
Huang et al. Journal of Cloud Computing (2024) 13:26
https://doi.org/10.1186/s13677-024-00589-w

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Predictive mobility and cost-aware flow
placement in SDN-based IoT networks:
a Q-learning approach
Gan Huang1†, Ihsan Ullah2†, Hanyao Huang3 and Kyung Tae Kim4*

Abstract

Software-Defined Networking (SDN) has emerged as an innovative networking method that offers effective manage-
ment and remarkable flexibility. However, current SDN-based solutions primarily focus on static networks or concen-
trate on backbone networks, where network dynamics have minimal impact. The existing methods for placing flow
entries in Software-Defined Networking (SDN)-based Internet of Things (IoT) systems exhibit shortcomings in accu-
rately predicting outcomes and efficiently reducing table misses and associated performance metrics. This research
introduces a new approach, specifically the mobility-aware adaptive flow entry placement scheme for SDN-based
Internet of Things (IoT) environments, to address the mobility aspect of networks. The proposed scheme utilizes
the Q-learning algorithm to predict the next possible location of end devices, while the cost-sensitive AdaBoost algo-
rithm is employed to select heavy and active flows. As a result, efficient flow rules for incoming flows can be dynami-
cally implemented without controller intervention. Extensive computer simulations demonstrate that this approach
significantly enhances match probability and prediction accuracy while concurrently reducing the number of table
misses and resource expenditure compared to existing schemes.

Keywords SDN, OpenFlow, Flow rule placement, Q-learning, Mobility, Matching probability

Introduction
The development of Software-Defined Networking
(SDN) aims to enhance the controllability of communica-
tion networks by decoupling the data plane from the con-
trol plane [1, 2]. In this context, SDN centralizes network
management, facilitates programmability, and accelerates

innovation through SDN abstraction. As illustrated in
Fig. 1, the SDN structure incorporates the use of Open-
Flow as a communication interface between the control
plane and data plane, with the OpenFlow switch utilizing
flow tables to process incoming packets [3–5]. In the con-
trol plane, the OpenFlow controller plays a crucial role
in managing the entire network with a global view and
defining how to handle flows using the flow table. Users’
requirements are abstracted at the application layer,
which interacts with the controller via the northbound
interface. The OpenFlow switch performs a lookup using
one or more flow tables and forwards the flow to the con-
troller through the channels [6–9].

Nowadays, the utilization of the SDN framework is
extensively implemented in the field of the Internet of
Things (IoT). SDN empowers IoT by enabling dynamic
management of networks, optimization of resources, and
prioritization of traffic, thus accommodating the diverse

†Gan Huang and Ihsan Ullah contributed equally to this work.

*Correspondence:
Kyung Tae Kim
kyungtaekim76@gmail.com
1 School of Mathematics and Computer Science, Zhejiang A&F University,
Hangzhou 311300, China
2 Advanced Technology Research Center, Korea University of Technology
and Education, Cheonan, Republic of Korea
3 Department of Computer and Software Engineering, Nanyang Institute
of Technology, Nanyang 473004, China
4 College of Computing and Informatics, SungKyunKwan University,
Suwon, Republic of Korea

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-024-00589-w&domain=pdf

Page 2 of 17Huang et al. Journal of Cloud Computing (2024) 13:26

and constantly evolving demands of IoT devices. The cen-
tralized control, security attributes, and ability to reduce
latency make SDN an essential enabler for efficient and
reliable implementations of IoT [10]. However, the broad
implementation of the Internet of Things (IoT) pres-
ently generates enormous volumes of data from numer-
ous devices linked to SDN [11]. The management of such
extensive data becomes a significant challenge, especially
when data types and characteristics are diverse [12]. Fur-
thermore, it is essential to facilitate real-time transactions
for time-critical applications. Delays in communication
for such applications may result in catastrophic outcomes
or significantly impede performance. Several approaches
have been proposed to address the real-time challenge of
SDN [13]. In SDN, incoming packets are managed based
on the flow rule maintained in the switch’s flow table. The
controller can reactively (in response to arriving packets)
or proactively add, update, and delete table rules. The
controller can probe and handle flow entries at any time.
Incoming packets matched with a flow entry are pro-
cessed by the instructions kept in the entry. The probabil-
ity of a table hit is dependent on the table configuration.
If a flow entry handling table-miss exists, the instructions
in that entry determine how to handle unmatched pack-
ets [14, 15]. The instruction options include dropping,
transferring to another table, or communicating with the
controller over the control channel via the packet-in mes-
sage, resulting in a new flow entry. By default, flow entries
for table-miss do not exist [16, 17]. A switch configura-
tion can, however, override the default flow table and
specify alternative behavior using the OpenFlow con-
figuration protocol. As IoT devices become more wide-
spread, centralized controllers will become increasingly
crucial within the realm of Software-Defined Networking

(SDN), particularly in terms of enhancing scalability and
ensuring reliability [18].

The utilization of OpenFlow has facilitated the
enhancement of network management to become more
adaptable and efficient. However, the present imple-
mentation of Software-Defined Networking (SDN) still
encounters limitations in dealing with diverse data and
the continuously changing connectivity of Internet of
Things (IoT) applications, particularly in a mobile setting
[19, 20]. Furthermore, the current SDN-based flow rule
placement schemes make assumptions either about the
static nature of the network or the backbone networks,
which in turn leads to a decrease in the dynamism of end
devices. In the typical IoT environment, both stationary
and mobile devices are deployed in everyday life [21].
Hence, the flow table must be dynamically updated in
such an environment by enabling the switch to exchange
user information with the backbone network. Given this
context, it is crucial to devise a novel model for flow rule
placement that takes into account user mobility [22].
While two viable approaches for flow rule placement
exist, namely reactive and proactive, achieving the opti-
mal balance between them represents a central focus of
research.

This paper proposes a novel mobility-aware flow rule
placement scheme that minimizes communication delay
by considering the mobility of the nodes. It capitalizes
on the merit of both the reactive and proactive flow rule
placement approach. In the proposed scheme, the posi-
tion of the end devices is predicted using the Q-learning
(QL) algorithm to alleviate the computation overhead
of the switch [23]. The controller decides the placement
of flow entries based on the prediction. The AdaBoost
scheme is employed to classify the flow, which also helps

Fig. 1 The structure of SDN

Page 3 of 17Huang et al. Journal of Cloud Computing (2024) 13:26

the Q-learning in predicting the position of the nodes
[24]. NS3 and Matlab evaluate the efficiency of the pro-
posed scheme. It reveals that the proposed scheme sig-
nificantly increases the number of high-level flow rules in
the flow table compared to the existing schemes. Further-
more, it indicates that the communication delay and load
of the controller are substantially decreased. The main
contributions of the proposed scheme, called mobility-
aware flow rule placement with Q-learning (MAPQ), are
as follows.

• Even though AdaBoost has long been used in various
fields, little research has been reported on efficiently
and adequately deciding a strong classifier. A novel
approach is developed which effectively achieves the
final classifier considering the cost of error of the
classification. Here the flows are classified into two
types.

• The QL algorithm is combined with the cost-sensi-
tive AdaBoost in the proposed MAPQ scheme, and
the approach is generic such that it can be read-
ily applied to other application problems employing
AdaBoost to improve performance.

• A scheme is developed that predicts the position of
the end node using the QL algorithm to select the
flow entry that needs to be appropriately adjusted.
Here the flows are classified based on the usage his-
tory to reduce the computation overhead required
for proactive prediction.

• A new approach based on the QL algorithm is devel-
oped in which the next state and the corresponding
reward are not obtained as soon as a specific action
is chosen but after some event occurs. This approach
reduces computation overhead while supporting high
accuracy of prediction with QL.

The rest of the paper is structured as follows. Section 2
discusses the work related to flow rule placement for
SDN, and Section 3 presents the proposed scheme based
on cost-sensitive AdaBoost and QL. In Section 4, the per-
formance of the proposed scheme is presented through
simulation results and subsequently contrasted with the
current approaches. Finally, Section 5 provides a conclu-
sive summary of the paper with some remarks.

Related work
The basic terminologies of SDN are defined as follows:

Definition 1 (Flow entry). This flow entry constitutes the
fundamental element of a flow table, encompassing the
domain that specifies the circumstances required for a
match (Match Field), direction pertaining to actions for
the incoming packet that has been matched (Instruc-

tions), a record of statistics associated with matched
packets (Counter), the maximum duration or idle time
prior to the expiration of an entry (Time-out), among
others. Table 1 showcases the basic fields of a flow entry.

Definition 2 (Hard time-out, TH). Once a flow entry
has been assigned to the flow table, it is subject to evic-
tion upon the expiry of TH, regardless of the number of
matches.
Definition 3 (Idle time-out, TI). A flow entry must be
removed from the flow table when the Time Interval
TI has elapsed since the last match.
Definition 4 (Stale entry). The entry is unmatched
before TI expires.
Definition 5 (Elephant flow). This large flow takes up
more than a certain percentage of the link traffic dur-
ing a given time interval [25]. Assume a certain length
of time, t. Large flows are those sending packets more
than a given threshold (say P%) in the previous period
of t, where P is usually 0.1% of the link capacity and its
corresponding flow entry is a long-lived entry.
Definition 6 (Mice flow). Contrary to elephant flow,
mice flow stands for a flow taking less than P% of the
link capacity in the previous period of t. In SDN, the
majority of flows are mice flow.

A comprehensive investigation of multiple extant works
concerning the placement of flow rules for SDN has been
explicated in reference [19, 20]. The current schemes for
flow rule placement primarily address two main obstacles:
resource constraint and signaling overhead. Concerning
the matter of resource constraint, two methods have been
suggested, namely, flow eviction and flow compression.

Flow eviction
The researchers were motivated to develop effective flow
eviction methods due to the flow table’s limited size and
declining performance caused by increasing stale entries.
Openflow network implements a time-out mechanism to
flush flow entries, but different time-out values have been
used, ranging from 5 [26] to 60 seconds [22]. However, a
fixed time-out value is inadequate for dynamically chang-
ing flows. To address this issue, the Adaptive Hard Time-
out Method (AHTM) [27] was proposed, which utilized
the M/G/C/C/FCFS queuing system to model the flow
table and analyze truncation time and blocking probability
to determine the optimal value of TH.

Table 1 The basic fields of a flow entry

Match Field Priority Counter Instruction Time-out Cookie

Page 4 of 17Huang et al. Journal of Cloud Computing (2024) 13:26

In the publication by Zhang et al. [28], another scheme
targeting dynamic TH was proposed in which the flow
is classified into four kinds and the flow duration time,
flow type, and utilization of the flow table were taken into
account to determine its value. SmartTime [29] com-
bined the adaptive idle time-out scheme with a proac-
tive eviction strategy and utilized the Ternary Content
Addressable Memory (TCAM) to minimize the number
of table misses. Babangida et al. [30] proposed an algo-
rithm known as idle-hard timeout allocation (IHTA) with
the aim of enhancing flow table management in software-
defined networking (SDN). The IHTA algorithm adap-
tively modified idle and hard timeout values for various
flows by considering traffic patterns and packet inter-
arrival times.

DIFANE [31] proposed a distributed flow manage-
ment architecture that efficiently handles wildcard rules
and quickly reacts to network dynamics such as policy/
topology change and host mobility. Instead of the time-
out approach, Multiple Bloom Filters (MBF) [32] were
used for logging data, where the importance of each flow
entry was encoded and the entry with the lowest impor-
tance value was evicted upon a table miss. Flowmas-
ter [33] used a learning predictor based on the Markov
model to identify flow entries expected to become idle
and evict an existing flow entry based on the number of
transitions and transition probability using the time-out
mechanism. A proactive approach was proposed based
on predicting the probability of matching entries using
HMM [34]. The scheme in the publication by Huang
et al. [35] employed HMM and fuzzy logic to select the
victim entry proactively.

Flow compression
Applying a wildcard mechanism in compression reduces
the number of flow entries present in a flow table while
preserving the original semantics. This process involves
the aggregation of specific flow entries into a single entry
if they share common characteristics. Notably, the Open-
Flow protocol does not require adjustment during flow
compression.

Optimal Routing Table Constructor (ORTC) [36],
which employed a binary tree to determine the minimal
number of prefixes for each rule, represented one of the
earliest methods for table aggregation. Once constructed,
the routing table derived by ORTC remains unaltered.
ORTC has also been implemented using structures other
than binary trees [37].

The Palette distribution framework, introduced in the
publication by Kanizo et al. [38], decomposed and aggre-
gated large SDN tables into a predetermined number of
smaller tables of the same semantics, which are then dis-
tributed across switches. In the publication by Iyer et al.

[39], SwitchReduce, as a system, was proposed to opti-
mize OpenFlow networks by reducing switch state size
and controller involvement. SwitchReduce compressed
wildcard identical action flows into fewer entries and
maintains per-flow counters only at ingress switches. In
the publication by Luo et al. [40] the authors developed
FFTA and iFFTA, a pair of flow table aggregation and
update schemes, to reduce the size of flow tables in SDN
switches. FFTA used a modified binary search tree and
ORTC techniques to achieve very fast offline non-prefix
flow rule aggregation. iFFTA further incorporated online
updates around 3 times faster than re-running FFTA,
with minimal impact on compression ratio. The Espresso
heuristic, presented in the publication by Braun et al.
[41], proposed the compression of a minimum-size set of
prefix-based match fields to achieve logic minimization
within flow tables. DIFANE [31] employed decision trees
to subdivide flow rules and assign them to corresponding
switches, thereby circumventing controller bottlenecks.

Much attention has been paid to flow rule placement
in addressing signaling overhead. Reactive and proactive
categories of flow rule placement are explained in the fol-
lowing sections.

Reactive rule placement
A reactive approach to rule placement involves the place-
ment of rules on flow-related events, such as table miss.
As the OpenFlow specification outlines, the switch noti-
fies the controller of its arrival for each new flow if there
is no corresponding flow entry. Subsequently, the con-
troller installs a new flow rule for the switch.

It should be noted that an increase in table misses leads
to more frequent communication between switches and
controllers for exchanging packet-in and packet-out mes-
sages. Moreover, setting up new flow rules takes consid-
erable time, resulting in additional latency.

An example of reactive flow rule placement is pre-
sented in Fig. 2. Assuming that a flow enters the switch
(Arrow 1), and its flow rule is not found in the flow table,
the switch sends an OpenFlow message to the controller,
and the controller sends the flow rule placement message
to the switch (Arrow 2). After the switch deals with the
flow (Arrow 3), it handles subsequent flows (Arrow 4,5).

Reactive flow rule placement necessitates continuous
interaction between the switch and the controller. In the
publication by Luo et al. [40], integer linear programming
(ILP) and greedy heuristic algorithms were employed
for flow rule placement. The controller put unused links
into sleep mode to minimize energy consumption, while
considering the constraints on link capacity and space
of the table, keeping the rules. An energy-efficient traf-
fic forwarding scheme was proposed in the publication
by Giroire et al. [42], considering dynamic traffic in the

Page 5 of 17Huang et al. Journal of Cloud Computing (2024) 13:26

network. The traffic management policies minimiz-
ing unnecessary traffic are presented in the publication
by Markiewicz et al. [43], and the routing strategy of
the publication by Zhang et al. [44] was based on Open
Shortest Path First (OSPF), utilizing the global view of the
network. The authors in the publication [44] conducted a
comprehensive examination of the performance of end-
to-end delay in SDN networks with multiple nodes. They
introduced a novel analytical framework and conducted
measurements that exposed substantial delays when
compared to conventional networks. This drew atten-
tion to critical factors that need to be taken into account
when designing SDN switches and developing network
algorithms to mitigate these delays.

It is important to note that reactive rule placement typ-
ically involves high communication load and latency for
the devices involved. Additionally, due to the limitations
in the computation speed of the controller, handling flow
messages quickly is challenging. Therefore, it is typically
employed for elephant flows.

Proactive rule placement
The proposed methodology involves pre-emptively plac-
ing rules before the arrival of new flows. It is based on
predicting the usage of flow rules before their insertion
into the flow table, as illustrated in Fig. 3. This approach
can effectively reduce delays in setting up flow rules and
minimize the total number of signaling messages.

Proactive flow rule placement is often integrated with
access control, with ILP being utilized in [45] to design
and analyze the dependency graph for rule placement
in the switch. The graph is also helpful for predict-
ing access control rules before the corresponding flow
arrives [46–48]. DevoFlow [22] further reduced switch-
controller interaction by detecting significant flows
ahead of time. The switch only places flow rules associ-
ated with mice flow, without invoking the controller.

Figure 3 serves as an example of proactive flow rule
placement, where flow rules are installed by the con-
troller (Arrow 1), matched by the contents of a flow
table (Arrow 2), and quickly forwarded without setup
delays (Arrow 3).

In recent times, there has been an increased consid-
eration of user mobility in managing SDN flow table
due to the growing popularity of IoT. A flow rule place-
ment scheme was proposed in the publication by Katta
et al. [49] which made an improvement over the current
method by taking into account the occupation time of a
flow rule in a table while ensuring the processing of the
flow with the local switch. In the publication by Li et al.
[50], a dynamic environment allowed users to join and
exit the network freely. In this publication, an online
flow-based routing approach was presented, which per-
mits the dynamic reconfiguration of the existing flows
and the adaptation of the link rate, considering the user’s
demand and mobility. The publication by Wang et al. [51]
introduced MoRule, a rule management scheme specifi-
cally designed for mobile users within Software Defined
Networks (SDNs). Unlike existing approaches that heavily
rely on static network topology, MoRule took into consid-
eration the dynamic nature of mobile networks. It effec-
tively utilized a low-complexity heuristic algorithm to
optimize the placement of rules, while also ensuring that
local switches efficiently handle mobile traffic above a
pre-defined threshold. By capitalizing on the principles of
software-defined networking (SDN), SDIV [51] proposed
the segmentation of control and data planes, thereby pro-
viding a standardized means of configuration for a vari-
ety of switches. This innovative approach significantly
improved service deployment and scalability. In order
to tackle the limitations associated with Flow Tables in
OpenFlow-enabled switches, Amokrane et al. [52] pre-
sented an approach for optimizing rules. This particu-
lar approach efficiently reduced rule complexity, while
simultaneously preserving the performance of data trans-
mission, as verified through a series of experiments. The
publication by Liu et al. [53] presented a software-defined

Fig. 2 The process of reactive flow rule placement

Fig. 3 The process of proactive flow rule placement

Page 6 of 17Huang et al. Journal of Cloud Computing (2024) 13:26

IoT (SD-IoT) architecture for intelligent urban sensing,
which customizes data acquisition, transmission, and
processing for the user through well-defined APIs. Vari-
ous applications coexisted in the common infrastructure
to reduce overall maintenance costs. The publication by
Anadiotis et al. [54] formulated an SDN-assisted system
using MapReduce to support big data processing in wire-
less sensor networks (WSN). It allowed for the dynamic
loading and implementation of user-specified maps and
reduced energy consumption in the nodes. In the publi-
cation by Bera et al. [55], a mobility-aware adaptive flow
rule placement, Mobi-Flow, was presented as a solution
to the issue of user mobility. It consisted of two compo-
nents: the path estimator and the flow manager. The path
estimator predicted the future position of the user in the
network, while the flow manager determined the activa-
tion of access points and placed the corresponding flow
rules according to the result of the path estimator.

Next, the proposed MAPQ scheme is presented, fur-
ther enhancing the Mobi-Flow approach using cost-sen-
sitive AdaBoost and Q-learning. Frequent use of reactive
flow rule placement is not beneficial for mice flow. The
proposed MAPQ scheme adopts proactive flow rule
placement to resolve the issue.

The proposed scheme
This section presents the proposed MAPQ scheme for
mobility-aware flow rule placement with SDN. Then its
function is analyzed, providing more space for high-level
flow rules and assuring the efficiency of the flow table
management.

Overview
As depicted in Fig. 4, the operation of MAPQ involves
a tripartite process comprising flow rule classification,
position prediction, and flow entry update. The first
step of flow classification utilizes the cost-sensitive Ada-
Boost methodology to categorize the flows into two dis-
tinct types. The accuracy of this particular classification
process holds substantial sway over the performance of
the MAPQ scheme, wherein mice or inactive flow are

excluded from consideration. The proactive rule place-
ment policy allocates the remaining flows to the switches.
The Q-learning model is leveraged to prognosticate the
node’s position relative to the corresponding flow entry,
thereby facilitating the scheduling of rule placement in
advance [23]. Subsequently, the controller updates the
flow entries contingent upon the node position. The
notations employed in this study are summarized in
Table 2.

Flow classification
Flow classification is the first step of MAPQ, which clas-
sifies the flows into elephant flows or mice flows. The
traditional machine learning algorithm uses a training
dataset, (Xtra,Ytra) = {(x1,y1),(x2,y2),…, (xi,yi), …, (xn,yn)}
collected from SDN, to generate a classifier, where (xi,yi)
is the input features xi with the target label yi. Then it
is employed to identify the category of the test dataset,
(Xtes,Ytes). With AdaBoost [24], a trained classifier is used
to differentiate two kinds of flows; elephant (active) flows
and mice (inactive) flows. Usually, the distribution of
the training dataset is the same as that of the test data-
set. As for the training dataset of a different distribution,
it is regarded as a redundant dataset. Unlike traditional
machine learning algorithms, the cost-sensitive algo-
rithm considers the minimization of the misclassification
cost to construct a full-scale classifier.

Based on the cost-sensitive scheme framework, the
improved AdaBoost algorithm, known as cost-sensitive
AdaBoost, has been utilized in the context of MAPQ.
AdaBoost is a conventional machine learning algorithm
that comprises multiple weak classifiers. These clas-
sifiers are assigned weights based on the classification
error, and a robust classifier is produced by aggregating
the weak classifiers utilizing these weights. The opera-
tional sequence is outlined as follows.

1) Initialize the weight of each training datum, mean-
ing one data point or one instance in your dataset, to
be the same as 1/m, where m refers to the count of
individual instances, examples, or observations in the

Fig. 4 The operation flow of the MAPQ scheme

Page 7 of 17Huang et al. Journal of Cloud Computing (2024) 13:26

training dataset you are using to train your model,
indicating that, at the start, each piece of training
data is considered equally important in training the
first weak classifier. Thus, the initial weights are

2) Update the weights of the training data with n itera-
tions.

A. Choose a weak classifier of the minimal error
rate as the tth basic classifier, ht, and calculate its
error rate.

(1)w1 = w2 = · · · = wm =
1

m

εt = Pri∼Dt [ht(xi) �= yi]

(2)=

m

i=1

w(t)(i) 1− I ht(xi) = yi

where Pri ∼ Dt The probability concerning the distri-
bution Dt is contingent on the fact that the distribu-
tion Dt assigns a probability to each training example
in proportion to its weight during iteration t. In the
AdaBoost algorithm, the weights of the training exam-
ples are modified following each iteration in order to
prioritize the examples that were previously misclas-
sified. Consequently, the probability distribution Dt
undergoes modifications during each iteration, which
then influences the selection of the weak classifier that
most effectively rectifies the prior errors. vAlso wi

t
denotes the weight for the tth iteration and I(•) is the
indicator function.

B. Calculate the weight of the basic classifier for the
final ensemble.

(3)I
(

y = x
)

=

{

1, y = x
0, y �= x

Table 2 The list of notations

Parameter Description

wt(i) weight of the ith training example at the tth iteration

H(x) final strong classifier

acc accuracy of classification

c(yi,yj) tcost function, which assigns a cost to the event of predicting class yj when the true class is yi
N total number of samples or instances in the dataset

p number of negative samples

L(x,y) real loss associated with a prediction for a given class y when the input is x

τ index or identifier for the weak learners in the ensemble that the AdaBoost algorithm generates

ατ weight assigned to the τ-th classifier in the ensemble

hτ(x) hypothesis or prediction made by the τ-th classifier for the sample x

L set of all possible states in the environment

A a set of all possible actions that the agent can take in a given state

R reward received after transitioning from one state to another due to an action taken by the agent

P probability of transitioning from one state to another

H a dataset or a set of data points that encapsulate the historical movement of the end-device

li ith position of the device in a sequence of positions

ti arrival time of the device corresponding to ith position

wij weight of the visit from li to lj
hi ith basic classifier

Pij transition probability from li to lj, i ≠ j

α learning rate

γ discount factor

m the total number of the training data

t current iteration or round of the boosting process

Q(s,a) expected cumulative reward for taking action a in state s

Q′ (s′,a′) estimated maximum reward for the next state s′ over all possible actions a′.
R(s,a) reward received after taking action a in state s

Page 8 of 17Huang et al. Journal of Cloud Computing (2024) 13:26

C. Update the weight of each training data.

where Zt is the normalization factor.

3) Combine the basic classifiers using the following
equation into a strong classifier.

The overall steps are summarized in Procedure 1.

 Procedure 1 AdaBoost

AdaBoost is similar to traditional machine learning
algorithms in adopting the hypothesis that the train-
ing and test dataset distributions are the same [24]. The
cost-sensitive AdaBoost preserves AdaBoost for the train-
ing dataset of the same distribution, and a cost-sensitive
function is applied to the training dataset of different
distributions for flow classification. To differentiate the
importance of the data, each data is associated with a cost:

(4)αt =
1

2
ln

(

1− εt

εt

)

(5)w(t+1)(i) =
wt(i)exp

(

−αtyiht(xi)
)

Zt

(6)Zt = 2
√

εt(1− εt)

(7)H(x) = sign

(

T
∑

t=1

αtht(x)

)

the higher the cost, the higher the importance of correctly
identifying the data. Let {(x1,y1,c1),…, (xm,ym,cm)} be a
sequence of training dataset, where ci∈[0,+∞) is an asso-
ciated cost. c(yi,yj) is the cost of predicting class yj when
the true class is yi for a sample. Its value is decided below.

where c(0,0) is the cost of correctly predicting negative
value for actual negative value, CostTN. Four combina-
tions exist regarding the correctness of the positive/nega-
tive value prediction as listed in Table 3. The update of
the weight is done as follows.

The final ensemble formula is

where L(x,y) is the real loss of class_i. Here class_i is the
actual class of x.

As the cost factor is involved in the proposed AdaBoost
scheme, it can be regarded as a cost-sensitive boosting
algorithm, summarized in Procedure 2. For the AdaBoost
algorithm, selecting a suitable value for the weight update
parameter is essential in transforming a weak classifier
into a strong one. When the cost parameters are added
to the weight updating formula of AdaBoost, the data
distribution is affected by the parameter. The efficiency
of AdaBoost is not guaranteed if the cost is considered
without proper weight updates. The value of the weight
update parameter needs to be decided to minimize the
overall training error of the combined classifier. The pro-
cess of flow classification is shown in Fig. 5.

(8)

c
�

yi, yj
�

=







p
N × acc yi �= yj and yi = −1

1−p
N × (1− acc) yi �= yj and yi = 1

0 yi = yj

(9)

w(t+1)(i) =
wt(i) exp

(

−αtyiht(xi)c
(

yi, ht

(

xi

)))

Zt

(10)

H(x) = sign





�

y∈{−1,1}

L
�

x, y
�





�

τ :h(x)=y

aτhτ (x)









(11)L
(

x, yi
)

=
∑

j
p
(

j|x
)

c
(

yi, yj
)

Table 3 The combinations of prediction of the values

Prediction Actual Negative Actual Positive

Negative CostTN:c(0,0) CostFN:c(1,0)

Positive CostFP:c(0,1) CostTP:c(1,1)

Page 9 of 17Huang et al. Journal of Cloud Computing (2024) 13:26

Procedure 2 Cost-sensitive AdaBoost

Prediction of location
The QL algorithm is used to predict the future posi-
tion of the end device. The QL model consists of 5-tuple
<L,A,R,P,γ>, where L is a finite set of states, and A is a
finite set of actions. The controller obtains feedback
information which R denotes, and P is the transition
probability between the states. The feedback for each end
device is the same, and the discount factor γ is applied to
the calculation of the reward value. First, two tuples, <H,
P>, need to be elaborated.

• H: A set of data showing the movement history of
an end-device with three tuples, <L,T,S>, where L
= {l1, l2,…,ln} is the location visited by the device, T
= {t1,t2,…,tn} is the arrival time, and S = {s1,s2,…,sn} is
the duration of stay at each location. n is the number
of positions visited.

• P: Transition probability from one location to
another as Pij the transition probability from li to lj,
i ≠ j.

The QL algorithm is typically composed of a series
of actions carried out by agents and states, as well as a
reward function and a transfer function. In the proposed
QL model, the controller and SDN are considered the

agent and environment, respectively, in which the agent
operates. The agent initially assesses the state of the
SDN and determines the appropriate course of action
to interact with it. Once an action is taken, a reward is
obtained and the environment transitions to a new state.
Through ongoing interactions with the environment, the
agent observes a sequence of state-action-reward events
and assesses the reward in conjunction with the corre-
sponding state and action pair. The ultimate objective is
to obtain the expected maximum cumulative discounted
reward, which the agent seeks to achieve by calculating
the optimal action-value function.

The QL algorithm is a set of actions executed by agents
and states, along with reward and transfer functions.
Within the proposed QL model, the controller and SDN
are identified as the agent and environment in which
the agent conducts operations. At the outset, the agent
evaluates the condition of the SDN and determines the
most appropriate course of action for engaging with it.
A reward is obtained upon taking action, and the envi-
ronment moves to a new state. Through continual inter-
actions with the environment, the agent observes a
sequence of state-action-reward occurrences and evalu-
ates the reward in conjunction with the corresponding
state and action pair. The primary objective is attaining

Fig. 5 The operation flow of cost-sensitive AdaBoost

Page 10 of 17Huang et al. Journal of Cloud Computing (2024) 13:26

the expected maximum cumulative discounted reward,
which the agent accomplishes by computing the optimal
action-value function.

where Q(•) is the expected reward, and α is the learn-
ing rate set to be the same value as QLAODV [50]. γ (> 1)
is the discount factor, determining the importance of the
reward. In addition, Q ′ (s ′, a ′) is the maximum reward
given the new state, s ′, and all possible actions at s ′. The
proposed scheme defines the state, action, and reward as
follows.

Definition 7 (State). The state is deemed the loca-
tion that the end device has formerly accessed, with
each position signifying a semantic locale such as the
office, home, station, etc. As previously mentioned, L
denotes this.
Definition 8 (Action). An action possessing a par-
ticular state can be delineated as the duration dur-
ing which the device remains stationary in its pre-
sent position (state). This duration can be calibrated
in seconds, ranging from 1-10 secs, and is therefore
classified as an action space, A, comprising of the
values {1, 2,...,10}. This is because the device’s state
is assessed at intervals of 10 secs. It should be noted
that a decrease in the number of actions enhances
the precision of prediction since the number of pre-
dicted actions is curtailed.
Definition 9 (Reward). The reward is given for a tran-
sition between two states with an action. The reward
with si, Ri, is represented as follows.

where wij is the probability of a visit to lj from li.

Here a = l1,…,li is a sequence of i recent positions vis-
ited and N(•, L) is the number of occurrences of one
sequence of the visited locations, L.

In Software-Defined Networking (SDN), the control-
ler regularly verifies the location of the end device and its
connectivity to a switch every 10 seconds. The OpenFlow
protocol facilitates the collection of network information,
thereby resulting in no additional burden in executing the
suggested approach for acquiring network information.

(12)
Q(s, a) = (1− α)× Q(s, a)+ α

[

R(s, a)+ γ ×maxQ′
(

s′ , a′
)

− Q(s, a)
]

(13)Ri =

n
∑

j=1

wijPij

(14)wij = P
(

lt+1 = lj|L
)

=
N
(

alj , L
)

N (a, L)

Prediction operation
For predicting the following location, the Q-values are
evaluated. Here the input is the current location, li,
and the output is a vector, Q(li) = (Q(li,a1), Q(li,a2),…
,Q(li,a10)), consisting of 10 estimated Q-values for each
possible action. The following action ai is chosen accord-
ing to the vector Q(li).

Given the possibility of encountering a local opti-
mum, the decision-making process employs the
ε-greedy policy to determine the subsequent action
[56]. Specifically, an action is randomly and uniformly
selected with a small probability of ε, while the best
action is chosen from the Q-table based on Eq. (15)
with a probability of (1-ε). The controller selects the
action with the highest value with a probability of (1-ε),
and a random action with a probability of ε, thereby
facilitating exploration of the environment with a low
probability. It is noteworthy that the parameter, ε, is
not constant, but rather varies based on the operational
status of the scheme. Specifically, ε is set to 1/c, where
c denotes the number of successful predictions. The
value of ε decreases gradually as the frequency of suc-
cessful predictions increases, thereby promoting explo-
ration during the initial stages of training, while the
degree of exploitation in the later stages is contingent
on experience.

Update operation
The model gets <L, T, S > of the end device delivered by
the switch. Then the state of the end device is updated,
and the corresponding reward for the action is com-
puted. Lastly, the last state, current state, previous
action, and its corresponding reward are logged in the
training dataset for future use.

Train
The data are periodically sampled from the training
dataset to perform experience replay, which utilizes
previous data to remove the samples’ associations.
With the input consisting of past states, the Q-value of
the pair of (s,a) is updated with the previous pair using
the Bellman equation [57], while other Q-values are
unchanged. The updated results are stored as the out-
put. The key to using the Bellman equation is that if
the Q-value of all the subsequent states is known, the
optimal strategy is the action maximizing the expected
value of R(s, a) + γ × max (Q ′ (s ′,a ′) − Q(s, a)).

(15)ai = arg max Q
(

li, aj
)

jε[1, . . . , 10]

Page 11 of 17Huang et al. Journal of Cloud Computing (2024) 13:26

The proposed QL algorithm for reinforcement learn-
ing exhibits a significant deviation from other such
algorithms in that the subsequent state and correspond-
ing reward are not immediately procured upon the
selection of a specific action. Rather, they are obtained
post the relocation of the end device by the controller.
This implies that the parameters of QL do not undergo
any alteration until the end device is relocated. Moreo-
ver, the choice of the next action is not contingent on
the current action. The process of predicting the loca-
tion of a device is explicated in the following manner.

Procedure 3: Prediction of location.

Rule placement
In an SDN-based IoT environment, the network com-
prises numerous end devices that are connected
through distinct switches. These switches maintain
flow tables that require consistent updates to opti-
mize the hit ratio, considering the movement of the
end devices. The proposed scheme known as MAPQ
(mobility-aware flow rule placement with Q-learn-
ing) offers a resolution to this particular challenge by
employing a proactive methodology to refresh the flow
rules within the switches. In order to accomplish this,
it is of utmost importance to monitor the future posi-
tions of end devices based on their past movements.
This tracking mechanism establishes the foundation
for effective flow rule placement subsequent to device
movement within wireless environments.

Here is a comprehensive analysis of the flow rule place-
ment process that transpires in response to device move-
ment in such an environment:

 i. Continuous Device Tracking: The SDN control-
ler and associated network infrastructure are
equipped with mechanisms to continuously mon-
itor the movements of IoT end devices. These
mechanisms can encompass various technologies
such as GPS, signal strength monitoring, or trian-
gulation techniques.

 ii. Movement Prediction: Drawing upon historical
movement patterns and real-time data collected,
the SDN controller prognosticates the future loca-
tion of each end device through the implementa-
tion of Q-learning algorithm.

 iii. Proactive Rule Update: As an IoT device com-
mences movement, the SDN controller proac-
tively identifies the switch or switches that will be
responsible for managing the device’s traffic at its
impending location. This is accomplished by con-
sidering factors such as proximity, the load on
switches, and network traffic conditions.

 iv. Flow Rule Placement: Once the future switch (or
switches) has been ascertained, the SDN con-
troller proceeds to update the flow table(s) of the
corresponding switch(es) according to the flow
classification using the cost-sensitive AdaBoost
algorithm. This update entails the placement or
modification of flow rules that delineate how traf-
fic from the moving IoT device should be pro-
cessed and forwarded.

 v. Rule Removal at Previous Location: Concurrently,
the SDN controller eliminates or adjusts the flow
rules at the switch that corresponds to the device’s
previous location. This ensures the efficient utili-
zation of network resources and the exclusion of
unnecessary rules that are no longer pertinent to
the switches.

 vi. Seamless Connectivity: With the updated flow
rules in effect, the IoT device can seamlessly main-
tain communication as it traverses the network.
The flow rules at the current switch are consistently
aligned with the device’s anticipated or actual loca-
tion, thereby optimizing the hit ratio and minimiz-
ing latency.

 vii. Iterative Process: This process is iterative and
dynamic, constantly adapting to changes in device
movement patterns and network conditions. The
SDN controller continuously refines its predictions
and updates flow rules accordingly.

Page 12 of 17Huang et al. Journal of Cloud Computing (2024) 13:26

To summarize, the MAPQ scheme capitalizes on pro-
active flow rule placement based on predictive device
movement tracking in wireless IoT environments. This
approach ensures that the network remains responsive
to the mobility of IoT devices, thereby upholding optimal
connectivity and efficient resource utilization throughout
the network.

Performance evaluation
In this section, a computer simulation is performed to
assess the proposed approach and contrast it with the
existing methods, namely the standard hard time-out
scheme and Mobi-Flow scheme [51] which employs a
location prediction mechanism in conjunction with an
adapted time-out.

Simulation setting
The simulation is implemented on Intel Core i7 proces-
sor, 2.50GHz PC with 16GB RAM, and Matlab R2015a.
The prediction accuracy of a scheme, Acc, indicates
the rate of correct prediction of the flow entry hav-
ing the most negligible matching probability. When the
hard time-out is up, the predicted flow entry is checked
whether it has the smallest matching number. Then the
number of successful predictions, ns, is incremented by
1. After the entire operation is over, the accuracy is cal-
culated as:

where ne is the number of evicted flow entries. Table 4
lists the simulation parameters. The flows are generated
according to an exponential distribution with λ = 1, and
the contents of the flow entries are decided randomly.

A virtual network of tree topology of 25 switches and
200 hosts of Fig. 6 is constructed using NS3 with the fol-
lowing elements: Open vSwitch, open daylight controller,
and end-host nodes with the service provider (SP) ena-
bled. The host nodes, the switch, and the controller are

(16)Acc =
ns

ne

running on Ubuntu 16.04 LTS, and all the switches are
connected to a controller.

Experiment results
Suppose that f and g denote the number of incoming
flows and flow entries of a flow table, respectively. The
performance metrics adopted in the simulation are Pre-
cision, Recall, F1-score, and Garbage rate (Grate). The
number of data correctly classified as positive while they
are positive is defined as true positive (TP). The number
of data mistakenly classified as a positive class for a nega-
tive one is defined as false positives (FP). TN and FN are
defined similarly. Precision, obtained by Eq. (17), is the
ratio of True Positives to all the Positives. Recall, defined
as Eq. (18), represents the portion of correctly classi-
fied positive data from the positive dataset. F1_score of
Eq. (19) is a parameter obtained by the harmonic mean
of precision and recall. FP and FN deteriorate the per-
formance of a classifier. Grate, defined as Eq. (20), is the
portion of false classification out of entire classifications
used to show the overall inaccuracy.

Table 5 compares the Precision and Grate of the clas-
sification of the proposed cost-sensitive AdaBoost
approach and that of the traditional AdaBoost. Our anal-
ysis reveals that the cost-sensitive AdaBoost consistently
outperforms AdaBoost in Precision and Grate. AdaBoost
cannot filter bursty error readings, resulting in lower pre-
cision when error cost is not considered. Our simulation
results demonstrate that incorporating error cost signifi-
cantly enhances classification precision.

The comparison of table misses for the various schemes
is presented in Fig. 7, with (8000,100) for (f,g). TI and
TH are 18 s and 30s, respectively. Notably, the number
of table misses exhibits an increase when f is increased
from 8000 to 16,000 while g remains unchanged, as evi-
denced in the middle of the figure. However, it is worth
mentioning that the number of table misses associated
with the proposed scheme is considerably lower than
that of other schemes. Furthermore, upon increasing
the number of flow entries to 200, there is a significant
reduction in table misses. It is noteworthy that the pro-
posed MAPQ scheme substantially reduces the number
of table misses compared to the other schemes, owing to

(17)Precision = TP/(TP + FP)

(18)Recall = TP/(TP + FN)

(19)F1− score = 2 • Precision • Recall/(Precision+ Recall)

(20)Grate = (FP + FN)/(TP + TN + FP + FN)

Table 4 The simulation parameters

Parameter Value

Number of switches 3

Number of flow entries per table 100 ~ 200

Upper bound on controller-to-switch delay 3.043 ms

Upper bound on end-to-end delay 0.341 ms

Average packet arrival rate per switch 0.005 ~ 0.025mpps
(million packets
per second)

Average packet service rate per switch 0.30mpps

Flow-table lookup time 33.333 μsec

Page 13 of 17Huang et al. Journal of Cloud Computing (2024) 13:26

its ability to predict the locations of the end devices with
great accuracy.

The impact of TH and TI on the frequency of table
misses is analyzed in Fig. 8, utilizing a sample size of 300
matches and employing the (8000,100) configuration.
The data depicted in the figures reveal that the proposed

scheme demonstrates a significant superiority over alter-
native schemes, irrespective of the values assigned to TH
and TI. This suggests that factors such as network speed,
packet processing rate, or collision/hashing efficiency
in table management play a dominant role in the per-
formance metrics. In such scenarios, even if the time-
outs are adjusted, these other factors may have a greater
impact, resulting in a consistent number of table misses.

Subsequently, to assess the efficacy of the flow table,
an analysis is conducted on the number of obsolete flow
rules and the volume of packets dispatched to the con-
troller. It is worth noting that the (f,g) values employed
correspond to those illustrated in Fig. 7, whereby TI
and TH are 18 s and 30s, respectively. Remarkably, the

Fig. 6 The simulated topology

Table 5 The comparison of the metrics

Method Recall Precision F1-score Grate

Adaboost 0.74 0.91 0.81 0.05

Cost-sensitive
Adaboost

0.56 0.95 0.71 0.03

Fig. 7 The comparison of the number of tables misses with varying (f,g). (a) Varying TH. (b) Varying TI

Page 14 of 17Huang et al. Journal of Cloud Computing (2024) 13:26

proposed approach consistently outperforms other meth-
ods. Specifically, when utilizing (16,000,100), the num-
ber of inactive flow rules is inferior to that of (8000,100),
given that the former facilitates support for additional
flows with the same flow table size. However, when the
number of flow entries is raised to 200, the number esca-
lates due to an increase in unmatched flow entries. As
illustrated in Fig. 9, the proposed mechanism consistently
results in a notably reduced number of packets transmit-
ted to the controller.

Figure 10 presents a comparison of the table occupancy
rates among various schemes. This rate is the ratio of
occupied flow entries to the total number of entries in the
flow table. Notably, the table occupancy rate decreases
when f increases from 8000 to 16,000 while g remains
constant. This phenomenon can be attributed to the utili-
zation of more flow entries with an increase in incoming

flows. However, the proposed scheme exhibits signifi-
cantly lower table occupancy rates compared to other
schemes, owing to a reduction in the number of idle
flow entries. Notably, when the number of flow entries
increases to 200, the rate also increases, albeit being
smaller than that of (8000,100), since more unmatched
flow entries exist. Note that the proposed scheme shows
a much lower occupancy rate than the other schemes,
regardless of the operational condition, due to efficient
flow classification and hybrid flow rule placement with
the flow table.

Table 6 compares the prediction accuracy of the
MAPQ scheme and Mobi-Flow. The (f,g) values used for
the comparison are (8000,100) and TI is set at 30 sec-
onds. It is important to note that Mobi-Flow employs
an order-k Markov predictor, whereas MAPQ utilizes
Q-learning for flow prediction. The table demonstrates
that the proposed scheme consistently achieves greater
accuracy than Mobi-Flow across all tested scenarios.

Finally, the performance of the schemes is investi-
gated in terms of average transmission delay and the
ratio of packet drop in the switch with 300 matchings
(8000,100). The comparison summary is presented in
Table 7. The findings indicate that the proposed scheme
is superior as it accurately predicts the end-device loca-
tion, leading to reduced table misses. This reduction
is achieved by minimizing the unnecessary flow entry
placement, which enables the overhead of flow setup.
As a result, the proposed scheme necessitates the small-
est delay and packet drop rate, which, in turn, ensures
the maintenance of free space in the SDN buffers (such
as the datapath buffer that retains unmatched packets)
while keeping the current connections undisturbed.

Conclusion
This paper presents an innovative approach to plac-
ing flow rules within the context of Software-Defined
Networking (SDN) to support Internet of Things (IoT)
applications. The proposed method leverages the
Q-learning algorithm to anticipate the location of end
devices, enabling proactive placement of flow entries.
Using the forecasted results, the controller adjusts flow
rules accordingly. Additionally, the cost-sensitive Ada-
Boost algorithm is applied to filter out small or rarely
encountered flows. A computer simulation demon-
strates that this approach significantly improves match
probability and reduces the number of table misses
compared to existing methods.

Future research will refine this approach by incor-
porating additional factors that influence prediction
accuracy, such as idle time-out. The paper empha-
sizes proactive flow rule placement based on predicted

Fig. 8 The comparison of the number of tables misses with varying
TH and TI

Page 15 of 17Huang et al. Journal of Cloud Computing (2024) 13:26

Fig. 9 The comparison of the number of idle flow entries

Fig. 10 The comparison of table occupancy rates

Table 6 The comparison of prediction accuracy

Method 1 2 3

MAPQ 0.815 0.832 0.809

Mobi-Flow 0.684 0.732 0.726

Table 7 The comparison of average delay and rate of packet
drop

Scheme MAPQ Mobi-Flow Table Miss

Average delay (ms) 3.29 4.21 7.35

Rate of packet drop 0.389 0.602 0.764

Page 16 of 17Huang et al. Journal of Cloud Computing (2024) 13:26

end-device locations and intends to explore a hybrid
flow rule placement approach to better adapt to chang-
ing network conditions. Furthermore, an analytical
model will be developed to achieve optimal designs
for specific scenarios by establishing relationships
between the considered factors and desired perfor-
mance metrics.

Acknowledgments
Thanks to Dr. Hanyao Huang of Nanyang Institute of Technology for his help
in our work.

Authors’ contributions
Methodology: Gan Huang; Resources: Hanyao Huang and Ihsan Ullah;
Software: Ihsan Ullah; Supervision: Kyung Tae Kim; Writing original draft: Gan
Huang; Writing review editing Hanyao Huang, Kyung Tae Kim; All authors read
and approved the final manuscript.

Authors’ information
Gan Huang received the B.S. degree in Electronic Information Engineering
from Chuzhou University, China, in 2012, the M.S. degree in Computer Science
from Anhui Polytechnic University, China, in 2016, and the Ph.D. degree in
Computer Engineering from Sungkyunkwan University, South Korea, in 2021.
From 2021 to 2022, he was a postdoctoral researcher at Sabanci University,
Turkey. He is currently a lecturer with the School of Mathematics and Com-
puter Science, Zhejiang A&F University, China. His research interests include
Software-defined networking (SDN), Quality of Experience (QoE), Ubiquitous
and Distributed Computing, Cloud and Edge Computing, Mobile Computing,
Wireless Sensor Networks, IoT, Machine Learning, Computer Networking, and
Network Security.
Ihsan Ullah received the B.S. and M.S. degrees in computer science from
the University of Peshawar, Pakistan, in 2001 and 2004, respectively, and
the Ph.D. degree in computer engineering from Sungkyunkwan University,
Suwon, South Korea, in 2019. From September 2019 to August 2020, he was
a Postdoctoral Research Fellow with the Ubiquitous Computing Technology
Research Institute (UTRI), Sungkyunkwan University. Since 2020, he has been
a Research Professor with the School of Computer Science and Engineer-
ing, Korea University of Technology and Education, Cheonan, South Korea.
His research interests include Data aggregation, Data fusion, Virtual network
embedding, Network slicing (5G), IoT (Internet of Things), Artificial Intelligence,
Deep Reinforcement Learning, Cloud computing, and Networking.
Hanyao Huang received the B.S. degree from the University of Electronic Sci-
ence and Technology of China, Chengdu, China, in 2015, and the Ph.D. degree
from Sungkyunkwan University, Korea, in 2022.
He is a lecturer with the Department of Computer and Software Engineering,
Nanyang Institute of Technology, Nanyang, China. His current research inter-
ests include Wireless Networks, Internet of Things Technology, and Machine
Learning.
Kyung Tae Kim received the Ph.D. degree from College of Information and
Communication Engineering at Sungkyunkwan University, Korea in 2013. He is
currently a research professor at the College of Computing and Informatics at
Sungkyunkwan University, Korea. His current research interests include Edge
computing, Artificial Intelligence Systems, and Internet of Things technology.

Funding
This research was supported by Basic Science Research Programs through the
National Research Foundation of Korea (NRF) funded by the Ministry of Educa-
tion (NRF-2022R1I1A1A01053800).

Availability of data and materials
The data used to support the findings of this study are available from the cor-
responding author upon request.

Declarations

Ethics approval and consent to participate
No ethical approval is required, and the authors express their consent to
participate in the paper.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Received: 28 June 2023 Accepted: 3 January 2024

 References
 1. Bannour SS, Mellouk A (2018) Distributed SDN Control: Survey, Taxonomy,

and Challenges. IEEE Commun Surv Tutor 20(1):333–354
 2. Basit A, Qaisar S, Rasool SH, Ali M (2017) SDN Orchestration for Next Gen-

eration Inter-Networking: A Multipath Forwarding Approach. Ieee Access
5:13077–13089

 3. Adami B, Martini A, Sgambelluri L, Donatini M, Gharbaoui PC, Giordano
S (2017) An SDN orchestrator for cloud data center: system design and
experimental evaluation. Trans Emerg Telecommun Technol 28(11):e3172

 4. Aguado A, López V, Marhuenda J, de Dios ÓG, Fernández-Palacios JP
(2015) ABNO: A feasible SDN approach for multivendor IP and optical
networks. J Opt Commun Netw 7(2):A356–A362

 5. Bastam M, Sabaei M, Yousefpour R (2018) A scalable traffic engineering
technique in an SDN-based data center network. Trans Emerg Telecom-
mun Technol 29(2):e3268

 6. Abdelmoniem M, Bensaou B, Abu AJ (2018) Mitigating incast-TCP con-
gestion in data centers with SDN. Ann Telecommun 73(3–4):263–277

 7. Chekired LK, Mouftah HT (2018) Decentralized cloud-SDN architec-
ture in smart grid: A dynamic pricing model. IEEE Trans Industr Inform
14(3):1220–1231

 8. Chen J, Chen JB, Ling JC, Zhou JL, Zhang W (2018) Link failure recovery in
SDN: high efficiency, strong scalability and wide applicability. J Circuits,
Syst Comput 27(6):1850087

 9. Chen N, Wang M, Zhang N, Shen XM, Zhao DM (2017) SDN-based frame-
work for the PEV integrated smart grid. IEEE Netw 31(2):14–21

 10. Babangida I, Bakar KBA (2023) Managing smart technologies with
software-defined networks for routing and security challenges: A survey.
Comput Syst Sci Eng 47(2):1839–1879

 11. Al-Rubaye S, Aulin J (2017) Grid modernization enabled by Sdn control-
lers: leveraging interoperability for accessing unlicensed band. IEEE Wirel
Commun 24(5):60–67

 12. Kim ED, Choi Y, Lee SI, Kim HJ (2017) Enhanced Flow Table Management
Scheme With an LRU-Based Caching Algorithm for SDN. Ieee Access
5:25555–25564

 13. Metter M, Seufert F, Wamser TZ, Tran-Gia P (2017) Analytical model for
SDN signaling traffic and flow table occupancy and its application for
various types of traffic. IEEE Trans Netw Serv Manag 14(3):603–615

 14. Qiu XF, Zhang K, Ren QZ (2017) Global flow table: A convincing mecha-
nism for security operations in SDN. Comput Netw 120:56–70

 15. Luo SX, Yu HF, Li LM (2015) Practical flow table aggregation in SDN. Com-
put Netw 92:72–88

 16. Dargahi T, Caponi A, Ambrosin M, Bianchi G, Conti M (2017) A survey
on the security of Stateful SDN data Planes. IEEE Commun Surv Tutor
19(3):1701–1725

 17. Wei YK, Zhang XN, Xie L, Leng SP (2016) Energy-aware traffic engineering
in hybrid SDN/IP backbone networks. J Commun Netw 18(4):559–566

 18. Qi QL, Wang WD, Gong XY, Que XR (2017) Rules placement with delay
guarantee in combined SDN forwarding element. KSII Trans Internet Inf
Syst 11(6):2870–2888

 19. Nguyen X-N, Saucez D, Barakat C, Turletti T (2016) Rules placement
problem in openflow networks: a survey. IEEE Commun Surv Tutor
18(2):1273–1286

 20. Isyaku B, Zahid MSM, Kamat MB, Bakar KA, Ghaleb FA (2020) Software
defined networking flow table management of openflow switches
performance and security challenges: A survey. Future Internet 12(9):147

 21. Jordehi R (2015) Enhanced leader PSO (ELPSO): a new PSO variant for
solving global optimisation problems. Appl Soft Comput 26:401–417

Page 17 of 17Huang et al. Journal of Cloud Computing (2024) 13:26

 22. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and S.
Banerjee, “DevoFlow: scaling flow management for high-performance
networks.” pp. 254–265

 23. Wang L, Mao W, Zhao J, Yuedong X (2021) DDQP: A double deep
Q-learning approach to online fault-tolerant SFC placement. IEEE Trans
Netw Serv Manag 18(1):118–132

 24. Jiang X, Yuan X, Ke W, Zhang Y, Zhu Q-X, He Y-L (2022) An imbalanced
multifault diagnosis method based on bias weights AdaBoost. IEEE Trans
Instrum Meas 71:1–8

 25. Estan C, Varghese G (2003) New directions in traffic measurement and
accounting: focusing on the elephants, ignoring the mice. ACM Trans
Comput Syst 21(3):270–313

 26. Gude N, Koponen T, Pettit J, Pfaff B, Casado M, McKeown N, Shenker S
(2008) NOX: towards an operating system for networks. ACM SIGCOMM
Comput Commun Rev 38(3):105–110

 27. Zhang L, Lin R, Shizhong X, Wang S (2014) AHTM: achieving efficient flow
table utilization in software defined networks. In: 2014 IEEE Global Com-
munications Conference. IEEE, pp 1897–1902

 28. Zhang L, Wang S, Shizhong X, Lin R, Hongfang Y (2015) TimeoutX: an adap-
tive flow table management method in software defined networks. In:
2015 IEEE Global Communications Conference (GLOBECOM). IEEE, pp 1–6

 29. Vishnoi, Anilkumar, Rishabh Poddar, Vijay Mann, and Suparna Bhat-
tacharya (2014) "Effective switch memory management in OpenFlow
networks." In Proceedings of the 8th ACM international conference on
distributed event-based systems, pp. 177–188

 30. Babangida I, Kamat MB, Bakar K b A, Zahid MSM, Ghaleb FA (2020) IHTA:
dynamic idle-hard timeout allocation algorithm based OpenFlow switch.
In: 2020 IEEE 10th Symposium on Computer Applications & Industrial
Electronics (ISCAIE). IEEE, pp 170–175

 31. Yu M, Rexford J, Freedman MJ, Wang J (2010) Scalable flow-based
networking with DIFANE. ACM SIGCOMM Comput Commun Rev
40(4):351–362

 32. Challa R, Lee Y, Choo H (2016) Intelligent eviction strategy for efficient
flow table management in openflow switches. In: 2016 IEEE NetSoft
Conference and Workshops (NetSoft). IEEE, pp 312–318

 33. Kannan K, Banerjee S (2014) Flowmaster: Early eviction of dead flow on
sdn switches. In: Distributed Computing and Networking: 15th Interna-
tional Conference, ICDCN 2014, Coimbatore, India, January 4–7, 2014.
Proceedings 15. Springer Berlin Heidelberg, pp 484–498

 34. Huang G, Youn HY (2020) Management of Flow Table of SDN for Proactive
Eviction Using Fuzzy Logic. Front Comput Sci 14(4):1–10

 35. Huang G, Youn HY (2020) Proactive eviction of flow entry for SDN based
on hidden Markov model. Front Comput Sci 14:1–10

 36. Draves, Richard P., Christopher King, Srinivasan Venkatachary, and Brian D.
Zill (1999) “Constructing optimal IP routing tables.” In IEEE INFOCOM’99.
Conference on computer communications. Proceedings. Eighteenth
annual joint conference of the IEEE computer and communications
societies. The future is now (cat. No. 99CH36320), vol. 1, pp. 88–97. IEEE

 37. Liu, Yaoqing, Xin Zhao, Kyuhan Nam, Lan Wang, and Beichuan Zhang
(2010) "Incremental forwarding table aggregation." In 2010 IEEE Global
Telecommunications Conference GLOBECOM 2010, pp. 1–6. IEEE

 38. Kanizo Y, Hay D, Keslassy I (2013) Palette: distributing tables in software-
defined networks. In: 2013 proceedings IEEE INFOCOM. IEEE, pp 545–549

 39. Iyer AS, Mann V, Samineni NR (2013) SwitchReduce: reducing switch state
and controller involvement in OpenFlow networks. In: 2013 IFIP network-
ing conference. IEEE, pp 1–9

 40. Luo S, Hongfang Y (2014) Fast incremental flow table aggregation in SDN.
In: 2014 23rd international conference on computer communication and
networks (ICCCN). IEEE, pp 1–8

 41. Braun W, Menth M (2014) Wildcard compression of inter-domain routing
tables for openflow-based software-defined networking. In: 2014 third
european workshop on software defined networks. IEEE, pp 25–30

 42. Giroire F, Moulierac J, Phan TK (2014) Optimizing rule placement in
software-defined networks for energy-aware routing. In: 2014 IEEE global
communications conference. IEEE, pp 2523–2529

 43. Markiewicz A, Tran PN, Timm-Giel A (2014) Energy consumption optimi-
zation for software defined networks considering dynamic traffic. In: 2014
IEEE 3rd international conference on cloud networking (CloudNet). IEEE,
pp 155–160

 44. Zhang T, Liu B (2019) Exposing end-to-end delay in software-defined
networking. Int J Reconfigurable Comput 2019

 45. Vawter I, Pan D, Ma W (2014) Emulation performance study of traffic-
aware policy enforcement in software defined networks. In: 2014 IEEE
11th international conference on Mobile ad hoc and sensor systems. IEEE,
pp 775–780

 46. Caria M, Jukan A, Hoffmann M (2016) SDN partitioning: A centralized con-
trol plane for distributed routing protocols. IEEE Trans Netw Serv Manag
13(3):381–393

 47. Zhang S, Ivancic F, Lumezanu C, Yuan Y, Gupta A, Malik S (2014) An adapt-
able rule placement for software-defined networks. In: 2014 44th annual
IEEE/IFIP international conference on dependable systems and networks.
IEEE, pp 88–99

 48. Kang, Nanxi, Zhenming Liu, Jennifer Rexford, and David Walker (2013)
"Optimizing the" one big switch" abstraction in software-defined
networks." In Proceedings of the ninth ACM conference on Emerging
networking experiments and technologies, pp. 13–24

 49. Katta, Naga, Omid Alipourfard, Jennifer Rexford, and David Walker (2014)
"Infinite cacheflow in software-defined networks." In Proceedings of
the third workshop on Hot topics in software defined networking, pp.
175–180. 2014. Optimized rule placement for mobile users in SDN-ena-
bled access networks." In 2014 IEEE Global Communications Conference,
pp. 4953–4958. IEEE

 50. Li H, Li P, Guo S (2014) MoRule: optimized rule placement for mobile users
in SDN-enabled access networks. In: 2014 IEEE global communications
conference. IEEE, pp 4953–4958

 51. Wang X, Wang C, Jiang C, Yang L, Li Z, Zhou X (2015) "Rule optimization
for real-time query service in software-defined internet of vehicles." arXiv
preprint arXiv:1503.05646

 52. Amokrane A, Langar R, Boutaba R, Pujolle G (2015) Flow-based manage-
ment for energy efficient campus networks. IEEE Trans Netw Serv Manag
12(4):565–579

 53. Liu J, Li Y, Chen M, Dong W, Jin D (2015) Software-defined internet of
things for smart urban sensing. IEEE Commun Mag 53(9):55–63

 54. Anadiotis A-CG, Morabito G, Palazzo S (2015) An SDN-assisted framework
for optimal deployment of MapReduce functions in WSNs. IEEE Trans
Mob Comput 15(9):2165–2178

 55. Bera S, Misra S, Obaidat MS (2018) Mobi-flow: mobility-aware adaptive
flow-rule placement in software-defined access network. IEEE Trans Mob
Comput 18(8):1831–1842

 56. Tripathi S, Pandey OJ, Hegde RM (2023) "An optimal reflective elements
grouping model for RIS-assisted IoT networks using Q-learning". IEEE
Transactions on Circuits and Systems II: Express Briefs 70(8):3214–3218

 57. Moon J (2020) Generalized risk-sensitive optimal control and Hamilton–
Jacobi–bellman equation. IEEE Trans Autom Control 66(5):2319–2325

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	Predictive mobility and cost-aware flow placement in SDN-based IoT networks: a Q-learning approach
	Abstract
	Introduction
	Related work
	Flow eviction
	Flow compression
	Reactive rule placement
	Proactive rule placement

	The proposed scheme
	Overview
	Flow classification
	Prediction of location
	Prediction operation
	Update operation
	Train

	Rule placement

	Performance evaluation
	Simulation setting
	Experiment results

	Conclusion
	Acknowledgments
	References

