
Zhang et al. Journal of Cloud Computing (2024) 13:11
https://doi.org/10.1186/s13677-023-00572-x

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

A resource competition-based truthful
mechanism for IoV edge computing resource
allocation with a lowest revenue limit
Jixian Zhang1, Zhemin Wang1, Athanasios V. Vasilakos2 and Weidong Li3*

Abstract

Resource allocation in Internet of Vehicles (IoV) edge computing is currently a research hotspot. Existing studies
focus on social welfare or revenue maximization. However, there is little research on lowest revenue guarantees,
which is a problem of great concern to resource providers. This paper presents the innovative concept of the low-
est revenue limit, which enables service providers to preset the revenue B and calculate whether the preset revenue
can be achieved under the current supply and demand of resources through mechanism design. This approach
is very friendly to service providers and can prevent low revenue and waste of resources. Specifically, we improved
the ascending price auction mechanism so that it can be used for multi-resource allocation, the unit prices of dif-
ferent resources are calculated according to the intensity of competition among users, and the winning users
and the payment are determined by eliminating users with low cost performance. Our mechanism is not sensitive
to resource capacity, works well under deployment constraints in edge computing, and satisfies economic charac-
teristics such as individual rationality and truthfulness. Compared with existing algorithms, our approach is shown
to enable the service provider to obtain a higher revenue under a lower resource utilization.

Keywords Mechanism design, Internet of vehicles, Edge computing, Resource allocation, Lowest revenue limit

Introduction
The limited computing and storage capabilities of in-
vehicle devices make it difficult to meet the large comput-
ing demands and low latency of Internet of vehicles (IoV)
services. Therefore, introducing edge computing into the
IoV is an effective approach to solve the above problems.
Edge computing servers (ECSs) have powerful comput-
ing and storage capabilities. Typically, ECSs are equipped
on the roadside unit, and the vehicles communicate with

the ECSs through the vehicle-to-infrastructure (V2I) pro-
tocol. The V2I protocol can be used to implement many
IoV services, such as the local information distribution
[1], in-vehicle information enhancement [2], vehicle
online recording and diagnosis [3], auto/assisted driv-
ing and emergency failure management [4], and vehicu-
lar sensing networks-aided smart cities [5]. In most IoV
application scenarios, while the vehicle is driving, various
sensors on the vehicle collect a large amount of data at
every moment. Some data can be processed directly on
the vehicle, such as ultrasonic radar detection data, but
there are still some data that are not suitable or cannot be
processed directly on the vehicle, such as video and lidar
data used to train autonomous driving systems. These
data require a large amount of computing resources and
take a long time to train. Therefore, some vehicle tasks
for IoV services require offloading to nearby edge com-
puting servers.

*Correspondence:
Weidong Li
weidongmath@126.com
1 School of Information Science and Engineering, Yunnan University,
Kunming 650504, Yunnan, People’s Republic of China
2 Center for AI Research (CAIR), University of Agder (UiA), Grimstad,
Norway
3 School of Mathematics and Statistics, Yunnan University,
Kunming 650504, Yunnan, People’s Republic of China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00572-x&domain=pdf

Page 2 of 21Zhang et al. Journal of Cloud Computing (2024) 13:11

Motivation
In general, IoV edge computing moves a part of the com-
puting and storage resources from the core network to
the edge and employs vehicles to provide them for use.
Compared to cloud computing resource allocation, IoV
edge computing has two important features. The first is
deployment constraints. Because the coverage of roadside
units is limited, vehicles can only connect a limited num-
ber of ECSs. The other feature is that the service require-
ments of IoV edge computing differ substantially in time
and space. For example, during the morning and evening
rush hours or traffic congestion on the main roads of a
city, IoV services require more computing and storage
resources, while at night or in remote areas with less traf-
fic, less computing and storage resources are required.
Therefore, we need a more appropriate way to allocate
and use resources on ECSs. Figure 1 shows a typical IoV
application scenario with deployment constraints.

An auction is a way to effectively allocate resources
through market behavior [6]. In a simple auction envi-
ronment, users submit their requirements and bids, and
the service provider selects the winning users and deter-
mines the final price they should pay. But because users
are selfish, they may submit untruthful information in the
hope of gaining more benefits. Therefore, one of the main
goals of mechanism design is truthfulness (also known
as incentive compatibility or strategy proofness); that is,

users can obtain maximum benefits by submitting truth-
ful information, so that users have no incentive to lie. The
design of the auction mechanism mainly includes the
allocation algorithm and payment algorithm. However,
the problem studied in this paper is much more complex.
For example, it includes different types of resources on
different edge servers and deployment constraints. This
brings great challenges for designing corresponding allo-
cation and payment algorithms.

At present, many studies have used the auction mecha-
nism to solve the resource allocation problem in edge
computing [7–9]. Generally speaking, such problems are
transformed into social welfare maximization problems
with characteristics of multi-server, multi-dimensional
resources and deployment constraints. Furthermore,
the economic characteristics of truthfulness and indi-
vidual rationality must also be satisfied. Existing auc-
tion mechanism designs include optimal allocation with
Vickrey–Clarke–Groves (VCG) payment [10], approxi-
mate allocation [11] and monotonic allocation with criti-
cal value payment [12]. In these mechanisms, the social
welfare and final revenue are not necessarily positively
correlated. Even in many social welfare maximization
schemes, the final revenue is very low.

Although there are good research results on the mech-
anism design of revenue maximization, finding the opti-
mal revenue auction mechanism is still a very difficult

Fig. 1 Typical IOV application scenarios with deployment constraints

Page 3 of 21Zhang et al. Journal of Cloud Computing (2024) 13:11

problem. In 1981, Myerson [13] solved the single-item
optimal revenue auction, but the multi-item and multi-
user optimal revenue auction has not been adequately
solved in 40 years. Although Duan et al. [14] used
machine learning to explore optimal revenue auctions
for multiple items, the scale of items and users was small
and the practicality was not strong. Therefore, this arti-
cle considers this matter from another perspective, that
is, whether we can ensure that the service provider can
obtain at least the revenue B. In this way, the service pro-
vider also has a certain initiative in the auction and pro-
tects its own interests.

The ascending price auction [15] is a mechanism that
can obtain a higher revenue. There are many mechanisms
designed based on an ascending price, such as clinching
auctions [16]. However, the existing ascending price auc-
tion can only be conducted for a single type of item, and
it is not suitable for the allocation of multiple resources
in edge servers with deployment constraints. Therefore,
the main challenge of this paper is to effectively allocate
resources in the IoV edge computing environment with
unbalanced resource requirements and deployment con-
straints so that the resource provider can obtain more
revenue.

Main contributions
Vehicle driving is a real-time and dynamic process. We
can divide the vehicle’s driving process into many inde-
pendent time periods for processing, and each time
period is associated with a static auction process (the
main research goal of this article). The time period can
be divided according to the actual situation, and it may
be at the minute level, but at least it should be ensured
that within this time period, the user’s deployment con-
straints will not change and the user has enough time to
transmit the content that needs to be processed. Notably,
the tasks that need to be offloaded may have real-time
requirements but cannot be critical; such tasks include
congestion prediction services and autonomous driv-
ing training, which cannot affect the safe driving of the
vehicle.

In the context of auctions within a single time
period, we consider a very interesting question: when
the users’ requirements and the resource capacity of
the service provider are known, can a mechanism be
designed to ensure that the service provider obtains
at least the revenue B? The most significant difference
between this problem and those in existing research
is that the resource providers have a lowest revenue
limit B. This feature is of great significance for actual
auctions because compared to the case of social wel-
fare, resource providers are more concerned about how
profitable the resources they invest in will ultimately

be. For example, when the current road network and
time period are determined, the provider has certain
expectations for the revenue obtained by the provided
edge computing services and whether the bids of users
currently using these services are likely to meet this
expected revenue. Most of the payment algorithms in
the existing mechanism design rely on the critical value
theory, and the theory mostly adopts the lowest win-
ning price for achievement, which is one of the reasons
that leads to low revenue. Based on the above consid-
erations, we propose a new auction mechanism in the
context of resource allocation in IoV edge computing
services, which includes the following main features:

1. This article studies a resource competition-based
auction mechanism with limited revenue under
IoV edge computing services; that is, the resource
provider proposes the lowest revenue limit B. The
mechanism aims to maximize the total social welfare
under this premise. To the best of our knowledge,
this is the first article to study mechanism design
with revenue limitation under IoV edge computing.

2. The mechanism satisfies the economic features of
individual rationality and truthfulness. In addition,
the complexity of the mechanism algorithm is poly-
nomial.

3. In addition to meeting the expected revenue B of
the resource provider, the algorithm can be used to
explore the theoretical maximum revenue (peak B).
This can be simply understood as determining the
highest revenue when many users buy resources,
which is of great significance to resource providers.
We discuss this in our experiments.

Although we use IoV edge computing resource alloca-
tion as the background for discussion, the mechanism
can easily be migrated to other areas for implementation,
such as an energy or spectrum auctions.

The remainder of this paper is organized as follows:
In Related works section, we discuss the existing studies
that inspired our design. In IoV edge computing resource
allocation with the lowest revenue limit problem and
mechanism design preliminaries section, we describe the
resource allocation problem with a lowest revenue limit
in IoV edge computing and the mechanism design pre-
liminaries. In IoV edge computing resource allocation
mechanism with a lowest revenue limit (IoV-RAM-LRL)
section, we propose a truthful ascending-price mecha-
nism to solve the above problem and prove that this
mechanism has the economic features of truthfulness
and individual rationality. In Numerical results section,
we evaluate the mechanisms through extensive experi-
ments. Finally, in Conclusion section, we summarize

Page 4 of 21Zhang et al. Journal of Cloud Computing (2024) 13:11

our results and present possible directions for future
research.

Related works
The auction mechanism is an effective resource alloca-
tion method. In the resource allocation of edge comput-
ing or IoV, multiple servers, multi-dimensional resource
types, time-varying, deployment constraints and other
characteristics are involved, making the design of the
auction mechanism more delicate and attracting consid-
erable attention. Generally, mechanism design includes
optimal mechanism design, approximate mechanism
design, heuristic mechanism design, double auction, and
mechanism design with a budget.

Zaman et al. [17] combined mechanism design the-
ory with cloud computing resource allocation and for
the first time proposed a heuristic mechanism based
on monotonic allocation with critical value payment
to allocate virtual machine resources. Mashayekhy
et al. [18] proposed two truthful mechanisms for sin-
gle-dimensional resource task scheduling: dynamic
programming-based allocation and the PTAS resource
allocation implemented by maximal-in-range, payment
algorithms using VCG. Liu et al. [19] designed an opti-
mal and approximate mechanism for virtual machine
allocation under heterogeneous clouds. The optimal
mechanism obtains the optimal allocation solution
by solving the integer programming (IP) problem and
uses VCG to obtain the final payment. Moreover, in the
approximate mechanism design, a resource allocation
algorithm is designed by combining resource density
and a fitness resources strategy, and the final payment
price is calculated by dichotomy. Jiao et al. [20] pro-
posed an auction-based market model for efficient com-
putation of the resource allocation in public blockchain
networks that used the sub-model optimization method
to implement resource allocation and proposed the con-
cept of ex-post estimation to obtain the final payment.
Zhang et al. [3] considered a time-varying resource
allocation problem in an online environment, applied a
waiting period strategy and dominant-resource-based
strategy to the resource allocation process, and designed
a payment price algorithm based on the dichotomy.
Li et al. [21] proposed an online truthful mechanism
integrating computation and communication resource
allocation and formulated a social-welfare-maximi-
zation problem that integrates collaborator selection,
communication and computation resource allocation,
transmission and computation time scheduling, and
pricing policy design. Zhang et al. [22] proposed an
online rewards-optimal auction (RoA) to optimize the
long-term sum of rewards for processing offloaded
tasks, meanwhile adapting to the highly dynamic energy

harvesting (EH) process and computation task arrivals.
Li et al. [23] formulated an incentive mechanism design
problem by jointly optimizing task offloading decisions
and allocation of both communications (i.e., power and
bandwidth) and computation resources. Zhang et al.
[24] addressed the problem of time-varying batch vir-
tual machine (VM) allocation and pricing in the cloud
and applied it in the context of online restart mode in
[25], proposing a new class of auction for time-varying
resource allocation. Bahreini et al. [26] formulated the
edge resource allocation problem (ERAP) as a mixed-
integer linear program (MILP), proved that the ERAP
is NP-hard, and proposed a resource allocation mech-
anism that is guaranteed to be within a given distance
from the optimal solution. He et al. [27] proposed a
VCG-based optimal mechanism for computational
offloading in a real-time time-varying edge comput-
ing environment, and in the approximate mechanism
design, a heuristic algorithm based on primitive dual
theory was designed to solve the resource allocation
and prove the competition ratio. The above mechanism
designs are mostly concerned with maximizing social
welfare, and as analyzed in the first part of the paper,
although social welfare is a very important economic
indicator, it is not positively related to service provider
revenue; it may even lead to the problem of insufficient
revenue, which also needs to be addressed in this paper.

The auction mechanism with maximize revenue has also
attracted the attention of many researchers. Deng et al.
[28] proposed what economic settings would make the
allocation and revenue maximization possible exactly or
approximately, especially in cloud computing. Zhu et al.
[29] applied deep learning techniques, designing a reve-
nue-optimal auction mechanism for resource allocation
in wireless virtualization. Li et al. [30] proposed an auction
market in the IaaS cloud, where multiple users with hetero-
geneous bidding budgets and QoS requirements subscribe
cloud resources according to their resource demands. The
resource pricing and demand allocation scheme target-
ing revenue maximization also satisfies essential proper-
ties including budget feasibility, incentive compatibility
and envy-freeness. Asterios et al. [31] presented a group
of efficient allocation and pricing policies that can be used
by vendors for their spot price mechanisms. They modeled
the procedure of acquiring virtual machines as a truthful
knapsack auction and deployed dynamic allocation and
pricing rules that achieve near-optimal revenue and social
welfare. Although all the above studies take maximum rev-
enue as the research goal, the problem of maximizing the
revenue of multiple items and multiple users is still a great
challenge, and it is difficult to implement in large-scale
environments. Additionally, the greatest difference is that
our approach can guarantee a certain revenue B.

Page 5 of 21Zhang et al. Journal of Cloud Computing (2024) 13:11

Some researchers have begun to turn to auction mech-
anisms with budget constraints. There are two types of
auction mechanisms with budget restrictions. One is
the user’s budget limit, which means that the user can-
not pay more than the budget in the auction; the other is
mostly used in reverse auctions (such as in mobile crowd-
sourcing, where the operator pays the user), and the total
amount paid by the operator cannot exceed the budget. In
terms of the design of reverse auction mechanisms with a
budget, Yaron et al. [32] studied a novel class of mechanism
design problems in which the outcomes are constrained
by the payments. The main result shows that a bounded
approximation ratio is achievable for the important class of
submodular functions. Nima et al. [33], on the basis of the
former, designed a budget-feasible mechanism for large-
scale crowdsourcing markets. Zhang et al. [34] began with
the assumption of the user coverage probability model and
transformed the opportunistic mobile crowdsensing value
maximization problem into an ordered submodularity
value function model with budget constraints. The notable
difference between this article and the above studies is that
the budget limit B considered in this article is the payment
obtained by the resource provider, not the amount paid out
or the user budget limit. In the auction mechanism design
with the user’s budget limit, the clinching auction is an
excellent mechanism. Ausubel proposed the theory of the
ascending-bid auction [15] (also called the clinching auc-
tion) in 2004. The clinching auction has been favored by
many resource providers because of its very good profita-
bility, and it has been used in many scenarios, such as radio
spectrum auctions [35, 36] and video advertising auctions
[37]. Dobzinski [16] proposed a multi-unit auction mecha-
nism with budget limits based on Ausubel’s research. The
above mechanisms can only allocate divisible or indivisible
homogenous items, which is quite different from the prob-
lem studied in this paper.

The mechanism design of this paper benefits in part
from the above research. However, it can be seen that most
research results take social welfare or revenue maximiza-
tion as the goal; there are few studies on the guarantee of
a minimum revenue for service providers, which is a very
practical issue. The research of this article addresses the
above shortcomings and also proposes a new idea for the
direction of mechanism design.

IoV edge computing resource allocation
with the lowest revenue limit problem
and mechanism design preliminaries
Assume that the IoV edge computing service pro-
vider (referred to as provider) has a total of M ECSs,
denoted by a set M = {1, 2, ...,M} . Each ECS has R

types of resources (such as CPU, memory, or stor-
age) denoted by a set R = {1, 2, ...,R} , and the resource
capacity of each ECS is determined by the vector
cj = (cj1, cj2, ..., cjR) , j ∈ M . Moreover, the provider pro-
poses the lowest revenue limit B, where B is the mini-
mum revenue that the provider expects to obtain in
this auction.

Assume there are a total of N vehicle users (referred
to as users) to use ECSs resources, defined by the set N
= {1, 2, ...,N } . Each user i ∈ N submits her/his request
defined as θi = (si, δi, bi) , where si = (si1, si2, ..., siR)
represents the requirement for each type of resource,
δi = (δi1, δi2, ...δij ..., δiM) , i ∈ N is the deployment con-
straints vector of user i, δij represents the connection
status of user i and ECS j, δij = 1 represents that the
two can be connected, otherwise they cannot be con-
nected, and � = (δ1, δ2, ..., δN) is defined similarly. In
reality, δij will be affected by many factors, such as com-
munication power, bandwidth, noise, and obstacles. In
our model, δij is simplified to a 0-1 constant, which is
beneficial for focusing on our problem model. In [8, 38],
more in-depth considerations about network connec-
tions are given. bi is the user’s bid for her/his resource
requirements. The solution of the problem can be rep-
resented by a matrix

and a vector p = (p1, p2, ..., pi, ..., pN) , where xij = 1 indi-
cates that the resource requirement of user i is finally
allocated by ECS j and pi indicates the final payment paid
by user i (if the user loses in allocation, the payment is 0).
Note that any user can be satisfied by at most one ECS.
Each group of X corresponds to an allocation solution;
therefore, our goal is to maximize the social welfare V (X)
of the service provider while satisfying the lowest reve-
nue limit and resource constraints.

X =

x11 ... x1M
... xij ...

xN1 ... xNM

(1)Maximize V (X) =
∑

j∈M

∑

i∈N
biδijxij

(1a)Subject to :
∑

i∈N
sirδijxij ≤ cjr , ∀r ∈ R, ∀j ∈ M

(1b)
∑

j∈M
δijxij ≤ 1, ∀i ∈ N

(1c)
j∈M

δijxijpi ≤ bi, ∀i ∈ N

Page 6 of 21Zhang et al. Journal of Cloud Computing (2024) 13:11

 (1a) indicates that the number of resources allocated on
any ECS does not exceed the resource capacity of this
ECS, and (1b) indicates that each user is allocated at most
once. In our problem, it is reasonable to assume that the
user can connect to multiple ECSs, but in the end, she/
he can only deploy her/his requirements to one ECS. (1c)
indicates that the user’s payment is less than or equal to
her/his bid, ensuring individual rationality; (1d) indicates
that the sum of the users’ payments must be greater than
the provider’s lowest revenue limit B; and (1e) indicates
that this is an integer programming problem. The whole
model not only includes the constraints of resource
allocation (1a) (1b), but also the constraints of payment
or revenue (1c) (1d), which is obviously different from
the traditional social welfare maximization mechanism
design, and is one of the innovations of this paper.

Equation (1) is an ideal problem model. However,
in practice, users are selfish and may submit untruth-
ful request for greater benefits; the value of mecha-
nism design lies in addressing this issue. Specifically, to
encourage users to participate in the auction process,
the mechanism design must satisfy individual rational-
ity; to prevent users from submitting untruthful requests,
the mechanism design must satisfy truthfulness. Addi-
tionally, to quickly obtain the allocation and payment
solution, the mechanism must satisfy computational
efficiency.

We use θi = (si, δi, bi) to denote the true request of
user i and θ ′i = (si, δi, b

′
i) to denote the declared request

of user i. Additionally, we assume that the user may lie
about her/his bid so that b′i > bi or b′i < bi . We do not
discuss the situation of users untruthfully reporting
resource requirements si and deployment constraints
δi because in IoV edge computing services, where data
must be offloaded to ECSs or cloud servers for execu-
tion, users cannot fake the resource requirements
because the data to be processed are generated by sen-
sors and the resources required to process the data are
set in advance. Furthermore, the deployment constraints
are obtained from the vehicle position, which is provided
by GPS and is not easy to fake. We use θ ′ = {θ ′1, ..., θ ′N }
and θ

′−i = {θ ′1, ..., θ ′i−1
, θ ′i+1

, ..., θ ′N } to denote the
declared requests of users submitted to the system and
θ = {θ ′−i, θi}.

User utility is an important measure for users to deter-
mine the value obtained in an auction, and the user
always wants to maximize her/his utility in an auction.

(1d)
∑

i∈N

∑

j∈M
δijxijpi ≥ B, ∀i ∈ N , ∀j ∈ M

(1e)xij ∈ {0, 1},∀i ∈ N

User utility is typically expressed in the form of a func-
tion. In this article, we assume that user i has the follow-
ing utility function:

p′i is the final payment price of user i when she/he sub-
mits the request θ ′i = (si, δi, b

′
i) . If the user loses the auc-

tion, the utility is 0. Based on the above description, an
individually rational and truthful auction mechanism
with a revenue limit can be defined.

Definition 1 Individual rationality. A mechanism
that ensures individual rationality should satisfy the
condition that when the user submits a truthful request
θi = (si, δi, bi) , her/his utility will be greater than or equal
to zero; i.e., ui(θ ≥ 0) . In other words, as long as the user
participates in the auction and reports her/his truthful
request, she/he will not incur a loss.

Definition 2 Truthfulness. A truthful mechanism
implies that for every user i, given a truthful declaration
request θi and declaration requests θ ′−i of the other users,
we can obtain ui(θ ′−i, θi) ≥ ui(θ

′−i, θ
′
i) , which is equiva-

lent to ui(θ) ≥ ui(θ
′

i) . Therefore, submitting a truthful
request is the dominant strategy for each user.

Definition 3 Revenue limit. If an auction mechanism
has a revenue limit, the sum of the payments of all users
must exceed the lowest revenue limit B proposed by the
resource provider; that is,

∑

i∈N
xipi ≥ B.

Definition 4 Computational efficiency. Because the
resource allocation problem is NP-hard, in practice, we
need algorithms with polynomial-time complexity to
ensure the computational efficiency of the mechanism.

The optimal mechanism design obtains the optimal
allocation solution by solving the integer programming
problem in Eq. (1), except (1c) and (1d). There are many
ways to solve this integer programming problem, such
as dynamic programming. Then, VCG is used to deter-
mine the payment price. The VCG payment algorithm
guarantees the truthfulness of the mechanism under
the premise of obtaining the optimal allocation solution
[10]. Assuming function OPT(.) is the optimal allocation
algorithm, the VCG payment algorithm can be defined as
follows:

(2)

ui(θ
′) =

{

bi − p′i, if user i wins in the allocation,

0, otherwise

(3)p′i =
∑

j∈OPT (θ ′−i)

b′j −
∑

j∈OPT (θ ′),j �=i

b′j

Page 7 of 21Zhang et al. Journal of Cloud Computing (2024) 13:11

∑

j∈OPT (θ ′−i)

b′j is the maximum social welfare when user i

does not participate, and
∑

j∈OPT (θ ′),j �=i

b′j is the maximum

social welfare of all users except user i. p′i is user i’s final
payment price. However, constraint (1d) is not consid-
ered in the optimal mechanism design because VCG can-
not predict the sum of the payments in advance. In the
experiment, we use the optimal mechanism as a compar-
ison to our approach. Table 1 lists the notation frequently
used in this paper.

IoV edge computing resource allocation
mechanism with a lowest revenue limit
(IoV‑RAM‑LRL)
Considering that the lowest revenue limit entails con-
siderable challenges in mechanism design, we must first
analyze the reasons for the low revenue of the existing
mechanism. Generally, an auction mechanism can be
divided into two parts: allocation decisions and payment
calculations (also referred to as allocation and payment).
Certain features of these two components are the main
reasons for low revenue. The first reason is the resource
allocation theory used in the auction. Resource alloca-
tion can be seen as equivalent to the knapsack problem,
in which it is necessary to allocate as many resources as
possible and then calculate the payment pricing on this
basis. However, in practice, putting all resources on the
market may not yield higher revenue because it may lead

to oversupply and low transaction prices (sometimes,
controlling the amount of resources put on the mar-
ket may bring higher revenue, such as in the diamond
market). The second reason comes from the payment
method, specifically from the truthfulness feature of the
auction mechanism. In an auction, the seller and bid-
ders (also known as the resource provider and users) are
involved in a game, so users may submit untruthful bid-
ding information to obtain greater profits. To ensure that
users reveal their truthful request, the auction mecha-
nism must satisfy the truthfulness feature, which means
that users obtain the greatest utility when submitting
truthful requests. Encouraging users to tell the truth is
very important in the mechanism design. A necessary
condition for truthfulness is that the user cannot reduce
the final payment price by submitting an untruthful
resource requirement or bid. Therefore, the user has no
incentive to submit untruthful information. To achieve
this goal, in the payment stage, existing auction mecha-
nisms adopt the VCG mechanism [10], dichotomy [11]
or the last loser bid [39] to determine the final payment
price of the user. In general, these auction mechanisms
always use the lowest winning price as the user’s final
payment price, which leads to low final revenue for the
resource provider.

In summary, the principles of allocating as many
resources as possible and using the lowest winning price
are the main causes of low revenue. Therefore, we must
address these two points without destroying the features
of truthfulness and individual rationality.

We adopt the idea of an ascending-price auction to
design the mechanism. The basic principle is to first cal-
culate the bids of all users. If the total bids are less than
B, then even if all users are selected, the lowest revenue
limit B cannot be met, and the algorithm exits without a
feasible solution.

Otherwise, according to the idea of ascending-price, the
global price gp of the system is continuously increased, the
users with lower bids are eliminated, and the allocation and
payment price calculation is conducted among the remain-
ing active users. Specifically, current active users are tra-
versed in non-increasing order according to their resource
requirements, and for each specific user, allocation is
attempted in non-decreasing order of the number of active
users on the ECSs that she/he can connect to. If user i can
be successfully deployed on ECS j, the resources of ECS j
are allocated to user i according to the current global price
gp, user i is added to the winner set W , the final payment
of the user is calculated, and the total payment is updated
at the same time. When all users have been traversed and
the total payment is greater than B, the auction process is
stopped; otherwise, the global price gp is increased and the
algorithm enters the next round of execution. If the current

Table 1 Frequently used notation

Notation Implication

M = {1, 2, ...,M} The set of edge servers

N = {1, 2, ...,N} The set of users

B Lowest revenue limit

R Number of resource types

cj = (cj1, cj2, ..., cjR) Resource capacity of the j-th edge server

θ i = (si , δi , bi) User i’s request

si = (si1, si2, ..., siR) Resource requirements of user i

δi = (δi1, δi2, ..., δij , ..., δiM) Deployment constraints between user i
and ECSs

� = (δ1, δ2, ..., δN) All users’ deployment constraints

A The set of active users

Aj The set of active users on ECS j

xij Decision variables of user i and ECS j

W The set of winners

�r The price increase parameter of the r-th
resource

ε Fixed step of price increase

gp = (gp1, gp2, ..., gpR) Global unit price of different types of resources

p = (p1, p2, ..., pi , ..., pN) Payment price of each user

pay Total revenue

Page 8 of 21Zhang et al. Journal of Cloud Computing (2024) 13:11

global price gp is continuously increased until all users are
inactive and the condition that the total payment is greater
than B still cannot be satisfied, the algorithm exits and
there is no feasible solution. This design method can clearly
satisfy all the constraints of formula (1).

In the allocation stage, in the process of increasing the
global price gp, users with lower bids continue to be elim-
inated, leaving more valuable users, so the mechanism is
not sensitive to resource capacity. Moreover, it is not nec-
essary to allocate all resources, which is an improvement
on the principles of allocating as many resources as pos-
sible. In the pricing stage, the price paid by each user is
calculated according to the global price gp, and with the
iteration of the algorithm, the global price gp increases,
as does the final payment of the winning user, which is an
improvement on the lowest winning price.

A core problem in the algorithm is how to determine
the global price gp. In the existing ascending-price auc-
tion mechanism [16], since only one-dimensional
resources are involved, the global price gp can represent
the unit price of resources. The scarcer the resource is,
the higher the global price gp. However, in multi-dimen-
sional resource allocation, different resources have dif-
ferent capacities, resulting in differences in scarcity. How
to use the global price gp to price resources in different
dimensions is a challenge.

Let us consider a simple example, assuming that the
CPU, memory, and storage resource capacities of one
ECS are (10, 10, 1000), user 1’s request is ((5, 5, 10), 200),
and user 2’s request is ((6, 6, 200), 230), that is, user 1
needs 5 units of CPU, 5 units of memory, 10 units of stor-
age resources, and the bid is 200, similar for user 2. For
resource providers, the goal is to determine which user is
more cost-effective. When using the optimal mechanism,
user 2 will be selected because of the higher bid. When
using the resource density defined in [11], which is
defined as di = bi

√

∑

r∈R

sir
cjr

 , the resource density of user 1 is

200/
√
1/2+ 1/2+ 1/100 = 199 , and the resource den-

sity of user 2 is 230/
√
3/5+ 3/5+ 1/5 = 194 . Thus, the

algorithm in [11] is more inclined to select user 1. Differ-
ent mechanisms select different users. Notably, in this
example, the resources of the ECS cannot simultaneously
satisfy the requests of the two users. However, the two
users form a competitive relationship with respect to
only the CPU and memory resources, while the storage
resources are sufficient to meet the requirements of the
two users, which means that the usage cost of storage
resources should be very low, or even zero.

From the users’ perspective, it is reasonable that the
proportion of the cost of purchasing storage resources
in their bid is very low. From the provider’s perspective,
the capacity of various resources differs. The cost of using

abundant resources is not high, while the scarce resources
are the main object of competition. This can also be seen
in the pricing of virtual machines in the cloud comput-
ing market. For example, on the Alibaba Cloud Platform
[40], we ordered a virtual machine with 1 core, 2 GB of
memory, and 30 GB of storage. The monthly rent cost is
30. If the memory resources are increased from 2 GB to
4 GB, the monthly rent cost is 38, an increase of 8 yuan.
However, if only the storage is increased from 30 GB to
60 GB, the monthly rent cost is 32, an increase of only
2. Therefore, for multi-dimensional resources, each type
of resource unit price is different, which is reasonable.
In the mechanism design of this paper, we use the vec-
tor gp = (gp1, gp2, ..., gpR) to represent the unit price of
each type of resource. In each iteration of the algorithm,
the increase in the unit price of each type of resource is
defined by �rε (ε is a small constant), and the design of
the price increase parameter �r must satisfy the follow-
ing characteristics: when a certain resource is scarcer,
the increase in the unit price of that type of resource is
greater; by contrast, when the resource is more abundant,
the increase in the unit price of that resource is smaller;
when the resource is sufficient to satisfy all users, the
increase is fixed at a constant. Therefore, we define the
price increase parameter �r of resource r as:

where
∑

i∈A
sir represents the requirements of all active

users for the rth resources currently,
∑

j∈M
cjr represents

the amount of the rth resources in all ECSs. When
∑

i∈A
sir >

∑

j∈M
cjr , �r > 1 and

∑

i∈A
sir ≤

∑

j∈M
cjr , �r = 1 . The

introduction of the concept of an independent increase
in the multi-dimensional resource unit price reflects the
scarcity of different resources and is more in line with
market rules. We use the following formulas to define
how the unit price increases for different types of
resources in gp.

If the resources provided by ECSs can satisfy all the
resource requirements of active users currently but the
lowest revenue limit B is still not reached, the unit price
of all resources will increase by a fixed step (ε) and fea-
sible solutions will continue to be explored.

Definition 5 Active users. It refers to the set of users
who can still satisfy bi ≥

∑

r∈R
gprsir when the current

(4)
�r = e

max{

∑

i∈A
sir−

∑

j∈M
cjr

∑

j∈M
cjr

,0}

(5)
gpr ← gpr + �rε = gpr + (e

max{

∑

i∈A
sir−

∑

j∈M
cjr

∑

j∈M
cjr

,0}

)ε

Page 9 of 21Zhang et al. Journal of Cloud Computing (2024) 13:11

price is gp = (gp1, gp2, ..., gpR) . We use the set
A ← {i | bi ≥

∑

r∈R
gprsir , i ∈ N } to represent active users,

where the set Aj ← {i |δij = 1, i ∈ A, j ∈ M} is used to
denote active users on ECS j.

Definition 6 The norm of user resource requirements.
The norm of user i’s resource requirements is defined as:

(6)

|si| =
√

√

√

√

(
si1

∑

j∈M
cj1

)2 + (
si2

∑

j∈M
cj2

)2 + ...+ (
siR

∑

j∈M
cjR

)2

This value can be used to evaluate the size of the resource
requirements of the users. In Algorithm 1, we use this
value as the basis for sorting.

In our design, the service provider does not preset the
initial price of each resource. We can assume that the ini-
tial price of gp is 0 or a very low cost. The algorithm deter-
mines the price of each type of resource based on the users’
requirements and the resource capacity. Through multiple
rounds of iterations, we can find a price gp that is suitable
for the current scenario, as well as an allocation and pay-
ment solution. This is also the most valuable design of this
article.

Algorithm 1 IoV-RAM-LRL

Page 10 of 21Zhang et al. Journal of Cloud Computing (2024) 13:11

Analysis of IoV‑RAM‑LRL
At the beginning of the algorithm, we initialize key var-
iables, the most critical of which is to set the unit price
of various resources to 0 (gp ← 0R), and ensures that
all users are active(A ← N). Lines 2-4 of the algorithm
calculate whether the bids of all users meet the lowest
revenue limit B. If not, the algorithm exits and there is
no feasible solution. Lines 6-7 calculate the current unit
price of each type of resource based on the active users
and resource capacity. Lines 8-15 obtain all current
active users and add them to the active users set A and
calculate the active user set Aj for each ECS j accord-
ing to the deployment constraints. Lines 17-28 allocate
the resources in non-increasing order according to the
norm of the current active users’ resource require-
ments. Specifically, for each active user i ∈ A , it is allo-
cated according to the non-descending order of the |Aj|
of ECSs in set { j|j ∈ M,δij = 1 } to which she/he can be
deployed. That is to say, among all the ECSs that user
i can be deployed to, she/he is preferentially deployed
to the ECS with a smaller number of active users, and
this strategy can allow more users to be deployed suc-
cessfully. Moreover, because user i has been deployed
to ECS j, user i must be removed from the active user
set of other ECSs (line 22-line 24). When all active
users are traversed, calculate whether the payment of
the winning users exceeds the lowest revenue limit B.
If it does, the algorithm exits and outputs the winning
user set W , payment solution P , and the total payment
price. Otherwise, the algorithm returns to line 5 to con-
tinue increasing the unit price of each type of resource
according to formula (5) and then enters the next round
of execution. If the unit price increases to the point
where there are no active users in the system, then the
lowest revenue limit B cannot be reached(A = φ), the
algorithm exits, and there is no feasible solution. It is
worth noting that it appears that our algorithm (line
17) does not consider the use of bids as a basis for sort-
ing, but in fact, bids still affect the allocation stage. In

each round of calculation, users whose bids cannot
meet the current unit price will be removed, which
means that the remaining active users are more cost-
effective. However, we use the norm of user resource
requirements to sort among active users, which means
that for active users, it is impossible to obtain greater
utility by manipulating bids. This ingenious design
achieves two goals at the same time: retain cost-effec-
tive users while making the final payment of the win-
ning user independent of their bid. The algorithm will
run through multiple rounds to verify whether there
is a feasible solution (line 29). Because IoV-RAM-LRL
is an ascending-price auction, the algorithm will exit
when a feasible solution is obtained for the first time.
Notably, if algorithm 1 does not output a feasible solu-
tion, it means that the current allocation fails and users
cannot obtain the corresponding services. This may be
caused by two situations. One is that the service pro-
vider sets the expected revenue B too high. The other
is that the users’ bids are very low and cannot reach
the preset B value. No matter which situation holds,
this is a possibility of market behavior that cannot be
avoided in all types of auctions. Therefore, in the next
round of auctions, both the service provider and users
should fully reconsider this issue. We believe that after
a period of running-in, both parties can find a balance.

A simple example can be used to illustrate this process
(Fig. 2).

In this example, we consider part of a road, and
near the road, there are 2 ECSs (ECS 1 and ECS 2);
each of them has two types of resources (CPU and
memory), and the resource capacities are (5, 50).
There are 3 vehicle users (referred to as users); user
1’s resource requirement is (4, 1), and the bid is 5.
User 1 can only be deployed in ECS1, and the explana-
tions for other user requests are similar. When using
the optimal allocation with VCG payment, the opti-
mal allocation is user 2 deployed on ECS1 and user
3 deployed on ECS2, and the sum of social welfare is

Fig. 2 ECS resource capacity and user requests in the example

Page 11 of 21Zhang et al. Journal of Cloud Computing (2024) 13:11

35. When using VCG to calculate the payment, the
payment of user 2 is (5+ 20)− (35− 15) = 5 , user 3
pays (5+ 15)− (35− 20) = 5 , and the total revenue is
10. When using the algorithm G-PMRM in the litera-
ture [11] and executing according to the order of ECS
numbers, user 2 and user 3 still win. G-PMRM uses a
dichotomy to calculate the payment. First, users 1 and 2
compete on ECS1, and in the end, user 2 wins and pays
5.06. Then, users 2 and 3 compete on ECS2. Because
ECS1 is traversed first, user 2 has been allocated suc-
cessfully on ECS1. Therefore, on the premise that user
2 wins, user 3 can be allocated successfully on ECS2 no
matter how much he/she bids; therefore, user 3 can be
successfully allocated on ECS2, and the final payment
is 0. The total revenue of the auction is 5.06. Although
the optimal mechanism or G-PMRM can obtain higher
social welfare, the final revenue is very low. When using
our approach, where B is set to 25, ε = 0.5 . Table 2
shows the results.

In the first round, because the CPU competition is
more intense, the CPU unit price increase is 0.61, and
the memory unit price increase is 0.5. The final alloca-
tion solution is to deploy user 2 to ECS1 and to deploy
user 3 to ECS2. The payment price is 3.44 and 4.44,
respectively, and the total revenue is 3.44 + 4.44 = 7.88 ,
which is less than B. Therefore, the algorithm enters
the second round. After the second round of unit price
increase, user 1 becomes inactive because of the low
bid; the allocation solution is the same as the previ-
ous round. The total revenue of the second round is
6.88+ 8.88 = 15.76 , which is still less than B. In the
third round, because user 1 is no longer active, the com-
petition for CPU resources is reduced, and the number
of resources provided by the system can already satisfy
the existing active users (user 2 and user 3). Therefore,
the unit price of the two resources is increased by the
same step size (ε) of 0.5. The allocation solution is the
same as that in round 2, and the total revenue of the
third round is 9.89+ 12.89 = 22.78 , which is still less
than B. In the fourth round, the unit prices of the two
resources continue to increase, the allocation solution
is the same as that in the previous round, and the total
revenue is 12.89+ 16.89 = 29.78 , which is greater than

B; therefore, the algorithm ends. This example shows
that the unit prices of the two resources have different
increasing rates due to different capacities. The com-
petition for CPU resources is more intense, and the
final unit price is higher, which is consistent with our
analysis. Notably, the unit price difference between the
two resources in the example is not large. The reason
for this result is to make the instance converge as soon
as possible. We use a larger ε , and the second reason
is because the number of users is small. In the experi-
ments section, we will use extended experiments to
illustrate significant differences between resource unit
prices. In terms of truthfulness, if user 2 changes her/
his bid to 13, user 2 can still win, and the user utility is
unchanged; thus, the mechanism is truthful, which we
will prove later.

Properties of IoV‑RAM‑LRL
Notably, due to deployment constraints, some users can
be deployed to a small number of ECSs. When resources
on these ECSs are exhausted, although these users are
still active, they may face situations where they cannot be
deployed. This is a common phenomenon in edge com-
puting services. For example, many vehicles suddenly
appear around a certain ECS to submit their request,
but the ECS cannot meet all the resource requirements.
Active users who are not allocated resources at this time
are called mechanism victims.

Definition 7 Mechanism Victim: A user that satisfies
bi ≥

∑

r∈R
gprsir in Algorithm 1 but is not allocated

resources due to her/his deployment constraints.

The emergence of mechanism victims is not caused by
algorithms, but by the deployment constraints of the IoV.
Deployment constraints enable users to connect to differ-
ent ECSs. Because our resource unit price is global, for
some ECSs with a large number of connected users, their
resources have been allocated completely, but there are
still active users. The way to improve this situation is to
add ECSs in the user-dense area to resolve the problem
of insufficient resources. In traditional cloud computing

Table 2 Results of running the example using our algorithm

Round �ε Unit price Users state Active:1
Inactive:0

Allocation solution Payment result

1 (0.61,0.5) (0.61,0.5) (1,1,1) x21, x32 3.44,4.44 < B

2 (0.61,0.5) (1.22,1.0) (0,1,1) x21, x32 6.88,8.88 < B

3 (0.5,0.5) (1.72,1.5) (0,1,1) x21, x32 9.89,12.89 < B

4 (0.5,0.5) (2.22,2.0) (0,1,1) x21, x32 12.89,16.89 29.78 > B

Page 12 of 21Zhang et al. Journal of Cloud Computing (2024) 13:11

multi-server allocation, there are no deployment con-
straints, and each user may be allocated to any server,
which is also an important difference between edge
computing and cloud computing multi-server resource
allocation.

Lemma 1 Mechanism Victim’s bid does not affect
the current round’s allocation result.

Mechanism victims refer to active users who satisfy
bi ≥

∑

r∈R
gprsir in the auction but are not allocated

resources. According to Algorithm 1, the algorithm allo-
cates resources to active users under the premise of the
current unit price gp . If the active user i is still not suc-
cessfully allocated after traversing all the ECSs, then at
this time on any ECS, the allocation cannot be successful
because the allocation rule is to allocate according to the
non-increasing order of the norm of active users’
resources requirements, which is not related to the users’
bids. Therefore, the mechanism victim still cannot be
allocated successfully after changing the bid, which will
not affect the result of this round of the allocation
solution.

Theorem 1 Individual rationality of IoV-RAM-LRL.

Proof
Winning users in Algorithm 1 must satisfy
pi =

∑

r∈R
gprsir ≤ bi ; therefore, ui(θ) = bi − pi ≥ 0.

Theorem 2 IoV-RAM-LRL is truthful.

We assume that it is impossible for users to declare
untruthful resource requirements and deployment con-
straints, the reasons have been analyzed in IoV edge
computing resource allocation with the lowest revenue
limit problem and mechanism design preliminaries sec-
tion, but users can change their bids.

1. Suppose a user submits an untruthful bid b′i < bi

(a) User i wins when the bid is bi and still wins
when the bid is b′i . Suppose that user i submits
a truthful bid bi and wins when the final unit
price is gp = {gp1, gp2, ..., gpR} . The user still
wins when submitting the bid b′i and when the
final unit price is gp′ = {gp′1, gp′2, ..., gp′R} . If
∑

r∈R
gp′r sir <

∑

r∈R
gprsir , then when user i’s bid is

bi , she/he can also win when the unit price is
gp′ , which is inconsistent with the facts. It can
be seen that gp′ = gp , and the utility of user i is

u(θ ′) = bi -
∑

r∈R
gp′r sir = bi -

∑

r∈R
gprsir = u(θ) ,

which is unchanged.
(b) User i wins when the bid is bi and loses when

the bid is b′i . Because the user decreases the bid,
allocation fails. According to Algorithm 1, the
user utility is 0, and the utility of user i is u(θ ′)
= 0 ≤ bi −

∑

r∈R
gprsir = u(θ) ; thus, the user

utility may decrease.
(c) User i loses when the bid is bi and loses when

the bid is b′i . According to Algorithm 1, the user
loses allocation under the bid bi ; after decreas-
ing the bid, the user still loses. In this case,
the user utility is 0, so the utility of user i is
u(θ ′) = 0 = u(θ) , which is the same as before.

(d) User i loses when the bid is bi and wins when the
bid is b′i . According to Algorithm 1, the user loses
under bid bi for two reasons. First, user i is not an
active user under the current global unit price
gp = {gp1, gp2, ..., gpR} ; that is, bi <

∑

r∈R
gprsir .

After decreasing the bid, we have
b′i < bi <

∑

r∈R
gprsir . Assuming that there is a

unit price gp′ = {gp′1, gp′2, ..., gp′R} that can make
the user submit the bid b′i to be successfully allo-
cated, then

∑

r∈R
gp′r sir ≤ b′i < bi <

∑

r∈R
gprsir

must be satisfied. According to Algorithm 1,
when the user submits the bid bi , the user can
also be successfully allocated when the global
unit price is gp′ = {gp′1, gp′2, ..., gp′R} , which is
inconsistent with the facts. Therefore, this situa-
tion does not exist. The second reason is that
user i is a mechanism victim in the auction.
According to Lemma 1, if user i is a mechanism
victim, her/his bid will not affect the allocation
result. She/he still cannot be successfully allo-
cated, so this situation cannot exist.

2. Suppose a user submits an untruthful bid b′i > bi .

(a) User i wins when the bid is bi and still wins
when the bid is b′i . The proof is the same as that
of 1.(a)

(b) User i wins when the bid is bi and loses when
the bid is b′i . According to Algorithm 1, the user
wins allocation under bid bi because
bi ≥

∑

r∈R
gprsir , and the user is not a mecha-

nism victim. After increasing the bid,
b′i > bi ≥

∑

r∈R
gprsir , and the allocation will still

be successful; thus, this situation does not exist.

Page 13 of 21Zhang et al. Journal of Cloud Computing (2024) 13:11

(c) User i loses when the bid is bi and loses when
the bid is b′i . The proof is the same as that of
1.(c).

(d) User i loses when the bid is bi and wins when
the bid is b′i . According to Algorithm 1, the user
loses allocation under bid bi ; therefore, the util-
ity is 0. There are two reasons for this result.
First, user i is not an active user at the final
global unit price gp = {gp1, gp2, ..., gpR} ; that is,
bi <

∑

r∈R
gprsir , and the allocation is successful

after increasing the bid to b′i . Suppose the final
unit price under bid b′i is gp′ = {gp′1, gp′2, ..., gp′R} .
If the user is successfully allocated when the bid
is b′i and loses when the bid is bi , then
b′i >

∑

r∈R
gp′r sir > bi must be satisfied. At this

time, the utility of user i is ui(θ
′) =

bi −
∑

r∈R
gp′r sir si ≤ 0 = ui(θ) , and the utility

may decrease. Second, user i is a mechanism
victim in the auction. According to Lemma 1, if
user i is a mechanism victim, her/his bid will
not affect the allocation result. She/he still can-
not be successfully allocated, so this situation
cannot exist; therefore, u(θ ′) = 0 = u(θ).

In summary, users submitting an untruthful bid b′i �= bi
cannot improve their utility, so the mechanism is
truthful.

Theorem 3 The time complexity of IoV-RAM-LRL is
polynomial.

The time complexity of Algorithm 1 is O(B
ε
NM(R+M2)) .

In Algorithm 1, lines 5-34 are executed at most B
ε
 times,

and each execution has an O(NMR) loop. However, after
successfully allocating resources to a user, the ECSs must
be sorted again because the number of active users has
changed. Therefore, the complexity is O(B

ε
NM(R+M2)).

Theorem 4 The social welfare of IoV-RAM-LRL has
an approximate ratio of max(bi)N

B . Assuming W is the
solution of Algorithm 1 and that W∗ is the optimal social
welfare solution of the problem, it can be seen that
B ≤

∑

i∈W
bi ≤

∑

i∈W∗
bi ; we can obtain

∑

i∈W∗
bi

∑

i∈W
bi

≤

∑

i∈W∗
bi

B ≤ bmaxN
B , where bmax = max(bi),∀i ∈ N

and N is the number of users. Therefore, the social welfare
of IoV-RAM-LRL has an approximate ratio of max(bi)N

B .

In theory, we cannot obtain a better approximation
than this result. Consider an example in which there
are 100 users, the resource requirement of all users is

1, the bid is also 1 (so bmax = 1), the lowest revenue
limit B is 100, and the system resource capacity is 100.
In this case, the social welfare of the optimal solution
and the social welfare of IoV-RAM-LRL are both 100,
and the approximate ratio is bmaxN

B = 1·100
100

= 1.
Notably, in existing studies, the social welfare of the

allocation solution can easily reach an approximate
ratio of 2 or even 1+ ε compared with the optimal
solution. However, these algorithms are designed with-
out considering the constraints of the lowest revenue
limit. Although the algorithm proposed in this paper
has only a parameter-related approximation ratio, in
most cases, it works very well.

Numerical results
Experimental settings
We adopted the data set of the 2021 Huawei Cloud Soft-
ware Elite Challenge [41]. The dataset includes various
types of server (including CPU, memory, hardware cost,
energy consumption) of the Huawei Cloud Platform,
as well as user resource request data (CPU, memory,
dynamic request sequence, etc.). On this basis, we have
made some modifications to facilitate the experiment of
the paper. The rules are as follows.

1. From the dataset, we select 100 samples of resource
requirements with CPU requirements that do not
exceed 25 (an average of 10.3) and memory require-
ments that do not exceed 35 (an average of 17.85) and
add randomly generated storage resource require-
ments, which range from 40 to 101 (an average of
68.46) as the resource requirements of the users in
OPT-VCG, G-PMRM and IoV-RAM-LRL.

2. In terms of bidding, we first calculate the cost of
each user’s resource requirements according to the
resource pricing published in Huawei Cloud [42] and
Tencent Cloud [43] and multiply this cost by a ran-
dom number between 0.2 and 5. (Half of the users
satisfy a uniform distribution within 0.2-1, and the
other half satisfy a uniform distribution within 1-5),
which means that the user’s bid is between 0.2 times
and 5 times the cost.

3. We determine the resource capacity of the server
according to the total requirements of all users (100).
We define the server resource capacity parameter
C as 1.0, which can just meet the resource require-
ments of all users. Specifically, in IoV-RAM-LRL,
the CPU, memory, and storage requirements are
960, 1680, and 10240, respectively. Similarly, a server
resource capacity parameter C of 0.5 yields 480, 840
and 10240, respectively. This is because in reality,
the storage resources are relatively sufficient, so the
quantity of storage resources does not change.

Page 14 of 21Zhang et al. Journal of Cloud Computing (2024) 13:11

4. We normalize the resource requirements of the users
in IoV-RAM-LRL, and set ε = 0.1 as the step size in
increasing the unit price gp.

5. All algorithms use the same data, and to eliminate
the influence of the randomness of the data, we test
each indicator in the experiment 50 times; the aver-
age value is shown in the figure.

6. We use the Python language to implement IoV-
RAM-LRL. Specifically, we improve IoV-RAM-LRL
to implement IoV-RAM-LRL (Peak B). The principle
is to continuously improve B until the algorithm has
no solution. At this time, B is Peak B, which is also
the highest revenue that can be obtained in the cur-
rent auction. At the same time, DOCplex is called
through Python language to implement OPT-VCG.
Another comparison algorithm, G-PMRM [11], is
also implemented in Python, but G-PMRM cannot
meet the deployment constraints, and we improve it
by assigning server numbers.

7. The hardware configuration of the experimental
platform is as follows: the processor is an Intel(R)
Core(TM) i5-7300HQ CPU with 16 GB memory and
a 256 GB SSD.

8. We uploaded the data set and code to https:// github.
com/ WangZ HeM/ IoV- RAM- LRL/ tree/ main.

Experimental results
Impact of the lowest revenue limit B
This experiment finds the maximum theoretical revenue
of IoV-RAM-LRL by changing the lowest revenue limit
B and compares the results with those of the two classi-
cal auction mechanisms, OPT-VCG and G-PMRM. In
this experiment, the total number of users N is fixed at
100, the number of servers M is fixed at 10, the number
of resources R is fixed at 3, the server resource capac-
ity parameter C is fixed at 0.75, and the deployment
constraint (average number of users connecting to the
server) δ = 2.

Figure 3a shows the difference in revenue of different
algorithms, which is the most important indicator in this
paper. The revenue is the sum of the payments for all
winning users. When B is 30000, the total revenue of IoV-
RAM-LRL is lower than that of the other two algorithms
because the mechanism is designed in terms of ascending
price, and when the predetermined revenue is reached,
the algorithm ends. Therefore, when B is low, the corre-
sponding revenue is also low. Moreover, the allocation
and payment solution of OPT-VCG and G-PMRM only
need to be calculated once, so the allocation and payment
solution are fixed. As can be seen from Fig. 3a, OPT-VCG
can reach a revenue of about 30,000, while G-PMRM can
reach a revenue of about 35,000. If the revenue limit B

Fig. 3 The impact of the lowest revenue limit B (IoV-RAM-LRL)

https://github.com/WangZHeM/IoV-RAM-LRL/tree/main
https://github.com/WangZHeM/IoV-RAM-LRL/tree/main

Page 15 of 21Zhang et al. Journal of Cloud Computing (2024) 13:11

continues to increase, the revenue generated by the OPT-
VCG and G-PMRM mechanisms cannot meet the preset
revenue limit, so there is no feasible solution. Therefore,
it is not shown in the figure. However, IoV-RAM-LRL
continuously increases the unit price of various resources
and chooses to eliminate some users with lower bids to
calculate the new revenue. When the revenue reduction
due to eliminating users is less than the increase in rev-
enue due to the price increase, the revenue will increase
until it reaches B or all users have been eliminated and
there is no solution. Therefore, the revenue of IoV-RAM-
LRL is obtained through continuous improvement and
eventually reduces to 0. In this experiment, Peak B is
47219.

Figure 3b shows the difference in social welfare of dif-
ferent algorithms, which is the sum of bids of all winning
users. As B increases, the social welfare of IoV-RAM-LRL
gradually decreases from constant to 0. The reason is that
when B is small, the unit price is low, and the number of
users selected is the largest, so the social welfare is the
greatest. When B begins to increase, in order to reach
the revenue limit B under the condition of deployment
constraints, the algorithm eliminates users with lower
bids, so the social welfare decreases. However, OPT-VCG
satisfies the principles of allocating as many resources
as possible and will allocate as many resources as pos-
sible to users, so more users will be selected, yielding
higher social welfare. However, IoV-RAM-LRL achieves
higher revenue by improving the principles of allocat-
ing as many resources as possible and strikes a balance
between social welfare and revenue. It is worth noting
that the social welfare of IoV-RAM-LRL is higher than
that of G-PMRM. The main reason is that G-PMRM does
not work well under deployment constraints, which is an
another advantage of IoV-RAM-LRL.

From Fig. 3a and b, it can be seen that the IoV-RAM-
LRL decreases the optimal social welfare and resource
utilization very much when the revenue limit is large. It
can be considered that ECSs reserve the resources to pur-
sue a higher revenue. This is an advantage of the mech-
anism in this paper. The existing mechanism designs
tend to clear resources (allocating as many resources as
possible), so the revenue is very low when the supply of
resources exceeds the demand. However, the IoV-RAM-
LRL tends to select more valuable users and let them
buy resources, and does not need to allocate resources
as much as possible. Specifically, under the premise of
the current users requests and ECSs resource capac-
ity, the IoV-RAM-LRL can find the set of users with the
highest payment that can be achieved. When the supply
of resources exceeds the demand, the algorithm is still
applicable.

Figure 3c shows the execution time of the three algo-
rithms. The execution time of IoV-RAM-LRL increases
with increasing B because when B is higher, IoV-RAM-
LRL must execute more loops (the number of loops is
also related to the ε in unit price). Furthermore, OPT-
VCG has the longest execution time because OPT-VCG
calculates the optimal allocation problem, which is NP-
hard, resulting in exponential execution time. Although
G-PMRM is designed based on a greedy algorithm, it
must be calculated for each server, so the execution time
is greater than that of IoV-RAM-LRL in most cases.
Moreover, the execution time of G-PMRM and OPT-
VCG is not related to the revenue limit B because no
matter how B changes, these two algorithms are executed
only once.

Figure 3d-f reflect the resource utilization of the three
algorithms. OPT-VCG has the highest resource utiliza-
tion because OPT-VCG satisfies the optimal allocation
and aims to allocate resources to users, while IoV-RAM-
LRL has the next highest resource utilization, followed
finally by G-PMRM. The main reason is similar to that
in Fig. 3b. Notably, even in the OPT-VCG algorithm,
no resource reaches 100% utilization. The main reason
is that some ECS resources cannot be allocated under
deployment constraints.

Impact of the resource capacity of the server
This experiment shows the impact of different server
resource capacities C on the three algorithms. The num-
ber of users N is fixed at 100, the number of servers M is
fixed at 10, the number of resources R is fixed at 3, and
the deployment constraint is δ = 2.

The algorithm used for comparison in this experi-
ment is IoV-RAM-LRL (Peak B), which can achieve the
theoretically highest revenue. Figure 4a shows the rev-
enue of the three algorithms. First, the revenue of IoV-
RAM-LRL(Peak B) increases initially and then remains
unchanged as the resource capacity increases. This is
because when the resource capacity is small (0.25), the
resource capacity is insufficient to meet the requirement
of cost-effective users. At this time, OPT-VCG has the
best performance. However, IoV-RAM-LRL(Peak B) can
make cost-effective users win by increasing the unit price,
so when the resource capacity increases, the revenue of
IoV-RAM-LRL(Peak B) increases rapidly until it stabi-
lizes. On the other hand, because IoV-RAM-LRL(Peak B)
always selects the most cost-effective user subset in the
system, it is not sensitive to changes in resource capac-
ity. Therefore, as the resource capacity increases, the rev-
enue does not change substantially, which also reveals
that most of the revenue comes from the most cost-
effective 1/2 of users in the system. However, the revenue

Page 16 of 21Zhang et al. Journal of Cloud Computing (2024) 13:11

of OPT-VCG and G-PMRM continues to decrease with
increasing resource capacity. The main reason is that
these two algorithms follow the principle of allocating as
many resources as possible, and they use the lowest win-
ning price. Abundance of resources leads to oversupply,
resulting in a decrease in revenue.

Figure 4b shows the social welfare of different algo-
rithms. The social welfare of IoV-RAM-LRL(Peak B) first
increases and then remains unchanged because when
the resource capacity is small, the number of winning
users is very small. As the resource capacity increases,
the number of winning users increases, so social wel-
fare improves. However, when the resource capacity
increases to 0.75, the resources are sufficient to satisfy
the most cost-effective user subset selected by IoV-RAM-
LRL(Peak B), so social welfare tends to be stable. The
main reason for the increase in social welfare of OPT-
VCG and G-PMRM is that the increase in resource
capacity increases the number of winning users.

Figure 4c shows the execution times of different algo-
rithms. The execution time of IoV-RAM-LRL(Peak B)
increases because when the resource capacity is low, the
algorithm only needs to eliminate users through capac-
ity constraints. When the resources capacity is large, it is
necessary to eliminate users with low cost-effectiveness
through continuous iteration, so the execution time is

long. OPT-VCG needs to calculate the optimal solution
of the allocation, so the execution time is the longest.
Furthermore, G-PMRM is executed separately for each
server, so when the resource capacity increases, its exe-
cution time will also increase.

Figure 4d-f show the resource utilization of the three
algorithms. The resource utilization of IoV-RAM-
LRL(Peak B) continues to decrease. The main reason is
that the algorithm tends to become stable after the sub-
set of users with high cost performance is selected; thus,
the resource utilization decreases as the resource capac-
ity increases. In addition, OPT-VCG always maintains a
high resource utilization rate because OPT-VCG follows
the principle of allocating as many resources as possible.
The reason for the low resource utilization of G-PMRM
is that it is greatly affected by deployment constraints.
The increase in resource capacity enables the top-ranked
server to obtain more users, so the number of users that
can be allocated by the bottom-ranked server decreases.

Impact of the deployment constraints
This experiment shows the impact of different deploy-
ment constraints (for example, 1-10 indicates that the
number of ECSs to which users can connect is uniformly
distributed within [1,10]). The number of users N is fixed
at 100, the number of servers M is fixed at 10, the number

Fig. 4 The impact of the resource capacity of the server

Page 17 of 21Zhang et al. Journal of Cloud Computing (2024) 13:11

of resources R is fixed at 3, and the server resource capac-
ity parameter C is fixed at 0.75.

The algorithm used in this experiment is IoV-RAM-
LRL(Peak B). Because solving the optimal allocation
solution is NP-hard, when δ is greater than 3, OPT-
VCG cannot be solved in limited time; thus, OPT-VCG
is executed in only the first two experiments. Figure 5a
shows the revenue of the three algorithms under differ-
ent deployment constraints. The IoV-RAM-LRL(Peak
B) algorithm has higher revenue under different
deployment constraints because when the deployment
constraints increase, the number of servers that users
can connect to increases and more users can be allo-
cated, so the revenue increases. When the deployment
constraints reach a certain number (such as δ = [1, 4]),
almost all cost-effective users are successfully allocated,
so the revenue remains stable. G-PMRM is based on
the monotonic allocation algorithm. When δ increases,
the number of users that can be allocated to each server
increases, so the revenue also increases. The revenue
of the OPT-VCG algorithm is relatively low because it
follows the principle of allocating as many resources as
possible and the lowest winning price.

Figure 5b shows the social welfare of the three algo-
rithms. For all algorithms, the number of winning users
increases due to the increase in δ , so the social welfare

also increases. Among them, the IoV-RAM-LRL(Peak
B) algorithm reaches the maximum social welfare when
the deployment constraint δ = [1, 4] and no longer
changes with changes in δ . Therefore, the IoV-RAM-
LRL(Peak B) algorithm has selected the most valuable
users at this time.

Figure 5c shows the execution time of the three
algorithms. The execution time of the three algo-
rithms increases with increasing δ because the change
in deployment constraints leads to an increase in the
number of winning users, which leads to an increase
in the computational load of the IoV-RAM-LRL(Peak
B) algorithm and the G-PMRM algorithm. Since it is
NP-hard to solve the optimal allocation, the OPT-VCG
algorithm has the longest execution time and is most
affected by deployment constraints.

Figure 5d-f show the resource utilization of the three
algorithms. Since OPT-VCG solves the optimal solution
of allocation, the resource utilization is high. The IoV-
RAM-LRL(Peak B) algorithm and the G-PMRM algo-
rithm increase the number of winning users due to the
increase in the deployment constraint δ , so the resource
utilization is also improved. However, when the deploy-
ment constraint δ increases to a certain value, it is no
longer the most important factor affecting allocation
(at this time, resource capacity is the most important);

Fig. 5 Impact of the deployment constraints

Page 18 of 21Zhang et al. Journal of Cloud Computing (2024) 13:11

thus, social welfare, revenue, and resource utilization are
almost unchanged.

The impact of resource capacity changes on unit prices
This experiment shows the impact of changes in CPU
resource capacity on prices. The number of users N is
fixed at 100, the number of servers M is fixed at 10, the
resource type R is fixed at 3, the memory and storage
resource capacity C is fixed at 0.75, and the revenue limit
B is set at 20000, while deploying constraints δ = 2 and
using the IoV-RAM-LRL(Peak B) algorithm.

It can be seen from Fig. 6 that the unit price of the
CPU decreases with increasing CPU resource capac-
ity and finally matches the unit price of the storage
resource. This is because when the CPU resource
capacity is small, the price increase parameter �cpu
increases, and the unit price of the CPU increases
faster. As the resource capacity of the CPU gradu-
ally increases, the value of �cpu decreases, and the
increase in the unit price of the CPU will gradually
decrease. Notably, the unit price of memory and stor-
age resources is fixed.

The impact of independent unit price changes
This experiment demonstrates the advantages of resource
unit prices that vary independently. The unit price increase
�rε of each resource in algorithm IoV-RAM-LRL(Peak B)
(�ε) is calculated independently, while in algorithm IoV-
RAM-LRL(Peak B)(ε), the unit price of each resource
increases by ε . The number of servers M is fixed at 10, the
resource type R is fixed at 3, the resource capacity C is
fixed at 0.5, and the deployment constraint δ = 2.

It can be seen from Fig. 7 that as the number of users
increases, the final revenue of both algorithms increases,
but the IoV-RAM-LRL(Peak B)(�ε) algorithm has higher
revenue than IoV-RAM-LRL(Peak B)(ε). The main reason
is that the former algorithm uses an independent unit price.
When a certain resource is small, its unit price will increase
faster so that a higher final revenue can be obtained. On
the other hand, from a practical perspective, it is more rea-
sonable for different resources to have different unit prices
according to the balance of supply and demand.

Truthfulness verification
This experiment verifies the truthfulness of IoV-RAM-
LRL from two perspectives. Specifically, 1) the bid of a
winning user is changed to observe its utility changes,
and 2) the bid of a losing user is changed to observe its
utility changes. In this experiment, the number of users
N is 100, the number of servers M is 10, the resource type
R is 3, the resource capacity C is fixed at 0.75, and the
deployment constraint δ = 2.

Figure 8a shows the situation for the winning user 10.
Her/his truthful bid is 2542, the resource requirement
is (18,30,91), and when she/he wins, the payment is
2021 and the utility is 2542− 2021 = 521 . By constantly
changing her/his bid, it can be found that as long as the
bid is higher than 2021, the user can still win, but her/his
utility remains at 521, which is unchanged; this is because
if the user can win, changing her/his bid will not affect
the payment price, and the utility remains the same.
When the bid is lower than 2021, allocation fails, so the
utility is 0.

Fig. 6 The impact of CPU capacity changes on prices

Page 19 of 21Zhang et al. Journal of Cloud Computing (2024) 13:11

Figure 8b shows the situation for the losing user 57.
Her/his truthful bid is 983, the resource requirement is
(16,33,89), the final payment is 0, and the utility is 0. By
changing her/his bid, it can be found that when the bid
is lower than 1946, the user always fails to allocate, so no
fee is paid, and the utility is obviously 0. When the bid is
higher than 1946, the user wins the allocation; however,
the utility at this time is 983− 1946 = −963.

Through the analysis of these two examples, it can be
seen that users cannot obtain greater utility by changing
the bid, thus verifying the truthfulness of IoV-RAM-LRL.

Conclusion
This paper proposes a truthful mechanism for IoV edge
computing resource allocation with a lowest revenue
limit. Compared with existing mechanisms, the proposed

mechanism for calculating the unit price of resources
through the intensity of competition of different resources
can obtain greater revenue while ensuring individual
rationality and truthfulness. Furthermore, our approach
can be used under the edge computing deployment con-
straints, which improves the practicability of mechanism
design in edge computing. However, many problems
remain to be studied. For example, when the vehicle
moves, the deployment constraints will change, which
involves the problem of real-time mechanism design.
Another example in the federated learning or metaverse
scenarios considers not only the connection between the
edge and the device but also involves the cloud-edge col-
laboration. These novel application scenarios will result in
more complex resource allocation problems, which will
be our main research work in the future.

Fig. 7 The impact of independent unit price changes

Fig. 8 Truthfulness verification

Page 20 of 21Zhang et al. Journal of Cloud Computing (2024) 13:11

Acknowledgements
We sincerely thank the Reviewers and the Editor for their valuable suggestions.

Authors’ contributions
J. Zhang and Z. Wang wrote the main manuscript text and A. V. Vasilakos and
W. Li proposed the method and revised the manuscript. All authors reviewed
the manuscript.

Funding
This work is supported in part by the National Natural Science Foundation
of China (Nos. 62062065, 12071417, 61962061), the Education Foundation of
Yunnan Province of China (2022J002) and the Program for Excellent Young
Talents, Yunnan, China.

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
This article does not contain any studies with human participants or animals
performed by any of the authors.

Consent for publication
The authors read and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Received: 24 July 2023 Accepted: 9 December 2023

References
 1. Luo Q, Li C, Luan TH, Shi W (2020) Edgevcd: Intelligent algorithm-inspired

content distribution in vehicular edge computing network. IEEE Internet
Things J 7(6):5562–5579. https:// doi. org/ 10. 1109/ JIOT. 2020. 29809 81

 2. Lu S, Yuan X, Shi W (2020) Edge compression: An integrated framework
for compressive imaging processing on cavs. In: 2020 IEEE/ACM Sympo-
sium on Edge Computing (SEC). pp 125–138. https:// doi. org/ 10. 1109/
SEC50 012. 2020. 00017

 3. Zhang J, Lou W, Sun H, Su Q, Li W (2022) Truthful auction mechanisms
for resource allocation in the internet of vehicles with public blockchain
networks. Futur Gener Comput Syst 132:11–24. https:// doi. org/ 10. 1016/j.
future. 2022. 02. 002

 4. Hou X, Ren Z, Wang J, Cheng W, Ren Y, Chen KC, Zhang H (2020) Reliable
computation offloading for edge-computing-enabled software-defined
iov. IEEE Internet Things J 7(8):7097–7111. https:// doi. org/ 10. 1109/ JIOT.
2020. 29822 92

 5. Wang J, Jiang C, Zhang K, Quek TQS, Ren Y, Hanzo L (2018) Vehicular sens-
ing networks in a smart city: Principles, technologies and applications.
IEEE Wirel Commun 25(1):122–132. https:// doi. org/ 10. 1109/ MWC. 2017.
16002 75

 6. Reza Dibaj SM, Miri A, Mostafavi S (2020) A cloud priority-based dynamic
online double auction mechanism (pb-dodam). J Cloud Comput 9.
https:// doi. org/ 10. 1186/ s13677- 020- 00213-7

 7. Zheng X, Shah SBH, Usman S, Mahfoudh S, Shemim KSF, Kumar Shukla P
(2023) Resource allocation and network pricing based on double auction
in mobile edge computing. J Cloud Comput 12. https:// doi. org/ 10. 1186/
s13677- 023- 00421-x

 8. Zhang J, Zong M, Vasilakos AV, Li W (2023) Uav base station network
transmission-based reverse auction mechanism for digital twin utility
maximization. IEEE Trans Netw Serv Manag 1–1. https:// doi. org/ 10. 1109/
TNSM. 2023. 33015 22

 9. Li Q, Jia X, Huang C (2023) A truthful dynamic combinatorial double auc-
tion model for cloud resource allocation. J Cloud Comput 12. https:// doi.
org/ 10. 1186/ s13677- 023- 00479-7

 10. Nisan T, Roughgarden E, Tardos E, Vazirani V (2007) Algorithmic game
theory, vol 3. pp 53–78. https:// doi. org/ 10. 1017/ CBO97 80511 800481. 020

 11. Mashayekhy L, Nejad MM, Grosu D (2015) Physical machine resource
management in clouds: A mechanism design approach. In: IEEE Transac-
tions on Cloud Computing, vol 3, pp 247–260. https:// doi. org/ 10. 1109/
TCC. 2014. 23694 19

 12. Zhang J, Xie N, Zhang X, Li W (2018) An online auction mechanism
for cloud computing resource allocation and pricing based on user
evaluation and cost. In: Future Generation Computer Systems, vol 89. pp
286–299. https:// doi. org/ 10. 1016/j. future. 2018. 06. 034

 13. Myerson RB (1981) Optimal auction design. Math Oper Res 6(1):58–73
 14. Duan Z, Tang J, Yin Y, Feng Z, Yan X, Zaheer M, Deng X (2022) A context-

integrated transformer-based neural network for auction design. In:
Proceedings of the 39th International Conference on Machine Learning,
vol 162. PMLR, Baltimore, p 5609–5626

 15. Ausubel, Lawrence M (2004) An efficient ascending-bid auction for
multiple objects. In: American Economic Review, vol 94. pp 1452–1475.
https:// doi. org/ 10. 1257/ 00028 28043 052330

 16. Dobzinski S, Lavi R, Nisan N (2012) Multi-unit auctions with budget limits.
In: Games and Economic Behavior, vol 74. pp 486–503. https:// doi. org/ 10.
1016/j. geb. 2011. 08. 003

 17. Zaman S, Grosu D (2013) A combinatorial auction-based mechanism for
dynamic vm provisioning and allocation in clouds. In: IEEE Transactions on
Cloud Computing, vol 1. pp 129–141. https:// doi. org/ 10. 1109/ TCC. 2013.9

 18. Mashayekhy L, Fisher N, Grosu D (2016) Truthful mechanisms for competi-
tive reward-based scheduling. In: IEEE Transactions on Computers, vol 65.
pp. 2299–2312. https:// doi. org/ 10. 1109/ TC. 2015. 24795 98

 19. Liu X, Li W, Zhang X (2018) Strategy-proof mechanism for provisioning
and allocation virtual machines in heterogeneous clouds. In: IEEE Transac-
tions on Parallel and Distributed Systems, vol 29. pp 1650–1663. https://
doi. org/ 10. 1109/ TPDS. 2017. 27858 15

 20. Jiao Y, Wang P, Niyato D, Suankaewmanee K (2019) Auction mechanisms
in cloud/fog computing resource allocation for public blockchain net-
works. In: IEEE Transactions on Parallel and Distributed Systems, vol 30. pp
1975–1989. https:// doi. org/ 10. 1109/ TPDS. 2019. 29002 38

 21. Li G, Cai J (2020) An online incentive mechanism for collaborative task
offloading in mobile edge computing. In: IEEE Transactions on Wireless Com-
munications, vol. 19. pp 624–636. https:// doi. org/ 10. 1109/ TWC. 2019. 29470 46

 22. Zhang D, Tan L, Ren J, Awad MK, Zhang S, Zhang Y, Wan PJ (2020) Near-
optimal and truthful online auction for computation offloading in green
edge-computing systems. In: IEEE Transactions on Mobile Computing,
vol 19. pp 880–893. https:// doi. org/ 10. 1109/ TMC. 2019. 29014 74

 23. Li G, Cai J, Chen X, Su Z (2022) Nonlinear online incentive mechanism design
in edge computing systems with energy budget. In: IEEE Transactions on
Mobile Computing, pp 1–1. https:// doi. org/ 10. 1109/ TMC. 2022. 31480 34

 24. Zhang J, Xie N, Yang X, Zhang X, Li W (2021) Strategy-proof mecha-
nism for time-varying batch virtual machine allocation in clouds. In:
Cluster Computing, vol 24. pp 3709–3724. https:// doi. org/ 10. 1007/
s10586- 021- 03360-x

 25. Zhang J, Xie N, Zhang X, Li W (2021) Strategy-proof mechanism for online
time-varying resource allocation with restart. In: Journal of Grid Comput-
ing, vol 19. pp 25 (20 pp.). https:// doi. org/ 10. 1007/ s10723- 021- 09563-1

 26. Bahreini T, Badri H, Grosu D (2022) Mechanisms for resource allocation
and pricing in mobile edge computing systems. In: IEEE Transactions on
Parallel and Distributed Systems, vol 33. pp 667–682. https:// doi. org/ 10.
1109/ TPDS. 2021. 30997 31

 27. He J, Zhang D, Zhou Y, Zhang Y (2020) A truthful online mechanism for
collaborative computation offloading in mobile edge computing. In: IEEE
Transactions on Industrial Informatics, vol 16, pp 4832–4841. https:// doi.
org/ 10. 1109/ TII. 2019. 29601 27

 28. Deng X, Xiao T, Zhu K (2019) Learn to play maximum revenue auction.
IEEE Trans Cloud Comput 7(4):1057–1067. https:// doi. org/ 10. 1109/ TCC.
2017. 27121 42

 29. Zhu K, Xu Y, Jun Q, Niyato D (2022) Revenue-optimal auction for resource
allocation in wireless virtualization: A deep learning approach. IEEE Trans
Mob Comput 21(4):1374–1387. https:// doi. org/ 10. 1109/ TMC. 2020. 30214 16

 30. Li S, Huang J, Cheng B (2021) Resource pricing and demand allocation for
revenue maximization in iaas clouds: A market-oriented approach. IEEE
Trans Netw Serv Manag 18(3):3460–3475. https:// doi. org/ 10. 1109/ TNSM.
2021. 30855 19

https://doi.org/10.1109/JIOT.2020.2980981
https://doi.org/10.1109/SEC50012.2020.00017
https://doi.org/10.1109/SEC50012.2020.00017
https://doi.org/10.1016/j.future.2022.02.002
https://doi.org/10.1016/j.future.2022.02.002
https://doi.org/10.1109/JIOT.2020.2982292
https://doi.org/10.1109/JIOT.2020.2982292
https://doi.org/10.1109/MWC.2017.1600275
https://doi.org/10.1109/MWC.2017.1600275
https://doi.org/10.1186/s13677-020-00213-7
https://doi.org/10.1186/s13677-023-00421-x
https://doi.org/10.1186/s13677-023-00421-x
https://doi.org/10.1109/TNSM.2023.3301522
https://doi.org/10.1109/TNSM.2023.3301522
https://doi.org/10.1186/s13677-023-00479-7
https://doi.org/10.1186/s13677-023-00479-7
https://doi.org/10.1017/CBO9780511800481.020
https://doi.org/10.1109/TCC.2014.2369419
https://doi.org/10.1109/TCC.2014.2369419
https://doi.org/10.1016/j.future.2018.06.034
https://doi.org/10.1257/0002828043052330
https://doi.org/10.1016/j.geb.2011.08.003
https://doi.org/10.1016/j.geb.2011.08.003
https://doi.org/10.1109/TCC.2013.9
https://doi.org/10.1109/TC.2015.2479598
https://doi.org/10.1109/TPDS.2017.2785815
https://doi.org/10.1109/TPDS.2017.2785815
https://doi.org/10.1109/TPDS.2019.2900238
https://doi.org/10.1109/TWC.2019.2947046
https://doi.org/10.1109/TMC.2019.2901474
https://doi.org/10.1109/TMC.2022.3148034
https://doi.org/10.1007/s10586-021-03360-x
https://doi.org/10.1007/s10586-021-03360-x
https://doi.org/10.1007/s10723-021-09563-1
https://doi.org/10.1109/TPDS.2021.3099731
https://doi.org/10.1109/TPDS.2021.3099731
https://doi.org/10.1109/TII.2019.2960127
https://doi.org/10.1109/TII.2019.2960127
https://doi.org/10.1109/TCC.2017.2712142
https://doi.org/10.1109/TCC.2017.2712142
https://doi.org/10.1109/TMC.2020.3021416
https://doi.org/10.1109/TNSM.2021.3085519
https://doi.org/10.1109/TNSM.2021.3085519

Page 21 of 21Zhang et al. Journal of Cloud Computing (2024) 13:11

 31. Tsiourvas A, Bitsakos C, Konstantinou I, Fotakis D, Koziris N (2021) A
mechanism design and learning approach for revenue maximization on
cloud dynamic spot markets. In: 2021 IEEE 14th International Conference
on Cloud Computing (CLOUD). pp 427–432. https:// doi. org/ 10. 1109/
CLOUD 53861. 2021. 00057

 32. Singer Y (2010) Budget feasible mechanisms. In: 2010 IEEE 51st Annual
Symposium on Foundations of Computer Science. pp 765–774. https://
doi. org/ 10. 1109/ FOCS. 2010. 78

 33. Anari N, Goel G, Nikzad A (2014) Mechanism design for crowdsourcing:
An optimal 1-1/e competitive budget-feasible mechanism for large mar-
kets. In: 2014 IEEE 55th Annual Symposium on Foundations of Computer
Science. pp 266–275. https:// doi. org/ 10. 1109/ FOCS. 2014. 36

 34. Zhang J, Zhang Y, Wu H, Li W (2022) An ordered submodularity-based
budget-feasible mechanism for opportunistic mobile crowdsensing task
allocation and pricing. IEEE Trans Mob Comput 1–18. https:// doi. org/ 10.
1109/ TMC. 2022. 32325 13

 35. Chouayakh A, Amigo I, Bechler A, Maille P, Nuaymi L (2021) Multi-block
ascending auctions for effective 5g licensed shared access. In: IEEE Transac-
tions on Mobile Computing, 1–1, https:// doi. org/ 10. 1109/ TMC. 2021. 30639 90

 36. Yi C, Cai J (2018) Ascending-price progressive spectrum auction for
cognitive radio networks with power-constrained multiradio secondary
users. In: IEEE Transactions on Vehicular Technology, vol 67. pp 781–794.
https:// doi. org/ 10. 1109/ TVT. 2017. 27445 60

 37. Yang X, Dong H, Teng X (2017) Ascending-price progressive spectrum
auction for cognitive radio networks with power-constrained multiradio
secondary users. In: Jisuanji Yanjiu yu Fazhan/Computer Research and
Development, vol 54. pp 415–427. https:// doi. org/ 10. 7544/ issn1 000-
1239. 2017. 20160 491

 38. Luong NC, Van TL, Feng S, Du H, Niyato D, Kim DI (2023) Edge computing
for metaverse: Incentive mechanism versus semantic communication.
IEEE Trans Mob Comput 1–17. https:// doi. org/ 10. 1109/ TMC. 2023. 33170 92

 39. Nejad MM, Mashayekhy L, Grosu D (2015) Truthful greedy mechanisms
for dynamic virtual machine provisioning and allocation in clouds. In:
IEEE Transactions on Parallel and Distributed Systems, vol 26. pp 594–603.
https:// doi. org/ 10. 1109/ TPDS. 2014. 23082 24

 40. Alibaba cloud vm price (2023) https:// www. aliyun. com/ price/ produ ct#/
commo dity/ vm. Accessed 20 Dec 2023

 41. Huawei cloud dataset. (2023). https:// github. com/ WangZ HeM/ IoV- RAM-
LRL/ blob/ main/ train ing-1. txt. Accessed 20 Dec 2023

 42. Huawei cloud cost. (2023). https:// www. huawe icloud. com/ produ ct/ ecs/
recom mend. html. Accessed 20 Dec 2023

 43. Tencent cloud cost. (2023). https:// buy. cloud. tence nt. com/ price/ cvm/.
Accessed 20 Dec 2023

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Jixian Zhang received an
M.S. and a Ph.D. degree in com-
puter science from the Univer-
sity of Electronic Science and
Technology of China in 2006
and 2010. Currently, he is an
associate professor at the
School of Computer Science
and Engineering at Yunnan
University. He has published
30+ articles in peer-reviewed
journals and conferences, e.g.,
TMC, FGCS, JOGC, Cluster Com-
puting, and Computing. His
research interests include cloud

computing, edge computing and mechanism design.

Zhemin Wang is a master’s
student from Yunnan University
and is expected to obtain a mas-
ter’s degree in 2024. His main
study and research directions
include resource allocation,
intelligence algorithms,edge
computing,mechanism design.

Athanasios V. Vasilakos is
with CAIR, UiA, and his main
research interests include the
IoT and mobile nets, artificial
intelligence/machine learning,
cybersecurity, and big data ana-
lytics. He has more than 44,000
citations and an H-index of 113.
He has served or is serving as an
editor for many technical jour-
nals, such as IEEE Transactions
on Network and Service Man-
agement, IEEE Transactions on
Cloud Computing, IEEE Transac-

tions on Information Forensics and Security, IEEE Transactions on
Cybernetics, IEEE Transactions on Services Computing, IEEE Transac-
tions on Nanobioscience, IEEE Transactions on Information Technol-
ogy in Biomedicine, ACM Transactions on Autonomous and Adaptive
Systems, and IEEE Journal on Selected Areas in Communications. He
was also General Chair of the European Alliances for Innovation.

Weidong Li received a Ph.D.
from the Department of Mathe-
matics, Yunnan University, in
2010. He is currently a professor
with the School of Mathematics
and Statistics at Yunnan Univer-
sity. He has published 90+ arti-
cles in peer-reviewed journals
and conferences, e.g., TPDS, TMC,
ALGO, JOA, TCS, JOCO, FGCS, and
JOGC. His main research interests
include combinatorial optimiza-
tion, approximation algorithms,
randomized algorithms and
cloud computing.

https://doi.org/10.1109/CLOUD53861.2021.00057
https://doi.org/10.1109/CLOUD53861.2021.00057
https://doi.org/10.1109/FOCS.2010.78
https://doi.org/10.1109/FOCS.2010.78
https://doi.org/10.1109/FOCS.2014.36
https://doi.org/10.1109/TMC.2022.3232513
https://doi.org/10.1109/TMC.2022.3232513
https://doi.org/10.1109/TMC.2021.3063990
https://doi.org/10.1109/TVT.2017.2744560
https://doi.org/10.7544/issn1000-1239.2017.20160491
https://doi.org/10.7544/issn1000-1239.2017.20160491
https://doi.org/10.1109/TMC.2023.3317092
https://doi.org/10.1109/TPDS.2014.2308224
https://www.aliyun.com/price/product#/commodity/vm
https://www.aliyun.com/price/product#/commodity/vm
https://github.com/WangZHeM/IoV-RAM-LRL/blob/main/training-1.txt
https://github.com/WangZHeM/IoV-RAM-LRL/blob/main/training-1.txt
https://www.huaweicloud.com/product/ecs/recommend.html
https://www.huaweicloud.com/product/ecs/recommend.html
https://buy.cloud.tencent.com/price/cvm/

	A resource competition-based truthful mechanism for IoV edge computing resource allocation with a lowest revenue limit
	Abstract
	Introduction
	Motivation
	Main contributions

	Related works
	IoV edge computing resource allocation with the lowest revenue limit problem and mechanism design preliminaries
	IoV edge computing resource allocation mechanism with a lowest revenue limit (IoV-RAM-LRL)
	Analysis of IoV-RAM-LRL
	Properties of IoV-RAM-LRL

	Numerical results
	Experimental settings
	Experimental results
	Impact of the lowest revenue limit B
	Impact of the resource capacity of the server
	Impact of the deployment constraints
	The impact of resource capacity changes on unit prices
	The impact of independent unit price changes
	Truthfulness verification

	Conclusion
	Acknowledgements
	References

