
Zhang et al. Journal of Cloud Computing           (2024) 13:11  
https://doi.org/10.1186/s13677-023-00572-x

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

A resource competition-based truthful 
mechanism for IoV edge computing resource 
allocation with a lowest revenue limit
Jixian Zhang1, Zhemin Wang1, Athanasios V. Vasilakos2 and Weidong Li3* 

Abstract 

Resource allocation in Internet of Vehicles (IoV) edge computing is currently a research hotspot. Existing studies 
focus on social welfare or revenue maximization. However, there is little research on lowest revenue guarantees, 
which is a problem of great concern to resource providers. This paper presents the innovative concept of the low-
est revenue limit, which enables service providers to preset the revenue B and calculate whether the preset revenue 
can be achieved under the current supply and demand of resources through mechanism design. This approach 
is very friendly to service providers and can prevent low revenue and waste of resources. Specifically, we improved 
the ascending price auction mechanism so that it can be used for multi-resource allocation, the unit prices of dif-
ferent resources are calculated according to the intensity of competition among users, and the winning users 
and the payment are determined by eliminating users with low cost performance. Our mechanism is not sensitive 
to resource capacity, works well under deployment constraints in edge computing, and satisfies economic charac-
teristics such as individual rationality and truthfulness. Compared with existing algorithms, our approach is shown 
to enable the service provider to obtain a higher revenue under a lower resource utilization.
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Introduction
The limited computing and storage capabilities of in-
vehicle devices make it difficult to meet the large comput-
ing demands and low latency of Internet of vehicles (IoV) 
services. Therefore, introducing edge computing into the 
IoV is an effective approach to solve the above problems. 
Edge computing servers (ECSs) have powerful comput-
ing and storage capabilities. Typically, ECSs are equipped 
on the roadside unit, and the vehicles communicate with 

the ECSs through the vehicle-to-infrastructure (V2I) pro-
tocol. The V2I protocol can be used to implement many 
IoV services, such as the local information distribution 
[1], in-vehicle information enhancement [2], vehicle 
online recording and diagnosis [3], auto/assisted driv-
ing and emergency failure management [4], and vehicu-
lar sensing networks-aided smart cities [5]. In most IoV 
application scenarios, while the vehicle is driving, various 
sensors on the vehicle collect a large amount of data at 
every moment. Some data can be processed directly on 
the vehicle, such as ultrasonic radar detection data, but 
there are still some data that are not suitable or cannot be 
processed directly on the vehicle, such as video and lidar 
data used to train autonomous driving systems. These 
data require a large amount of computing resources and 
take a long time to train. Therefore, some vehicle tasks 
for IoV services require offloading to nearby edge com-
puting servers.

*Correspondence:
Weidong Li
weidongmath@126.com
1 School of Information Science and Engineering, Yunnan University, 
Kunming 650504, Yunnan, People’s Republic of China
2 Center for AI Research (CAIR), University of Agder (UiA), Grimstad, 
Norway
3 School of Mathematics and Statistics, Yunnan University, 
Kunming 650504, Yunnan, People’s Republic of China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00572-x&domain=pdf


Page 2 of 21Zhang et al. Journal of Cloud Computing           (2024) 13:11 

Motivation
In general, IoV edge computing moves a part of the com-
puting and storage resources from the core network to 
the edge and employs vehicles to provide them for use. 
Compared to cloud computing resource allocation, IoV 
edge computing has two important features. The first is 
deployment constraints. Because the coverage of roadside 
units is limited, vehicles can only connect a limited num-
ber of ECSs. The other feature is that the service require-
ments of IoV edge computing differ substantially in time 
and space. For example, during the morning and evening 
rush hours or traffic congestion on the main roads of a 
city, IoV services require more computing and storage 
resources, while at night or in remote areas with less traf-
fic, less computing and storage resources are required. 
Therefore, we need a more appropriate way to allocate 
and use resources on ECSs. Figure 1 shows a typical IoV 
application scenario with deployment constraints.

An auction is a way to effectively allocate resources 
through market behavior [6]. In a simple auction envi-
ronment, users submit their requirements and bids, and 
the service provider selects the winning users and deter-
mines the final price they should pay. But because users 
are selfish, they may submit untruthful information in the 
hope of gaining more benefits. Therefore, one of the main 
goals of mechanism design is truthfulness (also known 
as incentive compatibility or strategy proofness); that is, 

users can obtain maximum benefits by submitting truth-
ful information, so that users have no incentive to lie. The 
design of the auction mechanism mainly includes the 
allocation algorithm and payment algorithm. However, 
the problem studied in this paper is much more complex. 
For example, it includes different types of resources on 
different edge servers and deployment constraints. This 
brings great challenges for designing corresponding allo-
cation and payment algorithms.

At present, many studies have used the auction mecha-
nism to solve the resource allocation problem in edge 
computing [7–9]. Generally speaking, such problems are 
transformed into social welfare maximization problems 
with characteristics of multi-server, multi-dimensional 
resources and deployment constraints. Furthermore, 
the economic characteristics of truthfulness and indi-
vidual rationality must also be satisfied. Existing auc-
tion mechanism designs include optimal allocation with 
Vickrey–Clarke–Groves (VCG) payment [10], approxi-
mate allocation [11] and monotonic allocation with criti-
cal value payment [12]. In these mechanisms, the social 
welfare and final revenue are not necessarily positively 
correlated. Even in many social welfare maximization 
schemes, the final revenue is very low.

Although there are good research results on the mech-
anism design of revenue maximization, finding the opti-
mal revenue auction mechanism is still a very difficult 

Fig. 1 Typical IOV application scenarios with deployment constraints
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problem. In 1981, Myerson [13] solved the single-item 
optimal revenue auction, but the multi-item and multi-
user optimal revenue auction has not been adequately 
solved in 40 years. Although Duan et  al. [14] used 
machine learning to explore optimal revenue auctions 
for multiple items, the scale of items and users was small 
and the practicality was not strong. Therefore, this arti-
cle considers this matter from another perspective, that 
is, whether we can ensure that the service provider can 
obtain at least the revenue B. In this way, the service pro-
vider also has a certain initiative in the auction and pro-
tects its own interests.

The ascending price auction [15] is a mechanism that 
can obtain a higher revenue. There are many mechanisms 
designed based on an ascending price, such as clinching 
auctions [16]. However, the existing ascending price auc-
tion can only be conducted for a single type of item, and 
it is not suitable for the allocation of multiple resources 
in edge servers with deployment constraints. Therefore, 
the main challenge of this paper is to effectively allocate 
resources in the IoV edge computing environment with 
unbalanced resource requirements and deployment con-
straints so that the resource provider can obtain more 
revenue.

Main contributions
Vehicle driving is a real-time and dynamic process. We 
can divide the vehicle’s driving process into many inde-
pendent time periods for processing, and each time 
period is associated with a static auction process (the 
main research goal of this article). The time period can 
be divided according to the actual situation, and it may 
be at the minute level, but at least it should be ensured 
that within this time period, the user’s deployment con-
straints will not change and the user has enough time to 
transmit the content that needs to be processed. Notably, 
the tasks that need to be offloaded may have real-time 
requirements but cannot be critical; such tasks include 
congestion prediction services and autonomous driv-
ing training, which cannot affect the safe driving of the 
vehicle.

In the context of auctions within a single time 
period, we consider a very interesting question: when 
the users’ requirements and the resource capacity of 
the service provider are known, can a mechanism be 
designed to ensure that the service provider obtains 
at least the revenue B? The most significant difference 
between this problem and those in existing research 
is that the resource providers have a lowest revenue 
limit B. This feature is of great significance for actual 
auctions because compared to the case of social wel-
fare, resource providers are more concerned about how 
profitable the resources they invest in will ultimately 

be. For example, when the current road network and 
time period are determined, the provider has certain 
expectations for the revenue obtained by the provided 
edge computing services and whether the bids of users 
currently using these services are likely to meet this 
expected revenue. Most of the payment algorithms in 
the existing mechanism design rely on the critical value 
theory, and the theory mostly adopts the lowest win-
ning price for achievement, which is one of the reasons 
that leads to low revenue. Based on the above consid-
erations, we propose a new auction mechanism in the 
context of resource allocation in IoV edge computing 
services, which includes the following main features: 

1. This article studies a resource competition-based 
auction mechanism with limited revenue under 
IoV edge computing services; that is, the resource 
provider proposes the lowest revenue limit B. The 
mechanism aims to maximize the total social welfare 
under this premise. To the best of our knowledge, 
this is the first article to study mechanism design 
with revenue limitation under IoV edge computing.

2. The mechanism satisfies the economic features of 
individual rationality and truthfulness. In addition, 
the complexity of the mechanism algorithm is poly-
nomial.

3. In addition to meeting the expected revenue B of 
the resource provider, the algorithm can be used to 
explore the theoretical maximum revenue (peak B). 
This can be simply understood as determining the 
highest revenue when many users buy resources, 
which is of great significance to resource providers. 
We discuss this in our experiments.

Although we use IoV edge computing resource alloca-
tion as the background for discussion, the mechanism 
can easily be migrated to other areas for implementation, 
such as an energy or spectrum auctions.

The remainder of this paper is organized as follows: 
In Related works section, we discuss the existing studies 
that inspired our design. In IoV edge computing resource 
allocation with the lowest revenue limit problem and 
mechanism design preliminaries section, we describe the 
resource allocation problem with a lowest revenue limit 
in IoV edge computing and the mechanism design pre-
liminaries. In IoV edge computing resource allocation 
mechanism with a lowest revenue limit (IoV-RAM-LRL) 
section, we propose a truthful ascending-price mecha-
nism to solve the above problem and prove that this 
mechanism has the economic features of truthfulness 
and individual rationality. In Numerical results section, 
we evaluate the mechanisms through extensive experi-
ments. Finally, in Conclusion section, we summarize 
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our results and present possible directions for future 
research.

Related works
The auction mechanism is an effective resource alloca-
tion method. In the resource allocation of edge comput-
ing or IoV, multiple servers, multi-dimensional resource 
types, time-varying, deployment constraints and other 
characteristics are involved, making the design of the 
auction mechanism more delicate and attracting consid-
erable attention. Generally, mechanism design includes 
optimal mechanism design, approximate mechanism 
design, heuristic mechanism design, double auction, and 
mechanism design with a budget.

Zaman et  al. [17] combined mechanism design the-
ory with cloud computing resource allocation and for 
the first time proposed a heuristic mechanism based 
on monotonic allocation with critical value payment 
to allocate virtual machine resources. Mashayekhy 
et  al. [18] proposed two truthful mechanisms for sin-
gle-dimensional resource task scheduling: dynamic 
programming-based allocation and the PTAS resource 
allocation implemented by maximal-in-range, payment 
algorithms using VCG. Liu et al. [19] designed an opti-
mal and approximate mechanism for virtual machine 
allocation under heterogeneous clouds. The optimal 
mechanism obtains the optimal allocation solution 
by solving the integer programming (IP) problem and 
uses VCG to obtain the final payment. Moreover, in the 
approximate mechanism design, a resource allocation 
algorithm is designed by combining resource density 
and a fitness resources strategy, and the final payment 
price is calculated by dichotomy. Jiao et  al. [20] pro-
posed an auction-based market model for efficient com-
putation of the resource allocation in public blockchain 
networks that used the sub-model optimization method 
to implement resource allocation and proposed the con-
cept of ex-post estimation to obtain the final payment. 
Zhang et  al. [3] considered a time-varying resource 
allocation problem in an online environment, applied a 
waiting period strategy and dominant-resource-based 
strategy to the resource allocation process, and designed 
a payment price algorithm based on the dichotomy. 
Li et  al. [21] proposed an online truthful mechanism 
integrating computation and communication resource 
allocation and formulated a social-welfare-maximi-
zation problem that integrates collaborator selection, 
communication and computation resource allocation, 
transmission and computation time scheduling, and 
pricing policy design. Zhang et  al. [22] proposed an 
online rewards-optimal auction (RoA) to optimize the 
long-term sum of rewards for processing offloaded 
tasks, meanwhile adapting to the highly dynamic energy 

harvesting (EH) process and computation task arrivals. 
Li et al. [23] formulated an incentive mechanism design 
problem by jointly optimizing task offloading decisions 
and allocation of both communications (i.e., power and 
bandwidth) and computation resources. Zhang et  al. 
[24] addressed the problem of time-varying batch vir-
tual machine (VM) allocation and pricing in the cloud 
and applied it in the context of online restart mode in 
[25], proposing a new class of auction for time-varying 
resource allocation. Bahreini et  al. [26] formulated the 
edge resource allocation problem (ERAP) as a mixed-
integer linear program (MILP), proved that the ERAP 
is NP-hard, and proposed a resource allocation mech-
anism that is guaranteed to be within a given distance 
from the optimal solution. He et  al. [27] proposed a 
VCG-based optimal mechanism for computational 
offloading in a real-time time-varying edge comput-
ing environment, and in the approximate mechanism 
design, a heuristic algorithm based on primitive dual 
theory was designed to solve the resource allocation 
and prove the competition ratio. The above mechanism 
designs are mostly concerned with maximizing social 
welfare, and as analyzed in the first part of the paper, 
although social welfare is a very important economic 
indicator, it is not positively related to service provider 
revenue; it may even lead to the problem of insufficient 
revenue, which also needs to be addressed in this paper.

The auction mechanism with maximize revenue has also 
attracted the attention of many researchers. Deng et  al. 
[28] proposed what economic settings would make the 
allocation and revenue maximization possible exactly or 
approximately, especially in cloud computing. Zhu et  al. 
[29] applied deep learning techniques, designing a reve-
nue-optimal auction mechanism for resource allocation 
in wireless virtualization. Li et al. [30] proposed an auction 
market in the IaaS cloud, where multiple users with hetero-
geneous bidding budgets and QoS requirements subscribe 
cloud resources according to their resource demands. The 
resource pricing and demand allocation scheme target-
ing revenue maximization also satisfies essential proper-
ties including budget feasibility, incentive compatibility 
and envy-freeness. Asterios et  al. [31] presented a group 
of efficient allocation and pricing policies that can be used 
by vendors for their spot price mechanisms. They modeled 
the procedure of acquiring virtual machines as a truthful 
knapsack auction and deployed dynamic allocation and 
pricing rules that achieve near-optimal revenue and social 
welfare. Although all the above studies take maximum rev-
enue as the research goal, the problem of maximizing the 
revenue of multiple items and multiple users is still a great 
challenge, and it is difficult to implement in large-scale 
environments. Additionally, the greatest difference is that 
our approach can guarantee a certain revenue B.



Page 5 of 21Zhang et al. Journal of Cloud Computing           (2024) 13:11  

Some researchers have begun to turn to auction mech-
anisms with budget constraints. There are two types of 
auction mechanisms with budget restrictions. One is 
the user’s budget limit, which means that the user can-
not pay more than the budget in the auction; the other is 
mostly used in reverse auctions (such as in mobile crowd-
sourcing, where the operator pays the user), and the total 
amount paid by the operator cannot exceed the budget. In 
terms of the design of reverse auction mechanisms with a 
budget, Yaron et al. [32] studied a novel class of mechanism 
design problems in which the outcomes are constrained 
by the payments. The main result shows that a bounded 
approximation ratio is achievable for the important class of 
submodular functions. Nima et al. [33], on the basis of the 
former, designed a budget-feasible mechanism for large-
scale crowdsourcing markets. Zhang et al. [34] began with 
the assumption of the user coverage probability model and 
transformed the opportunistic mobile crowdsensing value 
maximization problem into an ordered submodularity 
value function model with budget constraints. The notable 
difference between this article and the above studies is that 
the budget limit B considered in this article is the payment 
obtained by the resource provider, not the amount paid out 
or the user budget limit. In the auction mechanism design 
with the user’s budget limit, the clinching auction is an 
excellent mechanism. Ausubel proposed the theory of the 
ascending-bid auction [15] (also called the clinching auc-
tion) in 2004. The clinching auction has been favored by 
many resource providers because of its very good profita-
bility, and it has been used in many scenarios, such as radio 
spectrum auctions [35, 36] and video advertising auctions 
[37]. Dobzinski [16] proposed a multi-unit auction mecha-
nism with budget limits based on Ausubel’s research. The 
above mechanisms can only allocate divisible or indivisible 
homogenous items, which is quite different from the prob-
lem studied in this paper.

The mechanism design of this paper benefits in part 
from the above research. However, it can be seen that most 
research results take social welfare or revenue maximiza-
tion as the goal; there are few studies on the guarantee of 
a minimum revenue for service providers, which is a very 
practical issue. The research of this article addresses the 
above shortcomings and also proposes a new idea for the 
direction of mechanism design.

IoV edge computing resource allocation 
with the lowest revenue limit problem 
and mechanism design preliminaries
Assume that the IoV edge computing service pro-
vider (referred to as provider) has a total of M ECSs, 
denoted by a set M = {1, 2, ...,M} . Each ECS has R 

types of resources (such as CPU, memory, or stor-
age) denoted by a set R = {1, 2, ...,R} , and the resource 
capacity of each ECS is determined by the vector 
cj = (cj1, cj2, ..., cjR) , j ∈ M . Moreover, the provider pro-
poses the lowest revenue limit B, where B is the mini-
mum revenue that the provider expects to obtain in 
this auction.

Assume there are a total of N vehicle users (referred 
to as users) to use ECSs resources, defined by the set N  
= {1, 2, ...,N } . Each user i ∈ N  submits her/his request 
defined as θi = (si, δi, bi) , where si = (si1, si2, ..., siR) 
represents the requirement for each type of resource, 
δi = (δi1, δi2, ...δij ..., δiM) , i ∈ N  is the deployment con-
straints vector of user i, δij represents the connection 
status of user i and ECS j, δij = 1 represents that the 
two can be connected, otherwise they cannot be con-
nected, and � = (δ1, δ2, ..., δN ) is defined similarly. In 
reality, δij will be affected by many factors, such as com-
munication power, bandwidth, noise, and obstacles. In 
our model, δij is simplified to a 0-1 constant, which is 
beneficial for focusing on our problem model. In [8, 38], 
more in-depth considerations about network connec-
tions are given. bi is the user’s bid for her/his resource 
requirements. The solution of the problem can be rep-
resented by a matrix

and a vector p = (p1, p2, ..., pi, ..., pN ) , where xij = 1 indi-
cates that the resource requirement of user i is finally 
allocated by ECS j and pi indicates the final payment paid 
by user i (if the user loses in allocation, the payment is 0). 
Note that any user can be satisfied by at most one ECS. 
Each group of X corresponds to an allocation solution; 
therefore, our goal is to maximize the social welfare V (X) 
of the service provider while satisfying the lowest reve-
nue limit and resource constraints.

X =





x11 ... x1M
... xij ...

xN1 ... xNM





(1)Maximize V (X) =
∑

j∈M

∑

i∈N
biδijxij

(1a)Subject to :
∑

i∈N
sirδijxij ≤ cjr , ∀r ∈ R, ∀j ∈ M

(1b)
∑

j∈M
δijxij ≤ 1, ∀i ∈ N

(1c)
j∈M

δijxijpi ≤ bi, ∀i ∈ N
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 (1a) indicates that the number of resources allocated on 
any ECS does not exceed the resource capacity of this 
ECS, and (1b) indicates that each user is allocated at most 
once. In our problem, it is reasonable to assume that the 
user can connect to multiple ECSs, but in the end, she/
he can only deploy her/his requirements to one ECS. (1c) 
indicates that the user’s payment is less than or equal to 
her/his bid, ensuring individual rationality; (1d) indicates 
that the sum of the users’ payments must be greater than 
the provider’s lowest revenue limit B; and (1e) indicates 
that this is an integer programming problem. The whole 
model not only includes the constraints of resource 
allocation (1a) (1b), but also the constraints of payment 
or revenue (1c) (1d), which is obviously different from 
the traditional social welfare maximization mechanism 
design, and is one of the innovations of this paper.

Equation (1) is an ideal problem model. However, 
in practice, users are selfish and may submit untruth-
ful request for greater benefits; the value of mecha-
nism design lies in addressing this issue. Specifically, to 
encourage users to participate in the auction process, 
the mechanism design must satisfy individual rational-
ity; to prevent users from submitting untruthful requests, 
the mechanism design must satisfy truthfulness. Addi-
tionally, to quickly obtain the allocation and payment 
solution, the mechanism must satisfy computational 
efficiency.

We use θi = (si, δi, bi) to denote the true request of 
user i and θ ′i = (si, δi, b

′
i) to denote the declared request 

of user i. Additionally, we assume that the user may lie 
about her/his bid so that b′i > bi or b′i < bi . We do not 
discuss the situation of users untruthfully reporting 
resource requirements si and deployment constraints 
δi because in IoV edge computing services, where data 
must be offloaded to ECSs or cloud servers for execu-
tion, users cannot fake the resource requirements 
because the data to be processed are generated by sen-
sors and the resources required to process the data are 
set in advance. Furthermore, the deployment constraints 
are obtained from the vehicle position, which is provided 
by GPS and is not easy to fake. We use θ ′ = {θ ′1, ..., θ ′N } 
and θ

′−i = {θ ′1, ..., θ ′i−1
, θ ′i+1

, ..., θ ′N } to denote the 
declared requests of users submitted to the system and 
θ = {θ ′−i, θi}.

User utility is an important measure for users to deter-
mine the value obtained in an auction, and the user 
always wants to maximize her/his utility in an auction. 

(1d)
∑

i∈N

∑

j∈M
δijxijpi ≥ B, ∀i ∈ N , ∀j ∈ M

(1e)xij ∈ {0, 1},∀i ∈ N

User utility is typically expressed in the form of a func-
tion. In this article, we assume that user i has the follow-
ing utility function:

p′i is the final payment price of user i when she/he sub-
mits the request θ ′i = (si, δi, b

′
i) . If the user loses the auc-

tion, the utility is 0. Based on the above description, an 
individually rational and truthful auction mechanism 
with a revenue limit can be defined.

Definition 1 Individual rationality. A mechanism 
that ensures individual rationality should satisfy the 
condition that when the user submits a truthful request 
θi = (si, δi, bi) , her/his utility will be greater than or equal 
to zero; i.e., ui(θ ≥ 0) . In other words, as long as the user 
participates in the auction and reports her/his truthful 
request, she/he will not incur a loss.

Definition 2 Truthfulness. A truthful mechanism 
implies that for every user i, given a truthful declaration 
request θi and declaration requests θ ′−i of the other users, 
we can obtain ui(θ ′−i, θi) ≥ ui(θ

′−i, θ
′
i ) , which is equiva-

lent to ui(θ) ≥ ui(θ
′

i) . Therefore, submitting a truthful 
request is the dominant strategy for each user.

Definition 3 Revenue limit. If an auction mechanism 
has a revenue limit, the sum of the payments of all users 
must exceed the lowest revenue limit B proposed by the 
resource provider; that is, 

∑

i∈N
xipi ≥ B.

Definition 4 Computational efficiency. Because the 
resource allocation problem is NP-hard, in practice, we 
need algorithms with polynomial-time complexity to 
ensure the computational efficiency of the mechanism.

The optimal mechanism design obtains the optimal 
allocation solution by solving the integer programming 
problem in Eq. (1), except (1c) and (1d). There are many 
ways to solve this integer programming problem, such 
as dynamic programming. Then, VCG is used to deter-
mine the payment price. The VCG payment algorithm 
guarantees the truthfulness of the mechanism under 
the premise of obtaining the optimal allocation solution 
[10]. Assuming function OPT(.) is the optimal allocation 
algorithm, the VCG payment algorithm can be defined as 
follows:

(2)

ui(θ
′) =

{

bi − p′i, if user i wins in the allocation,

0, otherwise

(3)p′i =
∑

j∈OPT (θ ′−i)

b′j −
∑

j∈OPT (θ ′),j �=i

b′j
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∑

j∈OPT (θ ′−i)

b′j is the maximum social welfare when user i 

does not participate, and 
∑

j∈OPT (θ ′),j �=i

b′j is the maximum 

social welfare of all users except user i. p′i is user i’s final 
payment price. However, constraint (1d) is not consid-
ered in the optimal mechanism design because VCG can-
not predict the sum of the payments in advance. In the 
experiment, we use the optimal mechanism as a compar-
ison to our approach. Table 1 lists the notation frequently 
used in this paper.

IoV edge computing resource allocation 
mechanism with a lowest revenue limit 
(IoV‑RAM‑LRL)
Considering that the lowest revenue limit entails con-
siderable challenges in mechanism design, we must first 
analyze the reasons for the low revenue of the existing 
mechanism. Generally, an auction mechanism can be 
divided into two parts: allocation decisions and payment 
calculations (also referred to as allocation and payment). 
Certain features of these two components are the main 
reasons for low revenue. The first reason is the resource 
allocation theory used in the auction. Resource alloca-
tion can be seen as equivalent to the knapsack problem, 
in which it is necessary to allocate as many resources as 
possible and then calculate the payment pricing on this 
basis. However, in practice, putting all resources on the 
market may not yield higher revenue because it may lead 

to oversupply and low transaction prices (sometimes, 
controlling the amount of resources put on the mar-
ket may bring higher revenue, such as in the diamond 
market). The second reason comes from the payment 
method, specifically from the truthfulness feature of the 
auction mechanism. In an auction, the seller and bid-
ders (also known as the resource provider and users) are 
involved in a game, so users may submit untruthful bid-
ding information to obtain greater profits. To ensure that 
users reveal their truthful request, the auction mecha-
nism must satisfy the truthfulness feature, which means 
that users obtain the greatest utility when submitting 
truthful requests. Encouraging users to tell the truth is 
very important in the mechanism design. A necessary 
condition for truthfulness is that the user cannot reduce 
the final payment price by submitting an untruthful 
resource requirement or bid. Therefore, the user has no 
incentive to submit untruthful information. To achieve 
this goal, in the payment stage, existing auction mecha-
nisms adopt the VCG mechanism [10], dichotomy [11] 
or the last loser bid [39] to determine the final payment 
price of the user. In general, these auction mechanisms 
always use the lowest winning price as the user’s final 
payment price, which leads to low final revenue for the 
resource provider.

In summary, the principles of allocating as many 
resources as possible and using the lowest winning price 
are the main causes of low revenue. Therefore, we must 
address these two points without destroying the features 
of truthfulness and individual rationality.

We adopt the idea of an ascending-price auction to 
design the mechanism. The basic principle is to first cal-
culate the bids of all users. If the total bids are less than 
B, then even if all users are selected, the lowest revenue 
limit B cannot be met, and the algorithm exits without a 
feasible solution.

Otherwise, according to the idea of ascending-price, the 
global price gp of the system is continuously increased, the 
users with lower bids are eliminated, and the allocation and 
payment price calculation is conducted among the remain-
ing active users. Specifically, current active users are tra-
versed in non-increasing order according to their resource 
requirements, and for each specific user, allocation is 
attempted in non-decreasing order of the number of active 
users on the ECSs that she/he can connect to. If user i can 
be successfully deployed on ECS j, the resources of ECS j 
are allocated to user i according to the current global price 
gp, user i is added to the winner set W , the final payment 
of the user is calculated, and the total payment is updated 
at the same time. When all users have been traversed and 
the total payment is greater than B, the auction process is 
stopped; otherwise, the global price gp is increased and the 
algorithm enters the next round of execution. If the current 

Table 1 Frequently used notation

Notation Implication

M = {1, 2, ...,M} The set of edge servers

N = {1, 2, ...,N} The set of users

B Lowest revenue limit

R Number of resource types

cj = (cj1, cj2, ..., cjR) Resource capacity of the j-th edge server

θ i = (si , δi , bi) User i’s request

si = (si1, si2, ..., siR) Resource requirements of user i

δi = (δi1, δi2, ..., δij , ..., δiM) Deployment constraints between user i 
and ECSs

� = (δ1, δ2, ..., δN) All users’ deployment constraints

A The set of active users

Aj The set of active users on ECS j

xij Decision variables of user i and ECS j

W The set of winners

�r The price increase parameter of the r-th 
resource

ε Fixed step of price increase

gp = (gp1, gp2, ..., gpR) Global unit price of different types of resources

p = (p1, p2, ..., pi , ..., pN) Payment price of each user

pay Total revenue
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global price gp is continuously increased until all users are 
inactive and the condition that the total payment is greater 
than B still cannot be satisfied, the algorithm exits and 
there is no feasible solution. This design method can clearly 
satisfy all the constraints of formula (1).

In the allocation stage, in the process of increasing the 
global price gp, users with lower bids continue to be elim-
inated, leaving more valuable users, so the mechanism is 
not sensitive to resource capacity. Moreover, it is not nec-
essary to allocate all resources, which is an improvement 
on the principles of allocating as many resources as pos-
sible. In the pricing stage, the price paid by each user is 
calculated according to the global price gp, and with the 
iteration of the algorithm, the global price gp increases, 
as does the final payment of the winning user, which is an 
improvement on the lowest winning price.

A core problem in the algorithm is how to determine 
the global price gp. In the existing ascending-price auc-
tion mechanism [16], since only one-dimensional 
resources are involved, the global price gp can represent 
the unit price of resources. The scarcer the resource is, 
the higher the global price gp. However, in multi-dimen-
sional resource allocation, different resources have dif-
ferent capacities, resulting in differences in scarcity. How 
to use the global price gp to price resources in different 
dimensions is a challenge.

Let us consider a simple example, assuming that the 
CPU, memory, and storage resource capacities of one 
ECS are (10, 10, 1000), user 1’s request is ((5, 5, 10), 200), 
and user 2’s request is ((6,  6,  200),  230), that is, user 1 
needs 5 units of CPU, 5 units of memory, 10 units of stor-
age resources, and the bid is 200, similar for user 2. For 
resource providers, the goal is to determine which user is 
more cost-effective. When using the optimal mechanism, 
user 2 will be selected because of the higher bid. When 
using the resource density defined in [11], which is 
defined as di = bi

√

∑

r∈R

sir
cjr

 , the resource density of user 1 is 

200/
√
1/2+ 1/2+ 1/100 = 199 , and the resource den-

sity of user 2 is 230/
√
3/5+ 3/5+ 1/5 = 194 . Thus, the 

algorithm in [11] is more inclined to select user 1. Differ-
ent mechanisms select different users. Notably, in this 
example, the resources of the ECS cannot simultaneously 
satisfy the requests of the two users. However, the two 
users form a competitive relationship with respect to 
only the CPU and memory resources, while the storage 
resources are sufficient to meet the requirements of the 
two users, which means that the usage cost of storage 
resources should be very low, or even zero.

From the users’ perspective, it is reasonable that the 
proportion of the cost of purchasing storage resources 
in their bid is very low. From the provider’s perspective, 
the capacity of various resources differs. The cost of using 

abundant resources is not high, while the scarce resources 
are the main object of competition. This can also be seen 
in the pricing of virtual machines in the cloud comput-
ing market. For example, on the Alibaba Cloud Platform 
[40], we ordered a virtual machine with 1 core, 2 GB of 
memory, and 30 GB of storage. The monthly rent cost is 
30. If the memory resources are increased from 2 GB to 
4 GB, the monthly rent cost is 38, an increase of 8 yuan. 
However, if only the storage is increased from 30 GB to 
60 GB, the monthly rent cost is 32, an increase of only 
2. Therefore, for multi-dimensional resources, each type 
of resource unit price is different, which is reasonable. 
In the mechanism design of this paper, we use the vec-
tor gp = (gp1, gp2, ..., gpR) to represent the unit price of 
each type of resource. In each iteration of the algorithm, 
the increase in the unit price of each type of resource is 
defined by �rε ( ε is a small constant), and the design of 
the price increase parameter �r must satisfy the follow-
ing characteristics: when a certain resource is scarcer, 
the increase in the unit price of that type of resource is 
greater; by contrast, when the resource is more abundant, 
the increase in the unit price of that resource is smaller; 
when the resource is sufficient to satisfy all users, the 
increase is fixed at a constant. Therefore, we define the 
price increase parameter �r of resource r as:

where 
∑

i∈A
sir represents the requirements of all active 

users for the rth resources currently, 
∑

j∈M
cjr represents 

the amount of the rth resources in all ECSs. When 
∑

i∈A
sir >

∑

j∈M
cjr , �r > 1 and 

∑

i∈A
sir ≤

∑

j∈M
cjr , �r = 1 . The 

introduction of the concept of an independent increase 
in the multi-dimensional resource unit price reflects the 
scarcity of different resources and is more in line with 
market rules. We use the following formulas to define 
how the unit price increases for different types of 
resources in gp.

If the resources provided by ECSs can satisfy all the 
resource requirements of active users currently but the 
lowest revenue limit B is still not reached, the unit price 
of all resources will increase by a fixed step ( ε ) and fea-
sible solutions will continue to be explored.

Definition 5 Active users. It refers to the set of users 
who can still satisfy bi ≥

∑

r∈R
gprsir when the current 

(4)
�r = e

max{

∑

i∈A
sir−

∑

j∈M
cjr

∑

j∈M
cjr

,0}

(5)
gpr ← gpr + �rε = gpr + (e

max{

∑

i∈A
sir−

∑

j∈M
cjr

∑

j∈M
cjr

,0}

)ε
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price is gp = (gp1, gp2, ..., gpR) . We use the set 
A ← {i | bi ≥

∑

r∈R
gprsir , i ∈ N } to represent active users, 

where the set Aj ← {i |δij = 1, i ∈ A, j ∈ M} is used to 
denote active users on ECS j.

Definition 6 The norm of user resource requirements. 
The norm of user i’s resource requirements is defined as:

(6)

|si| =
√

√

√

√

(
si1

∑

j∈M
cj1

)2 + (
si2

∑

j∈M
cj2

)2 + ...+ (
siR

∑

j∈M
cjR

)2

This value can be used to evaluate the size of the resource 
requirements of the users. In Algorithm  1, we use this 
value as the basis for sorting.

In our design, the service provider does not preset the 
initial price of each resource. We can assume that the ini-
tial price of gp is 0 or a very low cost. The algorithm deter-
mines the price of each type of resource based on the users’ 
requirements and the resource capacity. Through multiple 
rounds of iterations, we can find a price gp that is suitable 
for the current scenario, as well as an allocation and pay-
ment solution. This is also the most valuable design of this 
article.

Algorithm 1 IoV-RAM-LRL
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Analysis of IoV‑RAM‑LRL
At the beginning of the algorithm, we initialize key var-
iables, the most critical of which is to set the unit price 
of various resources to 0 ( gp ← 0R ), and ensures that 
all users are active(A ← N  ). Lines 2-4 of the algorithm 
calculate whether the bids of all users meet the lowest 
revenue limit B. If not, the algorithm exits and there is 
no feasible solution. Lines 6-7 calculate the current unit 
price of each type of resource based on the active users 
and resource capacity. Lines 8-15 obtain all current 
active users and add them to the active users set A and 
calculate the active user set Aj for each ECS j accord-
ing to the deployment constraints. Lines 17-28 allocate 
the resources in non-increasing order according to the 
norm of the current active users’ resource require-
ments. Specifically, for each active user i ∈ A , it is allo-
cated according to the non-descending order of the |Aj| 
of ECSs in set { j|j ∈ M,δij = 1 } to which she/he can be 
deployed. That is to say, among all the ECSs that user 
i can be deployed to, she/he is preferentially deployed 
to the ECS with a smaller number of active users, and 
this strategy can allow more users to be deployed suc-
cessfully. Moreover, because user i has been deployed 
to ECS j, user i must be removed from the active user 
set of other ECSs (line 22-line 24). When all active 
users are traversed, calculate whether the payment of 
the winning users exceeds the lowest revenue limit B. 
If it does, the algorithm exits and outputs the winning 
user set W , payment solution P , and the total payment 
price. Otherwise, the algorithm returns to line 5 to con-
tinue increasing the unit price of each type of resource 
according to formula (5) and then enters the next round 
of execution. If the unit price increases to the point 
where there are no active users in the system, then the 
lowest revenue limit B cannot be reached(A = φ ), the 
algorithm exits, and there is no feasible solution. It is 
worth noting that it appears that our algorithm (line 
17) does not consider the use of bids as a basis for sort-
ing, but in fact, bids still affect the allocation stage. In 

each round of calculation, users whose bids cannot 
meet the current unit price will be removed, which 
means that the remaining active users are more cost-
effective. However, we use the norm of user resource 
requirements to sort among active users, which means 
that for active users, it is impossible to obtain greater 
utility by manipulating bids. This ingenious design 
achieves two goals at the same time: retain cost-effec-
tive users while making the final payment of the win-
ning user independent of their bid. The algorithm will 
run through multiple rounds to verify whether there 
is a feasible solution (line 29). Because IoV-RAM-LRL 
is an ascending-price auction, the algorithm will exit 
when a feasible solution is obtained for the first time. 
Notably, if algorithm 1 does not output a feasible solu-
tion, it means that the current allocation fails and users 
cannot obtain the corresponding services. This may be 
caused by two situations. One is that the service pro-
vider sets the expected revenue B too high. The other 
is that the users’ bids are very low and cannot reach 
the preset B value. No matter which situation holds, 
this is a possibility of market behavior that cannot be 
avoided in all types of auctions. Therefore, in the next 
round of auctions, both the service provider and users 
should fully reconsider this issue. We believe that after 
a period of running-in, both parties can find a balance.

A simple example can be used to illustrate this process 
(Fig. 2).

In this example, we consider part of a road, and 
near the road, there are 2 ECSs (ECS 1 and ECS 2); 
each of them has two types of resources (CPU and 
memory), and the resource capacities are (5,  50). 
There are 3 vehicle users (referred to as users); user 
1’s resource requirement is (4,  1), and the bid is 5. 
User 1 can only be deployed in ECS1, and the explana-
tions for other user requests are similar. When using 
the optimal allocation with VCG payment, the opti-
mal allocation is user 2 deployed on ECS1 and user 
3 deployed on ECS2, and the sum of social welfare is 

Fig. 2 ECS resource capacity and user requests in the example
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35. When using VCG to calculate the payment, the 
payment of user 2 is (5+ 20)− (35− 15) = 5 , user 3 
pays (5+ 15)− (35− 20) = 5 , and the total revenue is 
10. When using the algorithm G-PMRM in the litera-
ture [11] and executing according to the order of ECS 
numbers, user 2 and user 3 still win. G-PMRM uses a 
dichotomy to calculate the payment. First, users 1 and 2 
compete on ECS1, and in the end, user 2 wins and pays 
5.06. Then, users 2 and 3 compete on ECS2. Because 
ECS1 is traversed first, user 2 has been allocated suc-
cessfully on ECS1. Therefore, on the premise that user 
2 wins, user 3 can be allocated successfully on ECS2 no 
matter how much he/she bids; therefore, user 3 can be 
successfully allocated on ECS2, and the final payment 
is 0. The total revenue of the auction is 5.06. Although 
the optimal mechanism or G-PMRM can obtain higher 
social welfare, the final revenue is very low. When using 
our approach, where B is set to 25, ε = 0.5 . Table  2 
shows the results.

In the first round, because the CPU competition is 
more intense, the CPU unit price increase is 0.61, and 
the memory unit price increase is 0.5. The final alloca-
tion solution is to deploy user 2 to ECS1 and to deploy 
user 3 to ECS2. The payment price is 3.44 and 4.44, 
respectively, and the total revenue is 3.44 + 4.44 = 7.88 , 
which is less than B. Therefore, the algorithm enters 
the second round. After the second round of unit price 
increase, user 1 becomes inactive because of the low 
bid; the allocation solution is the same as the previ-
ous round. The total revenue of the second round is 
6.88+ 8.88 = 15.76 , which is still less than B. In the 
third round, because user 1 is no longer active, the com-
petition for CPU resources is reduced, and the number 
of resources provided by the system can already satisfy 
the existing active users (user 2 and user 3). Therefore, 
the unit price of the two resources is increased by the 
same step size ( ε ) of 0.5. The allocation solution is the 
same as that in round 2, and the total revenue of the 
third round is 9.89+ 12.89 = 22.78 , which is still less 
than B. In the fourth round, the unit prices of the two 
resources continue to increase, the allocation solution 
is the same as that in the previous round, and the total 
revenue is 12.89+ 16.89 = 29.78 , which is greater than 

B; therefore, the algorithm ends. This example shows 
that the unit prices of the two resources have different 
increasing rates due to different capacities. The com-
petition for CPU resources is more intense, and the 
final unit price is higher, which is consistent with our 
analysis. Notably, the unit price difference between the 
two resources in the example is not large. The reason 
for this result is to make the instance converge as soon 
as possible. We use a larger ε , and the second reason 
is because the number of users is small. In the experi-
ments section, we will use extended experiments to 
illustrate significant differences between resource unit 
prices. In terms of truthfulness, if user 2 changes her/
his bid to 13, user 2 can still win, and the user utility is 
unchanged; thus, the mechanism is truthful, which we 
will prove later.

Properties of IoV‑RAM‑LRL
Notably, due to deployment constraints, some users can 
be deployed to a small number of ECSs. When resources 
on these ECSs are exhausted, although these users are 
still active, they may face situations where they cannot be 
deployed. This is a common phenomenon in edge com-
puting services. For example, many vehicles suddenly 
appear around a certain ECS to submit their request, 
but the ECS cannot meet all the resource requirements. 
Active users who are not allocated resources at this time 
are called mechanism victims.

Definition 7 Mechanism Victim: A user that satisfies 
bi ≥

∑

r∈R
gprsir in Algorithm  1 but is not allocated 

resources due to her/his deployment constraints.

The emergence of mechanism victims is not caused by 
algorithms, but by the deployment constraints of the IoV. 
Deployment constraints enable users to connect to differ-
ent ECSs. Because our resource unit price is global, for 
some ECSs with a large number of connected users, their 
resources have been allocated completely, but there are 
still active users. The way to improve this situation is to 
add ECSs in the user-dense area to resolve the problem 
of insufficient resources. In traditional cloud computing 

Table 2 Results of running the example using our algorithm

Round �ε Unit price Users state Active:1 
Inactive:0

Allocation solution Payment result

1 (0.61,0.5) (0.61,0.5) (1,1,1) x21, x32 3.44,4.44 < B

2 (0.61,0.5) (1.22,1.0) (0,1,1) x21, x32 6.88,8.88 < B

3 (0.5,0.5) (1.72,1.5) (0,1,1) x21, x32 9.89,12.89 < B

4 (0.5,0.5) (2.22,2.0) (0,1,1) x21, x32 12.89,16.89 29.78 > B
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multi-server allocation, there are no deployment con-
straints, and each user may be allocated to any server, 
which is also an important difference between edge 
computing and cloud computing multi-server resource 
allocation.

Lemma 1 Mechanism Victim’s bid does not affect 
the current round’s allocation result.

Mechanism victims refer to active users who satisfy 
bi ≥

∑

r∈R
gprsir in the auction but are not allocated 

resources. According to Algorithm 1, the algorithm allo-
cates resources to active users under the premise of the 
current unit price gp . If the active user i is still not suc-
cessfully allocated after traversing all the ECSs, then at 
this time on any ECS, the allocation cannot be successful 
because the allocation rule is to allocate according to the 
non-increasing order of the norm of active users’ 
resources requirements, which is not related to the users’ 
bids. Therefore, the mechanism victim still cannot be 
allocated successfully after changing the bid, which will 
not affect the result of this round of the allocation 
solution.

Theorem 1 Individual rationality of IoV-RAM-LRL.

Proof
Winning users in Algorithm  1 must satisfy 
pi =

∑

r∈R
gprsir ≤ bi ; therefore, ui(θ) = bi − pi ≥ 0.

Theorem 2 IoV-RAM-LRL is truthful.

We assume that it is impossible for users to declare 
untruthful resource requirements and deployment con-
straints, the reasons have been analyzed in IoV edge 
computing resource allocation with the lowest revenue 
limit problem and mechanism design preliminaries sec-
tion, but users can change their bids. 

1. Suppose a user submits an untruthful bid b′i < bi

(a) User i wins when the bid is bi and still wins 
when the bid is b′i . Suppose that user i submits 
a truthful bid bi and wins when the final unit 
price is gp = {gp1, gp2, ..., gpR} . The user still 
wins when submitting the bid b′i and when the 
final unit price is gp′ = {gp′1, gp′2, ..., gp′R} . If 
∑

r∈R
gp′r sir <

∑

r∈R
gprsir , then when user i’s bid is 

bi , she/he can also win when the unit price is 
gp′ , which is inconsistent with the facts. It can 
be seen that gp′ = gp , and the utility of user i is 

u(θ ′) = bi - 
∑

r∈R
gp′r sir = bi - 

∑

r∈R
gprsir = u(θ) , 

which is unchanged.
(b) User i wins when the bid is bi and loses when 

the bid is b′i . Because the user decreases the bid, 
allocation fails. According to Algorithm  1, the 
user utility is 0, and the utility of user i is u(θ ′) 
= 0 ≤ bi −

∑

r∈R
gprsir = u(θ) ; thus, the user 

utility may decrease.
(c) User i loses when the bid is bi and loses when 

the bid is b′i . According to Algorithm 1, the user 
loses allocation under the bid bi ; after decreas-
ing the bid, the user still loses. In this case, 
the user utility is 0, so the utility of user i is 
u(θ ′) = 0 = u(θ) , which is the same as before.

(d) User i loses when the bid is bi and wins when the 
bid is b′i . According to Algorithm 1, the user loses 
under bid bi for two reasons. First, user i is not an 
active user under the current global unit price 
gp = {gp1, gp2, ..., gpR} ; that is, bi <

∑

r∈R
gprsir . 

After decreasing the bid, we have 
b′i < bi <

∑

r∈R
gprsir . Assuming that there is a 

unit price gp′ = {gp′1, gp′2, ..., gp′R} that can make 
the user submit the bid b′i to be successfully allo-
cated, then 

∑

r∈R
gp′r sir ≤ b′i < bi <

∑

r∈R
gprsir 

must be satisfied. According to Algorithm  1, 
when the user submits the bid bi , the user can 
also be successfully allocated when the global 
unit price is gp′ = {gp′1, gp′2, ..., gp′R} , which is 
inconsistent with the facts. Therefore, this situa-
tion does not exist. The second reason is that 
user i is a mechanism victim in the auction. 
According to Lemma 1, if user i is a mechanism 
victim, her/his bid will not affect the allocation 
result. She/he still cannot be successfully allo-
cated, so this situation cannot exist.

2. Suppose a user submits an untruthful bid b′i > bi . 

(a) User i wins when the bid is bi and still wins 
when the bid is b′i . The proof is the same as that 
of 1.(a)

(b) User i wins when the bid is bi and loses when 
the bid is b′i . According to Algorithm 1, the user 
wins allocation under bid bi because 
bi ≥

∑

r∈R
gprsir , and the user is not a mecha-

nism victim. After increasing the bid, 
b′i > bi ≥

∑

r∈R
gprsir , and the allocation will still 

be successful; thus, this situation does not exist.
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(c) User i loses when the bid is bi and loses when 
the bid is b′i . The proof is the same as that of 
1.(c).

(d) User i loses when the bid is bi and wins when 
the bid is b′i . According to Algorithm 1, the user 
loses allocation under bid bi ; therefore, the util-
ity is 0. There are two reasons for this result. 
First, user i is not an active user at the final 
global unit price gp = {gp1, gp2, ..., gpR} ; that is, 
bi <

∑

r∈R
gprsir , and the allocation is successful 

after increasing the bid to b′i . Suppose the final 
unit price under bid b′i is gp′ = {gp′1, gp′2, ..., gp′R} . 
If the user is successfully allocated when the bid 
is b′i and loses when the bid is bi , then 
b′i >

∑

r∈R
gp′r sir > bi must be satisfied. At this 

time, the utility of user i is ui(θ
′) = 

bi −
∑

r∈R
gp′r sir si ≤ 0 = ui(θ) , and the utility 

may decrease. Second, user i is a mechanism 
victim in the auction. According to Lemma 1, if 
user i is a mechanism victim, her/his bid will 
not affect the allocation result. She/he still can-
not be successfully allocated, so this situation 
cannot exist; therefore, u(θ ′) = 0 = u(θ).

In summary, users submitting an untruthful bid b′i �= bi 
cannot improve their utility, so the mechanism is 
truthful.

Theorem 3 The time complexity of IoV-RAM-LRL is 
polynomial.

The time complexity of Algorithm 1 is O(B
ε
NM(R+M2)) . 

In Algorithm  1, lines 5-34 are executed at most B
ε
 times, 

and each execution has an O(NMR) loop. However, after 
successfully allocating resources to a user, the ECSs must 
be sorted again because the number of active users has 
changed. Therefore, the complexity is O(B

ε
NM(R+M2)).

Theorem 4 The social welfare of IoV-RAM-LRL has 
an approximate ratio of max(bi)N

B  . Assuming W is the 
solution of Algorithm 1 and that W∗ is the optimal social 
welfare solution of the problem, it can be seen that 
B ≤

∑

i∈W
bi ≤

∑

i∈W∗
bi ; we can obtain 

∑

i∈W∗
bi

∑

i∈W
bi

≤

∑

i∈W∗
bi

B ≤ bmaxN
B  , where bmax = max(bi),∀i ∈ N  

and N is the number of users. Therefore, the social welfare 
of IoV-RAM-LRL has an approximate ratio of max(bi)N

B .

In theory, we cannot obtain a better approximation 
than this result. Consider an example in which there 
are 100 users, the resource requirement of all users is 

1, the bid is also 1 (so bmax = 1 ), the lowest revenue 
limit B is 100, and the system resource capacity is 100. 
In this case, the social welfare of the optimal solution 
and the social welfare of IoV-RAM-LRL are both 100, 
and the approximate ratio is bmaxN

B = 1·100
100

= 1.
Notably, in existing studies, the social welfare of the 

allocation solution can easily reach an approximate 
ratio of 2 or even 1+ ε compared with the optimal 
solution. However, these algorithms are designed with-
out considering the constraints of the lowest revenue 
limit. Although the algorithm proposed in this paper 
has only a parameter-related approximation ratio, in 
most cases, it works very well.

Numerical results
Experimental settings
We adopted the data set of the 2021 Huawei Cloud Soft-
ware Elite Challenge [41]. The dataset includes various 
types of server (including CPU, memory, hardware cost, 
energy consumption) of the Huawei Cloud Platform, 
as well as user resource request data (CPU, memory, 
dynamic request sequence, etc.). On this basis, we have 
made some modifications to facilitate the experiment of 
the paper. The rules are as follows. 

1. From the dataset, we select 100 samples of resource 
requirements with CPU requirements that do not 
exceed 25 (an average of 10.3) and memory require-
ments that do not exceed 35 (an average of 17.85) and 
add randomly generated storage resource require-
ments, which range from 40 to 101 (an average of 
68.46) as the resource requirements of the users in 
OPT-VCG, G-PMRM and IoV-RAM-LRL.

2. In terms of bidding, we first calculate the cost of 
each user’s resource requirements according to the 
resource pricing published in Huawei Cloud [42] and 
Tencent Cloud [43] and multiply this cost by a ran-
dom number between 0.2 and 5. (Half of the users 
satisfy a uniform distribution within 0.2-1, and the 
other half satisfy a uniform distribution within 1-5), 
which means that the user’s bid is between 0.2 times 
and 5 times the cost.

3. We determine the resource capacity of the server 
according to the total requirements of all users (100). 
We define the server resource capacity parameter 
C as 1.0, which can just meet the resource require-
ments of all users. Specifically, in IoV-RAM-LRL, 
the CPU, memory, and storage requirements are 
960, 1680, and 10240, respectively. Similarly, a server 
resource capacity parameter C of 0.5 yields 480, 840 
and 10240, respectively. This is because in reality, 
the storage resources are relatively sufficient, so the 
quantity of storage resources does not change.
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4. We normalize the resource requirements of the users 
in IoV-RAM-LRL, and set ε = 0.1 as the step size in 
increasing the unit price gp.

5. All algorithms use the same data, and to eliminate 
the influence of the randomness of the data, we test 
each indicator in the experiment 50 times; the aver-
age value is shown in the figure.

6. We use the Python language to implement IoV-
RAM-LRL. Specifically, we improve IoV-RAM-LRL 
to implement IoV-RAM-LRL (Peak B). The principle 
is to continuously improve B until the algorithm has 
no solution. At this time, B is Peak B, which is also 
the highest revenue that can be obtained in the cur-
rent auction. At the same time, DOCplex is called 
through Python language to implement OPT-VCG. 
Another comparison algorithm, G-PMRM [11], is 
also implemented in Python, but G-PMRM cannot 
meet the deployment constraints, and we improve it 
by assigning server numbers.

7. The hardware configuration of the experimental 
platform is as follows: the processor is an Intel(R) 
Core(TM) i5-7300HQ CPU with 16 GB memory and 
a 256 GB SSD.

8. We uploaded the data set and code to https:// github. 
com/ WangZ HeM/ IoV- RAM- LRL/ tree/ main.

Experimental results
Impact of the lowest revenue limit B
This experiment finds the maximum theoretical revenue 
of IoV-RAM-LRL by changing the lowest revenue limit 
B and compares the results with those of the two classi-
cal auction mechanisms, OPT-VCG and G-PMRM. In 
this experiment, the total number of users N is fixed at 
100, the number of servers M is fixed at 10, the number 
of resources R is fixed at 3, the server resource capac-
ity parameter C is fixed at 0.75, and the deployment 
constraint (average number of users connecting to the 
server) δ = 2.

Figure  3a shows the difference in revenue of different 
algorithms, which is the most important indicator in this 
paper. The revenue is the sum of the payments for all 
winning users. When B is 30000, the total revenue of IoV-
RAM-LRL is lower than that of the other two algorithms 
because the mechanism is designed in terms of ascending 
price, and when the predetermined revenue is reached, 
the algorithm ends. Therefore, when B is low, the corre-
sponding revenue is also low. Moreover, the allocation 
and payment solution of OPT-VCG and G-PMRM only 
need to be calculated once, so the allocation and payment 
solution are fixed. As can be seen from Fig. 3a, OPT-VCG 
can reach a revenue of about 30,000, while G-PMRM can 
reach a revenue of about 35,000. If the revenue limit B 

Fig. 3 The impact of the lowest revenue limit B (IoV-RAM-LRL)

https://github.com/WangZHeM/IoV-RAM-LRL/tree/main
https://github.com/WangZHeM/IoV-RAM-LRL/tree/main
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continues to increase, the revenue generated by the OPT-
VCG and G-PMRM mechanisms cannot meet the preset 
revenue limit, so there is no feasible solution. Therefore, 
it is not shown in the figure. However, IoV-RAM-LRL 
continuously increases the unit price of various resources 
and chooses to eliminate some users with lower bids to 
calculate the new revenue. When the revenue reduction 
due to eliminating users is less than the increase in rev-
enue due to the price increase, the revenue will increase 
until it reaches B or all users have been eliminated and 
there is no solution. Therefore, the revenue of IoV-RAM-
LRL is obtained through continuous improvement and 
eventually reduces to 0. In this experiment, Peak B is 
47219.

Figure 3b shows the difference in social welfare of dif-
ferent algorithms, which is the sum of bids of all winning 
users. As B increases, the social welfare of IoV-RAM-LRL 
gradually decreases from constant to 0. The reason is that 
when B is small, the unit price is low, and the number of 
users selected is the largest, so the social welfare is the 
greatest. When B begins to increase, in order to reach 
the revenue limit B under the condition of deployment 
constraints, the algorithm eliminates users with lower 
bids, so the social welfare decreases. However, OPT-VCG 
satisfies the principles of allocating as many resources 
as possible and will allocate as many resources as pos-
sible to users, so more users will be selected, yielding 
higher social welfare. However, IoV-RAM-LRL achieves 
higher revenue by improving the principles of allocat-
ing as many resources as possible and strikes a balance 
between social welfare and revenue. It is worth noting 
that the social welfare of IoV-RAM-LRL is higher than 
that of G-PMRM. The main reason is that G-PMRM does 
not work well under deployment constraints, which is an 
another advantage of IoV-RAM-LRL.

From Fig. 3a and b, it can be seen that the IoV-RAM-
LRL decreases the optimal social welfare and resource 
utilization very much when the revenue limit is large. It 
can be considered that ECSs reserve the resources to pur-
sue a higher revenue. This is an advantage of the mech-
anism in this paper. The existing mechanism designs 
tend to clear resources (allocating as many resources as 
possible), so the revenue is very low when the supply of 
resources exceeds the demand. However, the IoV-RAM-
LRL tends to select more valuable users and let them 
buy resources, and does not need to allocate resources 
as much as possible. Specifically, under the premise of 
the current users requests and ECSs resource capac-
ity, the IoV-RAM-LRL can find the set of users with the 
highest payment that can be achieved. When the supply 
of resources exceeds the demand, the algorithm is still 
applicable.

Figure  3c shows the execution time of the three algo-
rithms. The execution time of IoV-RAM-LRL increases 
with increasing B because when B is higher, IoV-RAM-
LRL must execute more loops (the number of loops is 
also related to the ε in unit price). Furthermore, OPT-
VCG has the longest execution time because OPT-VCG 
calculates the optimal allocation problem, which is NP-
hard, resulting in exponential execution time. Although 
G-PMRM is designed based on a greedy algorithm, it 
must be calculated for each server, so the execution time 
is greater than that of IoV-RAM-LRL in most cases. 
Moreover, the execution time of G-PMRM and OPT-
VCG is not related to the revenue limit B because no 
matter how B changes, these two algorithms are executed 
only once.

Figure 3d-f reflect the resource utilization of the three 
algorithms. OPT-VCG has the highest resource utiliza-
tion because OPT-VCG satisfies the optimal allocation 
and aims to allocate resources to users, while IoV-RAM-
LRL has the next highest resource utilization, followed 
finally by G-PMRM. The main reason is similar to that 
in Fig.  3b. Notably, even in the OPT-VCG algorithm, 
no resource reaches 100% utilization. The main reason 
is that some ECS resources cannot be allocated under 
deployment constraints.

Impact of the resource capacity of the server
This experiment shows the impact of different server 
resource capacities C on the three algorithms. The num-
ber of users N is fixed at 100, the number of servers M is 
fixed at 10, the number of resources R is fixed at 3, and 
the deployment constraint is δ = 2.

The algorithm used for comparison in this experi-
ment is IoV-RAM-LRL (Peak B), which can achieve the 
theoretically highest revenue. Figure  4a shows the rev-
enue of the three algorithms. First, the revenue of IoV-
RAM-LRL(Peak B) increases initially and then remains 
unchanged as the resource capacity increases. This is 
because when the resource capacity is small (0.25), the 
resource capacity is insufficient to meet the requirement 
of cost-effective users. At this time, OPT-VCG has the 
best performance. However, IoV-RAM-LRL(Peak B) can 
make cost-effective users win by increasing the unit price, 
so when the resource capacity increases, the revenue of 
IoV-RAM-LRL(Peak B) increases rapidly until it stabi-
lizes. On the other hand, because IoV-RAM-LRL(Peak B) 
always selects the most cost-effective user subset in the 
system, it is not sensitive to changes in resource capac-
ity. Therefore, as the resource capacity increases, the rev-
enue does not change substantially, which also reveals 
that most of the revenue comes from the most cost-
effective 1/2 of users in the system. However, the revenue 
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of OPT-VCG and G-PMRM continues to decrease with 
increasing resource capacity. The main reason is that 
these two algorithms follow the principle of allocating as 
many resources as possible, and they use the lowest win-
ning price. Abundance of resources leads to oversupply, 
resulting in a decrease in revenue.

Figure  4b shows the social welfare of different algo-
rithms. The social welfare of IoV-RAM-LRL(Peak B) first 
increases and then remains unchanged because when 
the resource capacity is small, the number of winning 
users is very small. As the resource capacity increases, 
the number of winning users increases, so social wel-
fare improves. However, when the resource capacity 
increases to 0.75, the resources are sufficient to satisfy 
the most cost-effective user subset selected by IoV-RAM-
LRL(Peak B), so social welfare tends to be stable. The 
main reason for the increase in social welfare of OPT-
VCG and G-PMRM is that the increase in resource 
capacity increases the number of winning users.

Figure 4c shows the execution times of different algo-
rithms. The execution time of IoV-RAM-LRL(Peak B) 
increases because when the resource capacity is low, the 
algorithm only needs to eliminate users through capac-
ity constraints. When the resources capacity is large, it is 
necessary to eliminate users with low cost-effectiveness 
through continuous iteration, so the execution time is 

long. OPT-VCG needs to calculate the optimal solution 
of the allocation, so the execution time is the longest. 
Furthermore, G-PMRM is executed separately for each 
server, so when the resource capacity increases, its exe-
cution time will also increase.

Figure  4d-f show the resource utilization of the three 
algorithms. The resource utilization of IoV-RAM-
LRL(Peak B) continues to decrease. The main reason is 
that the algorithm tends to become stable after the sub-
set of users with high cost performance is selected; thus, 
the resource utilization decreases as the resource capac-
ity increases. In addition, OPT-VCG always maintains a 
high resource utilization rate because OPT-VCG follows 
the principle of allocating as many resources as possible. 
The reason for the low resource utilization of G-PMRM 
is that it is greatly affected by deployment constraints. 
The increase in resource capacity enables the top-ranked 
server to obtain more users, so the number of users that 
can be allocated by the bottom-ranked server decreases.

Impact of the deployment constraints
This experiment shows the impact of different deploy-
ment constraints (for example, 1-10 indicates that the 
number of ECSs to which users can connect is uniformly 
distributed within [1,10]). The number of users N is fixed 
at 100, the number of servers M is fixed at 10, the number 

Fig. 4 The impact of the resource capacity of the server
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of resources R is fixed at 3, and the server resource capac-
ity parameter C is fixed at 0.75.

The algorithm used in this experiment is IoV-RAM-
LRL(Peak B). Because solving the optimal allocation 
solution is NP-hard, when δ is greater than 3, OPT-
VCG cannot be solved in limited time; thus, OPT-VCG 
is executed in only the first two experiments. Figure 5a 
shows the revenue of the three algorithms under differ-
ent deployment constraints. The IoV-RAM-LRL(Peak 
B) algorithm has higher revenue under different 
deployment constraints because when the deployment 
constraints increase, the number of servers that users 
can connect to increases and more users can be allo-
cated, so the revenue increases. When the deployment 
constraints reach a certain number (such as δ = [1, 4] ), 
almost all cost-effective users are successfully allocated, 
so the revenue remains stable. G-PMRM is based on 
the monotonic allocation algorithm. When δ increases, 
the number of users that can be allocated to each server 
increases, so the revenue also increases. The revenue 
of the OPT-VCG algorithm is relatively low because it 
follows the principle of allocating as many resources as 
possible and the lowest winning price.

Figure 5b shows the social welfare of the three algo-
rithms. For all algorithms, the number of winning users 
increases due to the increase in δ , so the social welfare 

also increases. Among them, the IoV-RAM-LRL(Peak 
B) algorithm reaches the maximum social welfare when 
the deployment constraint δ = [1, 4] and no longer 
changes with changes in δ . Therefore, the IoV-RAM-
LRL(Peak B) algorithm has selected the most valuable 
users at this time.

Figure  5c shows the execution time of the three 
algorithms. The execution time of the three algo-
rithms increases with increasing δ because the change 
in deployment constraints leads to an increase in the 
number of winning users, which leads to an increase 
in the computational load of the IoV-RAM-LRL(Peak 
B) algorithm and the G-PMRM algorithm. Since it is 
NP-hard to solve the optimal allocation, the OPT-VCG 
algorithm has the longest execution time and is most 
affected by deployment constraints.

Figure  5d-f show the resource utilization of the three 
algorithms. Since OPT-VCG solves the optimal solution 
of allocation, the resource utilization is high. The IoV-
RAM-LRL(Peak B) algorithm and the G-PMRM algo-
rithm increase the number of winning users due to the 
increase in the deployment constraint δ , so the resource 
utilization is also improved. However, when the deploy-
ment constraint δ increases to a certain value, it is no 
longer the most important factor affecting allocation 
(at this time, resource capacity is the most important); 

Fig. 5 Impact of the deployment constraints
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thus, social welfare, revenue, and resource utilization are 
almost unchanged.

The impact of resource capacity changes on unit prices
This experiment shows the impact of changes in CPU 
resource capacity on prices. The number of users N is 
fixed at 100, the number of servers M is fixed at 10, the 
resource type R is fixed at 3, the memory and storage 
resource capacity C is fixed at 0.75, and the revenue limit 
B is set at 20000, while deploying constraints δ = 2 and 
using the IoV-RAM-LRL(Peak B) algorithm.

It can be seen from Fig.  6 that the unit price of the 
CPU decreases with increasing CPU resource capac-
ity and finally matches the unit price of the storage 
resource. This is because when the CPU resource 
capacity is small, the price increase parameter �cpu 
increases, and the unit price of the CPU increases 
faster. As the resource capacity of the CPU gradu-
ally increases, the value of �cpu decreases, and the 
increase in the unit price of the CPU will gradually 
decrease. Notably, the unit price of memory and stor-
age resources is fixed.

The impact of independent unit price changes
This experiment demonstrates the advantages of resource 
unit prices that vary independently. The unit price increase 
�rε of each resource in algorithm IoV-RAM-LRL(Peak B)
(�ε ) is calculated independently, while in algorithm IoV-
RAM-LRL(Peak B)(ε ), the unit price of each resource 
increases by ε . The number of servers M is fixed at 10, the 
resource type R is fixed at 3, the resource capacity C is 
fixed at 0.5, and the deployment constraint δ = 2.

It can be seen from Fig.  7 that as the number of users 
increases, the final revenue of both algorithms increases, 
but the IoV-RAM-LRL(Peak B)(�ε ) algorithm has higher 
revenue than IoV-RAM-LRL(Peak B)(ε ). The main reason 
is that the former algorithm uses an independent unit price. 
When a certain resource is small, its unit price will increase 
faster so that a higher final revenue can be obtained. On 
the other hand, from a practical perspective, it is more rea-
sonable for different resources to have different unit prices 
according to the balance of supply and demand.

Truthfulness verification
This experiment verifies the truthfulness of IoV-RAM-
LRL from two perspectives. Specifically, 1) the bid of a 
winning user is changed to observe its utility changes, 
and 2) the bid of a losing user is changed to observe its 
utility changes. In this experiment, the number of users 
N is 100, the number of servers M is 10, the resource type 
R is 3, the resource capacity C is fixed at 0.75, and the 
deployment constraint δ = 2.

Figure 8a shows the situation for the winning user 10. 
Her/his truthful bid is 2542, the resource requirement 
is (18,30,91), and when she/he wins, the payment is 
2021 and the utility is 2542− 2021 = 521 . By constantly 
changing her/his bid, it can be found that as long as the 
bid is higher than 2021, the user can still win, but her/his 
utility remains at 521, which is unchanged; this is because 
if the user can win, changing her/his bid will not affect 
the payment price, and the utility remains the same. 
When the bid is lower than 2021, allocation fails, so the 
utility is 0.

Fig. 6 The impact of CPU capacity changes on prices
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Figure  8b shows the situation for the losing user 57. 
Her/his truthful bid is 983, the resource requirement is 
(16,33,89), the final payment is 0, and the utility is 0. By 
changing her/his bid, it can be found that when the bid 
is lower than 1946, the user always fails to allocate, so no 
fee is paid, and the utility is obviously 0. When the bid is 
higher than 1946, the user wins the allocation; however, 
the utility at this time is 983− 1946 = −963.

Through the analysis of these two examples, it can be 
seen that users cannot obtain greater utility by changing 
the bid, thus verifying the truthfulness of IoV-RAM-LRL.

Conclusion
This paper proposes a truthful mechanism for IoV edge 
computing resource allocation with a lowest revenue 
limit. Compared with existing mechanisms, the proposed 

mechanism for calculating the unit price of resources 
through the intensity of competition of different resources 
can obtain greater revenue while ensuring individual 
rationality and truthfulness. Furthermore, our approach 
can be used under the edge computing deployment con-
straints, which improves the practicability of mechanism 
design in edge computing. However, many problems 
remain to be studied. For example, when the vehicle 
moves, the deployment constraints will change, which 
involves the problem of real-time mechanism design. 
Another example in the federated learning or metaverse 
scenarios considers not only the connection between the 
edge and the device but also involves the cloud-edge col-
laboration. These novel application scenarios will result in 
more complex resource allocation problems, which will 
be our main research work in the future.

Fig. 7 The impact of independent unit price changes

Fig. 8 Truthfulness verification
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