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Abstract 

In recent years, with the rapid development of mobile communication networks, some new services such as cloud 
virtual reality, holographic communication, and etc. continue to emerge. Service composition has been researched 
in cloud computing. however, as the fast development of edge clouds, the service components can be deployed 
on the edge clouds to reduce the composition latency, so the more flexible and intelligent service composition algo-
rithms are urgently need to study. Based on this, we propose a service composition strategy under the multi-cloud 
environment, and we propose an ant colony optimization algorithm (ACO) based on the multi-pheromone mecha-
nism to optimize the quality of service (QoS). To avoid the occurrence of local optima, we further introduce the muta-
tion operation of the genetic algorithm. Finally, the simulation results show that the proposed algorithm can achieve 
better QoS parameters such as latency and response time while ensuring the stability of services.

Keywords Service composition, Ant colony optimization, Multi-pheromone mechanism, Quality of service

Introduction
Background
Recently with the more and more tightly integration of 
wireless communication and artificial intelligence (AI) 
technologies, human society will enter the era of intelli-
gence by 2030, and the transition from IoT to the intel-
ligent connection of everything will be realized. The IoT 
services are becoming more and more diverse, such as 
virtual reality (VR), holographic communication, and etc. 
How to realize the rapid generation and deployment of 
the new services has become the significant trend in the 
future.

Service-oriented computing (SOC) provides a new 
paradigm, it enables service providers to register their 
services in the service center and realize on-demand 

computing by combining and utilizing external 
resources, and it changes the way applications are inte-
grated, designed and delivered [1]. As one kind of SOC, 
service composition allows various software applications 
and virtual resources to compose different existing ser-
vice components into one service according to specific 
standards to meet heterogeneous users’ requirements 
effectively, which has been widely researched in cloud 
computing [2]. Service composition is able to reduce the 
cost and risk of producing new services, which can build 
more feature-rich services according to user preferences 
and achieve more economic benefits.

In recent years, many methods have been applied to 
solve the service composition problem in the cloud envi-
ronment. Existing methods can be divided into the fol-
lowing categories: reinforcement learning-based [3–6], 
graph-based [7], combinatorial optimization-based and 
heuristic-based [8, 9]. For reinforcement learning based 
schemes, Wang et  al. [4] proposes the service composi-
tion scheme based on Deep Reinforcement Learning 
(DRL) considering the dynamic nature of the environ-
ment, which is suitable for the partially observable ser-
vice environment. Gharineiat et  al. proposes a service 
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selection and composition model based on spatiotem-
poral features and a temporally uncertain service discov-
ery method Based on the above work, and introduced 
DRL to support service discovery and composition more 
efficiently[5]. Zhao et  al. further proposes a DRL based 
multi-agent application multi-layer perception model to 
specify the agent’s function through an abstract semi-
natural grammar language to generate executable code 
for service composition [5]. Liang et  al. [6] proposed 
the dueling Deep Q-Network (DQN) with prioritized 
replay to further improve the performance of DRL. For 
graph-based schemes, Li et al. stores the path of service 
composition in the directed bipartite graph of the graph 
database and uses the shortest bidirectional width opti-
mization algorithm and the Dijkstra algorithm to find the 
solution with the optimal QoS [7]. At present, the heu-
ristic algorithms used in the field of service composition 
mainly include ACO algorithm [10], genetic algorithm 
(GA) algorithm [8], particle swarm algorithm (PSA) and 
simulated annealing (SA) algorithm [9]. Compared to the 
other algorithms, the ACO algorithm has been widely 
used in service composition since it can successfully solve 
the traveling salesman problem and the knapsack prob-
lem. In Dahan [9], an algorithm capable of composing 
services with fluctuating QoS is proposed to achieve high 
QoS consistency and gradually adjust the service com-
position strategy through the SA algorithm. Alayed et al. 
and Chen et al. introduce the exchange process based on 
the traditional ACO algorithm and increase the chance 
of obtaining an optimal solution by increasing diversity 
[1, 11]. Dahan et  al. propose a more efficient neighbor 
selection algorithm to find high-quality solutions by lim-
iting the flight process of the ACO algorithm [8]. They 
further introduced GA based on the ACO algorithm to 
automatically adjust the ACO parameters, which helps 
ACO algorithm to avoid the problem of local optima and 
improves the performance of ACO in Chen [12]. Seghir 
et al. proposed a fusion strategy of hybrid ACO and GA, 
to dynamically manage ACO and GA algorithm call 
time according to the quality of the solution [13]. Liao 
et  al. [14] proposed an improved Qos model and intro-
duced the swarm optimization algorithm with linearly 
decreasing inertia weight and learning factor to find the 
optimal service composition. Guo et  al. [15] creatively 
constructed a multi-objective optimization model con-
sidering multi-agent interests, and proposed the grey tar-
get decision-making method to find the optimal solution.

As the fast development of the edge cloud technology, 
the components of the same service are usually distrib-
uted on multiple edge clouds. Sometimes user requests 
are not met from only one cloud and to better satisfy the 
complex requirements of users, the service components 
in various clouds could be combined by using service 

composition methods. So the service composition prob-
lem can be divided into services selection and service 
composition. Manel et  al. [16] proposed an approach 
to Service Composition in a Multi-Cloud environment 
based on cooperative Agents to merge these two sub-
problems and then proposed deep Q learning (DQL) to 
obtain the optimal composition. Diao et al. [17] proposed 
a hybrid service composition algorithm, which used the 
hunting mechanism of standard ant lion optimization 
algorithm to find the best service composition. Mean-
while most algorithms do not take service stability into 
account while optimizing the QoS of services. Therefor, 
it is thus clear that the service composition in the multi-
cloud environment is still an urgent issue to study.

Contribution
In this paper, we first discuss the service composition 
algorithm under the multi-cloud scenario. Since the ser-
vice composition problem in a multi-cloud environment 
is a discrete combinatorial optimization problem, and the 
nature of the problem is similar to the search process of 
an ant colony algorithm, an ACO algorithm is considered 
to solve such problems. Further to avoid convergence to 
local optima, we then propose an effective multi-phero-
mone mechanism and a mutation operation to improve 
the quality of the solution and meet the actual QoS 
requirements of users:

• We propose a service composition strategy under 
the multi-cloud scenario, which can make full use of 
service components distributed in multiple clouds to 
improve the quality of services.

• We propose a multi-pheromone mechanism based 
on an ACO algorithm, which can set different pher-
omones for specific QoS variables, so that ants can 
optimize specific QoS parameters according to the 
weight of different pheromones, and enables optimi-
zation of specific QoS parameters.

• Finally, the ACO algorithm is optimized by using the 
mutation operation of the GA algorithm to solve the 
problem of slow convergence speed and easy falling 
into the local optimum.

The rest of the paper is organized as follows: Methods 
section  introduces the general process and the pro-
posed ACO based service composition algorithm under 
the multi-cloud environment. Simulation results sec-
tion  shows the simulation results of the proposed algo-
rithm and the traditional ACO algorithm and traditional 
ACO algorithms in terms of service composition perfor-
mance. Finally the conclusions are given in Results and 
discussion section.
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Methods
Multi‑cloud service composition model
Cloud computing was first defined by the National Insti-
tute of Standards and Technology (NIST) in the United 
States. In recent years, with the continuous promotion 
of global infrastructure construction and growth of the 
market, cloud computing technology is also constantly 
pushing the emergence of different types of cloud such 
as central cloud and edge cloud. The development of the 
edge clouds will bring service closer to users.

With its powerful computing and storage capabilities, 
the central cloud is usually used for big data analysis, deep 
learning training, and etc. On the contrary, the edge cloud 
plays an essential role in data acquisition, real-time control, 
intelligent perception and fast decision making. Meanwhile, 
compared with the central cloud, edge clouds allow users to 
make use of the powerful computing capability of the cloud 
platform without causing high delay in communication with 
the remote cloud data center [18], thus significantly reduc-
ing the data flow to or from the core network and meeting 

the delay requirements of delay-sensitive services in the 
future. Therefore, deploying delay-sensitive services in edge 
clouds will become an important trend in the future.

We consider the cloud-edge-device architecture in this 
paper, in which service components are typically deployed 
on a central cloud [19]. When users need a service compo-
nent, they can quickly migrate the service components in 
the cloud through containerized methods such as Docker. 
In this way, the system can compose various service com-
ponents and virtualize the resources (such as storage 
and computing) into a specific service for users, which is 
shown in Fig. 1. Presently, Docker containers are becom-
ing an increasingly popular choice in cloud computing. 
In the study of [20], the author used Docker containers to 
make a real-world cloud scene to support the study.

At the same time, more and more services are designed 
as independent, and loosely coupled, which is often 
referred to as micro-service architecture [21]. Thus, 
components required by a service may be distributed in 
different edge clouds. However, few methods have been 

Fig. 1 Service composition strategy in the multi-cloud IoT scenario
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implemented to deal with service composition strategies 
under the multi-cloud environment. At the same time, a 
multi-cloud based solution allows customers to choose 
from a set of candidate services that offer higher perfor-
mance compared to a service operator that utilizes fewer 
cloud resources on a single cloud [2]. Multiple clouds 
have also successfully avoided the impact of equipment 
outages and improved system stability.

Therefore, we first propose a service composition archi-
tecture under the multi-cloud environment, as shown in 
Fig.  1. We assume that the system has one central cloud, 
N edge clouds and M users, i.e, N = {1, 2, 3, · · · ,N } , 
M = {1, 2, 3, · · · ,M} . In addition, the central cloud stores 
all the component information required for the composi-
tion of a specific service, and a global network controller is 
deployed on it. At the same time, many service components 
are deployed on the edge clouds. And the main mathemati-
cal notations used in this paper are summarized in Table 1.

In this architecture, the system first continuously 
receives service requests from users, and transfers the 
requests to the edge cloud closest to users for processing. 
Then, the neighbor edge cloud and service component 
database are deployed on the edge cloud. The neighbor 
edge cloud stores the hop count of the edge cloud from 
other edge clouds in the network and the shortest path to 
the edge cloud, as shown in Table 2:

where ni ∈ [0,N ) is the number of the edge cloud, 
hopi is the hop number between the edge cloud ni and 
the current edge cloud, pathi is the shortest path to the 
edge cloud ni . The service component database stores the 
names of service components deployed on the edge cloud 

and neighboring edge cloud and their corresponding QoS 
attributes, such as delay and reliability, as shown in Table 3:

where ηij represents the jth QoS parameter correspond-
ing to the ith service component. Therefore, when the edge 
cloud which is closest to the user receives the request, it 
first communicates with the central controller to obtain the 
maximum resources (including computing, storage, com-
munication) required by the composition of the service. 
Suppose the remaining resources on the edge cloud can 
meet the maximum requirements for composing the ser-
vices. In that case, the services will be composed on the edge 
cloud. Otherwise, the edge cloud will continually search for 
the neighbor edge cloud based on the minimum hop count 
until the remaining resources on the edge cloud can meet 
the requirements of service composition [22, 23], i.e,

where Rl indicates the resource requirements required by 
service l, L is the service set that needs to be composed 
on the edge cloud i, Ci is the total resources in edge cloud 
i.

Another reason for the popularity of micro-services is 
the emergence of container virtualization, which can be 
used by cloud computing to deploy, relocate, or extend 
virtual machines to meet changing service needs dynami-
cally. Unlike virtual machines, containerization shares 
the same operating system kernel with hosts to reduce 
on-demand provisioning overhead and provide more effi-
cient resource use. This design is often done in parallel 
with the micro-services architecture. Each lightweight 
component can be provided on demand in a container 
and scaled to its specific needs [24].

Subsequently, this strategy realizes the rapid on-demand 
deployment of service components in containerized ways 

(1)
l∈L

Rl ≤ Ci, i ∈ N

Table 1 Summary of main mathematical notations

Notation Description

N the number of edge clouds

M the number of users

L the set of service composition

ηi,j the jth QoS parameter corresponding to ith 
service component

Rl the resource requirements required by service l

Ci the total resources in edge cloud i

S the set of service components

ηT Throughput parameter

ηLo Latency parameter

Sta the stability of the service composition solution

Fit the fitness of the service composition solution

Pkij (t) the evaporation probability

τij the heuristic information value on path (i, j)

τ0 the initial pheromone value

ρ the evaporation rate

Table 2 Neighbor edge cloud database

Number of the edge cloud Hop Path

n1 hop1 path1

n2 hop2 path2

· · · · · · · · ·

ni hopi pathi

Table 3 Service component database

Service Component Number of the edge cloud QoS

Component1 n1 η1j

Component2 n2 η2j

· · · · · · · · ·

Componenti ni ηij
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such as Docker under the multi-cloud environment, and 
deploys all components required for service composition 
to the corresponding edge cloud [24].

At the same time, to ensure real-time data in the neigh-
boring edge cloud database and service component 
database, when the edge cloud suspends services or the 
service component deployed on the edge cloud changes, 
it needs to broadcast the changes to other edge clouds on 
the network so that the databases on other edge clouds 
can update in time.

QoS model
A service can typically consist of k groups of service com-
ponents that contain abstract definitions of requirements 
in a particular order. In actual service compositions, users 
need to find a group of services that can meet user and 
QoS requirements to complete user operations. In this 
paper, the basic idea of service composition is as follows: 
Firstly, according to user requirements, the whole process 
of service composition is divided into K steps, each step 
has a service set Si corresponding to it, and the algorithm 
needs to select a service component s ∈ Si from the set of 
service components in each step to complete user opera-
tions. Therefore, there are multiple paths from service com-
ponent set S1 to set Sk , and the final service composition 
is achieved by selecting the best service composition path. 
In the process of service composition, the advantages and 
disadvantages of services should be considered. A service 
usually contains functional attributes and non-functional 
attributes. Functional attributes are usually defined as the 
content provided by the service, namely the purpose of 
the service, while non-functional attributes are the qual-
ity attached to the service, namely QoS [5]. QoS attribute 
is one of the suitable criteria for service evaluation. Inter-
national standards ISO8402 [25] and ITU-T E.800 [26] 
define QoS as consisting of some non-functional attributes, 
including response time, availability, throughput and relia-
bility, and etc. In order to distinguish different service com-
ponents, QoS optimization is a key factor in the process of 
service composition, which is used to evaluate the attrib-
utes of the composed services. Generally, QoS standards 
can be divided into dynamic QoS (response time, reliabil-
ity, and availability) and static QoS (robustness, accuracy, 
and security). In this paper, we mainly consider response 
time, latency, reliability and throughput. In this paper, QoS 
attributes of service are set as the following four values [27]:

• Response time is the total elapsed time between the 
user and the service provider for a particular service 
request and the response.

• Latency is the time taken for a packet to be transmit-
ted from the server where the service component 
resides to the client.

• Availability is the probability that components are 
in the expected functional state and can be used in a 
particular environment.

• Throughput is the maximum rate that the service 
component can accept without frame loss.

Table 4 shows the specific calculation of QoS attributes 
of the service obtained through the composition of the 
above components:

where, k is the total number of service sets, and j is 
the number of service components selected from the 
service set i during composition. In the process of ser-
vice composition, while optimizing various QoS param-
eters of the services, we also need to ensure the stability 
of the composed service and other indicators. In this 
paper, we further define the stability of QoS parameters 
as the sum of the absolute value of QoS parameters 
among service components. For example, the stabil-
ity of the QoS parameter QoS j in the service can be 
expressed as follows [28]:

Therefore, in the composed service, if the sum of the 
absolute value of the difference between the two com-
ponents of QoS i  is the smallest, we can consider that 
the more stable the QoS parameter is, and reduce the 
impact of the large fluctuation of QoS parameters on 
the service operation effect.

At the same time, to reduce the influence of data size 
in different service sets on the final result, this paper 
further normalized the QoS information of the above 
service components. This part uses throughput and 
latency as examples.

• Throughput parameter ηT  . ηT  generally prefers to 
select candidate service components with higher 
throughput: 

(2)Staj =

k−1
∑

i=1

�η(i+1)(j+1) − ηij�

(3)ηT (i,j) =
ηT (i,j) −Min

Min

Table 4 Some aggregation models for QoS values calculation

QoS Criteria Expression

Response Time (RT) ∑k
i=1 RT (ηij)

Availability (A) ∏k
i=1 A(ηij)

Throughput (T) ∑k
i=1 T (ηij)

Latency (Lo) ∑k
i=1 Lo(ηij)
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where Min = min(ηT (i,j)) , the higher the through-
put, the higher the ηT . And the same applies to avail-
ability parameters.

• Latency parameter ηLo . ηLo generally tends to select 
candidate service components with shorter latency: 

where Max = max(ηLo(i,j)) , the smaller the latency, 
the higher the ηLo . And the same applies to response 
time parameters.

After normalization, the larger the parameter value, the 
better. And the QoS parameters including ’throughput’, 
’availability’, ’latency’, and ’response time’ after this sec-
tion all refer to the normalized value. Finally, we compre-
hensively consider the four QoS attributes and choose 
the best service composition strategy for users to opti-
mize latency, throughput and other parameters. And in 
the next section, we will further propose the ACO based 
service composition algorithm to optimize the QoS.

ACO based service composition algorithm
ACO algorithm
The ACO algorithm is a kind of meta-heuristic algorithm 
which is similar to swarm optimization, particle swarm 
optimization, etc. Meta-heuristic algorithms try to find 
the best possible solution within the lowest execution 
time of a given problem. For example, ACO algorithm 
simulates the actual behavior of ants when foraging. In 
practice, the ant tries to find the nearest food source and 
leave the nest in a random way, depositing chemicals 
which called pheromone in their path. Pheromone rep-
resents the communication mechanism between them 
because they stimulate other ants to follow them [29]. 
Thus, the nearest food source was associated with more 
pheromone than the farthest transaction food.

In the ACO algorithm, all ants are randomly initial-
ized and a potential solution is searched. In addition, 
pheromones are initialized as a constant amount. Dur-
ing each iteration, each ant moves to complete a ser-
vice composition and builds its solution based on the 
QoS of the service. To simulate this process in the ACO 
algorithm, each ant uses the following equation:

where τij is the heuristic information value on path (i, j), 
Sj is the list of service components in the next service set 
that the ant passes through, and α and β are coefficient 
parameters used to determine the importance of each 

(4)ηLo(i,j) =
Max − ηLo(i,j)

Max

(5)Pk
ij(t) =







[τij(t)]
α[ηij(t)]

β

�

s⊂Sj

[τis(t)]α[ηis(t)]β
if j ∈ Sj

0 otherwise

pheromone and local heuristics. The pheromone is also 
updated with the evaporation probability Pk

ij(t) , and the 
ant moves from one node to another using the following 
equation, namely local pheromone renewal:

where τ0 is the initial pheromone value and ρ is the evap-
oration rate. At the end of each iteration, the ants evalu-
ate the quality of the solution they just built. Therefore, 
the ACO algorithm uses the greedy selection method to 
retain the best solution. Then, the pheromone tracks on 
the path are updated by the ant. This process is called 
global pheromone updating:

where �τij is defined as:

where L(t) is the optimal set of service composition.
As shown in the above equation, the behavior of ants 

is strongly influenced by the values of many parameters 
(α,β , ρ, τ0) , thus effectively balancing exploration and 
exploitation. This balance between exploration and exploita-
tion helps ACO algorithms avoid premature problems [30]. 
This result can be obtained by effectively tuning the param-
eters of the algorithm. The tuning of parameters can be clas-
sified into static, adaptive, and self-adaptive [31]. Numerous 
studies have shown that self-adaptation improves under-
standing quality when solving optimization problems [32]. 
In this work, we first propose a service composition algo-
rithm based on a multi-pheromone mechanism. On this 
basis, we propose a mutation mechanism using a genetic 
algorithm to avoid the algorithm from falling into a locally 
optimal state and to speed up the iteration of the algorithm.

Multi‑pheromone mechanism
ACO is a heuristic algorithm introduced based on combinato-
rial optimization problems. Pheromone is an important refer-
ence for ants to find the next service component from the set. 
The traditional ACO algorithm contains only one pheromone, 
which cannot deal with the multi-attribute problem in the 
service composition. However, there may be different require-
ments for different QoS values in the actual service compo-
sition process. Taking cloud VR services as an example, the 
primary QoS requirement is latency, which needs to be mini-
mized to improve user experience quality and prevent users 
from dizziness and other problems during use; secondly, it is 
necessary to ensure throughput and VR images’ transmission. 
Because of the above shortcomings, we propose an ACO algo-
rithm based on a multi-pheromone mechanism to distinguish 
the priority of QoS parameter optimization.

(6)τij(t + 1) = (1− ρ)τij(t)+ ρτ0

(7)τij(t + 1) = (1− ρ)τij(t)+ ρ�τij

(8)�τij =

{

1
L(t) if path(i, j) ∈ the best path

τij otherwise
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Our algorithm set different pheromone to represent dif-
ferent sets of QoS attributes. Assuming that different ser-
vices have different QoS attributes, correspondingly we set 
pheromone to represent different sets of QoS attributes. We 
consider that 1-3 attributes are included in each QoS attrib-
ute set referring to Alayed [1]. For example, pheromone τ1 
is [ τL ], and pheromone τ2 is [ τRT , τA , τT ]. Therefore, ants 
will prioritize the QoS parameter Latency corresponding to 
pheromone τ1 in selecting the next service component, and 
reduce the impact on parameters such as response time and 
availability of pheromone τ2 under the premise of ensuring 
the optimal unit of delay. It also improves more exploration 
opportunities for ants in the solution space [1].

Then, at time t, the kth pheromone is updated locally 
according to the following rules:

At the same time, the kth pheromone is globally updated 
according to the following rules:

where �τk ,ij is defined as:

where L(t) is the optimal set of service composition.
At the same time, considering the influence of differ-

ent pheromones on the effect of service composition, this 
paper ranks the importance of each pheromone through 
different systems in the process of calculating the transi-
tion probability of the ACO algorithm, to ensure that the 
primary QoS requirements are optimized while reducing 
the impact on other QoS parameters. That is, the transition 
probability formula is updated as:

where

where n is the number of pheromones, and ht is the 
weight of the tth pheromone, and α and β are constants. 
This new formula can help ants consider the value of 
QoS features individually. Compared to single-phero-
mone aggregation of these features, this technique allows 
ants to efficiently explore the search place efficiently. At 

(9)τk ,ij(t + 1) = (1− ρ)τk ,ij(t)+ ρτ0

(10)τk ,ij(t + 1) = (1− ρ)τk ,ij(t)+ ρ�τk ,ij

(11)�τij =

{

1
L(t) if path(i, j) ∈ the best path

τij otherwise

(12)

Pk
ij(t) =



















[
n
�

t=1

htτh,ij(t)]
α[

n
�

t=1

htηh,ij(t)]
β

�

s⊂Sj

[
n
�

t=1

htτh,is(t)]
α[

n
�

t=1

htηh,is(t)]
β
if j ∈ Sj

0 otherwise

(13)
n

∑

t=1

ht = 1

the end of each iteration, all possible solutions are con-
structed. Then calculate the fitness and stability of its 
solution. The calculation formula of the solution fitness 
in this paper is as follows:

Among them, k is the number of service component 
sets that have been composed, and the four param-
eters represent availability, throughput, latency, and 
response time respectively. And α1 , β1 , γ1 , and δ1 are 
constants. Furthermore, the calculation formula of the 
solution stability in this paper is as follows [28]:

where α2 , β2 , γ2 , and δ2 are constants. Thus, the final 
result of this solution is:

where α3 and β3 are also constants. So, the algorithm 
based on the multi-pheromone mechanism proposed in 
this paper is as Algorithm 1:

Algorithm  1 Service Composition Algorithm Based 
on Multi-pheromone Mechanism

Although introducing of the multi-pheromone mecha-
nism increases the exploration space, it realizes the hier-
archical optimization of QoS parameters. However, it also 
slows down the convergence of the algorithm, and requires 
multiple iterations to generate a gap between each phero-
mone, making the algorithm easy to fall into a locally opti-
mal state. Therefore, to solve this problem, we introduce the 

(14)

Fit = α1

k
∏

i=1

L(ηij)+ β1

k
∑

i=1

T (ηij)

+ γ1

k
∏

i=1

A(ηij)+ δ1

k
∑

i=1

RT (ηij)

(15)
Sta = α2L(staj)+ β2T (staj)

+ γ2A(staj)+ δ2RT (staj)

(16)Res = α3Fit + β3Sta
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mutation mechanism in the genetic algorithm based on the 
multi-pheromone mechanism to reduce the possibility of 
the ACO algorithm falling into the local optimum.

Mechanism of genetic variation
Local optimum is a common problem in heuristic algo-
rithms or simply verifying that the resulting optimal solu-
tion is global. The way to avoid getting stuck in a local 
optimum is randomness.

To solve the above problems, Yang et al. [33] proposed to 
combine the genetic algorithm and ACO. Wang et al. [34] 
introduced an enhancement for ACO called Adaptive Ant 
Colony Optimization (AACO). This new algorithm selects 
the web services (WSs) for a workflow based on the degree 
of trust and QoS parameters. In this article, we introduce the 
mutation mechanism from GA. In the mutation mechanism, 
we first randomly copy a solution in the solution set, select a 
bit of the solution to mutate, and form a new solution ran-
domly, then finally try to update the final solution set with 
the new solution. The specific description is as Algorithm 2:

Algorithm 2 Variation Mechanism introduced to in the 
Service Composition Algorithm

where r, k ∈ [0, 1) , K is the number of components 
required to complete the service composition algorithm 
and Nk is the number of components contained in ser-
vice component set SrK  . Then we present the simulation 

results and analysis of our proposed algorithm in the next 
section.

Simulation results
In this section, we conduct a set of experiments to evalu-
ate our proposed algorithm. In the following parts, we 
will introduce the dataset selection, simulation results 
and comparison. All work in this paper is performed 
on Windows 11 with Intel(R) Core(TM) i7-9750H 
CPU@2.60GHz, and 32GB RAM.

Dataset selection
In the simulation, we consider the system model depicted 
in Fig. 1, which consists of one central cloud, and 32 edge 
clouds. We choose a dataset called Quality of Service for 
Web Services (QWS) 2.0 [35]. There are 2507 services in 
this dataset, and each service includes 9 QoS attributes, 
which are Response Time, Availability, Throughput, Reli-
ability, Compliance, Best Practices, Latency and Docu-
mentation. The commonly used QoS attributes in this 
paper are Response Time, Availability, Throughput, and 
Latency. Table  5 describes the reference ranges and units 
of the above four QoS parameters.

In the work of this paper, we randomly select some ser-
vices from the QWS 2.0 dataset for the service compo-
sition algorithm. The parameter values of the algorithm 
we use are: the number of ants m is 100, the pheromone 
importance factor α is 1, the heuristic function impor-
tance factor β is 2, and the pheromone volatility factor 
ρ is 0.1, the constant coefficient Q is 1 according to [9]. 
Ultimately, each algorithm went through 40 iterations.

Results and discussion
In this paper, we compare the proposed algorithm with 
the traditional ACO algorithm, the Flying ACO (FACO) 
algorithm and the algorithm proposed in the paper [1] 
in terms of fitness, stability and QoS parameters such as 
latency and response time. FACO algorithm shares the 
number of pheromone with its neighbors through flying 
ants to increase the chance of being accessed in feature 
iteration and compared with the algorithm proposed 
in the paper [1]. In our work, we mainly introduce the 

Table 5 Reference ranges and units of the QoS parameters

Parameter name Reference range Unit

Response Time 30-5000 ms

Availability 5-100 %

Throughput 0.1-50 Mbps

Latency 0.1-4500 ms
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multi-pheromone importance parameters α , β , γ and δ , 
and introduce the mutation operation from GA to avoid 
the algorithm falling into a local optima. In our work, we 
use dual pheromone, where pheromone 1 is set as [τL] 
and pheromone 2 is set as [τRT , τA, τT ] , and pheromone 
1 has weight parameters much higher than pheromone 
2, to realize critical optimization of parameter latency in 
pheromone 1.

Figures  2 and 3 respectively show the performance 
differences between the proposed algorithm, the tradi-
tional ACO algorithm [36], the FACO algorithm [37] 
and the algorithm proposed in paper [1] in Fitness, 
Stability and Result. In our work, 100-1000 service sets 
are randomly captured from QWS 2.0 respectively, and 
only the services containing more than 5 components 
are composed. As can be seen from Fig. 2, the quality of 
the algorithm proposed in this paper on fitness is higher 
than the other two algorithms, about 83.9% higher than 
the traditional ACO, 37.3% higher the FACO Algorithm 
and 7.2% higher than the algorithm proposed in paper 
[1] on average. This is because the multi-pheromone 
mechanism adopted in this paper realizes the key opti-
mization of specific QoS parameters such as latency. 
And the latency parameter accounts for a large propor-
tion of the fitness of the service, which is much higher 
than other parameters such as throughput, availability 
and response time.

As can be seen from Fig.  3, the stability performance 
of the algorithm is also better than the other three algo-
rithms, about 4.8% higher than the algorithm proposed 
in paper [1], and much higher than FACO and traditional 
ACO algorithm.

However, the ultimate goal of this work is to optimize 
service QoS while ensuring service stability. Figures 4, 
5 and respectively show the comparison of simula-
tion results of Latency and Response Time parameters 
under the four algorithms. Since all QoS parameters 
have been normalized in the former section to reduce 
the impact of different QoS parameter sizes and their 
variation ranges on the final results, the larger the 
parameter, the better the optimization effect of the cor-
responding QoS variable. It can be seen from Fig. 4 that 
the performance of the delay parameter as the main 
optimization variable under the algorithm proposed 
in this paper is significantly better than that of FACO 
and traditional ACO algorithm, and it is also slightly 
improved by about 3.2% compared with the algorithm 
in paper [1]. This is because the delay parameter, as the 
key optimization objective of this paper, accounts for a 
large proportion in the fitness of the service composi-
tion algorithm. Therefore, the continuous optimiza-
tion of the fitness during the iteration also improves 
the latency parameter. At the same time, it can be seen 
from Fig. 5 that the response time parameter as a sec-
ondary optimization variable is also significantly better 
than FACO algorithm, traditional ACO algorithm and 
the algorithm in the paper [1].

In brief, on the premise of ensuring the fitness and sta-
bility of the composition, the proposed service composi-
tion algorithm can achieve the optimization of specific 
indicator according to the QoS requirements of different 
services, compared to the classical ACO, Flying ACO, 
and the proposed algorithm in [1].

Fig. 2 The change curve of the fitness with the number of services
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Conclusion
The service composition problem aims to compose vari-
ous service components and virtual resources accord-
ing to specific criteria to meet the wide-ranging needs 
of heterogeneous users. In this work, we first propose 
the service composition mechanism under the multi-
cloud environment for the cloud-edge-device network 
architecture, making full use of service components 
distributed in multiple clouds to improve the quality 
of the final service composition. Subsequently, based 
on the above content, we further propose a service 
composition algorithm based on the multi-pheromone 

mechanism, by setting separate pheromone for specific 
sets of QoS parameters, and adopting different phero-
mone during the ant exploration process. Different 
weights are used to optimize the specific QoS param-
eters in the composition process. Finally, in view of the 
common problem in the ACO algorithm that it is easy 
to fall into local optima and the slow convergence speed 
of the algorithm caused by the multi-pheromone mech-
anism, we introduce the mutation mechanism in the 
GA to solve the above problems and improve the per-
formance of the algorithm. The simulation results show 
that the proposed algorithm can obtain better solution 

Fig. 3 The change curve of the stability with the number of services

Fig. 4 Experimental results for proposed algorithm in terms of latency
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quality for specific QoS parameters such as latency and 
throughput while ensuring the stability of services on 
the QWS 2.0 dataset.
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