
Bei et al. Journal of Cloud Computing (2024) 13:17
https://doi.org/10.1186/s13677-024-00588-x

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

An improved ACO based service
composition algorithm in multi-cloud networks
Liu Bei1*, Li Wenlin1, Su Xin2 and Xu Xibin2

Abstract

In recent years, with the rapid development of mobile communication networks, some new services such as cloud
virtual reality, holographic communication, and etc. continue to emerge. Service composition has been researched
in cloud computing. however, as the fast development of edge clouds, the service components can be deployed
on the edge clouds to reduce the composition latency, so the more flexible and intelligent service composition algo-
rithms are urgently need to study. Based on this, we propose a service composition strategy under the multi-cloud
environment, and we propose an ant colony optimization algorithm (ACO) based on the multi-pheromone mecha-
nism to optimize the quality of service (QoS). To avoid the occurrence of local optima, we further introduce the muta-
tion operation of the genetic algorithm. Finally, the simulation results show that the proposed algorithm can achieve
better QoS parameters such as latency and response time while ensuring the stability of services.

Keywords Service composition, Ant colony optimization, Multi-pheromone mechanism, Quality of service

Introduction
Background
Recently with the more and more tightly integration of
wireless communication and artificial intelligence (AI)
technologies, human society will enter the era of intelli-
gence by 2030, and the transition from IoT to the intel-
ligent connection of everything will be realized. The IoT
services are becoming more and more diverse, such as
virtual reality (VR), holographic communication, and etc.
How to realize the rapid generation and deployment of
the new services has become the significant trend in the
future.

Service-oriented computing (SOC) provides a new
paradigm, it enables service providers to register their
services in the service center and realize on-demand

computing by combining and utilizing external
resources, and it changes the way applications are inte-
grated, designed and delivered [1]. As one kind of SOC,
service composition allows various software applications
and virtual resources to compose different existing ser-
vice components into one service according to specific
standards to meet heterogeneous users’ requirements
effectively, which has been widely researched in cloud
computing [2]. Service composition is able to reduce the
cost and risk of producing new services, which can build
more feature-rich services according to user preferences
and achieve more economic benefits.

In recent years, many methods have been applied to
solve the service composition problem in the cloud envi-
ronment. Existing methods can be divided into the fol-
lowing categories: reinforcement learning-based [3–6],
graph-based [7], combinatorial optimization-based and
heuristic-based [8, 9]. For reinforcement learning based
schemes, Wang et al. [4] proposes the service composi-
tion scheme based on Deep Reinforcement Learning
(DRL) considering the dynamic nature of the environ-
ment, which is suitable for the partially observable ser-
vice environment. Gharineiat et al. proposes a service

*Correspondence:
Liu Bei
l.bei@foxmail.com
1 School of Communication and Information Engineering, Chongqing
University of Posts and Telecommunications, Nan’an District,
Chongqing 400065, China
2 Department of Electronic Engineering, Tsinghua University, Haidian
District, Beijing 100084, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-024-00588-x&domain=pdf

Page 2 of 12Bei et al. Journal of Cloud Computing (2024) 13:17

selection and composition model based on spatiotem-
poral features and a temporally uncertain service discov-
ery method Based on the above work, and introduced
DRL to support service discovery and composition more
efficiently[5]. Zhao et al. further proposes a DRL based
multi-agent application multi-layer perception model to
specify the agent’s function through an abstract semi-
natural grammar language to generate executable code
for service composition [5]. Liang et al. [6] proposed
the dueling Deep Q-Network (DQN) with prioritized
replay to further improve the performance of DRL. For
graph-based schemes, Li et al. stores the path of service
composition in the directed bipartite graph of the graph
database and uses the shortest bidirectional width opti-
mization algorithm and the Dijkstra algorithm to find the
solution with the optimal QoS [7]. At present, the heu-
ristic algorithms used in the field of service composition
mainly include ACO algorithm [10], genetic algorithm
(GA) algorithm [8], particle swarm algorithm (PSA) and
simulated annealing (SA) algorithm [9]. Compared to the
other algorithms, the ACO algorithm has been widely
used in service composition since it can successfully solve
the traveling salesman problem and the knapsack prob-
lem. In Dahan [9], an algorithm capable of composing
services with fluctuating QoS is proposed to achieve high
QoS consistency and gradually adjust the service com-
position strategy through the SA algorithm. Alayed et al.
and Chen et al. introduce the exchange process based on
the traditional ACO algorithm and increase the chance
of obtaining an optimal solution by increasing diversity
[1, 11]. Dahan et al. propose a more efficient neighbor
selection algorithm to find high-quality solutions by lim-
iting the flight process of the ACO algorithm [8]. They
further introduced GA based on the ACO algorithm to
automatically adjust the ACO parameters, which helps
ACO algorithm to avoid the problem of local optima and
improves the performance of ACO in Chen [12]. Seghir
et al. proposed a fusion strategy of hybrid ACO and GA,
to dynamically manage ACO and GA algorithm call
time according to the quality of the solution [13]. Liao
et al. [14] proposed an improved Qos model and intro-
duced the swarm optimization algorithm with linearly
decreasing inertia weight and learning factor to find the
optimal service composition. Guo et al. [15] creatively
constructed a multi-objective optimization model con-
sidering multi-agent interests, and proposed the grey tar-
get decision-making method to find the optimal solution.

As the fast development of the edge cloud technology,
the components of the same service are usually distrib-
uted on multiple edge clouds. Sometimes user requests
are not met from only one cloud and to better satisfy the
complex requirements of users, the service components
in various clouds could be combined by using service

composition methods. So the service composition prob-
lem can be divided into services selection and service
composition. Manel et al. [16] proposed an approach
to Service Composition in a Multi-Cloud environment
based on cooperative Agents to merge these two sub-
problems and then proposed deep Q learning (DQL) to
obtain the optimal composition. Diao et al. [17] proposed
a hybrid service composition algorithm, which used the
hunting mechanism of standard ant lion optimization
algorithm to find the best service composition. Mean-
while most algorithms do not take service stability into
account while optimizing the QoS of services. Therefor,
it is thus clear that the service composition in the multi-
cloud environment is still an urgent issue to study.

Contribution
In this paper, we first discuss the service composition
algorithm under the multi-cloud scenario. Since the ser-
vice composition problem in a multi-cloud environment
is a discrete combinatorial optimization problem, and the
nature of the problem is similar to the search process of
an ant colony algorithm, an ACO algorithm is considered
to solve such problems. Further to avoid convergence to
local optima, we then propose an effective multi-phero-
mone mechanism and a mutation operation to improve
the quality of the solution and meet the actual QoS
requirements of users:

• We propose a service composition strategy under
the multi-cloud scenario, which can make full use of
service components distributed in multiple clouds to
improve the quality of services.

• We propose a multi-pheromone mechanism based
on an ACO algorithm, which can set different pher-
omones for specific QoS variables, so that ants can
optimize specific QoS parameters according to the
weight of different pheromones, and enables optimi-
zation of specific QoS parameters.

• Finally, the ACO algorithm is optimized by using the
mutation operation of the GA algorithm to solve the
problem of slow convergence speed and easy falling
into the local optimum.

The rest of the paper is organized as follows: Methods
section introduces the general process and the pro-
posed ACO based service composition algorithm under
the multi-cloud environment. Simulation results sec-
tion shows the simulation results of the proposed algo-
rithm and the traditional ACO algorithm and traditional
ACO algorithms in terms of service composition perfor-
mance. Finally the conclusions are given in Results and
discussion section.

Page 3 of 12Bei et al. Journal of Cloud Computing (2024) 13:17

Methods
Multi‑cloud service composition model
Cloud computing was first defined by the National Insti-
tute of Standards and Technology (NIST) in the United
States. In recent years, with the continuous promotion
of global infrastructure construction and growth of the
market, cloud computing technology is also constantly
pushing the emergence of different types of cloud such
as central cloud and edge cloud. The development of the
edge clouds will bring service closer to users.

With its powerful computing and storage capabilities,
the central cloud is usually used for big data analysis, deep
learning training, and etc. On the contrary, the edge cloud
plays an essential role in data acquisition, real-time control,
intelligent perception and fast decision making. Meanwhile,
compared with the central cloud, edge clouds allow users to
make use of the powerful computing capability of the cloud
platform without causing high delay in communication with
the remote cloud data center [18], thus significantly reduc-
ing the data flow to or from the core network and meeting

the delay requirements of delay-sensitive services in the
future. Therefore, deploying delay-sensitive services in edge
clouds will become an important trend in the future.

We consider the cloud-edge-device architecture in this
paper, in which service components are typically deployed
on a central cloud [19]. When users need a service compo-
nent, they can quickly migrate the service components in
the cloud through containerized methods such as Docker.
In this way, the system can compose various service com-
ponents and virtualize the resources (such as storage
and computing) into a specific service for users, which is
shown in Fig. 1. Presently, Docker containers are becom-
ing an increasingly popular choice in cloud computing.
In the study of [20], the author used Docker containers to
make a real-world cloud scene to support the study.

At the same time, more and more services are designed
as independent, and loosely coupled, which is often
referred to as micro-service architecture [21]. Thus,
components required by a service may be distributed in
different edge clouds. However, few methods have been

Fig. 1 Service composition strategy in the multi-cloud IoT scenario

Page 4 of 12Bei et al. Journal of Cloud Computing (2024) 13:17

implemented to deal with service composition strategies
under the multi-cloud environment. At the same time, a
multi-cloud based solution allows customers to choose
from a set of candidate services that offer higher perfor-
mance compared to a service operator that utilizes fewer
cloud resources on a single cloud [2]. Multiple clouds
have also successfully avoided the impact of equipment
outages and improved system stability.

Therefore, we first propose a service composition archi-
tecture under the multi-cloud environment, as shown in
Fig. 1. We assume that the system has one central cloud,
N edge clouds and M users, i.e, N = {1, 2, 3, · · · ,N } ,
M = {1, 2, 3, · · · ,M} . In addition, the central cloud stores
all the component information required for the composi-
tion of a specific service, and a global network controller is
deployed on it. At the same time, many service components
are deployed on the edge clouds. And the main mathemati-
cal notations used in this paper are summarized in Table 1.

In this architecture, the system first continuously
receives service requests from users, and transfers the
requests to the edge cloud closest to users for processing.
Then, the neighbor edge cloud and service component
database are deployed on the edge cloud. The neighbor
edge cloud stores the hop count of the edge cloud from
other edge clouds in the network and the shortest path to
the edge cloud, as shown in Table 2:

where ni ∈ [0,N) is the number of the edge cloud,
hopi is the hop number between the edge cloud ni and
the current edge cloud, pathi is the shortest path to the
edge cloud ni . The service component database stores the
names of service components deployed on the edge cloud

and neighboring edge cloud and their corresponding QoS
attributes, such as delay and reliability, as shown in Table 3:

where ηij represents the jth QoS parameter correspond-
ing to the ith service component. Therefore, when the edge
cloud which is closest to the user receives the request, it
first communicates with the central controller to obtain the
maximum resources (including computing, storage, com-
munication) required by the composition of the service.
Suppose the remaining resources on the edge cloud can
meet the maximum requirements for composing the ser-
vices. In that case, the services will be composed on the edge
cloud. Otherwise, the edge cloud will continually search for
the neighbor edge cloud based on the minimum hop count
until the remaining resources on the edge cloud can meet
the requirements of service composition [22, 23], i.e,

where Rl indicates the resource requirements required by
service l, L is the service set that needs to be composed
on the edge cloud i, Ci is the total resources in edge cloud
i.

Another reason for the popularity of micro-services is
the emergence of container virtualization, which can be
used by cloud computing to deploy, relocate, or extend
virtual machines to meet changing service needs dynami-
cally. Unlike virtual machines, containerization shares
the same operating system kernel with hosts to reduce
on-demand provisioning overhead and provide more effi-
cient resource use. This design is often done in parallel
with the micro-services architecture. Each lightweight
component can be provided on demand in a container
and scaled to its specific needs [24].

Subsequently, this strategy realizes the rapid on-demand
deployment of service components in containerized ways

(1)
l∈L

Rl ≤ Ci, i ∈ N

Table 1 Summary of main mathematical notations

Notation Description

N the number of edge clouds

M the number of users

L the set of service composition

ηi,j the jth QoS parameter corresponding to ith
service component

Rl the resource requirements required by service l

Ci the total resources in edge cloud i

S the set of service components

ηT Throughput parameter

ηLo Latency parameter

Sta the stability of the service composition solution

Fit the fitness of the service composition solution

Pkij (t) the evaporation probability

τij the heuristic information value on path (i, j)

τ0 the initial pheromone value

ρ the evaporation rate

Table 2 Neighbor edge cloud database

Number of the edge cloud Hop Path

n1 hop1 path1

n2 hop2 path2

· · · · · · · · ·

ni hopi pathi

Table 3 Service component database

Service Component Number of the edge cloud QoS

Component1 n1 η1j

Component2 n2 η2j

· · · · · · · · ·

Componenti ni ηij

Page 5 of 12Bei et al. Journal of Cloud Computing (2024) 13:17

such as Docker under the multi-cloud environment, and
deploys all components required for service composition
to the corresponding edge cloud [24].

At the same time, to ensure real-time data in the neigh-
boring edge cloud database and service component
database, when the edge cloud suspends services or the
service component deployed on the edge cloud changes,
it needs to broadcast the changes to other edge clouds on
the network so that the databases on other edge clouds
can update in time.

QoS model
A service can typically consist of k groups of service com-
ponents that contain abstract definitions of requirements
in a particular order. In actual service compositions, users
need to find a group of services that can meet user and
QoS requirements to complete user operations. In this
paper, the basic idea of service composition is as follows:
Firstly, according to user requirements, the whole process
of service composition is divided into K steps, each step
has a service set Si corresponding to it, and the algorithm
needs to select a service component s ∈ Si from the set of
service components in each step to complete user opera-
tions. Therefore, there are multiple paths from service com-
ponent set S1 to set Sk , and the final service composition
is achieved by selecting the best service composition path.
In the process of service composition, the advantages and
disadvantages of services should be considered. A service
usually contains functional attributes and non-functional
attributes. Functional attributes are usually defined as the
content provided by the service, namely the purpose of
the service, while non-functional attributes are the qual-
ity attached to the service, namely QoS [5]. QoS attribute
is one of the suitable criteria for service evaluation. Inter-
national standards ISO8402 [25] and ITU-T E.800 [26]
define QoS as consisting of some non-functional attributes,
including response time, availability, throughput and relia-
bility, and etc. In order to distinguish different service com-
ponents, QoS optimization is a key factor in the process of
service composition, which is used to evaluate the attrib-
utes of the composed services. Generally, QoS standards
can be divided into dynamic QoS (response time, reliabil-
ity, and availability) and static QoS (robustness, accuracy,
and security). In this paper, we mainly consider response
time, latency, reliability and throughput. In this paper, QoS
attributes of service are set as the following four values [27]:

• Response time is the total elapsed time between the
user and the service provider for a particular service
request and the response.

• Latency is the time taken for a packet to be transmit-
ted from the server where the service component
resides to the client.

• Availability is the probability that components are
in the expected functional state and can be used in a
particular environment.

• Throughput is the maximum rate that the service
component can accept without frame loss.

Table 4 shows the specific calculation of QoS attributes
of the service obtained through the composition of the
above components:

where, k is the total number of service sets, and j is
the number of service components selected from the
service set i during composition. In the process of ser-
vice composition, while optimizing various QoS param-
eters of the services, we also need to ensure the stability
of the composed service and other indicators. In this
paper, we further define the stability of QoS parameters
as the sum of the absolute value of QoS parameters
among service components. For example, the stabil-
ity of the QoS parameter QoS j in the service can be
expressed as follows [28]:

Therefore, in the composed service, if the sum of the
absolute value of the difference between the two com-
ponents of QoS i is the smallest, we can consider that
the more stable the QoS parameter is, and reduce the
impact of the large fluctuation of QoS parameters on
the service operation effect.

At the same time, to reduce the influence of data size
in different service sets on the final result, this paper
further normalized the QoS information of the above
service components. This part uses throughput and
latency as examples.

• Throughput parameter ηT . ηT generally prefers to
select candidate service components with higher
throughput:

(2)Staj =

k−1
∑

i=1

�η(i+1)(j+1) − ηij�

(3)ηT (i,j) =
ηT (i,j) −Min

Min

Table 4 Some aggregation models for QoS values calculation

QoS Criteria Expression

Response Time (RT) ∑k
i=1 RT (ηij)

Availability (A) ∏k
i=1 A(ηij)

Throughput (T) ∑k
i=1 T (ηij)

Latency (Lo) ∑k
i=1 Lo(ηij)

Page 6 of 12Bei et al. Journal of Cloud Computing (2024) 13:17

where Min = min(ηT (i,j)) , the higher the through-
put, the higher the ηT . And the same applies to avail-
ability parameters.

• Latency parameter ηLo . ηLo generally tends to select
candidate service components with shorter latency:

where Max = max(ηLo(i,j)) , the smaller the latency,
the higher the ηLo . And the same applies to response
time parameters.

After normalization, the larger the parameter value, the
better. And the QoS parameters including ’throughput’,
’availability’, ’latency’, and ’response time’ after this sec-
tion all refer to the normalized value. Finally, we compre-
hensively consider the four QoS attributes and choose
the best service composition strategy for users to opti-
mize latency, throughput and other parameters. And in
the next section, we will further propose the ACO based
service composition algorithm to optimize the QoS.

ACO based service composition algorithm
ACO algorithm
The ACO algorithm is a kind of meta-heuristic algorithm
which is similar to swarm optimization, particle swarm
optimization, etc. Meta-heuristic algorithms try to find
the best possible solution within the lowest execution
time of a given problem. For example, ACO algorithm
simulates the actual behavior of ants when foraging. In
practice, the ant tries to find the nearest food source and
leave the nest in a random way, depositing chemicals
which called pheromone in their path. Pheromone rep-
resents the communication mechanism between them
because they stimulate other ants to follow them [29].
Thus, the nearest food source was associated with more
pheromone than the farthest transaction food.

In the ACO algorithm, all ants are randomly initial-
ized and a potential solution is searched. In addition,
pheromones are initialized as a constant amount. Dur-
ing each iteration, each ant moves to complete a ser-
vice composition and builds its solution based on the
QoS of the service. To simulate this process in the ACO
algorithm, each ant uses the following equation:

where τij is the heuristic information value on path (i, j),
Sj is the list of service components in the next service set
that the ant passes through, and α and β are coefficient
parameters used to determine the importance of each

(4)ηLo(i,j) =
Max − ηLo(i,j)

Max

(5)Pk
ij(t) =

[τij(t)]
α[ηij(t)]

β

�

s⊂Sj

[τis(t)]α[ηis(t)]β
if j ∈ Sj

0 otherwise

pheromone and local heuristics. The pheromone is also
updated with the evaporation probability Pk

ij(t) , and the
ant moves from one node to another using the following
equation, namely local pheromone renewal:

where τ0 is the initial pheromone value and ρ is the evap-
oration rate. At the end of each iteration, the ants evalu-
ate the quality of the solution they just built. Therefore,
the ACO algorithm uses the greedy selection method to
retain the best solution. Then, the pheromone tracks on
the path are updated by the ant. This process is called
global pheromone updating:

where �τij is defined as:

where L(t) is the optimal set of service composition.
As shown in the above equation, the behavior of ants

is strongly influenced by the values of many parameters
(α,β , ρ, τ0) , thus effectively balancing exploration and
exploitation. This balance between exploration and exploita-
tion helps ACO algorithms avoid premature problems [30].
This result can be obtained by effectively tuning the param-
eters of the algorithm. The tuning of parameters can be clas-
sified into static, adaptive, and self-adaptive [31]. Numerous
studies have shown that self-adaptation improves under-
standing quality when solving optimization problems [32].
In this work, we first propose a service composition algo-
rithm based on a multi-pheromone mechanism. On this
basis, we propose a mutation mechanism using a genetic
algorithm to avoid the algorithm from falling into a locally
optimal state and to speed up the iteration of the algorithm.

Multi‑pheromone mechanism
ACO is a heuristic algorithm introduced based on combinato-
rial optimization problems. Pheromone is an important refer-
ence for ants to find the next service component from the set.
The traditional ACO algorithm contains only one pheromone,
which cannot deal with the multi-attribute problem in the
service composition. However, there may be different require-
ments for different QoS values in the actual service compo-
sition process. Taking cloud VR services as an example, the
primary QoS requirement is latency, which needs to be mini-
mized to improve user experience quality and prevent users
from dizziness and other problems during use; secondly, it is
necessary to ensure throughput and VR images’ transmission.
Because of the above shortcomings, we propose an ACO algo-
rithm based on a multi-pheromone mechanism to distinguish
the priority of QoS parameter optimization.

(6)τij(t + 1) = (1− ρ)τij(t)+ ρτ0

(7)τij(t + 1) = (1− ρ)τij(t)+ ρ�τij

(8)�τij =

{

1
L(t) if path(i, j) ∈ the best path

τij otherwise

Page 7 of 12Bei et al. Journal of Cloud Computing (2024) 13:17

Our algorithm set different pheromone to represent dif-
ferent sets of QoS attributes. Assuming that different ser-
vices have different QoS attributes, correspondingly we set
pheromone to represent different sets of QoS attributes. We
consider that 1-3 attributes are included in each QoS attrib-
ute set referring to Alayed [1]. For example, pheromone τ1
is [τL], and pheromone τ2 is [τRT , τA , τT]. Therefore, ants
will prioritize the QoS parameter Latency corresponding to
pheromone τ1 in selecting the next service component, and
reduce the impact on parameters such as response time and
availability of pheromone τ2 under the premise of ensuring
the optimal unit of delay. It also improves more exploration
opportunities for ants in the solution space [1].

Then, at time t, the kth pheromone is updated locally
according to the following rules:

At the same time, the kth pheromone is globally updated
according to the following rules:

where �τk ,ij is defined as:

where L(t) is the optimal set of service composition.
At the same time, considering the influence of differ-

ent pheromones on the effect of service composition, this
paper ranks the importance of each pheromone through
different systems in the process of calculating the transi-
tion probability of the ACO algorithm, to ensure that the
primary QoS requirements are optimized while reducing
the impact on other QoS parameters. That is, the transition
probability formula is updated as:

where

where n is the number of pheromones, and ht is the
weight of the tth pheromone, and α and β are constants.
This new formula can help ants consider the value of
QoS features individually. Compared to single-phero-
mone aggregation of these features, this technique allows
ants to efficiently explore the search place efficiently. At

(9)τk ,ij(t + 1) = (1− ρ)τk ,ij(t)+ ρτ0

(10)τk ,ij(t + 1) = (1− ρ)τk ,ij(t)+ ρ�τk ,ij

(11)�τij =

{

1
L(t) if path(i, j) ∈ the best path

τij otherwise

(12)

Pk
ij(t) =

[
n
�

t=1

htτh,ij(t)]
α[

n
�

t=1

htηh,ij(t)]
β

�

s⊂Sj

[
n
�

t=1

htτh,is(t)]
α[

n
�

t=1

htηh,is(t)]
β
if j ∈ Sj

0 otherwise

(13)
n

∑

t=1

ht = 1

the end of each iteration, all possible solutions are con-
structed. Then calculate the fitness and stability of its
solution. The calculation formula of the solution fitness
in this paper is as follows:

Among them, k is the number of service component
sets that have been composed, and the four param-
eters represent availability, throughput, latency, and
response time respectively. And α1 , β1 , γ1 , and δ1 are
constants. Furthermore, the calculation formula of the
solution stability in this paper is as follows [28]:

where α2 , β2 , γ2 , and δ2 are constants. Thus, the final
result of this solution is:

where α3 and β3 are also constants. So, the algorithm
based on the multi-pheromone mechanism proposed in
this paper is as Algorithm 1:

Algorithm 1 Service Composition Algorithm Based
on Multi-pheromone Mechanism

Although introducing of the multi-pheromone mecha-
nism increases the exploration space, it realizes the hier-
archical optimization of QoS parameters. However, it also
slows down the convergence of the algorithm, and requires
multiple iterations to generate a gap between each phero-
mone, making the algorithm easy to fall into a locally opti-
mal state. Therefore, to solve this problem, we introduce the

(14)

Fit = α1

k
∏

i=1

L(ηij)+ β1

k
∑

i=1

T (ηij)

+ γ1

k
∏

i=1

A(ηij)+ δ1

k
∑

i=1

RT (ηij)

(15)
Sta = α2L(staj)+ β2T (staj)

+ γ2A(staj)+ δ2RT (staj)

(16)Res = α3Fit + β3Sta

Page 8 of 12Bei et al. Journal of Cloud Computing (2024) 13:17

mutation mechanism in the genetic algorithm based on the
multi-pheromone mechanism to reduce the possibility of
the ACO algorithm falling into the local optimum.

Mechanism of genetic variation
Local optimum is a common problem in heuristic algo-
rithms or simply verifying that the resulting optimal solu-
tion is global. The way to avoid getting stuck in a local
optimum is randomness.

To solve the above problems, Yang et al. [33] proposed to
combine the genetic algorithm and ACO. Wang et al. [34]
introduced an enhancement for ACO called Adaptive Ant
Colony Optimization (AACO). This new algorithm selects
the web services (WSs) for a workflow based on the degree
of trust and QoS parameters. In this article, we introduce the
mutation mechanism from GA. In the mutation mechanism,
we first randomly copy a solution in the solution set, select a
bit of the solution to mutate, and form a new solution ran-
domly, then finally try to update the final solution set with
the new solution. The specific description is as Algorithm 2:

Algorithm 2 Variation Mechanism introduced to in the
Service Composition Algorithm

where r, k ∈ [0, 1) , K is the number of components
required to complete the service composition algorithm
and Nk is the number of components contained in ser-
vice component set SrK . Then we present the simulation

results and analysis of our proposed algorithm in the next
section.

Simulation results
In this section, we conduct a set of experiments to evalu-
ate our proposed algorithm. In the following parts, we
will introduce the dataset selection, simulation results
and comparison. All work in this paper is performed
on Windows 11 with Intel(R) Core(TM) i7-9750H
CPU@2.60GHz, and 32GB RAM.

Dataset selection
In the simulation, we consider the system model depicted
in Fig. 1, which consists of one central cloud, and 32 edge
clouds. We choose a dataset called Quality of Service for
Web Services (QWS) 2.0 [35]. There are 2507 services in
this dataset, and each service includes 9 QoS attributes,
which are Response Time, Availability, Throughput, Reli-
ability, Compliance, Best Practices, Latency and Docu-
mentation. The commonly used QoS attributes in this
paper are Response Time, Availability, Throughput, and
Latency. Table 5 describes the reference ranges and units
of the above four QoS parameters.

In the work of this paper, we randomly select some ser-
vices from the QWS 2.0 dataset for the service compo-
sition algorithm. The parameter values of the algorithm
we use are: the number of ants m is 100, the pheromone
importance factor α is 1, the heuristic function impor-
tance factor β is 2, and the pheromone volatility factor
ρ is 0.1, the constant coefficient Q is 1 according to [9].
Ultimately, each algorithm went through 40 iterations.

Results and discussion
In this paper, we compare the proposed algorithm with
the traditional ACO algorithm, the Flying ACO (FACO)
algorithm and the algorithm proposed in the paper [1]
in terms of fitness, stability and QoS parameters such as
latency and response time. FACO algorithm shares the
number of pheromone with its neighbors through flying
ants to increase the chance of being accessed in feature
iteration and compared with the algorithm proposed
in the paper [1]. In our work, we mainly introduce the

Table 5 Reference ranges and units of the QoS parameters

Parameter name Reference range Unit

Response Time 30-5000 ms

Availability 5-100 %

Throughput 0.1-50 Mbps

Latency 0.1-4500 ms

Page 9 of 12Bei et al. Journal of Cloud Computing (2024) 13:17

multi-pheromone importance parameters α , β , γ and δ ,
and introduce the mutation operation from GA to avoid
the algorithm falling into a local optima. In our work, we
use dual pheromone, where pheromone 1 is set as [τL]
and pheromone 2 is set as [τRT , τA, τT] , and pheromone
1 has weight parameters much higher than pheromone
2, to realize critical optimization of parameter latency in
pheromone 1.

Figures 2 and 3 respectively show the performance
differences between the proposed algorithm, the tradi-
tional ACO algorithm [36], the FACO algorithm [37]
and the algorithm proposed in paper [1] in Fitness,
Stability and Result. In our work, 100-1000 service sets
are randomly captured from QWS 2.0 respectively, and
only the services containing more than 5 components
are composed. As can be seen from Fig. 2, the quality of
the algorithm proposed in this paper on fitness is higher
than the other two algorithms, about 83.9% higher than
the traditional ACO, 37.3% higher the FACO Algorithm
and 7.2% higher than the algorithm proposed in paper
[1] on average. This is because the multi-pheromone
mechanism adopted in this paper realizes the key opti-
mization of specific QoS parameters such as latency.
And the latency parameter accounts for a large propor-
tion of the fitness of the service, which is much higher
than other parameters such as throughput, availability
and response time.

As can be seen from Fig. 3, the stability performance
of the algorithm is also better than the other three algo-
rithms, about 4.8% higher than the algorithm proposed
in paper [1], and much higher than FACO and traditional
ACO algorithm.

However, the ultimate goal of this work is to optimize
service QoS while ensuring service stability. Figures 4,
5 and respectively show the comparison of simula-
tion results of Latency and Response Time parameters
under the four algorithms. Since all QoS parameters
have been normalized in the former section to reduce
the impact of different QoS parameter sizes and their
variation ranges on the final results, the larger the
parameter, the better the optimization effect of the cor-
responding QoS variable. It can be seen from Fig. 4 that
the performance of the delay parameter as the main
optimization variable under the algorithm proposed
in this paper is significantly better than that of FACO
and traditional ACO algorithm, and it is also slightly
improved by about 3.2% compared with the algorithm
in paper [1]. This is because the delay parameter, as the
key optimization objective of this paper, accounts for a
large proportion in the fitness of the service composi-
tion algorithm. Therefore, the continuous optimiza-
tion of the fitness during the iteration also improves
the latency parameter. At the same time, it can be seen
from Fig. 5 that the response time parameter as a sec-
ondary optimization variable is also significantly better
than FACO algorithm, traditional ACO algorithm and
the algorithm in the paper [1].

In brief, on the premise of ensuring the fitness and sta-
bility of the composition, the proposed service composi-
tion algorithm can achieve the optimization of specific
indicator according to the QoS requirements of different
services, compared to the classical ACO, Flying ACO,
and the proposed algorithm in [1].

Fig. 2 The change curve of the fitness with the number of services

Page 10 of 12Bei et al. Journal of Cloud Computing (2024) 13:17

Conclusion
The service composition problem aims to compose vari-
ous service components and virtual resources accord-
ing to specific criteria to meet the wide-ranging needs
of heterogeneous users. In this work, we first propose
the service composition mechanism under the multi-
cloud environment for the cloud-edge-device network
architecture, making full use of service components
distributed in multiple clouds to improve the quality
of the final service composition. Subsequently, based
on the above content, we further propose a service
composition algorithm based on the multi-pheromone

mechanism, by setting separate pheromone for specific
sets of QoS parameters, and adopting different phero-
mone during the ant exploration process. Different
weights are used to optimize the specific QoS param-
eters in the composition process. Finally, in view of the
common problem in the ACO algorithm that it is easy
to fall into local optima and the slow convergence speed
of the algorithm caused by the multi-pheromone mech-
anism, we introduce the mutation mechanism in the
GA to solve the above problems and improve the per-
formance of the algorithm. The simulation results show
that the proposed algorithm can obtain better solution

Fig. 3 The change curve of the stability with the number of services

Fig. 4 Experimental results for proposed algorithm in terms of latency

Page 11 of 12Bei et al. Journal of Cloud Computing (2024) 13:17

quality for specific QoS parameters such as latency and
throughput while ensuring the stability of services on
the QWS 2.0 dataset.

Code availability
 Not applicable.

Authors’ contributions
Bei Liu and Wenlin Li wrote the main manuscript, and Xin Su and Xibin Xu
completed the simulation and modified the manuscript. All authors reviewed
the manuscript.

Funding
This work was supported by National Key R&D Project (NO. 2020YFB1806702).

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
The authors are consent for publication.

Competing interests
The authors declare no competing interests.

Received: 20 March 2023 Accepted: 3 January 2024

References
 1. Alayed H, Dahan F, Alfakih T, Mathkour H, Arafah M (2019) Enhancement

of Ant Colony Optimization for QoS-Aware Web Service Selection. IEEE
Access 7:97041–97051. https:// doi. org/ 10. 1109/ ACCESS. 2019. 29277 69

 2. Lahmar F, Mezni H (2018) Multicloud service composition: a survey of
current approaches and issues. J Softw Evol Process 30(10):e1947. https://
doi. org/ 10. 1002/ smr. 1947

 3. Yang F, Liu Y, Yang B (2021) Reflections on 6g networks. ZTE Technol J
27(2):2–5. https:// doi. org/ 10. 12142/ ZTETJ. 20210 2002

 4. Wang H, Gu M, Yu Q et al (2019) Adaptive and large-scale service
composition based on deep reinforcement learning. Knowl Based Syst
180(SEP.15):75–90. https:// doi. org/ 10. 1016/j. knosys. 2019. 05. 020

 5. Zhao Y, Da Costa DA, Zou Y (2020) Composing Web Services Using
a Multi-Agent Framework. IEEE Trans Serv Comput 15(4):2100–2113.
https:// doi. org/ 10. 1109/ TSC. 2020. 30329 76

 6. Liang H, Wen X, Liu Y et al (2021) Logistics-involved QoS-aware service
composition in cloud manufacturing with deep reinforcement learning.
Robot Comput Integr Manuf 67:101991. https:// doi. org/ 10. 1016/j. rcim.
2020. 101991

 7. Gharineiat A, Bouguettaya A, Ba-hutair MN (2021) A Deep Reinforcement
Learning Approach for Composing Moving IoT Services. IEEE Trans Serv
Comput 15(5):2538–2550. https:// doi. org/ 10. 1109/ TSC. 2021. 30643 29

 8. Li J, Fan G, Zhu M, Yan Y (2019) Pre-Joined Semantic Indexing Graph for
QoS-Aware Service Composition. In: 2019 IEEE International Conference
on Web Services (ICWS). pp 116–120. https:// doi. org/ 10. 1109/ ICWS. 2019.
00029

 9. Dahan F, Binsaeedan W, Altaf M, Al-Asaly MS, Hassan MM (2021) An
Efficient Hybrid Metaheuristic Algorithm for QoS-Aware Cloud Service
Composition Problem. IEEE Access 9:95208–95217. https:// doi. org/ 10.
1109/ ACCESS. 2021. 30922 88

 10. Colomi A, Dorigo M, Maniezzo V (1991) Distributed optimization by ant
colonies, C. In: Proceedings of ECAL91 - European Conference on Artificial
Life. Paris, Elsevier Publishing, pp 134–142

 11. Hwang S, Hsu C, Lee C (2015) Service Selection for Web Services with
Probabilistic QoS. IEEE Trans Serv Comput 8(3):467–480. https:// doi. org/
10. 1109/ TSC. 2014. 23388 51

 12. Chen J, Zhou J (2020) An Improved Ant Colony Optimization for QoS-
Aware Web Service Composition. In: 2020 Eighth International Confer-
ence on Advanced Cloud and Big Data (CBD). pp 20–24. https:// doi. org/
10. 1109/ CBD51 900. 2020. 00013

 13. Dahan F, Hindi KE, Ghoneim A, Alsalman H (2021) An Enhanced Ant
Colony Optimization Based Algorithm to Solve QoS-Aware Web Service
Composition. IEEE Access 9:34098–34111. https:// doi. org/ 10. 1109/
ACCESS. 2021. 30617 38

Fig. 5 Experimental results for proposed algorithm in terms of response time

https://doi.org/10.1109/ACCESS.2019.2927769
https://doi.org/10.1002/smr.1947
https://doi.org/10.1002/smr.1947
https://doi.org/10.12142/ZTETJ.202102002
https://doi.org/10.1016/j.knosys.2019.05.020
https://doi.org/10.1109/TSC.2020.3032976
https://doi.org/10.1016/j.rcim.2020.101991
https://doi.org/10.1016/j.rcim.2020.101991
https://doi.org/10.1109/TSC.2021.3064329
https://doi.org/10.1109/ICWS.2019.00029
https://doi.org/10.1109/ICWS.2019.00029
https://doi.org/10.1109/ACCESS.2021.3092288
https://doi.org/10.1109/ACCESS.2021.3092288
https://doi.org/10.1109/TSC.2014.2338851
https://doi.org/10.1109/TSC.2014.2338851
https://doi.org/10.1109/CBD51900.2020.00013
https://doi.org/10.1109/CBD51900.2020.00013
https://doi.org/10.1109/ACCESS.2021.3061738
https://doi.org/10.1109/ACCESS.2021.3061738

Page 12 of 12Bei et al. Journal of Cloud Computing (2024) 13:17

 14. Liao L, Wang S, Wu J (2023) Research on web service composition selec-
tion based on QoS metrics. In: 2023 15th International Conference on
Advanced Computational Intelligence (ICACI), Seoul, Korea, Republic of.
pp 1–8. https:// doi. org/ 10. 1109/ ICACI 58115. 2023. 10146 160

 15. Guo K, Li J, Niu M (2023) Multi-Agent Interests Service Composition Opti-
mization in Cloud Manufacturing Environment. IEEE Access 11:53760–
53771. https:// doi. org/ 10. 1109/ ACCESS. 2023. 32785 94

 16. Boutarfa M, Maamri R, Lacheheub MN (2022) Towards an approach for
cloud service composition in Multi-Cloud environment based QoS using
deep Q-learning. In: 2022 International Conference on Advanced Aspects
of Software Engineering (ICAASE), Constantine, Algeria. pp 1–7. https://
doi. org/ 10. 1109/ ICAAS E56196. 2022. 99315 91

 17. Diao F, Jia Z, Wang R, Xing X (2022) Cloud Service Composition and Opti-
mization Selection Based on Hybrid Service Composition Algorithm. In:
2022 8th Annual International Conference on Network and Information
Systems for Computers (ICNISC), Hangzhou, China. pp 454–458. https://
doi. org/ 10. 1109/ ICNIS C57059. 2022. 00096

 18. Seghir F, Khababa A (2018) A hybrid approach using genetic and fruit fly
optimization algorithms for qos-aware cloud service composition. J Intell
Manuf 29(3):1773–1792. https:// doi. org/ 10. 1007/ s10845- 016- 1215-0

 19. Li W, Liu B, Gao H, Su X (2022) Transfer Learning Based Algorithm for Ser-
vice Deployment Under Microservice Architecture. In: International Con-
ference on Communications and Networking in China (Chinacom2021).
pp 52–62. https:// doi. org/ 10. 1007/ 978-3- 030- 99200-2_5

 20. Guo T, Zhang H, Huang H, Guo J, He C (2019) Multi-Resource Fair Alloca-
tion for Composited Services in Edge Micro-Clouds. In: 2019 IEEE Intl
Conf on Parallel & Distributed Processing with Applications, Big Data &
Cloud Computing, Sustainable Computing & Communications, Social
Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom). pp
405–412. https:// doi. org/ 10. 1109/ ISPA- BDClo ud- Susta inCom- Socia lCom4
8970. 2019. 00065

 21. Skarlat O, Nardelli M, Schulte S, Dustdar S (2017) Towards QoS-Aware Fog
Service Placement. In: 2017 IEEE 1st International Conference on Fog and
Edge Computing (ICFEC). pp 89–96. https:// doi. org/ 10. 1109/ ICFEC. 2017.
12

 22. Li W, Cao J, Hu K, Xu J, Buyya R (2019) A Trust-Based Agent Learning
Model for Service Composition in Mobile Cloud Computing Environ-
ments. IEEE Access 7:34207–34226. https:// doi. org/ 10. 1109/ ACCESS. 2019.
29040 81

 23. Dahan F (2021) An Effective Multi-Agent Ant Colony Optimization Algo-
rithm for QoS-Aware Cloud Service Composition. IEEE Access 9:17196–
17207. https:// doi. org/ 10. 1109/ ACCESS. 2021. 30529 07

 24. Dragoni N, Giallorenzo S, Lafuente AL et al (2017) Microservices: yester-
day, today, and tomorrow. Present Ulterior Softw Eng 195–216. https://
doi. org/ 10. 1007/ 978-3- 319- 67425-4_ 12

 25. ISO 8402: 1994 Quality Management and Quality Assurance, ISO, 1994
 26. ITU-T E.800: 2008 Definition of Terms Related to Quality of Service, ITU-T,

2008
 27. Smet P, Dhoedt B, Simoens P (2018) Docker Layer Placement for On-

Demand Provisioning of Services on Edge Clouds. IEEE Trans Netw Serv
Manag 15(3):1161–1174. https:// doi. org/ 10. 1109/ TNSM. 2018. 28441 87

 28. Karthikeyan J, Suresh Kumar M (2014) Monitoring QoS parameters of
composed web services. In: International Conference on Information
Communication and Embedded Systems (ICICES2014). pp 1–7. https://
doi. org/ 10. 1109/ ICICES. 2014. 70337 56

 29. Dorigo M, Gambardella LM (1997) Ant colony system: a cooperative
learning approach to the traveling salesman problem. IEEE Trans Evol
Comput 1(1):53–66. https:// doi. org/ 10. 1109/ 4235. 585892

 30. Bonabeau E, Dorigo M, Theraulaz G (1999) Swarm Intelligence: From
Natural to Artificial Systems. In: Santa Fe Institute Studies on the Sciences
of Complexity. https:// doi. org/ 10. 1080/ 09540 09021 01449 48

 31. Wong KY, Komarudin (2008) Parameter tuning for ant colony optimiza-
tion: A review. In: 2008 International Conference on Computer and
Communication Engineering. pp 542–545. https:// doi. org/ 10. 1109/ ICCCE.
2008. 45806 62

 32. Stutzle T, Lopez-ibanev M, Pellegrini P et al (2011) Parameter adaptation
in ant colony optimization. Auton Search 191–215. https:// doi. org/ 10.
1007/ 978-3- 642- 21434-9_8

 33. Yang Z, Shang C, Liu Q, Zhao C (2010) A Dynamic Web Services Composi-
tion Algorithm Based on the Combination of Ant Colony Algorithm and
Genetic Algorithm. J Comput Inf Syst 6(8):2617–2622

 34. Wang D, Huang H, Xie C (2014) A Novel Adaptive Web Service Selection
Algorithm Based on Ant Colony Optimization for Dynamic Web Service
Composition. In: International Conference on Algorithms and Architec-
tures for Parallel Processing. pp 391–399. https:// doi. org/ 10. 1007/ 978-3-
319- 11197-1_ 30

 35. Al-Masri E, Mahmoud QH (2007) QoS-based Discovery and Ranking of
Web Services. In: 2007 16th International Conference on Computer Com-
munications and Networks. pp 529–534. https:// doi. org/ 10. 1109/ ICCCN.
2007. 43178 73

 36. Zhang W, Chang CK, Feng T, Jiang H-Y (2010) QoS-based dynamic Web
service composition with ant colony optimization. In Proc. COMP-
SAC. Seoul, 2010 IEEE 34th Annual Computer Software and Applications
Conference, pp 493-502

 37. Dahan F, Hindi KE, Ghoneim A (2017) An adapted ant-inspired algorithm
for enhancing Web service composition. Int J Semant Web Inf Syst
13(4):181–197

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1109/ICACI58115.2023.10146160
https://doi.org/10.1109/ACCESS.2023.3278594
https://doi.org/10.1109/ICAASE56196.2022.9931591
https://doi.org/10.1109/ICAASE56196.2022.9931591
https://doi.org/10.1109/ICNISC57059.2022.00096
https://doi.org/10.1109/ICNISC57059.2022.00096
https://doi.org/10.1007/s10845-016-1215-0
https://doi.org/10.1007/978-3-030-99200-2_5
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00065
https://doi.org/10.1109/ISPA-BDCloud-SustainCom-SocialCom48970.2019.00065
https://doi.org/10.1109/ICFEC.2017.12
https://doi.org/10.1109/ICFEC.2017.12
https://doi.org/10.1109/ACCESS.2019.2904081
https://doi.org/10.1109/ACCESS.2019.2904081
https://doi.org/10.1109/ACCESS.2021.3052907
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1109/TNSM.2018.2844187
https://doi.org/10.1109/ICICES.2014.7033756
https://doi.org/10.1109/ICICES.2014.7033756
https://doi.org/10.1109/4235.585892
https://doi.org/10.1080/09540090210144948
https://doi.org/10.1109/ICCCE.2008.4580662
https://doi.org/10.1109/ICCCE.2008.4580662
https://doi.org/10.1007/978-3-642-21434-9_8
https://doi.org/10.1007/978-3-642-21434-9_8
https://doi.org/10.1007/978-3-319-11197-1_30
https://doi.org/10.1007/978-3-319-11197-1_30
https://doi.org/10.1109/ICCCN.2007.4317873
https://doi.org/10.1109/ICCCN.2007.4317873

	An improved ACO based service composition algorithm in multi-cloud networks
	Abstract
	Introduction
	Background
	Contribution

	Methods
	Multi-cloud service composition model
	QoS model
	ACO based service composition algorithm
	ACO algorithm
	Multi-pheromone mechanism
	Mechanism of genetic variation

	Simulation results
	Dataset selection

	Results and discussion
	Conclusion
	References

