculated as,

We have not considered cloud servers in our problem
formulation. Although cloud server adds significant ben-
efits related to scalability, server-health management,
backup, and service provisioning capabilities, they can cre-
ate hindrances in real-time application environments due
to long-distance communication where exceptional QoE
needs to be achieved. Uploading and executing tasks in
the cloud require extra latency and energy, which impeded
performance. Hence execution of tasks in user mobile
devices and edge servers adds leverage to network perfor-
mance. Cloud servers are typically utilized within an edge
server network only when all other edge resources are
overwhelmed or during network malfunctions.

Objective function formulation
Our aim is to execute each task i ∈ τ at local or remote
resource j ∈ E so as to minimize the total execution
latency, energy expenditure, and incurred monetary cost.
Thus, WOLVERINE formulates the task execution prob-
lem as a multi-objective minimization problem as follows,

where,

Here, Xij is a binary decision variable whose value is
1 if task i is allocated to edge server j, otherwise 0. And
Xij ∈

−→χ w , where −→χ w is a D-dimensional vector, −→χ w =
(x1, x2, ..., xD) . Each entry xd ∈ −→χ w corresponds to the
aforementioned decision variable Xij , ∀i ∈ τ , ∀j ∈ E .
T(−→χ w), E(−→χ w), and C(−→χ w) denotes the objective func-
tions related to task execution latency, execution energy,

(10)vcij = γj × ci,

(11)Cij =

{

0 if task is executed locally
vcij + vsij if task is executed on server

(12)Minimize {T (−→χ w),E(
−→χ w),C(

−→χ w)}

(13)T (−→χ w) =
∑

i∈τ

∑

j∈E

(Xij × Tij),

(14)E(−→χ w) =
∑

i∈τ

∑

j∈E

(Xij × Eij),

(15)C(−→χ w) =
∑

i∈τ

∑

j∈E

(Xij × Cij).

and monetary cost respectively. Equation (12), which is a
multi-objective linear optimization problem, is subject to
the following constraints:

• Assignment Constraint: Task will be executed in
either an edge server or in the user device. No partial
assignment of tasks to multiple servers will be done.

• Budget Constraint: Constraint (17) denotes that the
monetary cost of task t for executing it to server j
cannot exceed the task budget, δi .

• Energy Constraint: Constraint (18) refers to the
energy expenditure of a device in executing a task is
limited by a threshold, Emax

i .

• Latency Constraint: Constraint (19) denotes that
a task t needs to be completed within its deadline,
Tmax
i .

Theorem 1 The WOLVERINE task offloading problem
formulated in Eq. (12) is NP-hard.

Proof
The WOLVERINE task offloading problem aims at mini-
mizing three objectives, yielding a set of Pareto optimal
solutions. The optimization problem in Eq. (12) can be
regarded as an assignment problem. To prove the NP-
hardness of the WOLVERINE task offloading problem, we
first convert Generalized Assignment Problem (GAP), a
well-known NP-hard problem [39], into a multi-objective
problem. The GAP assigns M tasks to N agents to mini-
mize the overall assignment costs as follows:

Subject to:

(16)
∑

i∈τ

∑

j∈E

Xij ≤ 1

(17)Cij ≤ δi, ∀i ∈ τ , j ∈ E

(18)Eij ≤ Emax
ij , ∀i ∈ τ , j ∈ E

(19)Tij ≤ Tmax
i , ∀i ∈ τ , j ∈ E

(20)Minimize
∑

i∈M

∑

j∈J

(Cij × Xij)

(21)
∑

i∈M

Aij × Xij ≤ Bj , ∀j ∈ N

(22)Xij ∈ {0, 1}, ∀i ∈ M, ∀j ∈ N

Page 10 of 22Nujhat et al. Journal of Cloud Computing (2024) 13:23

Here, C indicates the assignment cost of task m ∈ M to
an agent n ∈ N , A is the resource capacity function that
indicates the resource used by task m ∈ M and B indi-
cates the available capacity of an agent. To convert GAP
to a multi-objective assignment problem, we first con-
sider a bi-objective assignment problem where resource
and cost constraints of GAP is to be satisfied by convert-
ing the three objectives of WOLVERINE to a single one
as follows:

where,

Subject to:

Here, the value of ǫi is chosen in such a way that mini-
mizing Zij yields the same result as the multi-objective
functions. The function u(X) is defined as, u(X) = 1 if
x ≥ 0 and 0 otherwise.

Note that, we do not consider resource limitation con-
straints of GAP as the constraints of the multi-objective
optimization problem, rather we consider it as an objec-
tive to be optimized. If the resource limitation con-
straints are satisfied, then z1 is equal to zero and the cost
of assignment z2 will be considered. If there exists a bet-
ter solution in GAP, a better solution also exists in the
corresponding multi-objective problem. We consider

(23)
∑

j∈N

Xij = 1, ∀i ∈ M

(24)

Minimize

−→
Z = (z1, z2) =

�

i∈τ

u

�

j∈E

RijXij − Bi

,
�

i∈τ

�

j∈E

�

Xij × Zij

�

(25)
Z(τ ,E) = ǫ1T (τ ,E)+ ǫ2E(τ ,E)+ ǫ3C(τ ,E)

= ǫ1
∑

i∈τ

∑

j∈E

(Xij × Eij)+ ǫ2
∑

i∈τ

∑

j∈E

(Xij × Tij)+ ǫ3
∑

i∈τ

∑

j∈E

(Xij × Cij)

(26)
∑

j∈E

Xij ≤ nj , ∀j ∈ E

(27)Xij ∈ {0, 1}, ∀i ∈ τ , ∀j ∈ E

(28)
∑

j∈E

Xij = 1, ∀i ∈ τ

two feasible solution,
−→
Z1 and

−→
Z2 where cost z1 < z2 . These

two costs produce solutions (0,z1) and (0,z2) in multi-
objective assignment problems. If we consider lexico-
graphical minimum, then z1 < z2 . Hence (0,z1) is a better
solution. Thus, GAP is convertible to a multi-objective
assignment problem.

Therefore, it is shown that GAP can be converted to a
multi-objective optimization problem. Since GAP is a
well-known NP-hard problem, the WOLVERINE task
offloading problem is also an NP-hard one. �

Meta-heuristic task offloading
As the number of MDs or servers increases, the WOL-
VERINE system experiences exponential growth in
execution time. Many 5G applications can not tolerate
a single second of delay. The proposed WOLVERINE
framework attempts to optimize multiple objectives,
such as minimizing latency, reducing energy consump-
tion, and minimizing monetary costs. These objectives
can be conflicting, meaning that improving one objec-
tive may degrade the other. Pareto optimal solutions
help find a set of solutions where no single objective
can be improved without worsening at least one other
objective. Evolutionary algorithms help in solving prob-
lems that involve Pareto-optimality as the solution
choice is based on the population approach [31]. There-
fore, in this section, we develop a smart task offloading
policy using Binary Multi-Objective Grey Wolf Optimi-
zation that determines the suitable set of resources to
allocate the computational tasks in polynomial time.

Preliminaries
The Grey Wolf Optimization (GWO) [40] is a bio-
inspired meta-heuristic algorithm that is designed based

Page 11 of 22Nujhat et al. Journal of Cloud Computing (2024) 13:23

on the social leadership and hunting techniques found
in grey wolves. To mathematically model the social hier-
archy of the wolves, the fittest solution is considered
the alpha (α) wolf. The second and third best solutions
are named beta (β) and delta (δ) wolves, respectively.
The leader selection and position updating of the rest of
the search agents are done in each iteration, eventually
converging to a set of Pareto-optimal solutions. Binary
Multi-objective Grey Wolf Optimization (BMOGWO) is
a special variant of MOGWO that allows search agents
to move in a binary space instead of a continuous spec-
trum [41]. In our specific case, where we aim to opti-
mize execution time, energy consumption by devices,
and monetary cost simultaneously, the BMOGWO algo-
rithm demonstrates superior performance compared to
other evolutionary algorithms such as MOPSO, BAT, and
WHALE optimization algorithms [42–44] for tackling
multi-objective problems, efficiently addressing the opti-
mization of multiple objectives concurrently. It also out-
performs Ant-Colony Optimization (ACO) and Whale
Optimization (WO) in scenarios where task offloading is
required to edge servers [34]. The BMOGWO also sur-
passes other evolutionary algorithms in scenarios where
Pareto-optimal solutions are generated due to better per-
formance in the exploration of solution space and pre-
vention of convergence to local optima [45].

Defining the position vector
We consider a population of wolves denoted by P where
each wolf, w ∈ P represents a candidate solution [46].
The position of a wolf w in the search space is denoted
by a D-dimensional binary position vector −→χ w where D
= τ × E . The D-dimensional vector is denoted by −→χ w =
(x1, x2, ..., xD) where each entry xd ∈ −→χ w corresponds
to a decision variable Xij , ∀i ∈ τ , ∀j ∈ E such that,
d = (i − 1)× E+ j.

Updating positions of the wolves
In GWO, the position of each ω wolf is updated by con-
sidering the positions of α , β , and δ wolves. Let −→χ α , −→χ β ,
−→χ δ and −→χ ω denote the position of α , β , δ and ω wolves,
respectively. Now we calculate the distance of the ω wolf
from the other three leader wolves as follows.

Here,
−→
C is a position vector with values in the range

[0, 2]. The position vector associates weight to each prey

(29)−→
Dα =|

−→
C1.

−→χα −−→χω |,

(30)−→
Dβ =|

−→
C2.

−→χβ −−→χω |,

(31)−→
Dδ =|

−→
C3.

−→χδ −
−→χω | .

item, in our case, the three best solutions. The value of
C is chosen randomly to favor exploration by introduc-
ing randomness in the algorithm’s behavior. This vector
controls the effect of prey, in this case, the effect of the
three best solutions on the updating search agents. |

−→
C |

> 1 emphasizes the effect of best solutions more on the ω
wolves whereas |

−→
C | < 1 de-emphasizes the effect. This

prevents local optimum convergence and ensures that
the entire search space is covered. Besides, the random
selection of values in C emphasizes exploration not only
in the initial stages but also during the final iterations
[40]. The value of C is determined as

−→
C = 2.−→r2 , where

−→r2 ∈ [0, 1] . Now the updated position of the ω wolf with
respect to alpha, beta, and delta wolves is calculated as
follows.

Here, −→A is the co-efficient vector that governs conver-
gence or divergence towards the prey, or the best solu-
tions, and has values in the range [-1,1]. The formula
for calculating A’s value is

−→
A = 2

−→
a .−→r1 −

−→
a , where

−→r1 ∈ [0, 1] . The search space exploration is managed
using the −→a parameter. By averaging −→χ α,ω , −→χ β ,ω and
−→χ δ,ω in −→χ w , the ultimate position of the ω wolf is now
determined.

Note that each entry xd ∈ −→χ w corresponds to a binary
decision variable of the MOLP problem and is only
allowed to have a value of either 0 or 1 as follows.

where, sigmoid(xd) is defined as,

Here, the rand() function provides a uniformly distrib-
uted random number in the range of [0, 1] that improves
search space exploration with the goal of avoiding local
optima. The convergence and diversity of the Pareto-
front generated by MOGWO for Pareto-optimal solu-
tions in tri-objective problem are higher than that of
Multi-Objective Particle Swarm Optimization (MOPSO)
[45]. Here, convergence indicates how close the obtained
solutions are to the true Pareto-front. Diversity dem-
onstrates how thoroughly the search space has been
explored. It shows how much an algorithm is comparing

(32)−→χ α,ω = −→χ α −
−→
A1.(

−→
Dα),

(33)−→χ β ,ω = −→χ β −
−→
A2.(

−→
Dβ),

(34)−→χ δ,ω = −→χ δ −
−→
A3.(

−→
Dδ).

(35)xd =

{

1 if sigmoid(xd) ≥ rand()
0 otherwise

(36)sigmoid(xd) =
1

1+ e−xd
.

Page 12 of 22Nujhat et al. Journal of Cloud Computing (2024) 13:23

the trade-offs and setting the wide range of options.
Higher diversity indicates a greater number of options
have been explored through a different balance between
the objective parameters. Grey-Wolf Optimization
strikes a balance between the two of these. It converges
toward the true Pareto-front by iteratively computing the
solutions. As the algorithm progresses, the positions of α ,
β , and δ wolves are updated based on their fitness values.
These three best solutions found so far guide the search
process toward finding better solutions and helps to con-
verge towards Pareto-front through optimal trade-offs.
The exploration and randomness of Grey Wolf Optimiza-
tion prevent convergence to local optima and provides a
better exploration of a wide range of trade-offs.

Algorithm 1 Archive controller

Controlling the archive
For incorporating multi-objective optimization in
GWO, an archive of fixed size is used. It is a simple
storage for storing or retrieving Pareto-dominant solu-
tions obtained so far, which is shown in Algorithm 1.
In line 1, for each w ∈ P , a set � is initialized that
stores the archive solutions dominated by −→χ w . A flag
is also initialized to check if any solution from the
archive dominates −→χ w . Line 5 checks for the archive
members dominated by −→χ w and the dominated mem-
bers are added to � . Line 7 checks the opposite and
sets the flag to 1. In case there is no archive mem-
ber that dominated −→χ w , i.e., flag = 0, the archive is
updated using procedure UpdateArchive(A,�) in line
12. Lines 2-13 iterate for every member of the popula-
tion and the updated archive is returned.

In Algorithm 2, UpdateArchive(A,�) procedure is sum-
marized. In lines 2-4, the dominated solutions are removed
from the archive. The capacity of the archive is checked in
line 5. If it is not full, then the current non-dominated solu-
tion is added to the archive in line 6; otherwise, the solution

from the most crowded segment is removed and the cur-
rent non-dominated solution is added to the archive in line
9. In line 12, if a particular solution is an outlier, the grid is
updated adaptively to cover the new solution.

Adaptive grid mechanism
An adaptive grid made of hypercubes [47] is generated
using the archive, where the dimension of each hypercube
is equal to the number of optimization objectives. The grid
mechanism divides the objective space of the problem into
a grid. Each hypercube is interpreted as a geographical
region that contains the solutions [47]. For our WOLVER-
INE task offloading problem, which has three objectives,
therefore, the adaptive grid consists of three-dimensional
hypercubes. The boundary of the objective/target space at
t-th iteration is determined as (minTt ,minEt ,minCt and
maxTt ,maxEt ,maxCt) . Now, we calculate the modulus of
the grid using the same approach [47] as follows,

Here, M is an integer that determines the number
of segments in each dimension of the objective space.
Therefore, the total number of hypercubes is M3.

We employ a strategy in which non-dominated solu-
tions are removed from the most crowded segments of
the archive and leader selection is performed from the
less crowded segments [45]. Both of these operations
are based on probabilities to avoid local optima in search
spaces. The solution density in each segment plays an
important role in calculating these probabilities [47]. The
more non-dominated solutions there are in a segment,
the higher the probability of removing one solution and
the lower the probability of choosing a leader. The prob-
ability of choosing the i-th segment to remove a solution
is calculated as follows:

where Ni is the number of obtained pareto-optimal solu-
tions in i-th segment. Note that Eq. (40) assigns a higher
probability to a crowded segment. On the other hand, the
probability of selecting a leader from the archive is calcu-
lated in the opposite manner. The roulette-wheel approach
is used for the selection based on the likelihood for each
hypercube [45], as expressed by the following equation:

(37)�Tt =
maxTt −minTt

M
,

(38)�Et =
maxEt −minEt

M
,

(39)�Ct =
maxCt −minCt

M
.

(40)Pi =
Ni

c
, c = max(Ni)

Page 13 of 22Nujhat et al. Journal of Cloud Computing (2024) 13:23

From Eq. (41), it is clear that a segment with fewer solu-
tions has a higher probability of being chosen as the leader.

Algorithm 2 Algorithm for updating archive

Algorithm 3 BMOGWO based task offloading

BMOGWO‑based task execution
The steps of the BMOGWO-based task execution
scheme of WOLVERINE are presented in Algorithm 3.

(41)Qi =
1

Ni + 1
.

First, we initialize the archive in line 2. Next, we initial-
ize a population of random position vectors and calcu-
late their fitness values in lines 4 and 5. The archive is
populated with a set of non-dominated solutions gen-
erated using Algorithm 1 in line 7. Line 8 selects three
different leaders using a grid mechanism. For each
dimension of every wolf, the positions are updated in
line 13. Parameters a, A, and C are updated in line 16.
Next, we calculate the fitness values of the updated
position vectors in line 18 and update the archive with
updated positions using the Algorithm 1 in line 20.
Hence, from the updated archive, three new leaders are
selected using Eq. (41) in line 21. Lines 11-21 repeat
until a maximum number of iterations Imax is reached.
Finally, the value of entry xd of the best solution −→χ α is
assigned to the corresponding decision variable in lines
25-26 and the decision vector X is returned.

Complexity analysis
In this section, we analyze the complexity of the three
algorithms used in WOLVERINE. In Algorithm 2,
Line 3 is enclosed within a loop that iterates |A| times
in the worst case. Line 8 requires M3 time. The rest of
the statements are of constant time complexity. Thus,
the overall complexity of Algorithm 2 is O(|A| +M3) .
Next, we define the complexity of Algorithm 1. Lines
5-9 are enclosed within a loop that iterates |A| times.
Line 12 updates the archive using Algorithm 2 that
takes O(|A| +M3) . Lines 2-13 are also enclosed within
a loop that takes |P| times. Hence, the computational
complexity of Algorithm 1 is O(|P| × (|A| +M3)) .
Finally, we analyze the complexity of Algorithm 3.
Lines 4 and 5 are enclosed within a loop that iterates
for |P| times. Line 7 updates the archive that requires
O(|P| × (|A| +M3))) times. Line 13 is enclosed within
a nested loop that iterates |P| × |−→χ | times. Line 18 is
enclosed in another loop that iterates for |P| times.
Line 20 again calls Algorithm 2. Lines 11-22 are also
enclosed within a loop that iterates for Imax times. The
rest of the algorithm takes constant time to run. Thus,
the total computational complexity of Algorithm 3 is
O(|P| × (|A| +M

3 + Imax × (−→χ + |A| +M
3))) ≈ O(M3).

Convergence analysis
In this section, we analyze the convergence of the devel-
oped WOLVERINE system, which is measured using
Inverted Generational Distance (IGD). IGD is a metric
used for assessing the quality of a set of solutions pro-
duced by an optimization algorithm, particularly in the
context of multi-objective optimization. It measures the
convergence and diversity of the obtained solutions con-
cerning the true Pareto front, which represents the opti-
mal trade-off between conflicting objectives. The IGD

Page 14 of 22Nujhat et al. Journal of Cloud Computing (2024) 13:23

metric calculates the average distance from each point in
the obtained solution set to the nearest point in the true
Pareto front. A lower IGD value indicates a better con-
vergence and diversity of the obtained solutions.

If the IGD value between the obtained Pareto front ρ
and the true Pareto front ρ∗ is IGD(ρ, ρ∗) , then the con-
vergence ratio (CR) C can be defined as,

where, ρt and ρt+1 denote the Pareto Front value after t
and (t + 1) iterations, respectively.

Theorem 2 The convergence ratio C of the developed
BMOGWO-based WOLVERINE system is bounded by
g(P,

−→
C ,

−→
A , τ ,U,E, t).

Proof
This proof can be done by inductive hypothesis. We need
to proof that CR C ≤ g(P,

−→
C ,

−→
A , τ ,U,E, t) . It can be

mathematically denoted as,

Here, g(P,
−→
C ,

−→
A , τ ,U,E, t) indicates the upper bound

of the solution, where the solution of the algorithm is
the farthest from the true Pareto front ρ∗ , which can be
mathematically represented as follows,

where, d(ˆ̺ , ̺∗) denotes the distance between the two solu-
tions ˆ̺ , and ̺ ∗ in the solution space. The IGD value of solution
ρt after iteration t can be calculated similar to [48] as follows,

Basis Step: Let us assume that ρ0 denotes the initial
Pareto front approximation and IGD(ρ0, ρ∗) be the initial
IGD value. Then, Eq. (43) can be modified as follows,

where, P0,
−→
C0,

−→
A0 denote the initial population size,

position vector, and co-efficient vector, respectively.

(42)C =
IGD(ρt+1, ρ∗)− IGD(ρt , ρ∗)

IGD(ρt , ρ∗)
,

(43)IGD(ρt+1, ρ∗)− IGD(ρt , ρ∗) ≤ g(P,
−→
C ,

−→
A , τ ,U,E, t)× IGD(ρt , ρ∗).

(44)g(P,
−→
C ,

−→
A , τ ,U,E, t) = max

ˆ̺∈ρt
min
̺∗∈ρ∗

d(ˆ̺ , ̺∗),

(45)IGD(ρt+1, ρ
∗) =

1

|ρ∗|

∑

ˆ̺∈ρt

min
̺∗∈ρ∗

d(ˆ̺ , ̺∗),

(46)IGD(ρ1, ρ∗)− IGD(ρ0, ρ∗) ≤ g(P0,
−→
C0,

−→
A0, τ ,U,E, 0)× IGD(ρ0, ρ∗),

Equation (46) confirms that the induction hypothesis
holds true for the base step.

Inductive Step: Assume that the theorem holds up to the
t-th iteration i.e., IGD(ρt , ρ∗) ≤ g(P,

−→
C ,

−→
A , τ ,U,E, t) .

Now, we need to express the improvement in perfor-
mance from iteration t to t + 1 , which can be mathemati-
cally represented as,

where, h(.) denotes the improvement function. As
IGD(ρt , ρ∗) ≤ g(P,

−→
C ,

−→
A , τ ,U,E, t) , therefore,

IGD(ρt+1, ρ∗) ≤ g(P,
−→
C ,

−→
A , τ ,U,E, t) in Eq. (47). Thus it

confirms that Eq. (43) holds true for all t and convergence
ratio C of the developed WOLVERINE system is bounded
by g(P,

−→
C ,

−→
A , τ ,U,E, t) . �

Performance evaluation
In this section, the performance of our proposed multi-
objective task offloading with the caching approach is
compared with some of the existing strategies in the lit-

erature: MGBD [4], iRAF [17] and MOEA/D [19]. The
work presented in [4] focuses on jointly addressing the
content caching, computation offloading, and resource
allocation problem to reduce users’ overall task execution
time. An AI-driven resource allocation framework (iRAF)
has been developed in [17] to tackle intricate resource
allocation problems by considering current network con-
ditions and parameters to optimize either execution time
or energy consumption. In a multi-user and multi-server
task offloading environment, a tri-objective problem is
addressed in [19], where time, device energy, and cost are
optimized using Multi-Objective Evolutionary Algorithm
(MOEA/D). However, caching the data codes has not
been considered in this work. The environmental setup,
performance metrics, and results are discussed below.

Environmental setup
We have implemented our proposed algorithm and per-

formed empirical numerical evaluation using Python
3.6.0 [49]. For evaluation purposes, we consider a

(47)
IGD(ρt+1, ρ∗)− IGD(ρt , ρ∗) ≤ h(P,

−→
C ,

−→
A , τ ,U,E, t),

IGD(ρt+1, ρ∗) ≤ h(P,
−→
C ,

−→
A , τ ,U,E, t)+ IGD(ρt , ρ∗)

Page 15 of 22Nujhat et al. Journal of Cloud Computing (2024) 13:23

scenario where a stationary edge server is centered in a
1000× 1000m2 urban area. A number of collaborative
edge servers are randomly located around the primary
edge server and several mobile devices are connected
to the edge servers. The path loss model between the
mobile devices and servers is assumed to follow a log-
normal distribution. In addition to the above metrics,
we model packet loss on each path using the Gilbert loss
model [50] and the channels handle the re-transmission
of lost packets using TCP protocol. 20 channels are
employed, each with a bandwidth of 2MHz. Our study is
focused on real-time, delay-sensitive, and computation-
intensive applications, including interactive video gam-
ing, AR/VR applications, medical image processing, and
face recognition. The task arrivals pattern follows a Pois-
son distribution. The whole experiment has been run 50
times and the average of all these results is taken to plot
each graph. Major environment setup parameters used
in this paper are shown in Table 4. In our simulation set-
ting environment, we have ensured that resources are
allocated proportionately across different systems. All
the methods from the literature were implemented and
performance metrics data were collected in a system
environment consistent with that of ours.

Performance metrics
We have measured the performance of our algorithm
based on the following metrics:

• Average latency is defined as the ratio of the total
delay experienced by the tasks to the number of
tasks.

• Average Energy Consumption is the average amount
of energy consumed by each edge device.

• Average Cost Savings is calculated as the difference
between a device’s budget and the monetary cost
paid by it divided by the number of tasks. The higher
value indicates a higher system performance.

• Task Completion Reliability (TCR) is the ratio of the
number of tasks completed to the submitted ones.

Result analysis
In this section, we have discussed the performance of
our proposed system by varying the number of tasks, the
number of servers in the system, and the average compu-
tation power per task.

Impact of a varying number of tasks
In this experiment, we vary the number of tasks of the
overall network system from 10 to 250 and keep the
number of servers fixed at 12. The result and comparison
are shown in Fig. 4.

Figure 4(a) shows that as the number of tasks increases,
the average latency also increases. Initially, latency
increases slowly for a smaller number of tasks. However,
as the number of tasks exceeds 160, latency increases
exponentially. Latency is lower in MGBD and WOLVER-
INE cases than the iRAF because the former two have
implemented caching. In the case of MOEA/D, the per-
formance is close to the WOLVERINE. A single mobile
device user decomposes an application into multiple
independent sub-tasks and offloads them to various serv-
ers, depending on resource availability. However, as the
sub-tasks are executed in parallel, the total latency con-
sidered for completing a task is the maximum latency
among the sub-tasks, and a risk of high delay remains in
case the system reaches its saturation point. Besides, the
absence of server-to-server collaboration makes it dif-
ficult to share sub-tasks. Our proposed WOLVERINE
exploits both collaborative edge computing and cach-
ing. Therefore, if the required data for a specific task is
not cached at a server or computational resources are not
present, the server can pass the task to another collabora-
tive server where the task data is cached already, which
decreases the service delay significantly. Therefore, our
proposed WOLVERINE outperforms the state-of-the-art
approaches.

The impact of varying numbers of tasks on aver-
age energy consumption is depicted in Fig. 4(b). With
the increasing number of tasks, the energy toll is also
increasing because a large number of tasks need to share
the same bandwidth and require higher latency to reach
the edge. Both WOLVERINE and MGBD perform better
than iRAF because of exploiting caching, which helps the
system’s users reduce backhaul latency and energy. How-
ever, the energy consumption gap increases significantly

Table 4 Evaluation parameters

Parameter Value

Simulation area 1000× 1000m2

Number of mobile devices [10‑260]

Number of collaborative edge servers [2‑12]

The transmit power [32mW‑197mW]

A coefficient that affects local energy consump‑
tion (κ)

10
−26

The required CPU cycles to complete task [6× 10
9‑9× 10

10]Hz

The CPU‑cycle frequency of MD 300MHz

The computation capability of edge servers [3.19GHz‑19.14GHz]

The bandwidth of one channel 2MHz

Size of input data [3MB‑50MB]

Number of Iteration (Imax) 50

Population size 50

Page 16 of 22Nujhat et al. Journal of Cloud Computing (2024) 13:23

between WOLVERINE and MGBD when the number
of tasks rises from 110 to 160 in the network, as MGBD
needs to request the cloud for task processing owing to
the unavailability of resources. For MOEA/D, a higher
number of tasks means sub-tasks are executed in mobile
devices more frequently, which increases overall energy
consumption in the system. Besides, when sub-tasks are
offloaded to multiple servers, the data code needs to be
offloaded as well. Thus, energy expended for offloading
data code to edge servers also occurs as an overhead,
and offloading tasks frequently also incurs some commu-
nication costs with the increasing number of sub-tasks.
For WOLVERINE, all the tasks requested can be cached
either at different servers or the data code for computing
the tasks needs to get transmitted at the servers; that is,
no access to the cloud is necessary, thus, reducing energy
consumption. Besides, collaboration among servers facil-
itates lower energy consumption.

In Fig. 4(c), we can observe the impact on average cost
savings when task numbers are varied. As the number of
tasks escalates, the average cost savings is reduced as the
number of offloading tasks is increased, which in turn
increases monetary costs for memory and computation.
For the iRAF and MGBD, with increasing tasks, the cost
goes up faster than WOLVERINE. The reason behind the
increasing cost in the case of iRAF is the use of DNN and

Monte Carlo Tree, which incur memory and computa-
tion costs. For MGBD, with an increasing number of
tasks, device budget savings decrease due to the lack of
collaboration among servers and offloading to the cloud
in case of unavailability of server resources. In the case
of MOEA/D, the cost is lower when the number of tasks
is high as many of those are locally executed. However,
offloading to multiple servers from a single user device
can incur higher costs in terms of memory and compu-
tation depending on the availability of server resources.
The proposed WOLVERINE offers a higher percentage
(50%-95%) of savings compared to MGBD and iRAF due
to exploiting service caching, binary offloading, and col-
laboration among servers.

In Fig. 4(d), we see that increasing the number of tasks
reduces Task Completion Reliability (TCR) in all of the
methods. This happens due to the scarcity of resources
and the delay sensitivity of tasks. For the iRAF, the TCR
falls steadily when the number of tasks increases from 10
to 110 but falls sharply with increasing tasks from 110 to
260. As the iRAF allows partial offloading, therefore, with
the increasing number of tasks, the tendency to offload
the greater portion of a task is also increased, which in
turn also enhances the task drop rate. The higher task
drop in iRAF is the higher training time using the DNN
and Monte Carlo Tree, creating a latency overhead that

Fig. 4 Impacts of a varying number of tasks

Page 17 of 22Nujhat et al. Journal of Cloud Computing (2024) 13:23

may cause many applications to exceed their deadlines.
For MGBD and WOLVERINE, the TCR falls gradually
with an increasing number of tasks due to caching. How-
ever, a depth-first-search tree is constructed in MGBD,
which incurs some overhead, resulting in crossing the
deadline for some tasks. Hence, TCR is lower in compari-
son to WOLVERINE. For MOEA/D, with the gradually
rising number of tasks, the drop rate of sub-tasks can be
increased due to the lack of resources and higher queuing
delay of mobile devices. Since collaboration among edge
servers and caching cater to the task completion rate bet-
ter, WOLVERINE performs better than MOEA/D in sys-
tem environments that contain rapidly offloaded tasks.

Impact of a varying number of servers
The impact of varying numbers of servers on the objec-
tive parameters is represented in the graphs of Fig. 5. For
this scenario, the number of tasks is fixed at 50.

For a fixed number of tasks, as the number of resources
increases, the average latency decreases for all schemes
as shown in Fig. 5(a). The iRAF has higher latency in
comparison to both MGBD and WOLVERINE because
of the higher computational time of DNN and Monte
Carlo Tree. In the case of MGBD, the construction of the
search tree and exhaustive searching procedure affect the
overall latency. In the case of MOEA/D, a task is disin-
tegrated into multiple sub-tasks, which incurs higher

latency overhead for server-to-device communication,
and sometimes it faces difficulty to find the most suit-
able server for executing some sub-tasks. On the other
hand, WOLVERINE exhibits better performance with the
increasing number of servers as it is a joint implementa-
tion of edge server collaboration and caching.

WOLVERINE also performs better in terms of energy
consumption, as depicted in Fig. 5(b). With the increas-
ing number of servers, the energy consumption of MDs
is significantly minimized in all studies. In WOLVER-
INE, more tasks are offloaded to the edge servers when
the number of collaborative edge servers increases along
with the increasing availability of cached data. That is
why, up to a certain increment in the number of serv-
ers, energy consumption reduces. After that, the energy
level hits a plateau or does not decrease significantly as
the amount of cached data and computational resources
increase with the increasing number of servers.

With the increasing number of servers for all schemes,
the cost of allocating tasks is increased and the aver-
age cost savings is decreased, which is depicted in 5(c).
In WOLVERINE, the cost of allocating tasks increases
owing to memory cost and monetary cost for computa-
tion in various CoMEC servers. Nevertheless, the average
savings remain greater than that of MGBD since the local
computation of tasks also occurs here, which may incur
no cost at all, and the cached resource size in MGBD is

Fig. 5 Impacts of a varying number of servers

Page 18 of 22Nujhat et al. Journal of Cloud Computing (2024) 13:23

high along with the exhaustive search cost of DFS trees.
On the other hand, iRAF involves DNN and Monte Carlo
Tree in an optimization algorithm that occupies some
extra memory. Therefore, the overall computation and
memory cost is higher than our proposed method.

The impact on TCR (Task Completion Reliabil-
ity) for varying numbers of servers is demonstrated
in Fig. 5(d). For WOLVERINE and MGBD, the TCR
escalates with the increasing number of servers due
to exploited caching. However, the content cach-
ing in MGBD faces some resource constraint issues
for highly resource-intensive applications. On the
other hand, the aforementioned issues for iRAF may
incur task drops due to exceeding the deadline in
this scheme. For MOEA/D, TCR is relatively stable in
comparison to the MGBD and iRAF as sub-tasks are
offloaded more frequently with increasing tasks in the
system. However, it is still not better as WOLVERINE
due to the absence of server-to-server collaboration.
For WOLVERINE, TCR improves due to incorporating
caching as well as server collaboration.

Impact of caching
Caching the data code for computation-intensive tasks
instead of the entire code itself creates a certain impact
on objective parameters that are to be optimized and the
impact is depicted here in Fig. 6. In this experiment, we
varied the average computation per task while fixing the
number of tasks and servers at 50 and 12, respectively.

Figure 6(a) indicates that if the average computa-
tion cycles per task increase, then average latency will
increase exponentially without caching. Here, a consid-
erable amount of time will be required for the compu-
tation of tasks along with the offloading of the tasks to
collaborative servers. On the other hand, if caching is
performed, then it is observed that the time required
will be less as some of the data code is already available

on the cached server; only the input data needs to be
transmitted. Similarly, for average energy consumption,
such changes are observed in Fig. 6(b), i.e., if the tasks
are cached, less energy is wasted in communication
overhead, which in turn reduces overall average energy
consumption. Therefore, it is pretty clear from the
experiments that service caching leverages task comple-
tion notably.

Impact of geographical proximity of users
In this experiment, the geographical area is varied in an
edge computing environment to measure the perfor-
mance of user service latency and energy consumption.
A larger area results in an augmented physical distance
between edge servers and users, leading to extended
transmission times and subsequently higher average
latency. Additionally, expanded areas tend to experi-
ence heightened network congestion as a consequence
of increased user traffic, exacerbating latency concerns.
This congestion contributes to elevated communication
overhead, necessitating higher transmission power and,
consequently, increased energy consumption for devices.
Furthermore, the scarcity of resources in an extended
area often necessitates a greater execution of tasks by the
devices themselves, resulting in amplified energy usage at
the user end.

A gradual rise in average latency and device energy
is observed for all the schemes shown in Figs. 7(a)
and 7(b), respectively. However, for WOLVERINE, the
increase in average latency and energy are significantly
lower than the rest of the schemes. Since both collabo-
rative edge computing and caching are exploited in this
scheme, service delay and energy consumption are low-
ered as increased area multiplies the chances of finding
appropriate edge servers and cached resources. For the
rest of the schemes, the drawbacks for a higher value of
energy and latency can be attributed to transmission to
cloud, task dependency, higher computation, memory

Fig. 6 Impacts of caching on the performance

Page 19 of 22Nujhat et al. Journal of Cloud Computing (2024) 13:23

overhead by algorithms themselves, and local optima
convergence.

Ablation experiment
As a strategy to retain superior non-dominated solutions
and to expand the exploration of a broader search space,
the WOLVERINE system incorporates an adaptive grid
mechanism. This technique facilitates leader selection
and enhances the quality of solutions through probabil-
ity-based elimination methods. To conduct an ablation
experiment, we have adjusted the average number of
computations per task, maintaining a fixed number of
tasks and servers at 80 and 16, respectively. Subsequently,
we have analyzed the effects on latency and energy con-
sumption with and without the adaptive grid mechanism.

The graphs in Fig. 8 state that as the computation
cycles per task increase, both average latency and aver-
age energy consumption experience an exponential rise
when the adaptive grid mechanism is not utilized. Con-
versely, its inclusion leads to reduced latency and energy
consumption. These are achieved by accelerated conver-
gence and exploitation of the most effective solutions. It

has also notably decreased the number of trial-and-error
attempts.

Hypervolume and inverted generational distance
In this section, we measure the performance to evaluate
the quality of Pareto-optimal solutions obtained by the
developed WOLVERINE system.

In multi-objective evolutionary algorithms (MOEAs),
hypervolume is a commonly used performance metric,
which measures the volume of the objective space that is
dominated by the solutions in the Pareto front approxi-
mation. The hypervolume indicator assesses the effective-
ness of a given set of solutions by calculating the volume
of the objective space that it covers. It provides a single
scalar value that represents the spread and diversity of
the Pareto front approximation. Higher hypervolume val-
ues indicate better coverage and a more comprehensive
representation of the Pareto front.

In Fig. 9(a), the hypervolume region of the Pareto front
has been demonstrated in a 3D graph, which is com-
puted based on the covered space by the non-dominated
solutions, relative to a predefined reference point. This
reference point represents an ideal state without any

Fig. 7 Impacts of geographical proximity of users

Fig. 8 Impacts of adaptive grid mechanism

Page 20 of 22Nujhat et al. Journal of Cloud Computing (2024) 13:23

necessary trade-offs between objectives, which is marked
green color in the graph for clarity. The shaded region,
inclusive of the reference point, visually represents the
hypervolume region, signifying the extent of the objec-
tive space covered by the set of non-dominated solu-
tions. For hypervolume in this case, we have considered
10 servers with 60 tasks and the scalar value of hypervol-
ume is 24.59 after 50 iterations. This is the highest value
obtained which became steady after 50 iterations.

For convergence analysis of the developed WOLVER-
INE system, we have calculated IGD in terms of the
number of iterations. Figure 9(b) illustrates how the IGD
values change throughout the execution, indicating the
performance and convergence of the algorithm. From
this graph, we can observe that the IGD initially starts
with a high value and gradually decreases throughout the
first 50 iterations. Subsequently, it stabilizes at a particu-
lar value, indicating that convergence has been achieved.
Higher values of IGD suggest that the solution set
obtained for a certain number of iterations is not close
to convergence. As the optimization algorithm explores
more of the search space, lower values of IGD are
obtained, signifying improved convergence and proxim-
ity to the true Pareto front. We have compared IGD val-
ues of MOEA/D with that of WOLVERINE. It is observed
that IGD values for MOEA/D are higher than those of
WOLVERINE for similar iteration numbers. The poorer
distribution of the Pareto front in the case of MOEA/D
can be attributed to its higher IGD values in compari-
son to WOLVERINE [45]. The value of IGD becomes
stable after 50 iterations for WOLVERINE whereas for
MOEA/D the value stabilizes after 65 iterations and at a
higher value than that of WOLVERINE. Thus the graphi-
cal representations point towards a better convergence
of WOLVERINE in comparison to MOEA/D, indicating
that WOLVERINE achieves convergence faster.

Conclusion
This paper introduced an efficient task offloading frame-
work, namely WOLVERINE, that brought about a collab-
oration among the edge servers to share computational
resources while penetrating real-time applications in
edge devices with optimal energy consumption and
resource cost. The multi-objective optimization prob-
lem was proven to be NP-hard; therefore, we formulated
a Binary Multi-objective Grey Wolf Optimization-based
meta-heuristic solution that deduced the Pareto optimal
solutions for time, energy, and cost objectives i.e., the
tri-objective optimization problem in polynomial time.
The performance analysis results carried out in Python
and demonstrated significant performance improvement
as high as 33.33%, 35%, and 40% in terms of execution
latency, energy, and resource cost, respectively compared
to the state-of-the-art.

An improved version of GWO can be exploited on the
developed system through dynamic weight association
to multiple objectives and modification to the conver-
gence factor. New scopes can be added by considering
data loss, security of executed tasks, and so on. Deploy-
ment of a deep-learning model to accurately predict the
task arrival rate, allocate the tasks, and adjust the cache
resources following that prediction can be interesting
future works. Furthermore, we can enhance our current
framework by hybridizing different evolutionary algo-
rithms to address the strengths of these algorithms in a
dynamic environment. Consideration of robustness and
fault tolerances in case of points of failure also adds a
new edge to our current work.

Authors’ contributions
Idea Generation, Writing and Analysis ‑ Nawmi Nujhat, Fahmida Haque Shanta,
Palash Roy, Sujan Sarker Supervision and Evaluation ‑ Md. Mamun‑Or‑Rashid,
Md. Abdur Razzaque Formulation, Editing, and Analysis ‑ Mohammad Mehedi
Hassan and Giancarlo Fortino.

Fig. 9 Quality measurements of WOLVERINE Pareto‑optimal solutions

Page 21 of 22Nujhat et al. Journal of Cloud Computing (2024) 13:23

Funding
The authors are grateful to the UGC Research Project, University of Dhaka,
Bangladesh for supporting grants. This work was also supported by King Saud
University, Riyadh, Saudi Arabia, through the Researchers Supporting Project
under Grant‑ RSP2024R18.

Availability of data and materials
The data will be provided upon request.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 25 July 2023 Accepted: 7 December 2023

References
 1. Liang B, Gregory MA, Li S (2022) Multi‑access edge computing funda‑

mentals, services, enablers and challenges: a complete survey. J Netw
Comput Appl 199(103):308

 2. Sahni Y, Cao J, Yang L (2018) Data‑aware task allocation for achieving
low latency in collaborative edge computing. IEEE Internet Things J
6(2):3512–3524

 3. Nandi PK, Reaj MRI, Sarker S, Razzaque MA, Rashid MM, Roy P, (2024) Task
offloading to edge cloud balancing utility and cost for energy harvesting
internet of things. J Netw Comput Appl 221:103766

 4. Zhang J, Hu X, Ning Z, Ngai ECH, Zhou L, Wei J, Cheng J, Hu B, Leung
VC (2018) Joint resource allocation for latency‑sensitive services over
mobile edge computing networks with caching. IEEE Internet Things J
6(3):4283–4294

 5. Shafique K, Khawaja BA, Sabir F, Qazi S, Mustaqim M (2020) Internet of
things (IoT) for next‑generation smart systems: A review of current chal‑
lenges, future trends and prospects for emerging 5G‑IoT scenarios. IEEE
Access 8:23022–23040

 6. Ullah I, Lim HK, Seok YJ, Han YH (2023) Optimizing task offloading and
resource allocation in edge‑cloud networks: a DRL approach. J Cloud
Comput 12(1):112

 7. Ren J, Yu G, He Y, Li GY (2019) Collaborative cloud and edge computing
for latency minimization. IEEE Trans Veh Technol 68(5):5031–5044

 8. Puthal D, Mohanty SP, Wilson S, Choppali U (2021) Collaborative edge
computing for smart villages [energy and security]. IEEE Consum Electron
Mag 10(3):68–71

 9. Chien WC, Weng HY, Lai CF (2020) Q‑learning based collaborative
cache allocation in mobile edge computing. Futur Gener Comput Syst
102:603–610

 10. Xu J, Chen L, Zhou P (2018) Joint service caching and task offloading for
mobile edge computing in dense networks. In: IEEE INFOCOM 2018‑IEEE
Conference on Computer Communications, IEEE, pp 207–215

 11. Mach P, Becvar Z (2017) Mobile edge computing: a survey on architecture
and computation offloading. IEEE Commun Surv Tutor 19(3):1628–1656

 12. Li C, Tang J, Tang H, Luo Y (2019) Collaborative cache allocation and task
scheduling for data‑intensive applications in edge computing environ‑
ment. Futur Gener Comput Syst 95:249–264

 13. Alfakih T, Hassan MM, Gumaei A, Savaglio C, Fortino G (2020) Task
offloading and resource allocation for mobile edge computing by deep
reinforcement learning based on SARSA. IEEE Access 8:54074–54084

 14. Alam MGR, Hassan MM, Uddin MZ, Almogren A, Fortino G (2019) Auto‑
nomic computation offloading in mobile edge for IoT applications. Futur
Gener Comput Syst 90:149–157

 15. Chen Z, Chen Z, Jia Y (2019) Integrated task caching, computation
offloading and resource allocation for mobile edge computing. In: IEEE
Global Commun. Conf. (GLOBECOM). IEEE, Waikoloa, pp 1–6

 16. Bi S, Huang L, Zhang YJA (2020) Joint optimization of service caching
placement and computation offloading in mobile edge computing
systems. IEEE Trans Wirel Commun 19(7):4947–4963

 17. Chen J, Chen S, Wang Q, Cao B, Feng G, Hu J (2019) iRAF: A deep rein‑
forcement learning approach for collaborative mobile edge computing
IoT networks. IEEE Internet Things J 6(4):7011–7024

 18. Luo Q, Li C, Luan T, Shi W (2022) Minimizing the delay and cost of compu‑
tation offloading for vehicular edge computing. IEEE Trans Serv Comput
1. 15(5):2897–2909.

 19. Wang P, Li K, Xiao B, Li K (2022) Multiobjective optimization for joint task
offloading, power assignment, and resource allocation in mobile edge
computing. IEEE Internet Things J 9(14):11737–11748

 20. Gu B, Chen Y, Liao H, Zhou Z, Zhang D (2018) A distributed and context‑
aware task assignment mechanism for collaborative mobile edge
computing. Sensors 18(8):2423

 21. Mahenge MP, Li C, Sanga CA Collaborative mobile edge and cloud
computing: Tasks unloading for improving users’ quality of experience
in resource‑intensive mobile applications. In: 2019 IEEE 4th Int. Conf.
Comput. and Commun. Systems (ICCCS). IEEE, Singapore, pp 322–326

 22. Mohammed A, Nahom H, Tewodros A, Habtamu Y, Hayelom G
(2020) Deep reinforcement learning for computation offloading and
resource allocation in blockchain‑based multi‑UAV‑enabled mobile
edge computing. In: 2020 17th International Computer Conference
on Wavelet Active Media Technology and Information Processing
(ICCWAMTIP). IEEE, Chengdu, pp 295–299

 23. Nur FN, Islam S, Moon NN, Karim A, Azam S, Shanmugam B (2019)
Priority‑based offloading and caching in mobile edge cloud. J Commun
Softw Syst 15(2):193–201

 24. Hao Y, Song Z, Zheng Z, Zhang Q, Miao Z (2023) Joint communication,
computing, and caching resource allocation in LEO satellite MEC net‑
works. IEEE Access 11:6708–6716

 25. Gul‑E‑Laraib, Zaman SKu, Maqsood T, Rehman F, Mustafa S, Khan MA,
Gohar N, Algarni AD, Elmannai H (2023) Content caching in mobile edge
computing based on user location and preferences using cosine similar‑
ity and collaborative filtering. Electronics 12(2)

 26. Xiao Z, Shu J, Jiang H, Lui JC, Min G, Liu J, Dustdar S (2022) Multi‑objective
parallel task offloading and content caching in D2D‑aided MEC networks.
IEEE Trans Mob Comput 22(11):6599–6615

 27. Hao Y, Chen M, Hu L, Hossain MS, Ghoneim A (2018) Energy efficient task cach‑
ing and offloading for mobile edge computing. IEEE Access 6:11365–11373

 28. Zhang N, Guo S, Dong Y, Liu D (2020) Joint task offloading and data cach‑
ing in mobile edge computing networks. Comput Netw 182:107446

 29. Liu L, Chang Z, Guo X, Ristaniemi T Multi‑objective optimization for com‑
putation offloading in mobile‑edge computing. In: 2017 IEEE Symposium
Comput. and Commun. (ISCC). IEEE, Heraklion, pp 832–837

 30. Seid AM, Lu J, Abishu HN, Ayall TA (2022) Blockchain‑enabled task
offloading with energy harvesting in multi‑UAV‑assisted IoT networks: A
multi‑agent DRL approach. IEEE J Sel Areas Commun 40(12):3517–3532

 31. Deb K (2001) Multiobjective Optimization Using Evolutionary Algorithms.
Wiley, New York

 32. Afrin M, Jin J, Rahman A, Tian YC, Kulkarni A (2019) Multi‑objective
resource allocation for edge cloud based robotic workflow in smart fac‑
tory. Future Gener Comput Syst 97:119–130

 33. Song C, Zhou H (2020) Computation offloading optimization in mobile
edge computing based on multi‑objective cuckoo search algorithm. In:
Proceedings of the 2020 the 4th International Conference on Innovation
in Artificial Intelligence, pp 189–193

 34. Abbas A (2021) Meta‑heuristic‑based offloading task optimization in
mobile edge computing. Int J Distrib Sens Netw

 35. Jiang K, Ni H, Han R, Wang X (2019) An improved multi‑objective grey
wolf optimizer for dependent task scheduling in edge computing. Int J
Innov Comput Inf Control 15(6):2289–2304

 36. Song F, Xing H, Luo S, Zhan D, Dai P, Qu R (2020) A multiobjective com‑
putation offloading algorithm for mobile‑edge computing. IEEE Internet
Things J 7(9):8780–8799

 37. Gong Y, Bian K, Hao F, Sun Y, Wu Y (2023) Dependent tasks offloading in
mobile edge computing: a multi‑objective evolutionary optimization
strategy. Futur Gener Comput Syst 148:314–325

 38. Sardar Khaliq uz Z, Maqsood T, Rehman F, Mustafa S, Khan MA, Gohar
N, Algarni AD, Elmannai H, (2023) Content caching in mobile edge

Page 22 of 22Nujhat et al. Journal of Cloud Computing (2024) 13:23

computing based on user location and preferences using cosine similar‑
ity and collaborative filtering. Electronics 12(2):284

 39. Man TH (2005) An algorithm for multi‑objective assignment problem.
PhD thesis, The Chinese University of Hong Kong

 40. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw
69:46–61

 41. Shahjalal M, Farhana N, Roy P, Razzaque MA, Kaur K, Hassan MM (2022)
A binary gray wolf optimization algorithm for deployment of virtual
network functions in 5G hybrid cloud. Comput Commun 193:63–74

 42. Hussein M (2021) Simulation‑optimization for the planning of off‑site
construction projects: a comparative study of recent swarm intelligence
metaheuristics. Sustainability 13(24):13551

 43. Al‑Imron CN (2022) An energy‑efficient no idle permutations flow shop
scheduling problem using grey wolf optimizer algorithm. Jurnal Ilmiah
Teknik Industri 21(1)

 44. Wei L (2022) Multi‑objective gray wolf optimization algorithm for multi‑
agent pathfinding problem. In: 2022 IEEE 5th International Conference
on Electronics Technology (ICET). IEEE, Chengdu

 45. Mirjalili S, Saremi S, Mirjalili SM, Coelho LdS (2016) Multi‑objective grey
wolf optimizer: a novel algorithm for multi‑criterion optimization. Expert
Syst Appl 47:106–119

 46. Roy P, Sarker S, Razzaque MA, Hassan MM, AlQahtani SA, Aloi G, Fortino
G (2020) AI‑enabled mobile multimedia service instance placement
scheme in mobile edge computing. Comput Netw 182(107):573

 47. Zhao F, He X, Zhang Y, Ma W, Zhang C A novel pareto archive evolution
algorithm with adaptive grid strategy for multi‑objective optimization
problem. In: 2019 IEEE 23rd Int. Conf. Comput. Support. Coop. Work Des.
(CSCWD), pp 301–306

 48. Liu Y, Wei J, Li X, Li M (2019) Generational distance indicator‑based evolu‑
tionary algorithm with an improved niching method for many‑objective
optimization problems. IEEE Access 7:63881–63891

 49. Van Rossum G, Drake FL (2009) Python 3 Reference Manual. CreateSpace,
Scotts Valley

 50. Gilbert EN (1960) Capacity of a burst‑noise channel. Bell Syst Tech J
39(5):1253–1265

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

	Task offloading exploiting grey wolf optimization in collaborative edge computing
	Abstract
	Introduction
	Related works
	System model
	Entities of CoMEC network
	Collaboration among entities

	Design details of WOLVERINE
	Computational model of WOLVERINE
	Multi-objective problem formulation
	Calculation of
	Calculation of
	Calculation of
	Objective function formulation

	Meta-heuristic task offloading
	Preliminaries
	Defining the position vector
	Updating positions of the wolves
	Controlling the archive
	Adaptive grid mechanism
	BMOGWO-based task execution
	Complexity analysis
	Convergence analysis

	Performance evaluation
	Environmental setup
	Performance metrics
	Result analysis
	Impact of a varying number of tasks
	Impact of a varying number of servers
	Impact of caching
	Impact of geographical proximity of users
	Ablation experiment
	Hypervolume and inverted generational distance

	Conclusion
	References

