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Abstract 

P2P-based Edge Cloud (PEC) is widely used in Internet of Things (IoT). Inevitably, the sensor data routing technol-
ogy has a significant impact on the performance of PEC. Due to its prevalence and complexity, the existing routing 
technologies in PEC need to be optimized. Specifically, key factors such as overall network traffic, user access latency, 
and resource utilization of edge nodes should be considered to adapt to the dynamic requirements of user request 
services and network topology. In order to address the challenges produced by these factors, an adaptive routing 
in P2P-based Edge Cloud is proposed, which is named ARPEC. In our approach, a target edge node selection scheme 
based on message activity and network topology is proposed, aiming to minimize the load on edge node and user 
access latency. Furthermore, to minimize system overhead, sensor data routing is mapped to minimum cost maxi-
mum flow (MCMF) graph. On this basis, a target edge node selection algorithm based on a grey linear regression 
combination prediction model is designed, and an incremental MCMF algorithm based on belief propagation (BP) 
is proposed. The evaluation results show that our approach can effectively improve PEC transmission performance 
and user experience.
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Introduction
The vigorous development of IoT and mobile intelligent 
devices has brought about a trend of data sources shifting 
from centralized cloud data centers to distributed edge 
computing networks [1–3]. In IoT application scenarios 
based on centralized cloud computing, the data gener-
ated by sensors needs to be transmitted to cloud platform 
and to be processed by using the cloud computing power. 
Unfortunately, the massive amount of data transmission 
will bring a huge burden to the core network, which not 
only affects the normal operation of the core network, 
but also brings huge transmission delays and reduces 
user experience [4–6]. As a result, edge computing came 

into being, and Edge Cloud is one of the main research 
directions in the field. In Edge Cloud, multiple edge serv-
ers (referred to as edge nodes in the paper) are placed 
closer to users, and users can submits computing tasks 
to an edge server that is closer to them for computing. 
Compared with centralized cloud, Edge Cloud meets the 
requirements of low latency, low consumption and fast 
response. Therefore, the combination of Edge Cloud and 
IoT has become a general trend [7–10].

As is known, P2P architecture, where the neighbor 
nodes exchange parameters to obtain global information, 
is one of the mainstream architectures of Edge Cloud. 
Therefore, we adopt P2P architecture that has no fixed 
central node and can better and fully utilize the exten-
sive distributed resources of edge nodes. Considering the 
important impact of sensor data routing technology on 
edge cloud service quality, such as reducing overall net-
work traffic, reducing user access latency, and improving 
resource utilization of edge nodes, in the paper, we study 
an adaptive routing strategy in PEC.
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Currently, the challenges in utilizing PEC to pro-
cess sensor data routing can be mainly divided into two 
aspects. On the one hand, due to the following factors, 
such as the diversities of user needs, the temporal differ-
ences in service access, and the limited coverage of an 
individual edge node, if a certain sensor data is cached 
on an edge node, it often leads to an increase in service 
latency, and even network congestion and service inter-
ruption. On the other hand, due to differences in com-
puting power and dynamic changes in load conditions 
among edge nodes, some edge nodes may have exces-
sive load, which greatly damages the quality of service. In 
the paper, we focus on the topic of ARPEC, specifically 
studying how to reduce data traffic, how to shorten user 
access latency, and how to improve the utilization of edge 
nodes in PEC. The contributions of this paper can be 
summarized as follows.

• Modeling adaptive routing optimization: We analyze 
the key goals of solution to routing optimization, 
and propose a sensor data routing model to rea-
sonably route sensor data to the target edge nodes 
which provide caching services for the sensor data.

• Selection scheme for target edge node: We intro-
duce a target edge node selection scheme to 
enhance user experience, which can adapt to 
the temporal dynamic characteristics of routing 
demands, and design a target edge node selection 
algorithm based on a grey linear regression combi-
nation prediction model.

• Construction and solution of MCMF graph: To 
improve the overall performance of PEC, we 
map sensor data routing to MCMF graph from a 
resource perspective, at the same time, propose 
an incremental MCMF algorithm based on BP, 
which reduces computational costs and supports 
dynamic deployment.

The remainder of this paper is organized as follows. 
In Related work section, we review the related work on 
routing strategies. An adaptive routing model in PEC is 
established in Adaptive routing model Section. In Target 
edge node section, we propose a target edge node selec-
tion scheme based on the relevant characteristics of PEC 
and IoT, and design a request message processing algo-
rithm. In MCMF graph section, by analyzing the impact 
of edge node load on service quality, we propose a sen-
sor data routing scheme based on MCMF graph that sup-
ports global optimal solution for multiple routing tasks, 
and design an incremental MCMF algorithm based on 
BP. We compare the experimental performance and ana-
lyze the results in Simulation and performance analysis 
section. Conclusion section concludes the paper.

Related work
The sensor data routing strategy of edge computing net-
work in IoT is a hot research topic in academic research 
in recent years. According to the different metrics, it 
mainly involves two aspects: scheme for selecting target 
edge node and solution using MCMF model.

Scheme for selecting target edge node
In IoT, the edge nodes store a certain amount of sensor 
data. The quality of target edge node selection scheme 
will have a significant impact on system performance. 
The core of scheme is how to cache sensor data, that is, 
how to design caching scheme for sensor data.

LCE [11] is an intuitive caching decision scheme 
where data is cached by all nodes along the way back to 
the requester; however, it can easily lead to huge data 
redundancy. LCD [12] and MCD [13] are two approaches 
that improve the caching diversity. A new copy of the 
requested data will be cached only at the immediate 
node of the path in downward direction. The difference 
between them is that under MCD, the hit node will delete 
the requested data. However, both were proposed earlier 
for web caching to reduce cache redundancy. Prob [14] is 
a probabilistic caching version of LCE. However, the ver-
sion is not flexible enough to determine whether to cache 
the arrived data based on a static probability. In short, the 
above strategies are mainly applied to Information Cen-
tric Networks and not specifically targeted at IoT.

Currently, there are some data caching solutions 
based on IoT. Y. Sellami et al. [15] proposed an architec-
ture for a distributed fog caching solution for Content-
Centric Networks. O. Serhane et  al. [16] focused on an 
energy-aware caching placement scheme to maximize 
the energy-saving. G. Dhawan et al. [17] considered the 
trade-off between node energy, data freshness and cache 
occupancy, and proposed a candidate node selection 
for cache placement. N. Baltagiannis et al. [18] incorpo-
rated sensor faults and energy consumption in caching 
decisions. M. Amadeo et  al. [19] designed a probabilis-
tic Internet-scale caching design for IoT data. S. Tanted 
et  al. [20] discuss the design, implementation and per-
formance of a distributed caching & aggregation mecha-
nism to handle the visualization of sensor data. However, 
the approaches are more focused on caching techniques 
for IoT-based compared to giving much attention to the 
placement and selection of caching nodes.

In summary, it can be seen that the caching schemes of 
Information Centric Networks have the problems of high 
pressure on data center transmission and computing, as 
well as high construction costs; the IoT-based caching 
schemes are good solutions for the systems that gener-
ate a large amount of sensor data flow. However, how 
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to improve resource utilization and computational effi-
ciency, as well as how to reduce user query latency, is still 
a topic that needs further research. This study extends 
the existing work by utilizing an adaptive routing optimi-
zation model with mechanisms for selecting target edge 
node to address the limitations of traditional routing 
models when applied to PEC. It also optimizes the selec-
tion scheme for target edge node, resulting in reduced 
load on edge node and user access latency.

Solution using MCMF model
In many scenarios, a large number of users access edge 
nodes at different times and locations [21]. Therefore, 
routing strategy typically cannot be designed for each 
user, but relies on dynamic changes in user query pat-
terns and spatiotemporal dimensions. In addition, rout-
ing service often incurs significant transmission costs, 
which may lead to service interruption and overall ser-
vice delay. At present, there are some studies using 
MCMF model to solve sensor data routing problems.

To minimize average transmission delay or flow cost 
in data centers, Akbar Majidi et  al. [22] formulated this 
optimization problem as a constrained Markov decision 
process. By creating multiple paths between the source 
and destination peers, MaxFlowTCP [23] utilized SDN 
with traditional TCP to deliver maximum flow through-
put in data centers. Through a logically centralized con-
trol plane, the processing-while-transmitting pattern 
[24] jointly determined the transmission path and placed 
subtasks adaptive to dynamic topology, and data distri-
butions. To minimize the sum of heterogeneous costs of 
relay nodes, Y. Sun et al. [25] formulated the NWPTSTP 
for minimum cost relay node placement. However, the 
approaches are more focused on providing traffic man-
agement in Software-Defined Networks environments or 
in Wireless Sensor Networks, and don’t involve the re-
optimization of flow in PEC.

In addition, some studies have concentrated on BP-
based MCMF methods [26], which mainly concentrate 
on how to utilize the parallel transmission of informa-
tion between nodes in solving combinatorial optimi-
zation problems. G. Dhawan et  al. [27] applied BP to 
discover globally optimal routes by performing low-
complexity computations and exchanging messages 
with their neighbors. N. Baltagiannis et al. [28] showed 
how BP can be used to compute the throughputs of dif-
ferent links in the network given their access intensities. 
Ghafoor et  al. [29] applied BP algorithm to compute a 
final belief about existence of primary user. Kakkasageri 
et  al. [30] proposed multi-agent routing scheme for 
vehicular Ad hoc networks. However, one common 
challenge is the high time-consuming of message 
updates, which often leads to a low sensor data routing 

efficiency. Thus, there is a need for further research to 
develop optimized BP algorithm that can effectively 
minimize system overhead in PEC.

Drawing inspiration from these above researches, we 
focus on the overall performance of PEC utilizing an 
adaptive routing optimization model, and demonstrate 
how leveraging an incremental MCMF algorithm based 
on BP can reduce computational costs, thereby enhanc-
ing efficiency in routing sensor data.

Adaptive routing model
System model
A typical PEC scenario is shown in Fig. 1.

PEC consists of sensors, edge nodes, and users. With-
out affecting routing analysis, the system model omits 
gateways between sensors and edge nodes, as well as 
between users and edge nodes. There are two types of 
messages in PEC: user request and sensor data. Thus, it 
can be inferred that the overall network traffic arises 
from the superposition of these two types of messages. 
Assume that sensor data carries the corresponding infor-
mation such as sensor identification and timestamp. A 
sensor transmits data to a directly connected edge node, 
which stores sensor data in the same size blocks. We refer 
to the data blocks in edge node as content. If an edge 
node caches a certain sensor data, then the edge node is 
referred to as the target edge node related to the sensor. 
Edge nodes can transmit user requests and sensor data 
between each other. A user obtains the contents of a tar-
get edge node by sending request messages. In Fig.  1, 
S = {s1, s2, s3} , EV = {ev1, ev2, . . . , ev6} and U = {u1,u2} 
denote the sets of sensors, edge nodes and users, respec-
tively. The set of target edge nodes related to s1 for the 
users u1 and u2 is denoted by TE(s1,U) = {ev2, ev5} . A 
label Data→  on an edge indicates the routing of sensor data. 
Meanwhile, a label →

Request
 expresses the routing of user 

request messages.
With the expansion of the scale of PEC scenarios, this 

system model exhibits highly dynamic characteristics. 
First, with the dramatic increase of sensors, the user 
request services are highly dynamic in temporal. Thus 
the temporal dynamic of user request services should be 
considered for routing optimization. Second, it is dem-
onstrated that with the deepening of PEC computing, 
an unchanged topology in a PEC scenario can no longer 
meet complex application requirements. So, supporting 
dynamic deployment of nodes is another factor that can-
not be ignored in routing optimization.

Optimization goals
Considering the dynamic requirements of user request 
services and network topology, the adaptive routing in 
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the paper is defined as how to reasonably route sensor 
data to the edge nodes for caching in heterogeneous edge 
node scenarios at each time, that is, how to select the tar-
get edge node to achieve the optimal goal.

From the perspective of edge computing service pro-
viders and users, the main purpose of selecting target 
edge node is to reduce the traffic of entire network and 
the access delay of users, while improving the resource 
utilization of the edge node. To achieve this goal, the fol-
lowing measures can be taken. Firstly, In order to avoid 
the surge in the traffic of entire network caused by the 
propagation of sensor data in PEC, we reduce the num-
ber of visits to edge nodes directly connected to sensors. 
Secondly, we make the content as close to users as possi-
ble to reduce users’ access delay. Thirdly, considering the 
performance differences of edge nodes, we deploy user 
request services to edge nodes that minimize the over-
all computational network scenario overhead as much as 
possible. Therefore, for selecting target edge node, three 
optimization goals are defined as follows.

(1) Goal 1: Minimize the load on edge nodes directly 
connected to sensors

The goal 1 can be calculated as

where T is the running time of the network, req(u,s,t) is 
the request messages sent by user u to s at time t, dl(s) 
represents the edge node directly adjacent to s, and 
sat(r,ev) is a Boolean function to determine whether ev 

(1)load(u, s) =
∑

t∈T

sat(req(u, s, t), dl(s)),

meets the request r. We define load(u,s) as the number 
of requests that edge node dl(s) satisfies u during time 
period T. The smaller the value of load(u,s) is, the lower 
the network traffic is.

(2) Goal 2: Minimize user access latency

The goal 2 can be calculated by the following 
expression.

We define delay(u,s,ev) as the ratio of the delay of sen-
sor data transmission between user u and the edge node 
ev that satisfies the user’s request after sending a request 
message to sensor s during time period T, and the delay 
between user u and the edge node dl(s). The smaller the 
value of delay(u,s,ev), the closer the edge node that sat-
isfies the user u’s request is to u. Therefore, delay(u,s,ev) 
can be used to indirectly reflect goal 2.

(3) Goal 3: Minimize system overhead

One of the factors affecting system overhead is the 
resource utilization of edge nodes. To describe the 
resource utilization of edge node, the weight value of 
edge node ev, denoted as w(ev), is designed in PEC. w(ev) 
is inversely proportional to the resource utilization of the 
edge node. Here, w(ev) is influenced by the factors such as 
the CPU and disk utilization of edge node, as well as the 
priority of content requested by user, that is, the higher 
the utilization of CPU and disk, as well as the priority of 
the requested content, the lower this value of w(ev) is.

The goal 3 can be formulated as follows.

(2)delay(u, s, ev) = d(u, s, ev) ·
t∈T

sat(req(u, ev, t), dl(s)).

Fig. 1 A typical PEC scenario
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where mW = (w(ev1)w(ev2) · · ·w(evn)) is a 1*n matrix, 
given n is the number of edge nodes in the network. 
mD = (delay(u, s, ev1) · · · delay(u, s, evn))′ is a n*1 matrix. 
Taking into account the processing capacity of the edge 
nodes, cost(u,s) is defined as a numerical value that rep-
resents the ratio of the product of the edge node load of 
the content provider in goal.1 and the delay between u in 
goal.2 and the edge node ev that satisfies u’s request, to 
the delay between u and the content source provider.

As mentioned above, we construct the following adap-
tive routing optimization model.

Considering the different processing capabilities of 
each edge node in the scenario of heterogeneous edge 
nodes, the target of the model is to solve for the values of 
the req function and sat function at a certain time, so as 
to minimize the value of formula 4.

Problem analyses

(1) Selection of target edge node

By observing the goal 1 and the goal 2, we find that 
req(u,s,t) and req(u,ev,t) are key parameters in the model, 
which can reduce the overall network traffic and user 
access latency. Thus, based on the value of the function 
sat, it can be determined whether the edge node has a 
message that meets the request. By summing the sat 
values, the activity of sensor messages at an edge node 
can be determined. Based on message activity, it is pos-
sible to better determine whether each edge node is a 
target edge node during the period. Therefore, the value 
of 

∑
t∈T sat(r, ev) is a key factor. In addition, in order 

to minimize user access latency, it is necessary to keep ∑
t∈T sat(r, ev) as small as possible, that is, the number of 

hops between the target edge node and the user needs to 
be as small as possible. We proposes a target edge node 
selection scheme based on message activity and network 
topology, and implements a target edge node selection 
algorithm based on a grey linear regression combination 
prediction model.

(2) MCMF graph

By observing the goal 3, we find that w(ev) is another 
key parameter in the model. Furthermore, w(ev) can 
be quantified as the capacity of the path in the network 
graph. At present, the MCMF problem has been applied 
to various network routing scenarios and is usually char-
acterized by graph models. By limiting the capacity and 

(3)cost(u, s) = w(dl(s)) · load(u, s)+mW ·mD,

(4)
min

∑
u ∈ U
s ∈ S

cost(u, s).

cost of paths in the graph, the global optimal solution for 
multiple routing tasks is sought. We apply it to message 
routing modeling in multi user, multi sensor, and multi 
query scenarios. Specifically, the two problems of users’ 
demand for resources and the supply of resources in edge 
computing networks are transformed into the construc-
tion and solution of MCMF graph. In particular, consid-
ering the throughput and response delay of user requests 
in edge computing networks, an incremental MCMF 
optimization algorithm is implemented.

A MCMF graph for sensor data routing is shown in 
Fig. 2. The nodes marked with dashed circles, such as ev2 
and ev5, are the target edge nodes of s1. The node tvs1 is 
the terminal node associated with s1, which serves as the 
aggregation node for data from sensor s1. tvs1 is connected 
to u1 and u2 by edges, indicating that u1 and u2 have sent 
request messages to s1. Sequence s1 → ev1 → ev2 → u1 
and sequence s1 → ev1 → ev3 → ev5 → ev4 → u2 rep-
resent the two data forwarding paths related to s1, respec-
tively. Each edge is marked with a pair of cost/capacity 
values, where the cost indicates the cost of forward-
ing sensor messages through the edge, and the capacity 
means the ability of the edge to forward sensor messages. 
Considering that an edge node directly connected to a 
sensor should receive the sensor data as much as possi-
ble, the capacity of the edge is assigned infinity. Similarly, 
due to the fact that the terminal node directly connected 
to a user is uniformly added for the convenience of uni-
fied processing, the capacity of the edge is also assigned 
infinity.

Target edge node
Priority of edge node
In the following, based on the scheme of selecting tar-
get edge nodes, we first discuss three time-related met-
rics: message activity, user request probability, and query 
distance. And then, the priority is set for each edge node 
based on these measurements, and the edge node with 
the highest priority is selected as the target edge node to 
meet the dynamic changes in user service requests.

(1) Message activity

Since the types and quantities of user requests received 
by edge node are different, we can determine the activity 
of message by calculating the number of user requests. 
Therefore, message activity is defined as the ratio of the 
number of requests for that message to the total num-
ber of requests for all messages. Let rs denote the mes-
sages generated by the sensor s. For the edge node ev, 
act(rs,t,ev) denotes the activity of rs at time t. The activ-
ity of rs in the edge node ev can be denoted by act(rs,ev). 
Thus, the following equation holds.
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(2) User request probability

Considering that a sensor generates new mes-
sages every once in a while, users are more inclined to 
request the latest information. Therefore, the novelty of 
messages can have an impact on the priority of the edge 
nodes. We use timestamps to distinguish messages 
generated by the same sensor at different times. So the 
larger the timestamp value is, the newer the message is. 
The probability of any user sending a request message 
to the edge node ev regarding the message r generated 
by sensor s at time t is denoted by prob(rs,t,ev).

(3) Query distance

In order to reduce latency, sensor messages should be 
cached as close to the edge node as possible to the user 
who sends the relevant request message. Therefore, we 
take the network topology into account when calculating 
the priorities of edge node. The query distance is denoted 
by ah(rs,t,ev), which is defined as the average number of 
edge nodes on the relevant paths. Here, the relevant path 
refers to the path that the message rs generated at time 
t routes from the current edge node ev to the user node 
that send the corresponding request message.

(4) Selecting target edge node

Message activity and user request probability are 
related to the usefulness of the cached sensor data, 
and query distance is a metric of user access latency. In 

(5)act(rs , ev) =
∑

t∈T
act(rs , t, ev) =

∑
t∈T

sat(rs , ev). summary, for the sensor message rs generated at time t, 
the priority of the edge node ev can be obtained by

Similarly, for the sensor message rs, the priority of the 
edge node ev can be calculated as

Among them, the coefficient αev denotes an adjustment 
factor, and its value can be appropriately predicted accord-
ing to the application scenario. In the paper, we let a = 1. 
Generally speaking, the higher the activity of message is, 
the higher probability of user’s request is; and the smaller 
the query distance is, the higher priority of edge nodes.

Prediction of priority
In PEC, sensors constantly generate new data, and users 
frequently have new requests. Especially when edge nodes 
receive new requests, the three metric values calculated by 
using the method in the previous section will have a sig-
nificant deviation from the subsequent stable values. This 
results in a significant difference in the priority of edge 
nodes between the early and the subsequent stable stages. 
In order to overcome the above impact, this section pre-
dicts the priority of edge nodes that receive new requests, 
so that the nodes can obtain more accurate priorities ear-
lier. Due to the characteristics of grey system, such as no 
need for a large number of samples, and a good short-term 
prediction performance, a grey system prediction model 
for predicting priority is proposed.

(6)p(rs , t, ev) = act(rs , t, ev) · prob(rs , t, ev)/ah(rs , t, ev).

(7)p(rs , ev) = αev
∑

t∈T
p(rs , t, ev)/

∑
t∈T ,s∈S

p(rs , t, ev).

Fig. 2 A MCMF graph for sensor data routing
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Assume that a user has a request for a new message 
rs′ from sensor s, where rs′ is an earlier message than rs. 
For predicting the priority of ev regarding rs′ , the pri-
ority sequence of ev regarding rs can be quantified as 
mP(0) = (p(rs, t1, ev), p(rs, t2, ev), . . . , p(rs, tn, ev)) , and 
then, the grey system prediction model, which is donoted 
by p(1)(rs,tk,ev), is used to estimate the predicted value 
p(rs, tn+1, ev) . The details of modeling can be found as 
follows.

Step 1. Accumulate the priority sequence 
mP(0) to obtain a new sequence, i.e. 
mP(1) = (p(1)(rs, t1, ev), p

(1)(rs, t2, ev), . . . , (rs, tn, ev)) . 
The accumulation formula can be expressed as

Step 2. Generate the adjacent difference sequence 
mZ = (z(1), z(2), . . . , z(n− 1)) , where z(k) follows 
the below expression.

Step 3. Calculate the estimated values of v̂  , ĉ1 , ĉ2 , and 
ĉ3 according to the following formulae.

where aver is a function for calculating the average value, 

mC =
(
c1 c2 c3

)′
 , and mA =





e
v̂ 1 1

e
2v̂ 2 1

.

.

.
.
.
.
.
.
.

e
n·v̂

n 1



  

Step 4. Calculate the estimated value of p,(1)(rstk,ev) 
by using the following prediction model.

Step 5. Restore the results of step 4.

(8)
p(1)(rs, tk , ev) =

∑k

i=1
p(rs, ti, ev), k = 1, 2, . . . , n.

(9)
z(k) = p(1)

(
rs , tk+1, ev

)
− p(1)(rs , tk , ev), k = 1, 3, . . . , n− 1.

(10)
v̂ = aver(

∑n−3

m=1

∑n−2−m

k=1
(ln(z(k +m+ 1)− z(k + 1))

− ln(z(k +m)− z(k)))),

(11)mC =

(
mA

′

·mA
)−1

·mA
′

· (mP(1))
′

(12)p(1)(rs , tk , ev) = ĉ1·e
v̂k

+ ĉ2 · k + ĉ3, k = 2, · · · , n+ 1.

where p̂(0)
(
rs, tk+1, ev

)
 is the predicted priority of ev 

regarding rs′.

Algorithm for processing request messages
The priority adjustment of edge node is accompanied 
by the processing of user request messages by the edge 
node. According to the discussions of priority predict-
ing, the process of request message processing algo-
rithm based on a grey system prediction model includes 
the following essential steps. When receiving a user 
request message, the edge node updates the values of 
these metrics: message activity, user request probabil-
ity, and query distance. If the request is a new request, 
it is necessary to predict the priority of the edge node 
regarding this request. Finally, the edge node refreshes 
the user request message and recalculates the priority 
corresponding to each request. The details can be found 
in Algorithm 1.

Lines 3-6 are the setting of measurements and the 
return of results to users when the edge node detect 
user request messages; lines 7-8 are the forwarding of 
request messages; lines 9-12 predict the priority of the 
edge node when dealing with new request messages; 
The 13th line recalculates the priority of the edge node 
after changes in these measurements.

Algorithm 1. Request message processing

(13)
p̂(0)

(
rs , tk+1, ev

)
= p̂(1)

(
rs , tk+1, ev

)
− p̂(1)(rs , tk , ev), k = 1, 2, · · · n,
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In Algorithm 1, the edge node ev maintains operations 
on its content based on a content block statistics table, 
which consists of user request messages, sensor data mes-
sages, and three metrics related to optimization goals. 
The statistics table is an important data structure that 
supports the selection of target nodes. Assume the length 
of the statistical table is m, and the number of sensors 
related to the content is l. Let Creq,s denote a set of all con-
tent blocks with the same sensor identifier s as that of req, 
where the timestamps in the set are earlier than req. Let 
|Creq,s|= n. For the maintenance operation of the statisti-
cal table, the time complexity analysis is as follows. There 
are only two procedures, i.e., as GreyPre and prioritycu-
lating, involved in operating the statistical table. GreyPre 
includes the steps such as traversing Creq,s, sorting Creq,s 
in chronological order, and calculating according to for-
mulas (8, 9, 10, 11, 12 and 13). The time complexity of 
GreyPre is O(nlog2n). Similarly, priorityculating the time 
complexity of GreyPre is O

(
m+ l · n · log2n

)
 . In conclu-

sion, the time complexity of Algorithm 1 is O(mlog2n).

MCMF graph
Construction of MCMF graph
We mainly consider the performance parameters such as 
reducing network traffic, shortening user access latency, 
and improving the utilization of edge nodes. This section 
discusses the question that how to characterize the above 
parameters from a resource perspective and how to con-
vert them into the assignment problem of graph capacity 
and cost.

For a given graph G = (V, DE, CA, CO), among them, 
V is a node set that represents entities in PEC, including 
the sensor S, the edge node EV, the user U, and the ter-
minal node TV; DE is a directed edge set, which indicates 
whether a data forwarding task can be mapped to a cor-
responding entity; CA denotes a set of capacities on edge, 
identifying the entity’s supply capacity; CO is a cost set 
that represents the mapping effect between sensor data 
forwarding tasks and entities.

Definition 1
For G, ∃s ∈ S

∧
∃vi, vj ∈ V

∧
(vi, vj) ∈ DE , to analyze the 

flow in PEC, we let out(s, vi, vj) denote the flow of the 
edge < vi,vj > with respect to s, which can be calculated as 
follows.

• If vi ∈ EV , (s, vi) ∈ DE , then out(rs, s, vi) = 0,
• If vi, vj ∈ EV  , then out

(
rs, vi, vj

)
= 1,

• If vi ∈ EV , vj ∈ U , then out
(
rs, vi, vj

)
= 0,

• If vi ∈ U , vj ∈ TV  , then out
(
rs, vi, vj

)
= 0.

Similarly, the flows of < vi,vj > and G are expressed as 
out

(
vi, vj

)
=

∑
s∈S out(rs, vi, vj) and 

out(G) =
∑

(vi ,vj)∈DE
out(rs, vi, vj) , respectively.

Definition 2
For G, ∃s ∈ S

∧
∃vi, vj ∈ V

∧
(vi, vj) ∈ DE , the cost of the 

edge < vi,vj > with respect to s, i.e. co(s, vi, vj) , can be calcu-
lated as follows.

• If vi ∈ EV ,< s, vi >∈ DE , then co(rs, s, vi) = 0,
• If vi, vj ∈ EV  , then co

(
rs, vi, vj

)
= w(vj) ·

1
p(rs ,ev)

 . The 
cost of forwarding data from vi to vj is related to 
p
(
rs, t, vj

)
 and w(vj) , in the paper, it is specifically 

expressed as w(vj) · 1
p(rs ,ev)

,
• If vi ∈ EV , vj ∈ U , then co

(
rs, vi, vj

)
= 0,

• If vi ∈ U , vj ∈ TV  , then co
(
rs, vi, vj

)
= 0.

In the same way, co
(
vi, vj

)
=

∑
s∈S co(rs, vi, vj) and 

co(G) =
∑

(vi ,vj)∈DE
co
(
vi, vj

)
 are the costs of < vi,vj > and G.

Definition 3
For G, ∃vi, vj ∈ V

∧
(vi, vj) ∈ DE , then ca

(
vi, vj

)
 rep-

resents the capacity of the edge < vi,vj > , which can be 
obtained by the following expressions.

• If ∃s ∈ S
∧
∃vi ∈ EV

∧
(s, ev) ∈ DE , then ca(s, vi) = ∞,

• If evi, evj ∈ EV  , then ca
(
evi, evj

)
= min(w(evi)·∑

u ∈ U

s ∈ S

delay(u, s, evi),w(evi) · 
∑

u ∈ U

s ∈ S

delay(u, s, evi)),

• If vi ∈ U
∧
vj ∈ TV  , then ca

(
rs, vi, vj

)
= 0.

Solution of MCMF graph

(1) Formal description of problem solving

In this paper, one of our purposes is improving the 
overall performance of PEC. So we formulate the MCMF 
problem for graph G as follows.

As mentioned above, the node that satisfies the con-
dition b(vj) > 0, and b(vj) < 0 is called a source node, and 
an aggregation node, respectively; the flow that satisfies 

(14)min
∑

(vi ,vj)∈DE
out

(
vi, vj

)
· co

(
vi, vj

)
,

(15)s.t .C1 :
∑

(vi ,vj )∈DE
f
(
(vi , vj

)
−

∑
(vj ,vi)∈DE

f
(
vj , vi

)
= b

(
vj
)
,

(16)C2 : 0 ≤ out
(
vi , vj

)
· co

(
vi , vj

)
≤ ca

(
vi , vj

)
, ∀
(
vi , vj

)
∈ DE.
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∑
v∈EV b(v) = 0 is called a feasible flow. Under the prem-

ise of satisfying formulae (14, 15 and 16), we maintain the 
minimum cost, and iteratively search for the maximum 
flow until the optimization conditions are met.

In a PEC environment, there will be certain changes 
in PEC, such as the number of user requests, the access 
costs, the load capacity of edge nodes and the number 
of edge nodes. However, the structural changes in the 
graph associated with PEC are relatively small within 
every two adjacent time periods. Therefore, we propose 
an incremental MCMF algorithm based on BP. By cach-
ing and reusing the last solution, only local operations 
are required to obtain the global optimal solution of the 
graph.

(2) Algorithm for solving MCMF graph

BP algorithm is message-transmission algorithm based 
on factor graph model. By updating the information of 
nodes, BP algorithm updates the state of an entire net-
work until the network stabilizes. The efficiency of mes-
sage transmission plays a crucial role in BP algorithm. 
This section discusses the incremental MCMF algorithm 
based on BP, which reduces the network and computa-
tional costs and supports dynamic deployment by only 
sending the changed messages.

In a factor graph, there are two types of nodes: vari-
able node xi and constraint node f(a). Correspondingly, 
there are two types of messages on undirected edge 
(i,α) at time t, namely message m(i,a,xi,t) sent by xi to 
f(a), and message g(a,i,xi,t) sent by f(a) to xi. The mes-
sage description based on increment is as follows.

where k ∈ N (i)\a denotes the set of constraint nodes 
connected to xi except for f(a), j ∈ N (a)\i denotes the 
set of variable nodes connected to f(a) except for xi, 
and let �m(i, a, xi, 0) = 0,�m(k , i, xi, 0) = m(k , i, xi, 0)

,g(a, i, xj , 0) = 0.
For graph G, f denotes its minimum cost flow, and 

graph G’ = (V’, DE’, CA’, CO’) denotes the graph after 
its local changes. By further optimizing the mini-
mum cost flow f, the incremental minimum cost flow 
algorithm obtains the minimum cost flow f ’of graph 
G’ according to the factor graph increments and the 

(17)�m(i, a, xi, t) =
∑

k∈N (i)\a
�m(k , i, xi, t − 1),

(18)m(i, a, xi, t) = m(i, a, xi, t − 1)+�m(i, a, xi, t),

(19)�g(a, i, xj , t) =
∑

j∈N (a)\i
�m

(
j, a, xj , t

)
,

(20)g(a, i, xj , t) = g(a, i, xj , t − 1)+�g(a, i, xj , t),

message increments. The details can be found in 
Algorithm 2.

Lines 2-3 generate the factor graphs and the mini-
mum cost flow for the initial graph G; lines 4-8 detect 
the state change events, update the graph structure 
when events occur, and solve the updated graph; lines 
11-27 are the main body of the incremental minimum 
cost flow algorithm based on belief propagation, with 
the main idea of calculating the minimum cost eigen-
values while ensuring the maximum flow constraint; 
lines 30-35 are incremental iteration operations, which 
specifically include the calculation of the factor graph 
increments and the message increments.

Algorithm 2. Incremental MCMF based on BP

For BP algorithm, the schedule for updating messages 
is crucial to its convergence. In Algorithm 2, we address 
the question of how to schedule messages for asynchro-
nous propagation to attempt to reach convergence. Pro-
cedure IncrementalMsgUpdating leverages a scheduling 
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scheme that selects all incremental messages to update 
at a time. Additionally, an incremental update approach 
is introduced to accelerate the computation of message 
in Procedure BasicBPMCF.

Simulation and performance analysis
Experimental settings
PeerSim [31] is an event simulator for large-scale distrib-
uted systems that supports P2P network architecture. To 
evaluate the performance of the proposed adaptive rout-
ing strategy, we conducted relevant simulation experi-
ments on PeerSim.

The experiment use a cube-connected cycle graph 
[32] with 4*24 = 64 nodes as the network topology 
structure. Each node in the graph denotes an edge 
node. Given that each edge node is connected to 10 
sensors and 10 users, there are a total of 640 different 
sensors and 640 different users in the network. Each 
edge node can provide data generated by the connected 
sensor nodes to users, and the farthest location for 
a request message to receive a response is at the edge 
node connected to the corresponding sensor node.

The experimental parameters are set as follows. The 
bandwidth and latency between adjacent edge nodes 
are 1 Mb/second and 1 ms, respectively. A sensor gen-
erates a new message with a size of 10  MB every 1  s. 
The probability of users requesting different sensor 
messages is the same. And the probability of users 
requesting messages generated by the same sensor 
at different times follows Zipf distribution, where let 
C = 1, 0.8 ≤ α ≤ 1.5 . Each user randomly requests 
20 different sensor messages at the rate of 1 request/
second. Each edge node caches 2048 sensor messages 
and can accommodate 500 request messages. In each 
experiment, we take 5 samples with an interval of 60 s 
between each sampling. A total of 10 experiments were 
conducted, and the results were averaged.

According to the above settings, the total number of 
user request messages during the 5 sampling periods is 
tnr = 192000.

Performance metrics
By analyzing the formula (1, 2 and 3) involved in the 
optimization goals of the adaptive routing model, 
we can conclude that load(u,s) and delay(u,s,ev) are 
key factors that affect the performance of the system 
model. To evaluate the performance of different rout-
ing schemes, the following two performance evalua-
tion metrics based on load(u,s) and delay(u,s,ev) are 
considered.

• Average access latency, adelay = 1

tnr ·
∑

t∈T delay(u, s, ev) , 
which denotes the average delay spent from an user 
sending a request to receiving the corresponding 
sensor message.

• Average edge node load, aload = 1
tnr

·
∑

t∈T load(u, s) , 
which denotes the average number of times that 
edge nodes directly connected to sensors provide 
services to users.

Based on these indicators, we can analyze both the 
efficiency of caching services provided by target edge 
nodes in ARPEC and the effectiveness of target edge 
nodes in alleviating service pressure on edge nodes 
directly connected to sensors.

Performance testing & analysis

(1) Performance of request message processing algorithm

We adjust Zipf probability parameter α of request mes-
sage to examine the performance trend of the request 
message processing algorithm. Because LCE, LCD, and 
Prob0.5 are three typical target node selection strategies 
that range from simple to complex, we compare the per-
formance of ARPEC with that of LCE, LCD, and Prob0.5. 
The performance changes are shown in Fig. 3.

Figure 3a and b show that there are certain differences 
of the strategies and ARPEC outperforms these com-
pared strategies in the two metrics. This is because user’s 
requests for high-priority edge nodes become more fre-
quent as the parameter α increases. Due to the lack of sen-
sitivity of LCE, LCD, and Prob0.5 to changes in message 
activity and user’s requests, performance improvement is 
limited. As message activity increases, sensor messages 
in edge nodes become more concentrated. By increasing 
the priority of the corresponding edge nodes, ARPEC can 
cache sensor messages on the reasonable edge nodes.

(2) Performance of incremental MCMF algorithm

The experimental parameters are set as follows. First, 
by assigning a value greater than 1 to a, it indicates that 
users are more concerned about several sensors. On 
the contrary, the distribution of user requests is rela-
tively uniform. So α reflects user’s preference for sensor 
requests. Without loss of generality, let α = 1. Second, in 
each sampling period, the number of nodes with changes 
is less than 12; and the change pattern of nodes follows 
a uniform distribution. In Fig. 4, the trends of the incre-
mental BP-based MCMF algorithm in terms of perfor-
mance measurements are examined by adjusting the 
number of changing nodes, and the results are compared 
with the BasicBPMCF algorithm.
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The average access latency difference between the two 
strategies shown in Fig. 4a is not significant, which indi-
cates that the solution results of the two strategies are 
basically consistent. However, as shown in Fig.  4b, the 
efficiency of the incremental MCMF algorithm has been 
greatly improved, with an edge node load of approxi-
mately 50% of that of BasicBPMCF. This indicates that 
the incremental MCMF algorithm reduces network 
costs. This is because the incremental MCMF algorithm 
saves time in solving the maximum flow. Meanwhile, 
because the data in the network does not change much, 
the MCMF in the previous stage may already be very 
close to the optimal flow in this stage, and only a small 
amount of incremental information needs to be pro-
cessed to achieve the optimal feasible flow.

Analysis of ARPEC application scenarios
ARPEC uses a grey model to predict the priority of edge 
nodes. For cases where priority data samples change rap-
idly, the sample quality may not be particularly good and 
the response speed may not meet user requirements. We 

can improve sample quality by adjusting the length of the 
priority sequence. However, due to the unpredictable sta-
tistical characteristics of the incoming user requests and 
sensor data, GreyPre may adjust the sample length multi-
ple times and results in higher latency. Therefore, ARPEC 
is not suitable for applications with significant instan-
taneous changes in IoT and high requirements for real-
time computing.

The requirements for updating node information in 
ARPEC should be met. Users can set the frequency of 
updating node information. If the frequency is higher, the 
number of adjustments to the minimum cost flow will 
increase. Due to the limited resources of edge nodes, in 
the worst case, the adjustment of the minimum cost flow 
still cannot meet the user’s requirements for network 
traffic. So, it is considered that ARPEC cannot provide 
support for MCMF at the given frequency of updating 
node information.

Conclusion
In this paper, we propose an adaptive routing strategy 
in PEC, which can adapt to the temporal dynamic char-
acteristics of routing demands and supports dynamic 
deployment. In order to improve the user experience and 
give full play to the overall performance of Edge Cloud, 

Fig. 3 Performance changes with α under different strategies. a 
Average access latency. b Average edge node load

Fig. 4 Performance changes under different strategies. a Average 
access latency. b Average edge node load
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a routing optimization model is described from the per-
spectives of network traffic, user access delay, and edge 
node resource utilization. We implement two algorithms, 
the processing request messages algorithm based on grey 
prediction model, and the incremental MCMF algorithm 
based on BP algorithm. The evaluation results show that 
ARPEC can effectively improve PEC transmission perfor-
mance and user experience. In the future, our research 
will focus on the following two aspects: the optimization 
technology of target node parameters based on machine 
learning, and the merging and filtering mechanisms to 
reduce the complexity of solving graph.
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