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Abstract 

With the booming of cloud-based digital twin systems, monitoring key performance indicators has become crucial 
for ensuring system security and reliability. Due to the massive amount of monitoring data generated, data compres-
sion is necessary to save data transmission bandwidth and storage space. Although the existing research has pro-
posed compression methods for multivariate time series (MTS), it is still a challenge to guarantee the correlation 
between data when compressing the MTS. This paper proposes an MTS Collaborative Compression (MTSCC) method 
based on the two-step compression scheme. First, shape-based clustering is implemented to group the MTS. After-
ward, the compressed sensing is optimized to achieve collaborative compression of grouped data. Based on a real-
world MTS dataset, the experimental results show that the proposed MTSCC can effectively preserve the complex 
temporal correlation between indicators while achieving efficient data compression, and the root mean squared 
error of correlation between the reconstructed and original data is only 0.0489 in the case of 30% compression ratio. 
Besides, it is verified that using the reconstructed data in the production environment has almost the same perfor-
mance as using the original data.
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Introduction
With the rapid development of supporting technologies, 
such as cloud computing, big data, and machine learning, 
digital twin (DT) has been moving progressively from 
concept to practice. The data interaction among physi-
cal structure, digital model, and human interventions are 
enhanced by applying cloud computing services [1]. Thus, 
the cloud-based DT systems operating on big data need 
to ensure extremely high security and stability in case a 
cloud service fails, which will not only lead to a decline 
in user experience but also affect the revenue of the cloud 

service provider. Amazon’s cloud-service network suf-
fered a major outage on December 7, 2021, which leads 
to disrupting access to many popular sites including 
many governments, universities, and companies [2]. On 
December 19, 2022, some services in the Alibaba Cloud 
Hong Kong region failed, making it impossible to access 
the websites hosted by key infrastructure operators, 
including the Macau Monetary Authority, Lotus Guard-
ian, and Macau Daily [3], causing huge economic losses.

Due to the increasing scale and data complexity of 
cloud services, it is difficult to collect, store, analyze, 
and visualize data through traditional methods [4]. To 
effectively manage cloud service systems and large data 
centers, service providers need to monitor the processes 
of systems and applications that generate big data, and 
ensure the reliability of cloud services through real-time 
monitoring of cloud platforms [5]. Therefore, cloud ser-
vice monitoring, such as safeguarding performance, 
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detecting attacks, data center-wide profiling, state pre-
diction, and anomaly detection [6, 7], is a crucial and 
essential part of cloud management.

To achieve effective anomaly monitoring, Internet 
service providers based on cloud computing will deploy 
monitoring programs at various software and hardware 
levels of the cloud service system. Thousands to millions 
of key performance indicators (KPI), such as CPU utili-
zation, queries per second, and service response time are 
collected [8]. For example, unusual data peaks or abrupt 
drops in KPI data usually indicate abnormal events of 
related cloud services [9, 10]. In the actual cloud moni-
toring production environment, there are a large number 
of platform components that make up cloud services, and 
each component collects many indicators. For example, 
the MySQL database uses hundreds of monitoring indi-
cators [11]. As the complexity of the cloud service system 
increases, a fault will cause anomalies in multiple indica-
tors, which means there is a correlation between these 
indicators. The obvious challenge brought by the massive 
monitoring data is how to counteract the increase in data 
storage and analysis costs. Practical applications may not 
need all the original data, but only some effective and 
aggregated data for analysis. Therefore, a reliable, accu-
rate, and efficient compression method that can preserve 
the data correlation needs to be applied urgently [12].

General compression methods are divided into lossy 
compression and lossless compression. Lossy compres-
sion methods improve compression ratio by deleting 
unimportant data, while lossless compression preserves 
accurate information of the data for reconstruction. 
Lossy compression is suitable for fault-tolerant scenar-
ios such as image, audio, and video compression, using 
wavelet transform, compression autoencoder, and neu-
ral networks [13]. The lossless compression methods 
can achieve accurate reconstruction, and they do not 
incur any information loss. Common lossless compres-
sion methods include Lempel–Ziv-Welsh (LZW), Lem-
pel–Ziv-Markov chain algorithm, and adaptive Huffman 
coding [14]. The Compressed Sensing (CS) algorithm 
can accurately reconstruct all data with a small amount 
of sample, it can reconstruct a signal robustly and stably 
from under sampled noise observations by exploiting the 
sparse characteristics of the signal [15]. This advantage 
means CS has the potential to achieve a higher compres-
sion ratio. That’s why CS has been widely used in the 
research of time series data compression in recent years 
[16]. The CS algorithm can be divided into two parts, 
first, original data are subsampled in advance using a 
determined sensing matrix such as a Gaussian matrix 
to obtain the sampled data. Then, the compressed data 
and sensing matrix are used to recover the original data 
[17]. Unfortunately, it is observed that CS and other time 

series compression methods cannot preserve the corre-
lation of the variables, because most existing methods 
mainly focus on univariate time series (UTS) [18, 19]. 
Some research has proposed compression methods for 
MTS but applies data compression to each variable indi-
vidually while ignoring the correlation between variables 
[18, 20]. We cannot ignore the data correlation but chase 
the extreme compression efficiency. Moreover, cloud 
monitoring datasets do not require the exact waveform 
data, a reasonably accurate trend of the data is sufficient 
for anomaly detection. Hence, there exists a tradeoff 
between the extent of compression achievable and the 
correlation loss caused by it. To improve monitoring effi-
ciency and utilize the correlation between multivariate 
data, it is an important and challenging task to design a 
collaborative compression method for MTS data.

Motivated by the above-mentioned works, this paper 
presents the MTS collaborative compression (MTSCC) 
algorithm in combination with the actual scenarios of 
cloud monitoring applications. According to our inves-
tigation, there is currently no research to perform MTS 
compression in combination with preserving the correla-
tion between cloud monitoring time series data. Making 
a tradeoff between data correlation and implementing a 
high compression ratio is a major task for this article. The 
contributions of this paper are summarized as follows:

• A novel two-step collaborative compression for mul-
tivariate cloud monitoring dataset is proposed. The 
clustering is performed by assessing correlations 
based on shape differences between each time series 
in MTS, and then the CS method is applied to com-
press them temporally.

• We propose performance indices for the MTSCC to 
evaluate the errors of correlation and reconstruction 
data, and then carry out the empirical optimization 
of the operating parameters, including compression 
ratio concerning the data variability.

• We conduct extensive experimental evaluations using 
a real-world dataset. It shows that under the prem-
ise of 30% compression ratio, the root mean squared 
error of correlation between the reconstructed and 
original data is only 0.0489.

• Reconstruction accuracy of the proposed MTSCC 
for monitoring dataset is validated using an anomaly 
detection application, it is demonstrated that this 
approach does not have any adverse effect on the 
practical application.

The layout of this article is organized as follows. 
“Background and motivation” section briefly gives an 
overview of the background and discusses the moti-
vation. “Proposed algorithm” section introduces the 
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proposed two-step collaborative compression scheme 
and algorithm. We evaluate our approach in “Experi-
ments and results” section on MTS datasets and give 
the concludes in “Conclusion and future work” section.

Background and motivation
Cloud monitoring indicators
 As a measurement basis for evaluating the perfor-
mance and stability of cloud computing systems, cloud 
monitoring indicators are numerical information of 
monitoring objects collected or aggregated at prede-
fined time intervals (such as 5s or 30s), therefore, they 
are essentially time series data, with each data point 
consisting of a timestamp, measured value, and metric 
name [16, 21]. Monitoring data of cloud services con-
tain thousands or even millions of indicators, each of 
which consists of tens of thousands of parameters, and 
to record the complete pattern of monitoring objects, 
the period of the data varies from a few days to sev-
eral weeks [8]. The cloud monitoring indicators can be 
divided into the following three types according to the 
three levels (IaaS, PaaS, SaaS) of cloud services:

• Infrastructure layer indicators: This layer provides 
monitoring indicators for cloud infrastructure, 
typically including operational parameters of serv-
ers, network devices, etc., such as CPU utilization, 
memory utilization, disk I/O, network bandwidth 
utilization, network latency, and container and vir-
tual machine performance indices. The fluctuation 
of the server indicators has no periodicity, once the 
anomaly occurs, the fluctuation will be significant.

• Platform layer indicators: This layer provides moni-
toring indicators for development platforms on 
the cloud infrastructure, used to record the run-
ning state or performance of components such as 
big data platforms, middleware, databases, secu-
rity platforms, etc., such as the number of database 
requests, response time, application log informa-
tion, dynamic expansion and load balancing and 
other key functional indicators. There are numer-
ous types and quantities of monitoring indicators in 
the PaaS layer.

• Software service layer indicators: This layer provides 
monitoring indicators of cloud applications and 
services, including service request frequency and 
response time, user availability and quantity, applica-
tion startup and termination time, etc. The monitor-
ing indicators of the software layer generally reflect 
users’ behavior, and the number of requests for ser-
vices by all users is statistically periodic over time 
[22].

In summary, monitoring indicators of cloud platforms 
have the characteristics of numerous types and quantities 
of indicators, large amounts of data, and high component 
dependencies between different levels. Anomaly detec-
tion of MTS is often required for a single fault.

Multivariate time series monitoring data
The timestamps and values of a single indicator form a 
UTS, to comprehensively obtain the operational pattern 
and state of cloud services, the monitoring system contin-
uously collects monitoring data from various levels and 
indicators. Therefore, the monitoring of a cloud service 
system often consists of hundreds of UTS, forming MTS. 
The operation and maintenance personnel usually focus 
on the operational state of the entire system, rather than 
the state of a specific indicator, but research shows that 
there is no single indicator that can capture all system 
performance issues [23]. Therefore, the MTS data com-
posed of performance monitoring indicators of various 
layers and components of the cloud platform is gradually 
getting attention. Figure 1 shows the MTS composed of 
three indicators, which are used as real-time data input 
to detect whether there are anomalies in the entire sys-
tem. The MTS data are highly correlated because of the 
monitoring variables’ spatiotemporal correlation. The red 
regions in Fig. 1 indicate anomalies, and the three groups 
of UTS have experienced significant fluctuations.

There are usually two purposes in actual application 
scenarios for collected monitoring data of cloud ser-
vice programs and equipment operation. The first one 
is online anomaly detection, the extremely high real-
time and high data sampling frequency is needed for 
this type, therefore, data compression is not required in 
such scenarios. In addition to anomaly detection of real-
time data, it is also necessary to save the collected data 
into the database to support the prediction of the state 
of the cloud platform and provide a basis for decision-
making [24]. In this scenario, the real-time performance 
and integrity requirements of data are not strict, but 
the collected source data will occupy a large amount of 
cloud storage space, resulting in increased storage costs 
and reduced data retrieval efficiency, therefore, data 
compression will be used to alleviate storage pressure. 
The operation and maintenance personnel will pay more 
attention to the recent (within a week or a month) moni-
toring service program and equipment operating status 
data. The compressed data needs to retain some sharply 
changing inflection point data for analysis and judgment, 
and it should be ensured that the compressed data can 
be recovered through lazy loading. For relatively long-
term stored data (more than six months), a compression 
method with a higher compression ratio will be selected 
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to balance the actual application effect and storage 
pressure.

Why time series data compression
Time series data is gaining increasing popularity, rather 
than processing time series as streams and analyzing only 
once, the demand for storage of time series data for fur-
ther analysis is becoming popular [25]. Time series data 
consists of many data points, and in all fields, timestamps 
and measurement values dominate storage consumption 
[21] The generation speed of time series data exceeds the 
growth of computing and storage capacity [26], and many 
allocation scenarios cannot afford enough computing 
resources including storage and network transmission 
bandwidth to meet the processing needs for time series 
data.

The sensors of connected vehicles produce about 30 TB 
of data per day, time series is one of the main compo-
nents of the generated data, and vehicle manufacturers 
have to install large capacity disks to preserve the moni-
toring data. While a 30-TB disk costs nearly $1,200 [25], 
one month of running data can fill a 960-TB disk, which 
means the storage cost is more than $35,000. If a 30%-
50% compression ratio can be achieved, it can reduce 
costs by at least $10,000. The same situation also occurs 
in the field of cloud monitoring, the daily increase in data 
volume of Kingsoft Cloud Log Service is 200  TB [27], 
although public clouds can store all data, however, taking 
Alibaba Public Cloud Hard Disk as an example, the unit 
price of ESSD PL1 cloud disk is ¥1.00/1 GiB/month [28], 
based on 6 months of monitoring data retention, the daily 
data storage cost incurred will exceed $160,000, and the 

data storage cost incurred for one month of monitoring 
data will be close to $5 million. Faced with huge storage 
costs, small operating entities have to limit their storage 
cost. Besides, most of the data collected in the vehicle 
network and energy industry is repetitive and low-value 
density [25], so it is not worth paying such high storage 
fees for those low-value density data. Therefore, it is nec-
essary to compress time series within a reasonable range 
of computing resources and time. Although existing data 
compression methods can be used for UTS compression, 
when facing MTS compression, the existing methods 
cannot guarantee the temporal correlation between mul-
tivariate indicators, which leads to the compressed tem-
poral data losing or misplacing the timestamp, thereby 
affecting the effectiveness of reconstructed data in practi-
cal applications. We still need to develop more effective 
compression approaches for MTS when considering the 
compression ratio and the correlation.

Motivation and challenge 
From the current state-of-the-art, most existing time 
series data compression methods only consider a single 
variable, and even if some studies propose compression 
methods for MTS, the time series data is compressed 
independently during compression, which does not 
achieve collaborative compression, making it difficult to 
ensure the correlation of MTS. In the actual monitoring 
environment of cloud platforms, multiple variables such 
as received packets, TCP network indicators, CPU met-
rics, and memory usage are sensed and transmitted over 
a communication link to the storage serve. When facing 
dozens or even hundreds of monitoring indicators, the 

Fig. 1 The MTS consists of three sets of fragments over 24 h from the cloud online service system, two regions with anomalies are marked in red
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first step is to design an efficient data grouping method 
to ensure that monitoring data with strong correlation is 
compressed as a group as much as possible. At the same 
time, due to the coherence and density of cloud moni-
toring data, when a monitoring indicator is sampled at 
1-min intervals, it can exceed 10,000 data points in a 
week. Therefore, how to compress at a lower sampling 
rate (achieve a high compression ratio) while ensuring 
data reconstruction ability is another problem that this 
article aims to solve.

Proposed algorithm
Two‑step collaborative compression scheme
This section proposes the two-step mechanism for 
MTS data compression. The collaborative compres-
sion method proposed in this article considers multiple 

related variables simultaneously, by modeling and uti-
lizing the data correlation of MTS, we can achieve a 
better compression effect while preserving the data 
correlation. Figure  2 shows the two-step scheme in 
the data compression processing unit. In the first step, 
we adopt a shape-based distance, k-shape clustering 
method [29] to classify cloud monitoring data, to pre-
serve the correlation between the different variables. In 
the second step, we compress the clustered data using 
CS to reduce the storage space of the data. The data 
reconstruction processing unit is applied in practical 
scenarios and method validation, the CS reconstruc-
tion method can preserve data correlation, and we can 
group the reconstructed data according to the kept data 
correlation. These techniques mentioned are briefly 
discussed below.

Fig. 2 Two-step scheme consists of shape-based clustering and compressed sensing which is shown in the data compression processing unit, 
and data reconstruction unit used for validation and practical applications
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Shape‑based clustering
Clustering is the general problem of partitioning n obser-
vations into k clusters, where k ≤ n. The evaluation index 
selected by k-shape when measuring the proximity of two 
variables is based on the shape-based distance (SBD), and 
the cross-correlation is obtained by calculating the SBD 
between the indexes [29]. Compared with other algo-
rithms such as dynamic time warping (DTW, cDTW), 
the k-shape can obtain higher computational efficiency 
when dealing with high-dimensional time series. To cal-
culate the similarity of time series data −→x = (x1, · · · , xm) 
and −→y = y1, · · · , ym  with the length of m, cross-corre-
lation keeps −→y  static and shifts s of −→x  each time to com-
pute their inner product. We define a cross-correlation 
sequence CCω

(−→
x ,−→y

)
= (c1, · · · , cω) , where ω is the 

possibility of all moves with the length of 2m-1, defined 
as follows:

where Rω−m

(−→
x ,−→y

)
 is calculated as follows:

Our target is to obtain the ω corresponding to the max-
imum value of CCω

(−→
x ,−→y

)
 , at this time, ω represents the 

maximum similarity between −→x  and −→y  after shifting, and 
the optimal shift is −→x (s) , where s = ω −m . The shape-
based distance can be obtained from the cross-correla-
tion metric:

The more overlap between the two sequences, the 
larger the CCω

(−→
x ,−→y

)
 value, the more similar the shape 

is, the smaller the distance measure value SBD
(−→
x ,−→y

)
 

is, and then the similarity between the sequences can 
be obtained. In the process of the k-shape algorithm to 
obtain the cluster center, the purpose is to find a time 
series that minimizes the sum of squared distances −→µ ∗

k 
between this time series and all other time series in the 
cluster, and its optimization objective function is:

where Pk   represents the kth cluster, and −→µ k is the clus-
ter center. After cluster analysis, the MTS data is divided 
into multiple clusters, and the indicators in each cluster 

(1)
CCω

(−→
x ,−→y

)
= Rω−m

(−→
x ,−→y

)
,ωǫ{1, 2, · · · , 2m− 1}

(2)Rk

�−→
x ,−→y

�
=





m−k�
l=1

xl+k · y1, k ≥ 0

R−k

�−→y ,
−→
x
�
, k < 0

(3)SBD(�x, �y) = 1−max
ω

(
CCω(�x, �y)√

R0(�x, �x) · R0(�y, �y)

)

(4)

�µ∗
k = arg max

�µk

�

�xi∈Pk


 maxωCCω

�
�xi, �µk

�
�
R0

�
�xi, �xi

�
· R0( �µk , �µk)




2

are associated with the physical meaning of the corre-
sponding monitoring indicators. Finally, indicators with 
similar physical meanings can be aggregated together to 
ensure variable correlation.

Compressed sensing
CS breaks through the limitations of the Nyquist-Shan-
non sampling theorem, it can achieve perfect signal 
reconstruction with a smaller sampling, and directly 
acquire a condensed representation without losing much 
on the monitoring information [14]. Therefore, it is espe-
cially suitable for the perception and collection of large-
scale data scenarios such as communication and cloud 
computing. For the monitoring data of the cloud plat-
form, the process of compressing a set of signals x ∈ R

M 
into an M̃ dimensional measurement value y ∈ R

M̃ could 
be expressed as y = �x  , where � ∈ R

M̃×M is the meas-
urement matrix. Signal sparsity plays a crucial role in 
compressed sensing, if there is an orthogonal basis � that 
transforms the signal x  into a sparse domain, the moni-
toring signal can be expressed as x = �α . If α has only 
K non-zero elements, then x is said to be K-sparse in the 
sparse field � ∈ R

M×M , which also means that the signal 
is compressible, thus,

Where � = �� is called the sensing matrix, only when 
� ∈ R

M̃×M satisfies the constrained isometric property 
(RIP) condition can it be ensured that formula (5) has 
only one K-sparse solution. In order to reconstruct the 
target sparse signal α ∈ R

M from the compressed vec-
tor y ∈ R

M̃ , a K-sparse solution of the uncertainty Eq. (5) 
can be reconstructed through the ℓ0 minimization, then 
the process can be expressed as solving the following 
problem:

But sparse matrix reconstruction is NP-complete, and 
traditional CS reconstruction algorithms are mainly 
based on methods such as greedy pursuit and convex 
optimization. Greedy pursuit algorithms like orthogo-
nal matching pursuit (OMP) [30] and basic pursuit (BP) 
[31] are simple and efficient, but these algorithms do not 
update the signal support set at each iteration, which 
may affect the reconstruction probability. The convex 
optimization relaxes ℓ0 norm minimization to ℓ1 norm 
minimization, and improves prediction accuracy and 
interpretability through variable selection and regulariza-
tion. In this paper, the effective convex optimization tool-
set is selected to calculate the minimum value of the ℓ1 
norm.

(5)y = �x = ��α = �α

(6)α̂ = arg min �α�0 s.t. y = ��α = �α
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Multivariate Time Series Collaborative Compression 
(MTSCC)
Based on the proposed two-step compression scheme, 
this section introduces the specific implementation 
algorithm MTSCC. As shown in Fig.  3, the designed 
approach consists of the data compression processing 
unit and data reconstructed processing unit. CS recon-
struction of a large number of indicators is inaccurate due 
to multiple indicators containing single indicators with 
different shapes, and CS is not suitable for reconstruc-
tion in this condition. However, it cannot capture the 
correlation between univariate indicators by disassem-
bling them into univariate indicators and reconstruct-
ing them one by one. Therefore, in the data compression 
processing unit, the shape-based clustering algorithm is 
first applied to cluster multiple indicators, and then the 
sparsity in the same clustered group is used for further 
compression. This is mainly because indicators in the 
same group exhibit similar shapes, and the correlation 
between data is determined by comparing the shape dif-
ferences between indicators. That’s why MTSCC is dif-
ferent from the previous methods. After being processed 
by the shape-based clustering algorithm, it preserves the 
correlation between MTS data to a great extent.

The proposed approach is adaptive because the shape-
based distance measure in k-shape (comparing the 
similarity between data) is estimated at runtime. Let 
monitoring batch data Xt ∈ R

M×N be the input MTS 
matrix, where N is the number of the dimensions, which 
is the variables measured by the cloud monitoring tools, 
and M is the number of the samples in each variable. 

The proposed approach here will further be validated in 
“Experiments and results” section.

Experiments and results
Experimental design
Datasets used for evaluation
The proposed approach is applied to a Key Indicators 
Dataset (KID), which is a 4-week-long dataset collected 
by a monitoring system. This dataset contains 6 indica-
tors, and all of them along with the sampling interval are 
listed in Table 1.

Where mem_usage refers to memory usage; tcp_insegs 
refers to the total number of message segments received; 
cpu_sintr refers to the number of interrupts in the sys-
tem; cpu_load refers to the load of the CPU, which is 
used to measure how busy the CPU is; cpu_ctxt is used to 
measure the frequency of context switching, the higher 
the number of switching times, the more frequent task 
switching; tcp_outsegs refers to the total number of mes-
sage segments sent.

Fig. 3 Framework of the proposed MTSCC algorithm

Table 1 Datasets summary

Indicators Univariate Time Series Sampling interval and period

Indicator-01 mem_usage 1 min, 4 weeks

Indicator -02 tcp_insegs

Indicator -03 cpu_sintr

Indicator -04 cpu_load

Indicator -05 cpu_ctxt

Indicator -06 tcp_outsegs
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Performance parameters
The parameters used for the performance evaluation of 
the MTSCC are described here. 

All the variables used here carry the same meaning 
as mentioned in “Proposed algorithm” section unless 
explicitly mentioned.

PCC We use the Person correlation coefficient (PCC) 
to measure the degree of linear correlation between two 
sets of data. The larger the absolute value of the corre-
lation coefficient, the higher the possibility that the two 
samples belong to the same class. The PCC r between 
two samples si and pi is expressed as:

where s̄ = 1
M

M∑
i=1

si, p̄ = 1
M

M∑
i=1

pi , and M is the number of 

samples of each sample.

RMSE The errors of correlation and reconstruction 
induced in the two-step algorithm process are measured 
in terms of root mean squared error (RMSE), which is 
calculated as:

where M is the number of samples of each univariate 
time series data. We define a cRMSE as the RMSE of the 
PCC, where xi and x̂i are respectively the PCC of actual 
and the PCC of reconstructed data. Similarly, a dRMSE 
is defined as the RMSE of the data, where xi and x̂i are 
actual and reconstructed data of the variable under con-
sideration. The larger the absolute value of the RMSE, 
the greater the error is. The efficiency of the proposed 
method is tested by calculating the cRMSE and dRMSE.

Implementation method
We compare the MTSCC method with Random 
Group-based Multivariate Time Series Compression 
(RG-MTSC), which uses random grouping instead of 
shape-based clustering in the first step of a two-step 
scheme. It is necessary to point out that the number of 
possible random grouping ways of n variables is a Bell 
number. For example, when the number of variables is 
14, there are 190,899,322 ways to group. When n is large, 
the actual experiment is extremely difficult to traverse all 

(7)r =

M∑
i=1

(si − s̄)(pi − p̄)

√
M∑
i=1

(si − s̄)2

√
M∑
i=1

(pi − p̄)2

(8)
RMSE =

√√√√√
M∑
i=1

(xi − x̂i)
2

M

the groups, requiring huge computing resources and cal-
culating time.

For the KID, the number of variables is 6, and there are 
203 ways of grouping them, so it is possible to exhaus-
tively traverse and run the experiment in a limited time. 
Among 203 grouping ways, the group obtained by the 
shape-based clustering method is called the base group, 
as shown in Table  2. It can be seen from Fig.  9, which 
shows the waveforms of indicator-01 to indicator-06, 
shape-based clustering can intuitively aggregate indica-
tors with similar shapes that match the grouping result 
in Table  2. Such grouping results also conform to the 
physical correlation between the variables. In addition to 
the base group, the other 202 groups are called random 
groups, which are used in the first step of RG-MTSC.

We perform experiments with the KID to analyze 
the impact of the compression ratio on the cRMSE and 
dRMSE of the MTSCC, and then compare and analyze 
the differences between the MTSCC and RG-MTSC on 
cRMSE and dRMSE based on a fixed compression ratio, 
respectively. It should be noted that the original data in 
all experiments were normalized before use in the two-
step scheme.

Impact analysis of compression ratio
We dynamically adjusted the compression ratio in 
MTSCC and 12 random groups based on RG-MTSC at 
an interval of 0.02 and analyzed the impact of different 
compression rates on the cRMSE and dRMSE. Figure 4a 
shows the variation of cRMSE with the change of com-
pression ratio, from which it can be seen intuitively that 
when the compression ratio is not higher than 30%, the 
difference in cRMSE between MTSCC and RG-MTSC 
was not significant. When the compression ratio exceeds 
30%, the cRMSE fluctuates and the difference will gradu-
ally become large and indeterminate.

Figure  4b shows the variation of dRMSE with the 
change of compression ratio. It can be seen that when 
the compression ratio is lower than 80%, the dRMSE and 
the compression ratio are linearly positively correlated. 
When the compression ratio exceeds 80%, the curves of 
dRMSE fluctuate. To reduce the impact of cRMSE fluc-
tuations and better evaluate the MTSCC and RG-MTSC, 
we chose a compression rate of 30%. Based on this 

Table 2 Group result of shape-based clustering

Indicators

Base Group Indicator-01

Indicator-02, Indicator-06

Indicator-03, Indicator-04, Indicator-05
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parameter setting, we further evaluate the performance 
difference between the MTSCC and RG-MTSC.

Comparison of cRMSE
The comparison result of the cRMSE between the 
MTSCC and RG-MTSC is shown in Fig. 5, the red trian-
gles represent the grouping result based on RG-MTSC, 
while the pentagram represents the grouping results 
based on MTSCC. Among all grouping ways, the cRMSE 
of the base group based on the MTSCC method is better 
than 96.04% of the random groups based on RG-MTSC, 
which indicates that the proposed method can better 
preserve the correlation of data.

The further demonstration in Fig. 6 shows the percent-
age of the increase of the cRMSE difference between the 
MTSCC and 12 random groups based on RG-MTSC, we 
set the cRMSE based on MTSCC grouping to “baseline” 
which is colored in blue. We can find that the cRMSE 
based on RG-MTSC increases by at least 9.3% and an 
average of 28.7%. When the number of variables is large 
and it is impossible to traverse all the groups to find the 
optimal group, the MTSCC method can better guarantee 
the variable correlation after compression than randomly 
selecting a group.

Fig. 4 Effect of compression ratio on (a) cRMSE and (b) dRMSE
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Fig. 5 Comparison of the cRMSE between the MTSCC and RG-MTSC

Fig. 6 Percentage increase of the cRMSE between the MTSCC and 12 random groups-based RG-MTSC
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Comparison of dRMSE
The comparison results of the dRMSE between the 
MTSCC and RG-MTSC are shown in Fig. 7, the blue cir-
cles represent the grouping result based on RG-MTSC. 
Similar to cRMSE, the dRMSE of the MTSCC method is 
better than 90.10% of the random groups based on RG-
MTSC. Figure  8 further shows the percentage increase 
of the dRMSE difference between the MTSCC and 12 
random groups based on RG-MTSC, we set the dRMSE 
based on MTSCC grouping to “baseline” which is colored 
in red. The dRMSE based on RG-MTSC increases by at 
most 3.86% and an average of 1.9%. Compared with the 
randomness of the dRMSE of the RG-MTSC, although 
the MTSCC cannot guarantee the minimum error 
between the reconstructed data and the original data, it 
can guarantee a relatively better result.

A result comparison of the original data streams and 
reconstructed data streams after compression are pre-
sented respectively in Fig.  9, the black lines represent 
the original data and the red lines represent the recon-
structed data. For each of the 6 indicators, we intercept 
a part of the time series data for amplification to dem-
onstrate the reconstruction results. It is observed that 
the reconstructed data nearly overlap with the original 
data of the 6 indicators, owing to the high reconstruction 
accuracy.

Comparison with AMDC
The MTS compression performance of the pro-
posed MTSCC algorithm is compared with that of the 
recently proposed AMDC algorithm, which we imple-
mented based on the description available at [18]. We 
mainly compared the reconstruction accuracy and data 

correlation retention of MTS under the same compres-
sion ratio of 30%. Different from the MTSCC proposed 
in this article, AMDC pays more attention to the dimen-
sionality reduction of MTS data to facilitate subsequent 
data compression processing, thus ignoring the cor-
relation between MTS data. This is mainly because the 
Principal Component Analysis (PCA) method is used 
in the AMDC to reduce the dimensionality of the data. 
Although during the dimensionality reduction pro-
cess, PCA is used to retain as much information and 
correlation of the original data as possible, due to the 
principal components being linear combinations of the 
original data, nonlinear relationships and higher-order 
relationships cannot be preserved. The shape-based 
clustering algorithm can find the inherent structural dif-
ferences between data points and try to make the data 
points in the same cluster related to each other. There-
fore, the clustering algorithm can usually better satisfy 
the requirements in terms of retaining the correlation 
between MTS, and the subsequent experimental results 
also prove this.

The dataset is divided into 20 groups and we con-
duct 20 comparative tests, as shown in Fig. 10, which is 
a comparison of dRMSE using the MTSCC and AMDC 
methods. Figure  10a shows 3 sets of data randomly 
selected from 20 sets of comparative tests, while Fig. 10b 
shows the statistical comparison of 20 test results. From 
Fig. 10, it can be found that both algorithms have good 
accuracy in data reconstruction, and the median and 
average dRMSE of the two methods are very close. Fig-
ure 11 shows the comparison of the cRMSE between the 
MTSCC and AMDC. We can find from Fig. 11a that the 
cRMSE based on AMDC increases by at least 22.7% and 

Fig. 7 Comparison of the dRMSE between the MTSCC and RG-MTSC
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an average of 25.5%. From Fig. 11b, the median and aver-
age cRMSE based on AMDC are close to or even exceed 
0.061, while the median and average cRMSE of the pro-
posed MTSCC are close to 0.045. This illustrates that 
when the compression ratio is the same, MTSCC and 
the current state-of-the-art MTS compression method 
AMDC have comparable performance in data compres-
sion-reconstruction accuracy, but MTSCC has better 
performance in preserving the correlation.

Validation of reconstruction using a real application
In the previous section, the performance of the pro-
posed MTSCC is validated through experiments. In this 
section, we demonstrate through a practical example to 
illustrate the proposed approach can be applied in actual 
production environments without adverse effects on user 
experience. The monitoring data of the cloud platform is 
mainly used for anomaly detection, since the MTS con-
tains the complex temporal correlation between single 

indicators, it can alert regional anomalies. We use the 
existing MTS anomaly detection algorithm [23] to detect 
the three sets of MTS in Table 1. The anomaly detection  
algorithm is an unsupervised deep learning method. In 
this paper, the original data and reconstructed data are 
divided into a training set and a test set, respectively. 
Precision, recall, and F1-score are used to evaluate 
the effectiveness of the anomaly detection algorithm. 
The calculation formula for the F1-score is as shown 
in Eq. 9

As shown in Table  3, the comprehensive index 
F1-score of the anomaly detection performance of 
the original data and the reconstructed data using 
the MTSCC is listed. The maximum deviation of the 
F1-score caused by using reconstructed data is 0.05%, 

(9)F1− score = 2×
precision× recall

precision+ recall

Fig. 8 Percentage increase of the dRMSE between the MTSCC and 12 random groups-based RG-MTSC
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which is quite acceptable. This result is benefited from 
the adoption of shape-based clustering and CS-based 
collaborative compression, it makes that data with the 
same physical meaning has been co-processed during 
data compression and reconstruction, and can main-
tain the temporal correlation of the same group of data 

as much as possible, it provides interpretability for 
the analysis of anomaly detection results. This result 
strengthens the claim that MTSCC reduces the space of 
data storage and can ensure the correlation of data in 
the process of reconstruction, and the loss of informa-
tion is practically negligible.

Fig. 9 Comparison of reconstructed data and original data of 6 indicators, all data are normalized, (a) to (f) corresponding to indicator-01 
to indicator-06, indicator-01 in a group; indicator-02 and indicator-06 are in a group; indicator-03 to indicator-05 are in a group

Fig. 10 a 3 groups of random comparison results of dRMSE; b Statistical results of 20 groups of dRMSE comparison tests
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Conclusion and future work
In this paper, a two-step scheme which is called MTSCC 
is proposed for the collaborative compression of cloud 
monitoring MTS data. The proposed approach adopts 
a shape-based clustering algorithm to obtain variable 
grouping in the first step and uses grouped data as input 
for CS in the second step. The experimental results show 
that the MTSCC is superior to the random groups-based 
RG-MTSC by 96.04% in terms of variable correlation. At 
the same time, the dRMSE of the MTSCC method was 
0.0407 under the premise of a 30% compression ratio, 
which was 90.10% better than that of the random groups-
based RG-MTSC. In addition, we have proved through a 
practical application that the data reconstructed by the 
approach can be used for cloud service anomaly detec-
tion without affecting user experience. In future work, we 
will study the operation performance of the MTSCC in 
more detail, and further reduce the cRMSE and dRMSE 
while ensuring high operation efficiency. Meanwhile, we 
will explore the potential applications of MTSCC, such 
as in cloud storage, the MTSCC method can be used to 
compress the MTS data before storing it in the cloud, 
and the MTS data can be compressed while preserving 

the complex temporal correlation between indicators. 
Besides, MTS data is often used in machine learning 
tasks such as predictive modeling or anomaly detec-
tion. However, dealing with large-scale MTS data can be 
computationally expensive. To address this, the MTSCC 
method can be applied to compress the MTS data before 
feeding it into machine learning algorithms.
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