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Abstract 

An edge-cloud computing collaborative dust concentration detection architecture is proposed for real-time opera-
tion of intelligent algorithms to reduce the warning delay. And, an end-to-end three-channel convolutional neural 
network (E2E-SCNN) method is proposed in the paper to facilitate intelligent monitoring and management of dust 
concentration in tobacco production workshops. This model, which includes three sub-networks-a local feature 
branch, a global feature branch, and a spatial feature branch, learns the detail texture, overall layout, and spatial 
distribution information of the input image respectively. A fusion of the three complementary features is performed 
at the end of the network for the final dust concentration regression prediction. The design, when compared 
with the single network structure that directly regresses the entire image, is shown to more fully represent the over-
all information of the image and enhance monitoring performance. A richly annotated image dataset of tobacco 
production workshops is constructed to verify the effectiveness of the proposed method. The prediction error 
of E2E-SCNN is compared with existing image estimation algorithms, dual-channel networks, and other methods 
on this dataset using indicators such as Mean Absolute Error (MAE) and R2 . It is shown by the results that excellent 
performance is achieved by the E2E-SCNN algorithm, significantly surpassing other comparison methods. The paper 
demonstrates that the accuracy and robustness of dust concentration prediction can be greatly improved by using 
a three-channel convolutional neural network spatial information monitoring framework. This achievement provides 
an effective means for dust supervision and governance during the tobacco production process and offers a technical 
route that can be referred to for image analysis tasks in other similar fields.
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Introduction
Edge cloud is a technology that deploys cloud comput-
ing capabilities and services at the network edge, close 
to the data sources or users. The application of edge 
cloud in smart factories has significant implications. 
First, it can improve the efficiency and security of data 
processing. Edge cloud can perform real-time analysis, 
processing and decision making on data at the network 

edge, reducing data transmission latency and cost, as 
well as lowering the risk of data leakage. Second, it can 
enhance the flexibility and scalability of smart factories. 
Edge cloud can dynamically adjust the allocation and 
configuration of cloud services according to the actual 
needs of smart factories, achieving optimal utilization of 
resources. Edge cloud can also work with central cloud 
to achieve hierarchical management and storage of data, 
improving the operational efficiency and stability of 
smart factories. The application of edge cloud in smart 
factories has significant implications, and can bring more 
value and advantages to smart factories. The architecture 
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of smart factories based on edge cloud is generally shown 
in Fig. 1.

Tobacco is an important economic crop and the main 
raw material for tobacco products. Tobacco processing 
and production is the key link to realize the transforma-
tion of tobacco from the field to tobacco products. The 
workshop production process is essential to ensure the 
quality and quantity of tobacco products. Dust pollu-
tion is a common problem in industrial production, and 
tobacco processing and production are no exception. 
The main sources of dust in this industry are mechani-
cal operations such as baking, cutting, conveying, and 
grading. Dust not only contaminates the workshop envi-
ronment, but also compromises the product quality, as 
it sticks to the tobacco surface and forms “glue stains” 
that interfere with the later production stages. More 
importantly, the tobacco workshop dust contains harm-
ful substances such as tobacco-specific alkaloids, which 
can increase the risk of workers suffering from tobacco 
dust pneumoconiosis and pose a direct threat to workers’ 
health [1, 2]. In an aerobic environment, when tobacco 
dust reaches the explosive concentration, it is prone to 
cause primary explosion when encountering open fire 
or strong vibration. This primary explosion can cause 
the dust originally attached to the equipment to sus-
pend in the air, and if the explosion conditions are met at 
this time, it will cause secondary chain explosion, caus-
ing all the locations with dust points to explode, result-
ing in serious loss of life and property  [3]. In addition, 

the generation of tobacco dust will also cause equip-
ment wear and poor contact. This kind of dust may cause 
blockage or wear of the parts of the running equipment, 
the suction and exhaust ducts and the nozzle of the drum 
equipment, thus shortening the service life of the equip-
ment. Moreover, the free dust particles may also affect 
the performance of the photoelectric switch, touch-type 
isolation switch and electrical circuit contact point in the 
workshop and the electric cabinet, resulting in poor sig-
nal contact. Therefore, it is very important to detect and 
alert the abnormal dust concentration as soon as possible 
after the dust removal equipment in the tobacco work-
shop fails.

There are mainly two traditional methods for meas-
uring dust in tobacco workshops: gravimetric method 
[4] and optical method [5]. Gravimetric method is one of 
the traditional methods for dust monitoring in tobacco 
workshops. Its measurement principle is to collect air 
samples from tobacco workshops, use filter paper or 
other filters to collect dust in the air, and divide the dust 
weight on the filter by the volume of the sampled air, 
which can obtain the dust concentration or dust emis-
sion concentration in unit volume of air. This method has 
the advantages of simple operation and direct principle, 
and has been widely used in dust monitoring in tobacco 
workshops for a long time. However, the gravimetric 
method also has some limitations. First, its monitoring 
results are related to the sampling time and air flow rate, 
which require accurate control of the sampling volume, 

Fig. 1 Schematic diagram of edge-cloud enabled smart factory
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and also need weighing, calculation and other processes, 
which cannot achieve real-time online monitoring. Sec-
ond, the dust on the filter needs to be dried to remove 
moisture, which will prolong the measurement time and 
reduce the real-time performance of monitoring. Third, 
environmental factors such as temperature, humidity, 
air flow rate, etc. will affect the dust collection efficiency, 
introducing additional errors. Finally, the gravimet-
ric method cannot distinguish dust of different particle 
sizes or compositions, and can only reflect the overall 
dust concentration, with limited information content. 
Paper  [6]  used the gravimetric method to measure PM 
dust in the atmosphere.

Optical methods are widely used for dust measurement 
in flue gas, as they have the advantages of fast response, 
high sensitivity, and non-intrusive sampling. The basic 
principle of optical methods is to measure the optical 
properties of dust in flue gas, such as scattering, absorp-
tion, and shielding, by using different optical techniques, 
such as light scattering method, light transmission 
method, light reflection method, etc. These methods use 
photoelectric detectors, such as photomultiplier tubes 
and photodiodes, to measure the light signal entering or 
passing through the sample, and then calculate the dust 
concentration or physical parameters in flue gas by using 
empirical formulas that relate the optical properties to 
the dust characteristics. Compared with the gravimet-
ric method, the optical method can realize online and 
rapid monitoring, and contains rich information of par-
ticle size distribution and composition, but it also has 
the following shortcomings: susceptible to environmen-
tal light interference. The light conditions in the tobacco 
workshop are complex and variable, and it is necessary 
to carefully select the optical path or shield the external 
light interference. High requirements for the alignment 
and calibration of the detection optical path. The mis-
alignment of the optical path and the spectral drift of the 
light source will directly affect the test results. Different 
types of flue gas correspond to different empirical formu-
las. It is necessary to re-model and calibrate according to 
the dust composition and structure. It cannot identify the 
flue gas background and dust particle shape, and there 
is a certain inherent measurement error. Long-term use 
requires frequent calibration and maintenance, and the 
maintenance workload is large.

Deep learning-based methods for air quality (pollutant 
concentration) detection are also one of the hot topics 
of research. Literature [7] studied the imaging of visible 
light hyperspectral imaging technology and estimated the 
concentration of pollutants in the air using the existing 
model VGG16. Literature [8] proposed an image-based 
deep learning model (CNN-RC), which integrates convo-
lutional neural network (CNN) and regression classifier 

(RC), to estimate the air quality of the region of interest 
by extracting features from the photos and classifying 
the features as air quality levels. Literature [9] proposed 
an estimation algorithm for the concentration of air pol-
lutants in Pakistan based on convolutional neural net-
work and multi-pollutant satellite images. Literature [10] 
adopts an extended model of spatio-temporal convolu-
tional long short-term memory neural network (CNN-
LSTM) for pollutant concentration prediction. In order 
to comprehensively consider the spatio-temporal charac-
teristics of pollutant data, they incorporate the historical 
pollutant concentration of the current observation site 
and the pollutant concentration of k adaptively selected 
neighboring sites into the input data of the model. By 
combining long short-term memory neural network 
(LSTM) and convolutional neural network (CNN) to 
extract high-order spatio-temporal features, the predic-
tion performance of the model is further improved.

Literature [11] proposed a method for estimating the 
concentration of air pollutants based on multimodal 
image information fusion, by calculating the depth error 
between the image and its corresponding dehazing result. 
Literature [12] proposed a method to obtain the concen-
tration of pollutants in the air by extracting visual cues 
and atmospheric index from a single photo. In addition, 
literature [13] proposes a deep residual network model, 
namely AQC-Net, which includes the SCA (Scene-Con-
dition-Attention) module, which aims to improve the 
correlation between environmental images and air qual-
ity features, and thus enhance the accuracy of ResNet 
network for image-based air quality classification. These 
methods establish an effective connection between image 
data and air quality features, and can improve the per-
formance of air quality classification models. Literature 
[14] proposes a real-time detection method for indoor 
air quality, using an intelligent robot joint collaborative 
system. In this system, multiple robots cruise along the 
shortest path under the coverage and control of wireless 
signals, and continuously collect and upload indoor pol-
lutant data, thus realizing real-time monitoring of indoor 
air quality. This method has a wide range of application 
prospects, and is conducive to the quality control and 
management of indoor environment.

The above methods study the relationship between 
images and air quality, and use PM2.5 and PM10 con-
centrations as the quantitative indicators of air quality in 
the above papers. They explore the relationship between 
image features and pollutant concentrations through 
deep learning, and achieve good results. Therefore, it is 
feasible to predict dust based on the monitoring images 
of tobacco workshops, and to find the relationship 
between image features and tobacco dust concentration 
through deep learning. Moreover, there is no relevant 
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research on the estimation of dust concentration pro-
duced by indoor tobacco production.

Edge cloud can enhance the flexibility of computa-
tion and reduce the latency. Edge cloud is also one of the 
hot topics of recent research. Literature [15] proposed 
edge cloud collaborative EA (ECCoEAs) to solve dis-
tributed data-driven optimization problems, where data 
is collected by edge servers. Literature [16] studied the 
efficient resource scheduling problem on edge cloud. Lit-
erature [17] studied the multi-user task offloading prob-
lem in terminal edge cloud system, where all user devices 
compete for limited communication and computation 
resources. Literature [18] studied the energy-efficient 
resource allocation problem in heterogeneous edge cloud 
computing, and proposed a resource allocation algorithm 
based on joint optimization of power control, transmis-
sion scheduling and offloading decision between mobile 
devices and edge cloud. Literature [19] proposed an adap-
tive deep neural network inference acceleration architec-
ture based on intelligent applications, which accelerates 
the inference speed of deep neural networks by edge-end 
cloud collaborative computing. Literature [20] proposed 
a task offloading algorithm based on genetic evolution 
particle swarm optimization in edge-end cloud collabo-
rative computing.

The research purpose of this paper is to conduct dust 
risk assessment and early warning based on the images 
captured by the surveillance camera. It is very necessary 
to detect and warn the dust when it starts to appear, and 
the spatial distribution of tobacco dust is uneven when 
it appears. Therefore, the dust concentration has spatial 
attributes when it appears in large quantities. For this 
purpose, in order to improve the accuracy and real-time 
performance of dust measurement in tobacco work-
shops, this paper proposes an image-based dust meas-
urement method for tobacco workshops based on the 
spatial attributes of dust concentration. This method uses 
image processing technology and deep learning technol-
ogy to extract features related to dust concentration from 
scene images, and establishes the mapping relationship 
between image features and dust concentration, thus 
realizing the estimation of dust concentration in tobacco 
workshops. This method has the following advantages: 
no need for sampling, weighing and other operations, 
only need to install cameras or other image acquisition 
devices, can realize real-time monitoring of dust concen-
tration in tobacco workshops; not affected by the physi-
cal characteristics of dust particles, only need to analyze 
the visual information in the scene images, without 
knowing the density, refractive index and other param-
eters of dust; not dependent on specific light source or 
optical path conditions, as long as the scene images are 
clear and visible, can be processed; can use deep learning 

technology to automatically learn the complex nonlinear 
relationship between image features and dust concentra-
tion, without setting empirical formulas or calibration 
curves artificially; can adapt to different types and sizes 
of tobacco workshops, only need to adjust the image pro-
cessing and deep learning parameters according to differ-
ent scenes, can get the appropriate model.

This paper is mainly divided into the following parts: 
“Edge-cloud computing cooperation detection of dust 
concentration for risk warning” section introduces the 
model of the image-based dust measurement method for 
tobacco workshops; “Experimental” section introduces 
the experimental method of this paper; Result section 
analyzes the experimental results; “Conclusion”  section 
summarizes the main work of this paper and proposes 
the future research direction and prospect.

Edge‑cloud computing cooperation detection 
of dust concentration for risk warning
Edge‑cloud computing collaborative dust concentration 
detection architecture
The volume of video data is substantial, and there are 
multiple video collection points within the factory. 
Transmitting all data to servers severely strains both 
network and computational resources. This results in 
decreased timeliness of risk alerts and increased latency. 
To address this, we propose an architecture for collabo-
rative dust concentration detection based on edge-cloud 
computing. Edge clouds are deployed at various loca-
tions within the factory to process uploaded image data 
in real-time, thereby enhancing the real-time nature of 
risk alerts. Figure 2 shows the architecture for collabora-
tive dust concentration detection based on edge-cloud 
computing.

Data preprocessing
Even under the same conditions, the image features cap-
tured by different cameras may have slight differences. In 
order to reduce the influence of different camera mod-
els, this section first obtains the calibration model of the 
camera, and then uses the inverse transformation to can-
cel the influence of the nonlinear transformation on the 
feature extraction [21]. This process aims to achieve more 
accurate feature extraction, and thus improve the reliabil-
ity and consistency of image processing. First, a camera 
in the tobacco production workshop is selected as the 
main camera, and the image captured by this camera is 
the reference image. To align the other cameras with the 
reference image, this section applies affine transforma-
tion to the images. For this purpose, it extracts the surf 
descriptor of the images [22].

The light will be affected by some particles in the air, and 
the relationship of the influence is shown in formula 1:



Page 5 of 11Su et al. Journal of Cloud Computing            (2024) 13:7  

The parameter F represents the observed light inten-
sity, G represents the global environment brightness, Tv 
represents the propagation function, and the parameter α 
represents the pixel position in the image.

In the same scene, the adjacent pixels of the image 
will be affected by the medium in the air. Therefore, 
the variance of the illuminance can be calculated by 
formula 2.

The parameter P represents the variance of the bright-
ness, LA represents the mean of the brightness, and CE 
represents the set of all pixels in the image. Saturation is 
also easily affected by the medium in the air, and satura-
tion can be calculated by formula 3.

Where, the parameter V represents the saturation of the 
image, and represents the values of RGB colors. The mean 
of the saturation gradient can be calculated by formula 4.

(1)F(a) = Tv(a)K (a)+ (1− tr(a))G

(2)P = 1
|CE|

αǫCE
(L(a)− LA)2

(3)V = 1−
3

R
+ G + B(min(R,G,B))

Where Va is the gradient of saturation. The intensity 
of the dark [23] channel can be calculated by formula 5.

The parameter J dark represents the dark channel, Jc is 
the color channel of j , and W(a) represents the set of 
all pixels in the neighborhood of the center point with 
pixel a as the center. According to the above formula, 
the propagation coefficient can be estimated as:

Where, the parameter Ic is the observed intensity on 
channel C, and Ac is the global environment intensity on 
channel c.

Edge intelligence detection model of dust concentration 
for risk warning
This paper proposes an end-to-end spatial convolu-
tional neural network (E2E-SCNN) based on spatial 

(4)Vav =
1
/

|CE|

∑

αǫCE
Va(a)

2

(5)J dark(pix) = min
pix∗∈W (a)

(

min
c∈{r,g ,b}

J c(pix∗)

)

(6)̂tr(a) = 1− min
a∗∈W (a)

(

min
c∈{r,g ,b}

Ic(a∗)

Ac

)

,

Fig. 2 Edge-cloud computing collaborative dust concentration detection architecture
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information, as shown in Fig. 3. The input image is pro-
cessed by three branches, which learn local, global and 
spatial features, three key information, corresponding to 
the design of sub-network channels to extract three types 
of features, and finally fuse them for dust concentration 
regression. Specifically, the network consists of the fol-
lowing modules:

First, through the local feature extraction branch, using 
continuous multi-layer convolution kernels to learn local 
texture features; this module first uses the VGG network 
style of multi-layer continuous small convolution ker-
nel structure to process the data, using continuous 3 × 3 
convolution to extract local features, and using attributes 
to define the spatial value between the element border 
and the element content to maintain the resolution. In 
order to obtain more rich multi-scale feature expression, 
this paper adds the down-sampling operation, and uses 
BatchNorm layer for normalization for training accelera-
tion and stability.

At the same time, through the global feature extraction 
branch: using dilated convolution and atrous convolution 
to obtain global context; using dilated convolution, its 
calculation is as follows.

Assuming that the input feature map is F, the convo-
lution kernel is W, and the dilation rate is r. That is, F 
samples are taken at intervals of pixels on r, and then 
standard convolution is performed. The processed data 
is convolved with atrous, combined with up-sampling 
and down-sampling, to efficiently encode global fea-
tures. Then, residual connection is used to avoid signal 
attenuation.

At the same time, spatial information is extracted 
through the position channel: the spatial transformation 

(7)F
′(

x, y
)

=
∑

W
(

i, j
)

∗ F(X + ri, y+ rj)

layer obtains the position features of the flue gas distri-
bution; the core of the position channel is the spatial 
transformation layer, which changes the spatial position 
relationship of the feature points by performing affine 
transformation on the feature map, thus extracting the 
spatial transformation features. The spatial transforma-
tion layer is mathematically expressed as follows:

Let the input feature map be F the output trans-
formed feature map be F’, and the spatial transforma-
tion parameter be � . Then:

where �(x, y) defines the transformation position of pixel 
(x,y) mapped to the input image. It can learn operations 
such as rotation, scaling, and translation. By applying 
spatial transformations repeatedly, feature maps in dif-
ferent spatially related representations can be obtained. 
Then, the primary features are extracted through the 
position channel network, and then multiple spatial 
transformation layers learn the spatial dimension change 
information of the feature map, and finally obtain the 
spatial transformation feature through global pooling.

After obtaining the local, global and spatial features 
through the above steps, a three-channel fusion network 
is adopted: the local, global and spatial features are com-
pounded to obtain a multi-scale feature expression; the 
feature maps of the three branches are spliced and com-
bined in the channel dimension to form a unified feature 
mapping containing all features. To further enhance the 
fusion effect, weighted fusion is performed:

Where, the parameters w1 , w2 and w2 are the learned 
weight coefficients respectively.

(8)F
′(

x, y
)

= F(�(x, y))

(9)
Ffused = w1 ∗ Flocal + w2+ Fglobal + w3 ∗ Fspatial

Fig. 3 End-to-end spatial convolutional neural network
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After obtaining the Ffused feature value, it is connected 
to the fully connected network, and the input layer 
depends on the dimension of the fused feature value. It 
is connected to the output layer through two hidden lay-
ers. The ReLU activation function after the hidden layer 
is shown in formula 10.

After the hidden layer, a BatchNorm layer is connected 
to speed up the network convergence. The loss function 
in this paper is

where y− ypred represents the difference between the 
predicted value ypred and the true value y. The total error 
is averaged, where n is the number of samples.

Experimental
To verify the effectiveness of the network, this paper 
fabricated and collected 1000 images with dust in the 
tobacco production workshop, and manually anno-
tated the images. The data was augmented by rota-
tion, noise addition, etc. Finally, 5000 training images 
were obtained. Among them, 80% of the images were 
randomly selected as the training set, and 20% of the 
images were used as the test set. The accuracy of the 
proposed method was determined by comparing the 
labels obtained from the test with the true labels. The 
learning rate is set to 0.001 in this paper. The parame-
ters in Eq.  (1) are: F-observed light intensity, G-global 
ambient brightness,  Tv-propagation function, a-pixel 
position K-atmospheric light scattering coefficient 
tr-atmospheric transmittance. These parameters are 
mainly obtained by observing with the image sensor. 
The parameters in Eqs.  (2)- (5) are: P-image brightness 
variance, LA—image brightness mean, CE-image pixel 
set, V-image saturation, Va-saturation gradient, J dark—
dark channel image, Ic—intensity observed in channel, 
Ac-global ambient intensity in channel c. These param-
eters are obtained by statistical calculation of the input 
image. The main parameters in Eqs.  (6)- (13) are: w1, 
w2, w3—weight coefficients; w1, w2, w3 are obtained 
during the network learning process.  This paper used 
the correlation coefficient (R2), the mean absolute error 
(MAE), Precision and F1 to analyze the accuracy of the 
dust concentration estimation method for the tobacco 
production workshop. We consider the prediction to be 
accurate if the difference between the predicted value 
and the true value is less than or equal to 5%, and we 
consider the prediction to be erroneous if the differ-
ence between the predicted value and the true value is 

(10)ReLU(x) = max(0, x)

(11)MSE =
1

n
∗
∑

(y− ypred)
2

greater than 5%. The formula of the correlation system 
can be calculated by formula 12:

Where the parameter p′

1 is the estimated value of the 
dust in the i-th tobacco workshop, and pi is the labeled 
value of the dust in the i-th tobacco workshop. Where n 
is the number of images in the test set, and p represents 
the mean value of the dust labels in the tobacco work-
shop. where R2ǫ [0,1] the higher its value, the higher the 
estimation accuracy of the algorithm.

The mean absolute value can be calculated by formula 13.

Where the parameter p′

i is the estimated value of the 
dust in the i-th tobacco workshop, and pi is the true value 
of the dust in the i-th tobacco workshop. The value of 
MAE is a positive number, and the smaller its value, the 
higher the estimation accuracy of the algorithm.

Where TP, TN, FP, and FN denote the counts of true 
positives, true negatives, false positives, and false nega-
tives, respectively.

Where P is the precision and R is the recall. In this 
paper, R = 1.

To verify the efficiency of the proposed method, we 
compared several existing image-based air quality detec-
tion algorithms, VBM, RCT and FFN. This paper com-
pared the above models with the E2E-SCNN model on 
the real data set we collected. The model training server 
configuration used in the comparative experiment was 
not changed.

RCT [24] studied a high-precision VBM system based 
on the relationship between dust concentration and 
image transmission (RCT) model. At the same time, it 
proposed an image transmission calculation method 
that uses the atmospheric light scattering effect and dust 
particle occlusion effect. RCT tends to be negatively cor-
related, which is a quadratic polynomial. Image trans-
mission can eliminate the influence of atmospheric light 
scattering effect and dust particle occlusion effect on 
measurement accuracy.

FFN [25] used a regression ensemble based on deep 
neural network to estimate the PM2.5 concentration in 
the air from outdoor images. The regression used a feed-
forward network to combine three convolutional neural 

(12)R2 = 1−

∑n
i=1

(

p
′

i − pi

)2

∑n
i=1(pi − p)2

,

(13)MAE =
1

n

∑n

i=1
|p′i − pi|

(14)Precision = TP/(TP + FP)

(15)F1 = 2 ∗ (Precision ∗ R)/(Precision+ R)
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networks VGG-2, Inception-v5 and ResNet16, and calcu-
lated the final PM2.5 prediction of the image (Feed-for-
ward network: FFN).

CNN-TL [26] studied a PM2.5 detection method based 
on CNN transfer learning (CNN-TL) that used a deep 
convolutional neural network (CNN) to classify natural 
images according to their PM2.5 concentration into dif-
ferent categories.

Result
The study utilized a self-collected testing dataset and 
compared different algorithms. Table 1 presents the com-
parative results of the proposed algorithm against three 
other algorithms in terms of MAE and R2 values. Figure 4 
illustrates the comparison of partial predicted data val-
ues between the proposed algorithm and the other three 
algorithms.

Table  2 compares the proposed E2E-SCNN method 
with a dual-channel convolutional neural network 

approach (DCCNN) by excluding spatial feature values 
based on the E2E-SCNN. Figure 5 shows the comparison 
of partial predicted data values between the proposed 
algorithm and the dual-channel convolutional neural 
network.

From Table  2, it is evident that the proposed E2E-
SCNN achieves the lowest MAE score, indicating supe-
rior performance in estimating the dust concentration 
in tobacco production facilities, closest to the labeled 
ground truth values. The R2 metric also demonstrates 
the highest value for the proposed E2E-SCNN, suggest-
ing its suitability for estimating dust concentration gen-
erated in tobacco production settings. Figure 2 further 
illustrates that the proposed E2E-SCNN outperforms 
the other three popular algorithms, aligning closely 
with the labeled ground truth values. This superiority 
is attributed to the fact that other algorithms primar-
ily focus on image-based air quality assessment meth-
ods, primarily considering particulate matter such as 
PM2.5 and PM10, which differ from the dust gener-
ated in tobacco production. Therefore, the proposed 
algorithm performs optimally in this context. The pro-
posed E2E-SCNN is compared with the dual-channel 
convolutional neural network approach in Table 2 and 
Fig.  3. Both the table and the figure clearly show that 
incorporating spatial feature extraction in the dual-
channel CNN significantly improves the accuracy of the 
algorithm.

Table 1 Experimental results of the E2E-SCNN algorithm

Algorithm MAE R
2

RCT 2.8 0.81

FFN 3.4 0.78

CNN-TL 4.1 0.71

E2E-SCNN 2.2 0.88

Fig. 4 Comparison of E2E-SCNN with three other algorithms for data value prediction
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Table  3 compares the algorithms based on differ-
ent combinations of global, local, and spatial feature 
extraction modules. We assume that the method that 
only uses global features is called OG, the method 
that only uses local features is called OL, the method 
that only uses spatial features is called OS, the method 
that uses both global and local features is called GL, 
the method that uses both global and spatial features 
is called GS, and the method that uses both local and 
spatial features is called LS.

From the results in Table  3, it can be seen that the 
E2E-SCNN method proposed in this paper outperforms 
the other comparison methods on both Precision and 
F1-score metrics, reaching 0.891 and 0.942 respectively. 
This indicates that from the perspective of Precision and 
F1 evaluation, the E2E-SCNN method can predict the 
dust concentration of the air more accurately and reliably 
than the other methods. By comparing different methods 
of single-channel or dual-channel convolutional neural 
networks, it can be seen that the global features of the 
image contribute the most to the dust prediction module, 
and the performance of the dual-channel convolutional 

neural network is better than that of the single-channel 
convolutional neural network. The three-channel con-
volutional neural network E2E-SCNN proposed in this 
paper has the best performance.

Conclusion
As public concern over environmental pollution and 
occupational health rises, the tobacco industry urgently 
needs to control dust generated in workshop produc-
tion processes to reduce its impact on the environment 
and human health. However, conventional monitoring 
methods like filtration devices have limited accuracy and 
cannot meet the refined supervision needs under com-
plex working conditions. Non-contact image monitoring 
based on computer vision and deep learning technol-
ogy provides a new solution. Yet, directly regressing the 
entire image with a single network struggles to simul-
taneously represent global and local features of com-
plex scenes, resulting in poor generalization. To achieve 
highly accurate intelligent monitoring and assessment of 
tobacco dust, this study develops an end-to-end three-
channel convolutional neural network (E2E-SCNN). The 
E2E-SCNN comprises three branches: one for extract-
ing local detail features, another for encoding global 
structural information, and a third representing spatial 
distribution. These features from different perspectives 
are fused at the end of the network to obtain a compre-
hensive image representation. This divide-and-conquer 
strategy better captures the overall image, by exploiting 
the advantages of different feature values, than directly 

Table 2 Comparison of the E2E-SCNN algorithm with a dual-
channel convolutional neural network approach (DCCNN)

Algorithm MAE R
2

E2E-SCNN 2.2 0.88

DCCNN 2.5 0.83

Fig. 5 Comparison of E2E-SCNN with DCCNN in predicting data values
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regressing the whole image. To validate the model, we 
construct a tobacco production workshop image data-
set with rich annotations. Metrics such as MAE, R2 , 
etc., are employed to analyze prediction errors against 
existing image estimation algorithms and dual-channel 
networks. Results demonstrate the outstanding per-
formance of the E2E-SCNN. The proposed framework 
based on the three-channel convolutional network sig-
nificantly enhances prediction accuracy and robustness. 
This method offers a low-cost, easily deployable intel-
ligent monitoring approach for tobacco workshops and 
presents a potential technological roadmap for other 
environmental parameter detection tasks. Future work 
aims to expand the dataset and advance system-level 
engineering practices for broader applications. Addition-
ally, cross-disciplinary exchanges and collisions of diverse 
ideas are anticipated to continue providing novel direc-
tions in the field of image analysis.

Although this study collected and constructed a 
tobacco production workshop image dataset, due to 
time and conditions, the dataset has some deficiencies 
in terms of scale and scene range. The existing dataset 
contains 1000 tobacco production workshop images, 
which may not fully cover the various complex condi-
tion changes in the actual production environment, thus 
posing the risk of sample selection bias. In addition, the 
preprocessing method of the existing dataset may intro-
duce some degree of systematic bias, which also needs 
to be further verified. These factors may limit the gen-
eralization performance of the model and cannot guar-
antee its applicability in all actual scenarios. To properly 
address these data quality issues, our follow-up work 
will start from the following aspects: 1) continue to col-
lect, integrate and annotate more different scene image 
data of real tobacco workshops; 2) construct and opti-
mize the data augmentation module, synthesize more 
samples to expand the data scale and scene range; 3) use 

cross-validation and multiple training set test set splits 
for training, and strictly evaluate the generalization abil-
ity of the model; 4) examine the impact of the existing 
preprocessing methods, and adjust and optimize them 
if necessary to avoid introducing bias. We believe that 
through the comprehensive application of these methods, 
the data quality will be greatly improved, the potential 
sample selection bias and systematic bias will be reduced, 
and the model’s adaptability and prediction accuracy in 
complex actual scenarios will be enhanced.
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