
Miao et al. Journal of Cloud Computing (2024) 13:16
https://doi.org/10.1186/s13677-023-00579-4

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Multivariate time series collaborative
compression for monitoring systems in securing
cloud-based digital twin
Zicong Miao1†, Weize Li1*† and Xiaodong Pan1

Abstract

With the booming of cloud-based digital twin systems, monitoring key performance indicators has become crucial
for ensuring system security and reliability. Due to the massive amount of monitoring data generated, data compres-
sion is necessary to save data transmission bandwidth and storage space. Although the existing research has pro-
posed compression methods for multivariate time series (MTS), it is still a challenge to guarantee the correlation
between data when compressing the MTS. This paper proposes an MTS Collaborative Compression (MTSCC) method
based on the two-step compression scheme. First, shape-based clustering is implemented to group the MTS. After-
ward, the compressed sensing is optimized to achieve collaborative compression of grouped data. Based on a real-
world MTS dataset, the experimental results show that the proposed MTSCC can effectively preserve the complex
temporal correlation between indicators while achieving efficient data compression, and the root mean squared
error of correlation between the reconstructed and original data is only 0.0489 in the case of 30% compression ratio.
Besides, it is verified that using the reconstructed data in the production environment has almost the same perfor-
mance as using the original data.

Keywords Cloud monitoring, MTS, Shape-based clustering, Compressed sensing, Collaborative compression

Introduction
With the rapid development of supporting technologies,
such as cloud computing, big data, and machine learning,
digital twin (DT) has been moving progressively from
concept to practice. The data interaction among physi-
cal structure, digital model, and human interventions are
enhanced by applying cloud computing services [1]. Thus,
the cloud-based DT systems operating on big data need
to ensure extremely high security and stability in case a
cloud service fails, which will not only lead to a decline
in user experience but also affect the revenue of the cloud

service provider. Amazon’s cloud-service network suf-
fered a major outage on December 7, 2021, which leads
to disrupting access to many popular sites including
many governments, universities, and companies [2]. On
December 19, 2022, some services in the Alibaba Cloud
Hong Kong region failed, making it impossible to access
the websites hosted by key infrastructure operators,
including the Macau Monetary Authority, Lotus Guard-
ian, and Macau Daily [3], causing huge economic losses.

Due to the increasing scale and data complexity of
cloud services, it is difficult to collect, store, analyze,
and visualize data through traditional methods [4]. To
effectively manage cloud service systems and large data
centers, service providers need to monitor the processes
of systems and applications that generate big data, and
ensure the reliability of cloud services through real-time
monitoring of cloud platforms [5]. Therefore, cloud ser-
vice monitoring, such as safeguarding performance,

†Zicong Miao and Weize Li contributed equally to this work and co-first
authors.

*Correspondence:
Weize Li
liweize@chinatelecom.cn
1 China Telecom Cloud Computing Corporation, Beijing, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-023-00579-4&domain=pdf

Page 2 of 15Miao et al. Journal of Cloud Computing (2024) 13:16

detecting attacks, data center-wide profiling, state pre-
diction, and anomaly detection [6, 7], is a crucial and
essential part of cloud management.

To achieve effective anomaly monitoring, Internet
service providers based on cloud computing will deploy
monitoring programs at various software and hardware
levels of the cloud service system. Thousands to millions
of key performance indicators (KPI), such as CPU utili-
zation, queries per second, and service response time are
collected [8]. For example, unusual data peaks or abrupt
drops in KPI data usually indicate abnormal events of
related cloud services [9, 10]. In the actual cloud moni-
toring production environment, there are a large number
of platform components that make up cloud services, and
each component collects many indicators. For example,
the MySQL database uses hundreds of monitoring indi-
cators [11]. As the complexity of the cloud service system
increases, a fault will cause anomalies in multiple indica-
tors, which means there is a correlation between these
indicators. The obvious challenge brought by the massive
monitoring data is how to counteract the increase in data
storage and analysis costs. Practical applications may not
need all the original data, but only some effective and
aggregated data for analysis. Therefore, a reliable, accu-
rate, and efficient compression method that can preserve
the data correlation needs to be applied urgently [12].

General compression methods are divided into lossy
compression and lossless compression. Lossy compres-
sion methods improve compression ratio by deleting
unimportant data, while lossless compression preserves
accurate information of the data for reconstruction.
Lossy compression is suitable for fault-tolerant scenar-
ios such as image, audio, and video compression, using
wavelet transform, compression autoencoder, and neu-
ral networks [13]. The lossless compression methods
can achieve accurate reconstruction, and they do not
incur any information loss. Common lossless compres-
sion methods include Lempel–Ziv-Welsh (LZW), Lem-
pel–Ziv-Markov chain algorithm, and adaptive Huffman
coding [14]. The Compressed Sensing (CS) algorithm
can accurately reconstruct all data with a small amount
of sample, it can reconstruct a signal robustly and stably
from under sampled noise observations by exploiting the
sparse characteristics of the signal [15]. This advantage
means CS has the potential to achieve a higher compres-
sion ratio. That’s why CS has been widely used in the
research of time series data compression in recent years
[16]. The CS algorithm can be divided into two parts,
first, original data are subsampled in advance using a
determined sensing matrix such as a Gaussian matrix
to obtain the sampled data. Then, the compressed data
and sensing matrix are used to recover the original data
[17]. Unfortunately, it is observed that CS and other time

series compression methods cannot preserve the corre-
lation of the variables, because most existing methods
mainly focus on univariate time series (UTS) [18, 19].
Some research has proposed compression methods for
MTS but applies data compression to each variable indi-
vidually while ignoring the correlation between variables
[18, 20]. We cannot ignore the data correlation but chase
the extreme compression efficiency. Moreover, cloud
monitoring datasets do not require the exact waveform
data, a reasonably accurate trend of the data is sufficient
for anomaly detection. Hence, there exists a tradeoff
between the extent of compression achievable and the
correlation loss caused by it. To improve monitoring effi-
ciency and utilize the correlation between multivariate
data, it is an important and challenging task to design a
collaborative compression method for MTS data.

Motivated by the above-mentioned works, this paper
presents the MTS collaborative compression (MTSCC)
algorithm in combination with the actual scenarios of
cloud monitoring applications. According to our inves-
tigation, there is currently no research to perform MTS
compression in combination with preserving the correla-
tion between cloud monitoring time series data. Making
a tradeoff between data correlation and implementing a
high compression ratio is a major task for this article. The
contributions of this paper are summarized as follows:

• A novel two-step collaborative compression for mul-
tivariate cloud monitoring dataset is proposed. The
clustering is performed by assessing correlations
based on shape differences between each time series
in MTS, and then the CS method is applied to com-
press them temporally.

• We propose performance indices for the MTSCC to
evaluate the errors of correlation and reconstruction
data, and then carry out the empirical optimization
of the operating parameters, including compression
ratio concerning the data variability.

• We conduct extensive experimental evaluations using
a real-world dataset. It shows that under the prem-
ise of 30% compression ratio, the root mean squared
error of correlation between the reconstructed and
original data is only 0.0489.

• Reconstruction accuracy of the proposed MTSCC
for monitoring dataset is validated using an anomaly
detection application, it is demonstrated that this
approach does not have any adverse effect on the
practical application.

The layout of this article is organized as follows.
“Background and motivation” section briefly gives an
overview of the background and discusses the moti-
vation. “Proposed algorithm” section introduces the

Page 3 of 15Miao et al. Journal of Cloud Computing (2024) 13:16

proposed two-step collaborative compression scheme
and algorithm. We evaluate our approach in “Experi-
ments and results” section on MTS datasets and give
the concludes in “Conclusion and future work” section.

Background and motivation
Cloud monitoring indicators
 As a measurement basis for evaluating the perfor-
mance and stability of cloud computing systems, cloud
monitoring indicators are numerical information of
monitoring objects collected or aggregated at prede-
fined time intervals (such as 5s or 30s), therefore, they
are essentially time series data, with each data point
consisting of a timestamp, measured value, and metric
name [16, 21]. Monitoring data of cloud services con-
tain thousands or even millions of indicators, each of
which consists of tens of thousands of parameters, and
to record the complete pattern of monitoring objects,
the period of the data varies from a few days to sev-
eral weeks [8]. The cloud monitoring indicators can be
divided into the following three types according to the
three levels (IaaS, PaaS, SaaS) of cloud services:

• Infrastructure layer indicators: This layer provides
monitoring indicators for cloud infrastructure,
typically including operational parameters of serv-
ers, network devices, etc., such as CPU utilization,
memory utilization, disk I/O, network bandwidth
utilization, network latency, and container and vir-
tual machine performance indices. The fluctuation
of the server indicators has no periodicity, once the
anomaly occurs, the fluctuation will be significant.

• Platform layer indicators: This layer provides moni-
toring indicators for development platforms on
the cloud infrastructure, used to record the run-
ning state or performance of components such as
big data platforms, middleware, databases, secu-
rity platforms, etc., such as the number of database
requests, response time, application log informa-
tion, dynamic expansion and load balancing and
other key functional indicators. There are numer-
ous types and quantities of monitoring indicators in
the PaaS layer.

• Software service layer indicators: This layer provides
monitoring indicators of cloud applications and
services, including service request frequency and
response time, user availability and quantity, applica-
tion startup and termination time, etc. The monitor-
ing indicators of the software layer generally reflect
users’ behavior, and the number of requests for ser-
vices by all users is statistically periodic over time
[22].

In summary, monitoring indicators of cloud platforms
have the characteristics of numerous types and quantities
of indicators, large amounts of data, and high component
dependencies between different levels. Anomaly detec-
tion of MTS is often required for a single fault.

Multivariate time series monitoring data
The timestamps and values of a single indicator form a
UTS, to comprehensively obtain the operational pattern
and state of cloud services, the monitoring system contin-
uously collects monitoring data from various levels and
indicators. Therefore, the monitoring of a cloud service
system often consists of hundreds of UTS, forming MTS.
The operation and maintenance personnel usually focus
on the operational state of the entire system, rather than
the state of a specific indicator, but research shows that
there is no single indicator that can capture all system
performance issues [23]. Therefore, the MTS data com-
posed of performance monitoring indicators of various
layers and components of the cloud platform is gradually
getting attention. Figure 1 shows the MTS composed of
three indicators, which are used as real-time data input
to detect whether there are anomalies in the entire sys-
tem. The MTS data are highly correlated because of the
monitoring variables’ spatiotemporal correlation. The red
regions in Fig. 1 indicate anomalies, and the three groups
of UTS have experienced significant fluctuations.

There are usually two purposes in actual application
scenarios for collected monitoring data of cloud ser-
vice programs and equipment operation. The first one
is online anomaly detection, the extremely high real-
time and high data sampling frequency is needed for
this type, therefore, data compression is not required in
such scenarios. In addition to anomaly detection of real-
time data, it is also necessary to save the collected data
into the database to support the prediction of the state
of the cloud platform and provide a basis for decision-
making [24]. In this scenario, the real-time performance
and integrity requirements of data are not strict, but
the collected source data will occupy a large amount of
cloud storage space, resulting in increased storage costs
and reduced data retrieval efficiency, therefore, data
compression will be used to alleviate storage pressure.
The operation and maintenance personnel will pay more
attention to the recent (within a week or a month) moni-
toring service program and equipment operating status
data. The compressed data needs to retain some sharply
changing inflection point data for analysis and judgment,
and it should be ensured that the compressed data can
be recovered through lazy loading. For relatively long-
term stored data (more than six months), a compression
method with a higher compression ratio will be selected

Page 4 of 15Miao et al. Journal of Cloud Computing (2024) 13:16

to balance the actual application effect and storage
pressure.

Why time series data compression
Time series data is gaining increasing popularity, rather
than processing time series as streams and analyzing only
once, the demand for storage of time series data for fur-
ther analysis is becoming popular [25]. Time series data
consists of many data points, and in all fields, timestamps
and measurement values dominate storage consumption
[21] The generation speed of time series data exceeds the
growth of computing and storage capacity [26], and many
allocation scenarios cannot afford enough computing
resources including storage and network transmission
bandwidth to meet the processing needs for time series
data.

The sensors of connected vehicles produce about 30 TB
of data per day, time series is one of the main compo-
nents of the generated data, and vehicle manufacturers
have to install large capacity disks to preserve the moni-
toring data. While a 30-TB disk costs nearly $1,200 [25],
one month of running data can fill a 960-TB disk, which
means the storage cost is more than $35,000. If a 30%-
50% compression ratio can be achieved, it can reduce
costs by at least $10,000. The same situation also occurs
in the field of cloud monitoring, the daily increase in data
volume of Kingsoft Cloud Log Service is 200 TB [27],
although public clouds can store all data, however, taking
Alibaba Public Cloud Hard Disk as an example, the unit
price of ESSD PL1 cloud disk is ¥1.00/1 GiB/month [28],
based on 6 months of monitoring data retention, the daily
data storage cost incurred will exceed $160,000, and the

data storage cost incurred for one month of monitoring
data will be close to $5 million. Faced with huge storage
costs, small operating entities have to limit their storage
cost. Besides, most of the data collected in the vehicle
network and energy industry is repetitive and low-value
density [25], so it is not worth paying such high storage
fees for those low-value density data. Therefore, it is nec-
essary to compress time series within a reasonable range
of computing resources and time. Although existing data
compression methods can be used for UTS compression,
when facing MTS compression, the existing methods
cannot guarantee the temporal correlation between mul-
tivariate indicators, which leads to the compressed tem-
poral data losing or misplacing the timestamp, thereby
affecting the effectiveness of reconstructed data in practi-
cal applications. We still need to develop more effective
compression approaches for MTS when considering the
compression ratio and the correlation.

Motivation and challenge
From the current state-of-the-art, most existing time
series data compression methods only consider a single
variable, and even if some studies propose compression
methods for MTS, the time series data is compressed
independently during compression, which does not
achieve collaborative compression, making it difficult to
ensure the correlation of MTS. In the actual monitoring
environment of cloud platforms, multiple variables such
as received packets, TCP network indicators, CPU met-
rics, and memory usage are sensed and transmitted over
a communication link to the storage serve. When facing
dozens or even hundreds of monitoring indicators, the

Fig. 1 The MTS consists of three sets of fragments over 24 h from the cloud online service system, two regions with anomalies are marked in red

Page 5 of 15Miao et al. Journal of Cloud Computing (2024) 13:16

first step is to design an efficient data grouping method
to ensure that monitoring data with strong correlation is
compressed as a group as much as possible. At the same
time, due to the coherence and density of cloud moni-
toring data, when a monitoring indicator is sampled at
1-min intervals, it can exceed 10,000 data points in a
week. Therefore, how to compress at a lower sampling
rate (achieve a high compression ratio) while ensuring
data reconstruction ability is another problem that this
article aims to solve.

Proposed algorithm
Two‑step collaborative compression scheme
This section proposes the two-step mechanism for
MTS data compression. The collaborative compres-
sion method proposed in this article considers multiple

related variables simultaneously, by modeling and uti-
lizing the data correlation of MTS, we can achieve a
better compression effect while preserving the data
correlation. Figure 2 shows the two-step scheme in
the data compression processing unit. In the first step,
we adopt a shape-based distance, k-shape clustering
method [29] to classify cloud monitoring data, to pre-
serve the correlation between the different variables. In
the second step, we compress the clustered data using
CS to reduce the storage space of the data. The data
reconstruction processing unit is applied in practical
scenarios and method validation, the CS reconstruc-
tion method can preserve data correlation, and we can
group the reconstructed data according to the kept data
correlation. These techniques mentioned are briefly
discussed below.

Fig. 2 Two-step scheme consists of shape-based clustering and compressed sensing which is shown in the data compression processing unit,
and data reconstruction unit used for validation and practical applications

Page 6 of 15Miao et al. Journal of Cloud Computing (2024) 13:16

Shape‑based clustering
Clustering is the general problem of partitioning n obser-
vations into k clusters, where k ≤ n. The evaluation index
selected by k-shape when measuring the proximity of two
variables is based on the shape-based distance (SBD), and
the cross-correlation is obtained by calculating the SBD
between the indexes [29]. Compared with other algo-
rithms such as dynamic time warping (DTW, cDTW),
the k-shape can obtain higher computational efficiency
when dealing with high-dimensional time series. To cal-
culate the similarity of time series data −→x = (x1, · · · , xm)
and −→y = y1, · · · , ym with the length of m, cross-corre-
lation keeps −→y static and shifts s of −→x each time to com-
pute their inner product. We define a cross-correlation
sequence CCω

(−→
x ,−→y

)
= (c1, · · · , cω) , where ω is the

possibility of all moves with the length of 2m-1, defined
as follows:

where Rω−m

(−→
x ,−→y

)
 is calculated as follows:

Our target is to obtain the ω corresponding to the max-
imum value of CCω

(−→
x ,−→y

)
 , at this time, ω represents the

maximum similarity between −→x and −→y after shifting, and
the optimal shift is −→x (s) , where s = ω −m . The shape-
based distance can be obtained from the cross-correla-
tion metric:

The more overlap between the two sequences, the
larger the CCω

(−→
x ,−→y

)
 value, the more similar the shape

is, the smaller the distance measure value SBD
(−→
x ,−→y

)

is, and then the similarity between the sequences can
be obtained. In the process of the k-shape algorithm to
obtain the cluster center, the purpose is to find a time
series that minimizes the sum of squared distances −→µ ∗

k
between this time series and all other time series in the
cluster, and its optimization objective function is:

where Pk represents the kth cluster, and −→µ k is the clus-
ter center. After cluster analysis, the MTS data is divided
into multiple clusters, and the indicators in each cluster

(1)
CCω

(−→
x ,−→y

)
= Rω−m

(−→
x ,−→y

)
,ωǫ{1, 2, · · · , 2m− 1}

(2)Rk

�−→
x ,−→y

�
=

m−k�
l=1

xl+k · y1, k ≥ 0

R−k

�−→y ,
−→
x
�
, k < 0

(3)SBD(�x, �y) = 1−max
ω

(
CCω(�x, �y)√

R0(�x, �x) · R0(�y, �y)

)

(4)

�µ∗
k = arg max

�µk

�

�xi∈Pk

 maxωCCω

�
�xi, �µk

�
�
R0

�
�xi, �xi

�
· R0(�µk , �µk)

2

are associated with the physical meaning of the corre-
sponding monitoring indicators. Finally, indicators with
similar physical meanings can be aggregated together to
ensure variable correlation.

Compressed sensing
CS breaks through the limitations of the Nyquist-Shan-
non sampling theorem, it can achieve perfect signal
reconstruction with a smaller sampling, and directly
acquire a condensed representation without losing much
on the monitoring information [14]. Therefore, it is espe-
cially suitable for the perception and collection of large-
scale data scenarios such as communication and cloud
computing. For the monitoring data of the cloud plat-
form, the process of compressing a set of signals x ∈ R

M
into an M̃ dimensional measurement value y ∈ R

M̃ could
be expressed as y = �x , where � ∈ R

M̃×M is the meas-
urement matrix. Signal sparsity plays a crucial role in
compressed sensing, if there is an orthogonal basis � that
transforms the signal x into a sparse domain, the moni-
toring signal can be expressed as x = �α . If α has only
K non-zero elements, then x is said to be K-sparse in the
sparse field � ∈ R

M×M , which also means that the signal
is compressible, thus,

Where � = �� is called the sensing matrix, only when
� ∈ R

M̃×M satisfies the constrained isometric property
(RIP) condition can it be ensured that formula (5) has
only one K-sparse solution. In order to reconstruct the
target sparse signal α ∈ R

M from the compressed vec-
tor y ∈ R

M̃ , a K-sparse solution of the uncertainty Eq. (5)
can be reconstructed through the ℓ0 minimization, then
the process can be expressed as solving the following
problem:

But sparse matrix reconstruction is NP-complete, and
traditional CS reconstruction algorithms are mainly
based on methods such as greedy pursuit and convex
optimization. Greedy pursuit algorithms like orthogo-
nal matching pursuit (OMP) [30] and basic pursuit (BP)
[31] are simple and efficient, but these algorithms do not
update the signal support set at each iteration, which
may affect the reconstruction probability. The convex
optimization relaxes ℓ0 norm minimization to ℓ1 norm
minimization, and improves prediction accuracy and
interpretability through variable selection and regulariza-
tion. In this paper, the effective convex optimization tool-
set is selected to calculate the minimum value of the ℓ1
norm.

(5)y = �x = ��α = �α

(6)α̂ = arg min �α�0 s.t. y = ��α = �α

Page 7 of 15Miao et al. Journal of Cloud Computing (2024) 13:16

Multivariate Time Series Collaborative Compression
(MTSCC)
Based on the proposed two-step compression scheme,
this section introduces the specific implementation
algorithm MTSCC. As shown in Fig. 3, the designed
approach consists of the data compression processing
unit and data reconstructed processing unit. CS recon-
struction of a large number of indicators is inaccurate due
to multiple indicators containing single indicators with
different shapes, and CS is not suitable for reconstruc-
tion in this condition. However, it cannot capture the
correlation between univariate indicators by disassem-
bling them into univariate indicators and reconstruct-
ing them one by one. Therefore, in the data compression
processing unit, the shape-based clustering algorithm is
first applied to cluster multiple indicators, and then the
sparsity in the same clustered group is used for further
compression. This is mainly because indicators in the
same group exhibit similar shapes, and the correlation
between data is determined by comparing the shape dif-
ferences between indicators. That’s why MTSCC is dif-
ferent from the previous methods. After being processed
by the shape-based clustering algorithm, it preserves the
correlation between MTS data to a great extent.

The proposed approach is adaptive because the shape-
based distance measure in k-shape (comparing the
similarity between data) is estimated at runtime. Let
monitoring batch data Xt ∈ R

M×N be the input MTS
matrix, where N is the number of the dimensions, which
is the variables measured by the cloud monitoring tools,
and M is the number of the samples in each variable.

The proposed approach here will further be validated in
“Experiments and results” section.

Experiments and results
Experimental design
Datasets used for evaluation
The proposed approach is applied to a Key Indicators
Dataset (KID), which is a 4-week-long dataset collected
by a monitoring system. This dataset contains 6 indica-
tors, and all of them along with the sampling interval are
listed in Table 1.

Where mem_usage refers to memory usage; tcp_insegs
refers to the total number of message segments received;
cpu_sintr refers to the number of interrupts in the sys-
tem; cpu_load refers to the load of the CPU, which is
used to measure how busy the CPU is; cpu_ctxt is used to
measure the frequency of context switching, the higher
the number of switching times, the more frequent task
switching; tcp_outsegs refers to the total number of mes-
sage segments sent.

Fig. 3 Framework of the proposed MTSCC algorithm

Table 1 Datasets summary

Indicators Univariate Time Series Sampling interval and period

Indicator-01 mem_usage 1 min, 4 weeks

Indicator -02 tcp_insegs

Indicator -03 cpu_sintr

Indicator -04 cpu_load

Indicator -05 cpu_ctxt

Indicator -06 tcp_outsegs

Page 8 of 15Miao et al. Journal of Cloud Computing (2024) 13:16

Performance parameters
The parameters used for the performance evaluation of
the MTSCC are described here.

All the variables used here carry the same meaning
as mentioned in “Proposed algorithm” section unless
explicitly mentioned.

PCC We use the Person correlation coefficient (PCC)
to measure the degree of linear correlation between two
sets of data. The larger the absolute value of the corre-
lation coefficient, the higher the possibility that the two
samples belong to the same class. The PCC r between
two samples si and pi is expressed as:

where s̄ = 1
M

M∑
i=1

si, p̄ = 1
M

M∑
i=1

pi , and M is the number of

samples of each sample.

RMSE The errors of correlation and reconstruction
induced in the two-step algorithm process are measured
in terms of root mean squared error (RMSE), which is
calculated as:

where M is the number of samples of each univariate
time series data. We define a cRMSE as the RMSE of the
PCC, where xi and x̂i are respectively the PCC of actual
and the PCC of reconstructed data. Similarly, a dRMSE
is defined as the RMSE of the data, where xi and x̂i are
actual and reconstructed data of the variable under con-
sideration. The larger the absolute value of the RMSE,
the greater the error is. The efficiency of the proposed
method is tested by calculating the cRMSE and dRMSE.

Implementation method
We compare the MTSCC method with Random
Group-based Multivariate Time Series Compression
(RG-MTSC), which uses random grouping instead of
shape-based clustering in the first step of a two-step
scheme. It is necessary to point out that the number of
possible random grouping ways of n variables is a Bell
number. For example, when the number of variables is
14, there are 190,899,322 ways to group. When n is large,
the actual experiment is extremely difficult to traverse all

(7)r =

M∑
i=1

(si − s̄)(pi − p̄)

√
M∑
i=1

(si − s̄)2

√
M∑
i=1

(pi − p̄)2

(8)
RMSE =

√√√√√
M∑
i=1

(xi − x̂i)
2

M

the groups, requiring huge computing resources and cal-
culating time.

For the KID, the number of variables is 6, and there are
203 ways of grouping them, so it is possible to exhaus-
tively traverse and run the experiment in a limited time.
Among 203 grouping ways, the group obtained by the
shape-based clustering method is called the base group,
as shown in Table 2. It can be seen from Fig. 9, which
shows the waveforms of indicator-01 to indicator-06,
shape-based clustering can intuitively aggregate indica-
tors with similar shapes that match the grouping result
in Table 2. Such grouping results also conform to the
physical correlation between the variables. In addition to
the base group, the other 202 groups are called random
groups, which are used in the first step of RG-MTSC.

We perform experiments with the KID to analyze
the impact of the compression ratio on the cRMSE and
dRMSE of the MTSCC, and then compare and analyze
the differences between the MTSCC and RG-MTSC on
cRMSE and dRMSE based on a fixed compression ratio,
respectively. It should be noted that the original data in
all experiments were normalized before use in the two-
step scheme.

Impact analysis of compression ratio
We dynamically adjusted the compression ratio in
MTSCC and 12 random groups based on RG-MTSC at
an interval of 0.02 and analyzed the impact of different
compression rates on the cRMSE and dRMSE. Figure 4a
shows the variation of cRMSE with the change of com-
pression ratio, from which it can be seen intuitively that
when the compression ratio is not higher than 30%, the
difference in cRMSE between MTSCC and RG-MTSC
was not significant. When the compression ratio exceeds
30%, the cRMSE fluctuates and the difference will gradu-
ally become large and indeterminate.

Figure 4b shows the variation of dRMSE with the
change of compression ratio. It can be seen that when
the compression ratio is lower than 80%, the dRMSE and
the compression ratio are linearly positively correlated.
When the compression ratio exceeds 80%, the curves of
dRMSE fluctuate. To reduce the impact of cRMSE fluc-
tuations and better evaluate the MTSCC and RG-MTSC,
we chose a compression rate of 30%. Based on this

Table 2 Group result of shape-based clustering

Indicators

Base Group Indicator-01

Indicator-02, Indicator-06

Indicator-03, Indicator-04, Indicator-05

Page 9 of 15Miao et al. Journal of Cloud Computing (2024) 13:16

parameter setting, we further evaluate the performance
difference between the MTSCC and RG-MTSC.

Comparison of cRMSE
The comparison result of the cRMSE between the
MTSCC and RG-MTSC is shown in Fig. 5, the red trian-
gles represent the grouping result based on RG-MTSC,
while the pentagram represents the grouping results
based on MTSCC. Among all grouping ways, the cRMSE
of the base group based on the MTSCC method is better
than 96.04% of the random groups based on RG-MTSC,
which indicates that the proposed method can better
preserve the correlation of data.

The further demonstration in Fig. 6 shows the percent-
age of the increase of the cRMSE difference between the
MTSCC and 12 random groups based on RG-MTSC, we
set the cRMSE based on MTSCC grouping to “baseline”
which is colored in blue. We can find that the cRMSE
based on RG-MTSC increases by at least 9.3% and an
average of 28.7%. When the number of variables is large
and it is impossible to traverse all the groups to find the
optimal group, the MTSCC method can better guarantee
the variable correlation after compression than randomly
selecting a group.

Fig. 4 Effect of compression ratio on (a) cRMSE and (b) dRMSE

Page 10 of 15Miao et al. Journal of Cloud Computing (2024) 13:16

Fig. 5 Comparison of the cRMSE between the MTSCC and RG-MTSC

Fig. 6 Percentage increase of the cRMSE between the MTSCC and 12 random groups-based RG-MTSC

Page 11 of 15Miao et al. Journal of Cloud Computing (2024) 13:16

Comparison of dRMSE
The comparison results of the dRMSE between the
MTSCC and RG-MTSC are shown in Fig. 7, the blue cir-
cles represent the grouping result based on RG-MTSC.
Similar to cRMSE, the dRMSE of the MTSCC method is
better than 90.10% of the random groups based on RG-
MTSC. Figure 8 further shows the percentage increase
of the dRMSE difference between the MTSCC and 12
random groups based on RG-MTSC, we set the dRMSE
based on MTSCC grouping to “baseline” which is colored
in red. The dRMSE based on RG-MTSC increases by at
most 3.86% and an average of 1.9%. Compared with the
randomness of the dRMSE of the RG-MTSC, although
the MTSCC cannot guarantee the minimum error
between the reconstructed data and the original data, it
can guarantee a relatively better result.

A result comparison of the original data streams and
reconstructed data streams after compression are pre-
sented respectively in Fig. 9, the black lines represent
the original data and the red lines represent the recon-
structed data. For each of the 6 indicators, we intercept
a part of the time series data for amplification to dem-
onstrate the reconstruction results. It is observed that
the reconstructed data nearly overlap with the original
data of the 6 indicators, owing to the high reconstruction
accuracy.

Comparison with AMDC
The MTS compression performance of the pro-
posed MTSCC algorithm is compared with that of the
recently proposed AMDC algorithm, which we imple-
mented based on the description available at [18]. We
mainly compared the reconstruction accuracy and data

correlation retention of MTS under the same compres-
sion ratio of 30%. Different from the MTSCC proposed
in this article, AMDC pays more attention to the dimen-
sionality reduction of MTS data to facilitate subsequent
data compression processing, thus ignoring the cor-
relation between MTS data. This is mainly because the
Principal Component Analysis (PCA) method is used
in the AMDC to reduce the dimensionality of the data.
Although during the dimensionality reduction pro-
cess, PCA is used to retain as much information and
correlation of the original data as possible, due to the
principal components being linear combinations of the
original data, nonlinear relationships and higher-order
relationships cannot be preserved. The shape-based
clustering algorithm can find the inherent structural dif-
ferences between data points and try to make the data
points in the same cluster related to each other. There-
fore, the clustering algorithm can usually better satisfy
the requirements in terms of retaining the correlation
between MTS, and the subsequent experimental results
also prove this.

The dataset is divided into 20 groups and we con-
duct 20 comparative tests, as shown in Fig. 10, which is
a comparison of dRMSE using the MTSCC and AMDC
methods. Figure 10a shows 3 sets of data randomly
selected from 20 sets of comparative tests, while Fig. 10b
shows the statistical comparison of 20 test results. From
Fig. 10, it can be found that both algorithms have good
accuracy in data reconstruction, and the median and
average dRMSE of the two methods are very close. Fig-
ure 11 shows the comparison of the cRMSE between the
MTSCC and AMDC. We can find from Fig. 11a that the
cRMSE based on AMDC increases by at least 22.7% and

Fig. 7 Comparison of the dRMSE between the MTSCC and RG-MTSC

Page 12 of 15Miao et al. Journal of Cloud Computing (2024) 13:16

an average of 25.5%. From Fig. 11b, the median and aver-
age cRMSE based on AMDC are close to or even exceed
0.061, while the median and average cRMSE of the pro-
posed MTSCC are close to 0.045. This illustrates that
when the compression ratio is the same, MTSCC and
the current state-of-the-art MTS compression method
AMDC have comparable performance in data compres-
sion-reconstruction accuracy, but MTSCC has better
performance in preserving the correlation.

Validation of reconstruction using a real application
In the previous section, the performance of the pro-
posed MTSCC is validated through experiments. In this
section, we demonstrate through a practical example to
illustrate the proposed approach can be applied in actual
production environments without adverse effects on user
experience. The monitoring data of the cloud platform is
mainly used for anomaly detection, since the MTS con-
tains the complex temporal correlation between single

indicators, it can alert regional anomalies. We use the
existing MTS anomaly detection algorithm [23] to detect
the three sets of MTS in Table 1. The anomaly detection
algorithm is an unsupervised deep learning method. In
this paper, the original data and reconstructed data are
divided into a training set and a test set, respectively.
Precision, recall, and F1-score are used to evaluate
the effectiveness of the anomaly detection algorithm.
The calculation formula for the F1-score is as shown
in Eq. 9

As shown in Table 3, the comprehensive index
F1-score of the anomaly detection performance of
the original data and the reconstructed data using
the MTSCC is listed. The maximum deviation of the
F1-score caused by using reconstructed data is 0.05%,

(9)F1− score = 2×
precision× recall

precision+ recall

Fig. 8 Percentage increase of the dRMSE between the MTSCC and 12 random groups-based RG-MTSC

Page 13 of 15Miao et al. Journal of Cloud Computing (2024) 13:16

which is quite acceptable. This result is benefited from
the adoption of shape-based clustering and CS-based
collaborative compression, it makes that data with the
same physical meaning has been co-processed during
data compression and reconstruction, and can main-
tain the temporal correlation of the same group of data

as much as possible, it provides interpretability for
the analysis of anomaly detection results. This result
strengthens the claim that MTSCC reduces the space of
data storage and can ensure the correlation of data in
the process of reconstruction, and the loss of informa-
tion is practically negligible.

Fig. 9 Comparison of reconstructed data and original data of 6 indicators, all data are normalized, (a) to (f) corresponding to indicator-01
to indicator-06, indicator-01 in a group; indicator-02 and indicator-06 are in a group; indicator-03 to indicator-05 are in a group

Fig. 10 a 3 groups of random comparison results of dRMSE; b Statistical results of 20 groups of dRMSE comparison tests

Page 14 of 15Miao et al. Journal of Cloud Computing (2024) 13:16

Conclusion and future work
In this paper, a two-step scheme which is called MTSCC
is proposed for the collaborative compression of cloud
monitoring MTS data. The proposed approach adopts
a shape-based clustering algorithm to obtain variable
grouping in the first step and uses grouped data as input
for CS in the second step. The experimental results show
that the MTSCC is superior to the random groups-based
RG-MTSC by 96.04% in terms of variable correlation. At
the same time, the dRMSE of the MTSCC method was
0.0407 under the premise of a 30% compression ratio,
which was 90.10% better than that of the random groups-
based RG-MTSC. In addition, we have proved through a
practical application that the data reconstructed by the
approach can be used for cloud service anomaly detec-
tion without affecting user experience. In future work, we
will study the operation performance of the MTSCC in
more detail, and further reduce the cRMSE and dRMSE
while ensuring high operation efficiency. Meanwhile, we
will explore the potential applications of MTSCC, such
as in cloud storage, the MTSCC method can be used to
compress the MTS data before storing it in the cloud,
and the MTS data can be compressed while preserving

the complex temporal correlation between indicators.
Besides, MTS data is often used in machine learning
tasks such as predictive modeling or anomaly detec-
tion. However, dealing with large-scale MTS data can be
computationally expensive. To address this, the MTSCC
method can be applied to compress the MTS data before
feeding it into machine learning algorithms.

Acknowledgements
This paper is supported by China Telecom Cloud Computing Corporation, the
authors would like to appreciate the helpful discussions provided by Dr. Li
Deng from Wuhan University of Science and Technology during the writing
phase of this work.

Authors’ contributions
All authors contributed to the conception, design, and writing of the research
project. Zicong Miao led the development of the method and wrote the main
manuscript. Weize Li implemented key algorithms conducted experiments
and analyzed the results. Xiaodong Pan collected and preprocessed the data,
and supervised the experiments. All authors approved the final version of the
manuscript.

Funding
The authors received no financial support for the research, authorship or
publication of this article.

Declarations

Competing interests
The authors declare no competing interests.

Received: 24 October 2023 Accepted: 21 December 2023

References
 1. Lu Q et al (2020) Digital twin-enabled anomaly detection for built asset

monitoring in operation and maintenance. Autom Constr 118:103277
 2. Amazon. Major outage hits Amazon Web Services.https:// www. cbsne ws.

com/ news/ amazon- web- servi ces- major- outage- many- sites- affec ted/?
intcid= CNM- 00- 10abd 1h. Accessed 15 July 2023

Fig. 11 a 3 groups of random comparison results of cRMSE; b Statistical results of 20 groups of cRMSE comparison tests

Table 3 F1-score of anomaly detection with original and
reconstructed data

Multivariate time series F1‑score (%) with
original data

F1‑score (%) with
reconstructed
data

Indicator -01 86.55 86.52

Indicator -02, Indicator -06 89.23 89.26

Indicator -03, Indicator -04,
Indicator -05

87.46 87.42

https://www.cbsnews.com/news/amazon-web-services-major-outage-many-sites-affected/?intcid=CNM-00-10abd1h
https://www.cbsnews.com/news/amazon-web-services-major-outage-many-sites-affected/?intcid=CNM-00-10abd1h
https://www.cbsnews.com/news/amazon-web-services-major-outage-many-sites-affected/?intcid=CNM-00-10abd1h

Page 15 of 15Miao et al. Journal of Cloud Computing (2024) 13:16

 3. He X. Alibaba cloud breakdown affects Hong Kong and Macau. https://
www. guanc ha. cn/ econo my/ 2022_ 12_ 19_ 671980. shtml. Accessed 15
July 2023

 4. Rabkin A, Katz R (2010) Chukwa: a system for reliable {Large-Scale} log
collection. 24th Large Installation System Administration conference
(LISA 10)

 5. Zhang X et al (2019) Cross-dataset time series anomaly detection for
cloud systems. 2019 USENIX Annual Technical Conference (USENIX ATC 19)

 6. Raschid L et al (2003) Monitoring the performance of wide area applica-
tions using latency profiles. WWW (Posters)

 7. Gu G et al (2008) Botminer: clustering analysis of network traffic for
protocol-and structure-independent botnet detection p. 139

 8. Li Z et al (2018) Robust and rapid clustering of kpis for large-scale
anomaly detection. 2018 IEEE/ACM 26th International Symposium on
Quality of Service (IWQoS). IEEE, Banff

 9. Liu D et al (2015) Opprentice: towards practical and automatic anomaly
detection through machine learning. Proceedings of the 2015 internet
measurement conference

 10. Zhang S et al (2015) Rapid and robust impact assessment of software
changes in large internet-based services. Proceedings of the 11th ACM
Conference on Emerging Networking Experiments and Technologies

 11. Yoon DY, Niu N, Mozafari B (2016) Dbsherlock: a performance diagnostic
tool for transactional databases. Proceedings of the 2016 international
conference on management of data

 12. Shaofei S et al (2021) A reliable data compression scheme in sensor-cloud
systems based on edge computing. IEEE Access 9:49007–49015

 13. Li C, Zheng R (2019) Load data compression based on integrated neural
network model. 2019 Chinese Control And Decision Conference (CCDC).
IEEE, Nanchang

 14. Ringwelski M et al (2012) The hitchhiker’s guide to choosing the com-
pression algorithm for your smart meter data. 2012 IEEE International
Energy Conference and Exhibition (ENERGYCON). IEEE, Florence

 15. Li S et al (2023) Time series phase unwrapping algorithm using LP-norm
optimization compressive sensing. Int J Appl Earth Observ Geoinform
117:103182

 16. Ma M et al (2021) {Jump-Starting} multivariate time series anomaly
detection for online service systems. 2021 USENIX Annual Technical
Conference (USENIX ATC 21)

 17. Si J et al (2022) Reconstruction of financial time series data based on
compressed sensing. Finance Res Lett 47:102625

 18 Chowdhury MR, Tripathi S, De S (2020) Adaptive multivariate data com-
pression in smart metering internet of things. IEEE Trans Industr Inform
17(2):1287–1297

 19. Feng H et al (2023) Spatiotemporal prediction based on feature classifica-
tion for multivariate floating-point time series lossy compression. Big
Data Res 32:100377

 20. de Souza JC, Assis TM, Pal BC (2015) Data compression in smart distribu-
tion systems via singular value decomposition. IEEE Trans Smart Grid
8(1):275–284

 21. Yu X et al (2020) Two-level data compression using machine learning in
time series database. 2020 IEEE 36th International Conference on Data
Engineering (ICDE). IEEE, Dallas

 22. Xu H et al (2018) Unsupervised anomaly detection via variational auto-
encoder for seasonal kpis in web applications. Proceedings of the 2018
world wide web conference

 23. Su Y et al (2019) Robust anomaly detection for multivariate time series
through stochastic recurrent neural network. Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining

 24. Rashid MM et al (2020) A survey on behavioral pattern mining from sen-
sor data in Internet of Things. IEEE Access 8:33318–33341

 25. An Y et al (2022) {TVStore}: automatically bounding time series storage
via {Time-Varying} compression. 20th USENIX Conference on File and
Storage Technologies (FAST 22)

 26. Schlossnagle T, Sheehy J, McCubbin C (2021) Always-on time-series database:
keeping up where there’s no way to catch up. Commun ACM 64(7):50–56

 27. Liu B. Kingsoft cloud used Pulsar to handle TB-evel data: https:// www.
infoq. cn/ artic le/ m5nbi pdr8b pdcjl u38lv. Accessed 20 July 2023

 28. Alibaba Cloud. https:// www. aliyun. com/ price/ produ ct? spm= a2c4g.
11186 623.0. 0. 67013 021VR N8ZE#/ disk/ detail/ disk

 29. Paparrizos J, Gravano L (2015) k-shape: efficient and accurate cluster-
ing of time series. Proceedings of the 2015 ACM SIGMOD international
conference on management of data

 30. Tropp JA, Gilbert AC (2007) Signal recovery from random measurements
via orthogonal matching pursuit. IEEE Trans Inf Theory 53(12):4655–4666

 31 Chen SS, Donoho DL, Saunders MA (2001) Atomic decomposition by
basis pursuit. SIAM Rev 43(1):129–159

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://www.guancha.cn/economy/2022_12_19_671980.shtml
https://www.guancha.cn/economy/2022_12_19_671980.shtml
https://www.infoq.cn/article/m5nbipdr8bpdcjlu38lv
https://www.infoq.cn/article/m5nbipdr8bpdcjlu38lv
https://www.aliyun.com/price/product?spm=a2c4g.11186623.0.0.67013021VRN8ZE#/disk/detail/disk
https://www.aliyun.com/price/product?spm=a2c4g.11186623.0.0.67013021VRN8ZE#/disk/detail/disk

	Multivariate time series collaborative compression for monitoring systems in securing cloud-based digital twin
	Abstract
	Introduction
	Background and motivation
	Cloud monitoring indicators
	Multivariate time series monitoring data
	Why time series data compression
	Motivation and challenge

	Proposed algorithm
	Two-step collaborative compression scheme
	Shape-based clustering
	Compressed sensing
	Multivariate Time Series Collaborative Compression (MTSCC)

	Experiments and results
	Experimental design
	Datasets used for evaluation
	Performance parameters
	Implementation method

	Impact analysis of compression ratio
	Comparison of cRMSE
	Comparison of dRMSE
	Comparison with AMDC
	Validation of reconstruction using a real application

	Conclusion and future work
	Acknowledgements
	References

