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Abstract 

Software-Defined Networking (SDN) has emerged as an innovative networking method that offers effective manage-
ment and remarkable flexibility. However, current SDN-based solutions primarily focus on static networks or concen-
trate on backbone networks, where network dynamics have minimal impact. The existing methods for placing flow 
entries in Software-Defined Networking (SDN)-based Internet of Things (IoT) systems exhibit shortcomings in accu-
rately predicting outcomes and efficiently reducing table misses and associated performance metrics. This research 
introduces a new approach, specifically the mobility-aware adaptive flow entry placement scheme for SDN-based 
Internet of Things (IoT) environments, to address the mobility aspect of networks. The proposed scheme utilizes 
the Q-learning algorithm to predict the next possible location of end devices, while the cost-sensitive AdaBoost algo-
rithm is employed to select heavy and active flows. As a result, efficient flow rules for incoming flows can be dynami-
cally implemented without controller intervention. Extensive computer simulations demonstrate that this approach 
significantly enhances match probability and prediction accuracy while concurrently reducing the number of table 
misses and resource expenditure compared to existing schemes.
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Introduction
The development of Software-Defined Networking 
(SDN) aims to enhance the controllability of communica-
tion networks by decoupling the data plane from the con-
trol plane [1, 2]. In this context, SDN centralizes network 
management, facilitates programmability, and accelerates 

innovation through SDN abstraction. As illustrated in 
Fig. 1, the SDN structure incorporates the use of Open-
Flow as a communication interface between the control 
plane and data plane, with the OpenFlow switch utilizing 
flow tables to process incoming packets [3–5]. In the con-
trol plane, the OpenFlow controller plays a crucial role 
in managing the entire network with a global view and 
defining how to handle flows using the flow table. Users’ 
requirements are abstracted at the application layer, 
which interacts with the controller via the northbound 
interface. The OpenFlow switch performs a lookup using 
one or more flow tables and forwards the flow to the con-
troller through the channels [6–9].

Nowadays, the utilization of the SDN framework is 
extensively implemented in the field of the Internet of 
Things (IoT). SDN empowers IoT by enabling dynamic 
management of networks, optimization of resources, and 
prioritization of traffic, thus accommodating the diverse 
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and constantly evolving demands of IoT devices. The cen-
tralized control, security attributes, and ability to reduce 
latency make SDN an essential enabler for efficient and 
reliable implementations of IoT [10]. However, the broad 
implementation of the Internet of Things (IoT) pres-
ently generates enormous volumes of data from numer-
ous devices linked to SDN [11]. The management of such 
extensive data becomes a significant challenge, especially 
when data types and characteristics are diverse [12]. Fur-
thermore, it is essential to facilitate real-time transactions 
for time-critical applications. Delays in communication 
for such applications may result in catastrophic outcomes 
or significantly impede performance. Several approaches 
have been proposed to address the real-time challenge of 
SDN [13]. In SDN, incoming packets are managed based 
on the flow rule maintained in the switch’s flow table. The 
controller can reactively (in response to arriving packets) 
or proactively add, update, and delete table rules. The 
controller can probe and handle flow entries at any time. 
Incoming packets matched with a flow entry are pro-
cessed by the instructions kept in the entry. The probabil-
ity of a table hit is dependent on the table configuration. 
If a flow entry handling table-miss exists, the instructions 
in that entry determine how to handle unmatched pack-
ets [14, 15]. The instruction options include dropping, 
transferring to another table, or communicating with the 
controller over the control channel via the packet-in mes-
sage, resulting in a new flow entry. By default, flow entries 
for table-miss do not exist [16, 17]. A switch configura-
tion can, however, override the default flow table and 
specify alternative behavior using the OpenFlow con-
figuration protocol. As IoT devices become more wide-
spread, centralized controllers will become increasingly 
crucial within the realm of Software-Defined Networking 

(SDN), particularly in terms of enhancing scalability and 
ensuring reliability [18].

The utilization of OpenFlow has facilitated the 
enhancement of network management to become more 
adaptable and efficient. However, the present imple-
mentation of Software-Defined Networking (SDN) still 
encounters limitations in dealing with diverse data and 
the continuously changing connectivity of Internet of 
Things (IoT) applications, particularly in a mobile setting 
[19, 20]. Furthermore, the current SDN-based flow rule 
placement schemes make assumptions either about the 
static nature of the network or the backbone networks, 
which in turn leads to a decrease in the dynamism of end 
devices. In the typical IoT environment, both stationary 
and mobile devices are deployed in everyday life [21]. 
Hence, the flow table must be dynamically updated in 
such an environment by enabling the switch to exchange 
user information with the backbone network. Given this 
context, it is crucial to devise a novel model for flow rule 
placement that takes into account user mobility [22]. 
While two viable approaches for flow rule placement 
exist, namely reactive and proactive, achieving the opti-
mal balance between them represents a central focus of 
research.

This paper proposes a novel mobility-aware flow rule 
placement scheme that minimizes communication delay 
by considering the mobility of the nodes. It capitalizes 
on the merit of both the reactive and proactive flow rule 
placement approach. In the proposed scheme, the posi-
tion of the end devices is predicted using the Q-learning 
(QL) algorithm to alleviate the computation overhead 
of the switch [23]. The controller decides the placement 
of flow entries based on the prediction. The AdaBoost 
scheme is employed to classify the flow, which also helps 

Fig. 1 The structure of SDN
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the Q-learning in predicting the position of the nodes 
[24]. NS3 and Matlab evaluate the efficiency of the pro-
posed scheme. It reveals that the proposed scheme sig-
nificantly increases the number of high-level flow rules in 
the flow table compared to the existing schemes. Further-
more, it indicates that the communication delay and load 
of the controller are substantially decreased. The main 
contributions of the proposed scheme, called mobility-
aware flow rule placement with Q-learning (MAPQ), are 
as follows.

• Even though AdaBoost has long been used in various 
fields, little research has been reported on efficiently 
and adequately deciding a strong classifier. A novel 
approach is developed which effectively achieves the 
final classifier considering the cost of error of the 
classification. Here the flows are classified into two 
types.

• The QL algorithm is combined with the cost-sensi-
tive AdaBoost in the proposed MAPQ scheme, and 
the approach is generic such that it can be read-
ily applied to other application problems employing 
AdaBoost to improve performance.

• A scheme is developed that predicts the position of 
the end node using the QL algorithm to select the 
flow entry that needs to be appropriately adjusted. 
Here the flows are classified based on the usage his-
tory to reduce the computation overhead required 
for proactive prediction.

• A new approach based on the QL algorithm is devel-
oped in which the next state and the corresponding 
reward are not obtained as soon as a specific action 
is chosen but after some event occurs. This approach 
reduces computation overhead while supporting high 
accuracy of prediction with QL.

The rest of the paper is structured as follows. Section 2 
discusses the work related to flow rule placement for 
SDN, and Section 3 presents the proposed scheme based 
on cost-sensitive AdaBoost and QL. In Section 4, the per-
formance of the proposed scheme is presented through 
simulation results and subsequently contrasted with the 
current approaches. Finally, Section 5 provides a conclu-
sive summary of the paper with some remarks.

Related work
The basic terminologies of SDN are defined as follows:

Definition 1 (Flow entry). This flow entry constitutes the 
fundamental element of a flow table, encompassing the 
domain that specifies the circumstances required for a 
match (Match Field), direction pertaining to actions for 
the incoming packet that has been matched (Instruc-

tions), a record of statistics associated with matched 
packets (Counter), the maximum duration or idle time 
prior to the expiration of an entry (Time-out), among 
others. Table 1 showcases the basic fields of a flow entry.

Definition 2 (Hard time-out, TH). Once a flow entry 
has been assigned to the flow table, it is subject to evic-
tion upon the expiry of TH, regardless of the number of 
matches.
Definition 3 (Idle time-out, TI). A flow entry must be 
removed from the flow table when the Time Interval 
TI has elapsed since the last match.
Definition 4 (Stale entry). The entry is unmatched 
before TI expires.
Definition 5 (Elephant flow). This large flow takes up 
more than a certain percentage of the link traffic dur-
ing a given time interval [25]. Assume a certain length 
of time, t. Large flows are those sending packets more 
than a given threshold (say P%) in the previous period 
of t, where P is usually 0.1% of the link capacity and its 
corresponding flow entry is a long-lived entry.
Definition 6 (Mice flow). Contrary to elephant flow, 
mice flow stands for a flow taking less than P% of the 
link capacity in the previous period of t. In SDN, the 
majority of flows are mice flow.

A comprehensive investigation of multiple extant works 
concerning the placement of flow rules for SDN has been 
explicated in reference [19, 20]. The current schemes for 
flow rule placement primarily address two main obstacles: 
resource constraint and signaling overhead. Concerning 
the matter of resource constraint, two methods have been 
suggested, namely, flow eviction and flow compression.

Flow eviction
The researchers were motivated to develop effective flow 
eviction methods due to the flow table’s limited size and 
declining performance caused by increasing stale entries. 
Openflow network implements a time-out mechanism to 
flush flow entries, but different time-out values have been 
used, ranging from 5 [26] to 60 seconds [22]. However, a 
fixed time-out value is inadequate for dynamically chang-
ing flows. To address this issue, the Adaptive Hard Time-
out Method (AHTM) [27] was proposed, which utilized 
the M/G/C/C/FCFS queuing system to model the flow 
table and analyze truncation time and blocking probability 
to determine the optimal value of TH.

Table 1 The basic fields of a flow entry

Match Field Priority Counter Instruction Time-out Cookie
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In the publication by Zhang et al. [28], another scheme 
targeting dynamic TH was proposed in which the flow 
is classified into four kinds and the flow duration time, 
flow type, and utilization of the flow table were taken into 
account to determine its value. SmartTime [29] com-
bined the adaptive idle time-out scheme with a proac-
tive eviction strategy and utilized the Ternary Content 
Addressable Memory (TCAM) to minimize the number 
of table misses. Babangida et  al. [30] proposed an algo-
rithm known as idle-hard timeout allocation (IHTA) with 
the aim of enhancing flow table management in software-
defined networking (SDN). The IHTA algorithm adap-
tively modified idle and hard timeout values for various 
flows by considering traffic patterns and packet inter-
arrival times.

DIFANE [31] proposed a distributed flow manage-
ment architecture that efficiently handles wildcard rules 
and quickly reacts to network dynamics such as policy/
topology change and host mobility. Instead of the time-
out approach, Multiple Bloom Filters (MBF) [32] were 
used for logging data, where the importance of each flow 
entry was encoded and the entry with the lowest impor-
tance value was evicted upon a table miss. Flowmas-
ter [33] used a learning predictor based on the Markov 
model to identify flow entries expected to become idle 
and evict an existing flow entry based on the number of 
transitions and transition probability using the time-out 
mechanism. A proactive approach was proposed based 
on predicting the probability of matching entries using 
HMM [34]. The scheme in the publication by Huang 
et al. [35] employed HMM and fuzzy logic to select the 
victim entry proactively.

Flow compression
Applying a wildcard mechanism in compression reduces 
the number of flow entries present in a flow table while 
preserving the original semantics. This process involves 
the aggregation of specific flow entries into a single entry 
if they share common characteristics. Notably, the Open-
Flow protocol does not require adjustment during flow 
compression.

Optimal Routing Table Constructor (ORTC) [36], 
which employed a binary tree to determine the minimal 
number of prefixes for each rule, represented one of the 
earliest methods for table aggregation. Once constructed, 
the routing table derived by ORTC remains unaltered. 
ORTC has also been implemented using structures other 
than binary trees [37].

The Palette distribution framework, introduced in the 
publication by Kanizo et al. [38], decomposed and aggre-
gated large SDN tables into a predetermined number of 
smaller tables of the same semantics, which are then dis-
tributed across switches. In the publication by Iyer et al. 

[39], SwitchReduce, as a system, was proposed to opti-
mize OpenFlow networks by reducing switch state size 
and controller involvement. SwitchReduce compressed 
wildcard identical action flows into fewer entries and 
maintains per-flow counters only at ingress switches. In 
the publication by Luo et al. [40] the authors developed 
FFTA and iFFTA, a pair of flow table aggregation and 
update schemes, to reduce the size of flow tables in SDN 
switches. FFTA used a modified binary search tree and 
ORTC techniques to achieve very fast offline non-prefix 
flow rule aggregation. iFFTA further incorporated online 
updates around 3 times faster than re-running FFTA, 
with minimal impact on compression ratio. The Espresso 
heuristic, presented in the publication by Braun et  al. 
[41], proposed the compression of a minimum-size set of 
prefix-based match fields to achieve logic minimization 
within flow tables. DIFANE [31] employed decision trees 
to subdivide flow rules and assign them to corresponding 
switches, thereby circumventing controller bottlenecks.

Much attention has been paid to flow rule placement 
in addressing signaling overhead. Reactive and proactive 
categories of flow rule placement are explained in the fol-
lowing sections.

Reactive rule placement
A reactive approach to rule placement involves the place-
ment of rules on flow-related events, such as table miss. 
As the OpenFlow specification outlines, the switch noti-
fies the controller of its arrival for each new flow if there 
is no corresponding flow entry. Subsequently, the con-
troller installs a new flow rule for the switch.

It should be noted that an increase in table misses leads 
to more frequent communication between switches and 
controllers for exchanging packet-in and packet-out mes-
sages. Moreover, setting up new flow rules takes consid-
erable time, resulting in additional latency.

An example of reactive flow rule placement is pre-
sented in Fig. 2. Assuming that a flow enters the switch 
(Arrow 1), and its flow rule is not found in the flow table, 
the switch sends an OpenFlow message to the controller, 
and the controller sends the flow rule placement message 
to the switch (Arrow 2). After the switch deals with the 
flow (Arrow 3), it handles subsequent flows (Arrow 4,5).

Reactive flow rule placement necessitates continuous 
interaction between the switch and the controller. In the 
publication by Luo et al. [40], integer linear programming 
(ILP) and greedy heuristic algorithms were employed 
for flow rule placement. The controller put unused links 
into sleep mode to minimize energy consumption, while 
considering the constraints on link capacity and space 
of the table, keeping the rules. An energy-efficient traf-
fic forwarding scheme was proposed in the publication 
by Giroire et  al. [42], considering dynamic traffic in the 
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network. The traffic management policies minimiz-
ing unnecessary traffic are presented in the publication 
by Markiewicz et  al. [43], and the routing strategy of 
the publication by Zhang et al. [44] was based on Open 
Shortest Path First (OSPF), utilizing the global view of the 
network. The authors in the publication [44] conducted a 
comprehensive examination of the performance of end-
to-end delay in SDN networks with multiple nodes. They 
introduced a novel analytical framework and conducted 
measurements that exposed substantial delays when 
compared to conventional networks. This drew atten-
tion to critical factors that need to be taken into account 
when designing SDN switches and developing network 
algorithms to mitigate these delays.

It is important to note that reactive rule placement typ-
ically involves high communication load and latency for 
the devices involved. Additionally, due to the limitations 
in the computation speed of the controller, handling flow 
messages quickly is challenging. Therefore, it is typically 
employed for elephant flows.

Proactive rule placement
The proposed methodology involves pre-emptively plac-
ing rules before the arrival of new flows. It is based on 
predicting the usage of flow rules before their insertion 
into the flow table, as illustrated in Fig. 3. This approach 
can effectively reduce delays in setting up flow rules and 
minimize the total number of signaling messages.

Proactive flow rule placement is often integrated with 
access control, with ILP being utilized in [45] to design 
and analyze the dependency graph for rule placement 
in the switch. The graph is also helpful for predict-
ing access control rules before the corresponding flow 
arrives [46–48]. DevoFlow [22] further reduced switch-
controller interaction by detecting significant flows 
ahead of time. The switch only places flow rules associ-
ated with mice flow, without invoking the controller.

Figure  3 serves as an example of proactive flow rule 
placement, where flow rules are installed by the con-
troller (Arrow 1), matched by the contents of a flow 
table (Arrow 2), and quickly forwarded without setup 
delays (Arrow 3).

In recent times, there has been an increased consid-
eration of user mobility in managing SDN flow table 
due to the growing popularity of IoT. A flow rule place-
ment scheme was proposed in the publication by Katta 
et al. [49] which made an improvement over the current 
method by taking into account the occupation time of a 
flow rule in a table while ensuring the processing of the 
flow with the local switch. In the publication by Li et al. 
[50], a dynamic environment allowed users to join and 
exit the network freely. In this publication, an online 
flow-based routing approach was presented, which per-
mits the dynamic reconfiguration of the existing flows 
and the adaptation of the link rate, considering the user’s 
demand and mobility. The publication by Wang et al. [51] 
introduced MoRule, a rule management scheme specifi-
cally designed for mobile users within Software Defined 
Networks (SDNs). Unlike existing approaches that heavily 
rely on static network topology, MoRule took into consid-
eration the dynamic nature of mobile networks. It effec-
tively utilized a low-complexity heuristic algorithm to 
optimize the placement of rules, while also ensuring that 
local switches efficiently handle mobile traffic above a 
pre-defined threshold. By capitalizing on the principles of 
software-defined networking (SDN), SDIV [51] proposed 
the segmentation of control and data planes, thereby pro-
viding a standardized means of configuration for a vari-
ety of switches. This innovative approach significantly 
improved service deployment and scalability. In order 
to tackle the limitations associated with Flow Tables in 
OpenFlow-enabled switches, Amokrane et  al. [52] pre-
sented an approach for optimizing rules. This particu-
lar approach efficiently reduced rule complexity, while 
simultaneously preserving the performance of data trans-
mission, as verified through a series of experiments. The 
publication by Liu et al. [53] presented a software-defined 

Fig. 2 The process of reactive flow rule placement

Fig. 3 The process of proactive flow rule placement
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IoT (SD-IoT) architecture for intelligent urban sensing, 
which customizes data acquisition, transmission, and 
processing for the user through well-defined APIs. Vari-
ous applications coexisted in the common infrastructure 
to reduce overall maintenance costs. The publication by 
Anadiotis et al. [54] formulated an SDN-assisted system 
using MapReduce to support big data processing in wire-
less sensor networks (WSN). It allowed for the dynamic 
loading and implementation of user-specified maps and 
reduced energy consumption in the nodes. In the publi-
cation by Bera et al. [55], a mobility-aware adaptive flow 
rule placement, Mobi-Flow, was presented as a solution 
to the issue of user mobility. It consisted of two compo-
nents: the path estimator and the flow manager. The path 
estimator predicted the future position of the user in the 
network, while the flow manager determined the activa-
tion of access points and placed the corresponding flow 
rules according to the result of the path estimator.

Next, the proposed MAPQ scheme is presented, fur-
ther enhancing the Mobi-Flow approach using cost-sen-
sitive AdaBoost and Q-learning. Frequent use of reactive 
flow rule placement is not beneficial for mice flow. The 
proposed MAPQ scheme adopts proactive flow rule 
placement to resolve the issue.

The proposed scheme
This section presents the proposed MAPQ scheme for 
mobility-aware flow rule placement with SDN. Then its 
function is analyzed, providing more space for high-level 
flow rules and assuring the efficiency of the flow table 
management.

Overview
As depicted in Fig.  4, the operation of MAPQ involves 
a tripartite process comprising flow rule classification, 
position prediction, and flow entry update. The first 
step of flow classification utilizes the cost-sensitive Ada-
Boost methodology to categorize the flows into two dis-
tinct types. The accuracy of this particular classification 
process holds substantial sway over the performance of 
the MAPQ scheme, wherein mice or inactive flow are 

excluded from consideration. The proactive rule place-
ment policy allocates the remaining flows to the switches. 
The Q-learning model is leveraged to prognosticate the 
node’s position relative to the corresponding flow entry, 
thereby facilitating the scheduling of rule placement in 
advance [23]. Subsequently, the controller updates the 
flow entries contingent upon the node position. The 
notations employed in this study are summarized in 
Table 2.

Flow classification
Flow classification is the first step of MAPQ, which clas-
sifies the flows into elephant flows or mice flows. The 
traditional machine learning algorithm uses a training 
dataset, (Xtra,Ytra) = {(x1,y1),(x2,y2),…, (xi,yi), …, (xn,yn)} 
collected from SDN, to generate a classifier, where (xi,yi) 
is the input features xi  with the target label yi. Then it 
is employed to identify the category of the test dataset, 
(Xtes,Ytes). With AdaBoost [24], a trained classifier is used 
to differentiate two kinds of flows; elephant (active) flows 
and mice (inactive) flows. Usually, the distribution of 
the training dataset is the same as that of the test data-
set. As for the training dataset of a different distribution, 
it is regarded as a redundant dataset. Unlike traditional 
machine learning algorithms, the cost-sensitive algo-
rithm considers the minimization of the misclassification 
cost to construct a full-scale classifier.

Based on the cost-sensitive scheme framework, the 
improved AdaBoost algorithm, known as cost-sensitive 
AdaBoost, has been utilized in the context of MAPQ. 
AdaBoost is a conventional machine learning algorithm 
that comprises multiple weak classifiers. These clas-
sifiers are assigned weights based on the classification 
error, and a robust classifier is produced by aggregating 
the weak classifiers utilizing these weights. The opera-
tional sequence is outlined as follows.

1) Initialize the weight of each training datum, mean-
ing one data point or one instance in your dataset, to 
be the same as 1/m, where m refers to the count of 
individual instances, examples, or observations in the 

Fig. 4 The operation flow of the MAPQ scheme
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training dataset you are using to train your model, 
indicating that, at the start, each piece of training 
data is considered equally important in training the 
first weak classifier. Thus, the initial weights are

2) Update the weights of the training data with n itera-
tions.

A. Choose a weak classifier of the minimal error 
rate as the tth basic classifier, ht, and calculate its 
error rate.

 

(1)w1 = w2 = · · · = wm =
1

m

εt = Pri∼Dt [ht(xi) �= yi]

(2)=

m

i=1

w(t)(i) 1− I ht(xi) = yi

where Pri ∼ Dt The probability concerning the distri-
bution Dt  is contingent on the fact that the distribu-
tion Dt  assigns a probability to each training example 
in proportion to its weight during iteration t. In the 
AdaBoost algorithm, the weights of the training exam-
ples are modified following each iteration in order to 
prioritize the examples that were previously misclas-
sified. Consequently, the probability distribution Dt  
undergoes modifications during each iteration, which 
then influences the selection of the weak classifier that 
most effectively rectifies the prior errors. vAlso wi

t 
denotes the weight for the tth iteration and I(•) is the 
indicator function.

B. Calculate the weight of the basic classifier for the 
final ensemble.

(3)I
(

y = x
)

=

{

1, y = x
0, y �= x

Table 2 The list of notations

Parameter Description

wt(i) weight of the ith training example at the tth iteration

H(x) final strong classifier

acc accuracy of classification

c(yi,yj) tcost function, which assigns a cost to the event of predicting class yj when the true class is yi
N total number of samples or instances in the dataset

p number of negative samples

L(x,y) real loss associated with a prediction for a given class y when the input is x

τ index or identifier for the weak learners in the ensemble that the AdaBoost algorithm generates

ατ weight assigned to the τ-th classifier in the ensemble

hτ(x) hypothesis or prediction made by the τ-th classifier for the sample x

L set of all possible states in the environment

A a set of all possible actions that the agent can take in a given state

R reward received after transitioning from one state to another due to an action taken by the agent

P probability of transitioning from one state to another

H a dataset or a set of data points that encapsulate the historical movement of the end-device

li ith position of the device in a sequence of positions

ti arrival time of the device corresponding to ith position

wij weight of the visit from li to lj
hi ith basic classifier

Pij transition probability from li to lj, i ≠ j

α learning rate

γ discount factor

m the total number of the training data

t current iteration or round of the boosting process

Q(s,a) expected cumulative reward for taking action a in state s

Q′ (s′,a′) estimated maximum reward for the next state s′ over all possible actions a′.
R(s,a) reward received after taking action a in state s
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C. Update the weight of each training data.

where Zt is the normalization factor.

3) Combine the basic classifiers using the following 
equation into a strong classifier.

The overall steps are summarized in Procedure 1.

 Procedure 1 AdaBoost

AdaBoost is similar to traditional machine learning 
algorithms in adopting the hypothesis that the train-
ing and test dataset distributions are the same [24]. The 
cost-sensitive AdaBoost preserves AdaBoost for the train-
ing dataset of the same distribution, and a cost-sensitive 
function is applied to the training dataset of different 
distributions for flow classification. To differentiate the 
importance of the data, each data is associated with a cost: 

(4)αt =
1

2
ln

(

1− εt

εt

)

(5)w(t+1)(i) =
wt(i)exp

(

−αtyiht(xi)
)

Zt

(6)Zt = 2
√

εt(1− εt)

(7)H(x) = sign

(

T
∑

t=1

αtht(x)

)

the higher the cost, the higher the importance of correctly 
identifying the data. Let {(x1,y1,c1),…, (xm,ym,cm)} be a 
sequence of training dataset, where ci∈[0,+∞) is an asso-
ciated cost. c(yi,yj) is the cost of predicting class yj when 
the true class is yi for a sample. Its value is decided below.

where c(0,0) is the cost of correctly predicting negative 
value for actual negative value, CostTN. Four combina-
tions exist regarding the correctness of the positive/nega-
tive value prediction as listed in Table  3. The update of 
the weight is done as follows.

The final ensemble formula is

where L(x,y) is the real loss of class_i. Here class_i is the 
actual class of x.

As the cost factor is involved in the proposed AdaBoost 
scheme, it can be regarded as a cost-sensitive boosting 
algorithm, summarized in Procedure 2. For the AdaBoost 
algorithm, selecting a suitable value for the weight update 
parameter is essential in transforming a weak classifier 
into a strong one. When the cost parameters are added 
to the weight updating formula of AdaBoost, the data 
distribution is affected by the parameter. The efficiency 
of AdaBoost is not guaranteed if the cost is considered 
without proper weight updates. The value of the weight 
update parameter needs to be decided to minimize the 
overall training error of the combined classifier. The pro-
cess of flow classification is shown in Fig. 5.

(8)
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)
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)
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(
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Table 3 The combinations of prediction of the values

Prediction Actual Negative Actual Positive

Negative CostTN:c(0,0) CostFN:c(1,0)

Positive CostFP:c(0,1) CostTP:c(1,1)
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Procedure 2 Cost-sensitive AdaBoost

Prediction of location
The QL algorithm is used to predict the future posi-
tion of the end device. The QL model consists of 5-tuple 
<L,A,R,P,γ>, where L is a finite set of states, and A is a 
finite set of actions. The controller obtains feedback 
information which R denotes, and P is the transition 
probability between the states. The feedback for each end 
device is the same, and the discount factor γ is applied to 
the calculation of the reward value. First, two tuples, <H, 
P>, need to be elaborated.

• H: A set of data showing the movement history of 
an end-device with three tuples, <L,T,S>, where L 
= {l1, l2,…,ln} is the location visited by the device, T 
= {t1,t2,…,tn} is the arrival time, and S = {s1,s2,…,sn} is 
the duration of stay at each location. n is the number 
of positions visited.

• P: Transition probability from one location to 
another as Pij the transition probability from li to lj, 
i ≠ j.

The QL algorithm is typically composed of a series 
of actions carried out by agents and states, as well as a 
reward function and a transfer function. In the proposed 
QL model, the controller and SDN are considered the 

agent and environment, respectively, in which the agent 
operates. The agent initially assesses the state of the 
SDN and determines the appropriate course of action 
to interact with it. Once an action is taken, a reward is 
obtained and the environment transitions to a new state. 
Through ongoing interactions with the environment, the 
agent observes a sequence of state-action-reward events 
and assesses the reward in conjunction with the corre-
sponding state and action pair. The ultimate objective is 
to obtain the expected maximum cumulative discounted 
reward, which the agent seeks to achieve by calculating 
the optimal action-value function.

The QL algorithm is a set of actions executed by agents 
and states, along with reward and transfer functions. 
Within the proposed QL model, the controller and SDN 
are identified as the agent and environment in which 
the agent conducts operations. At the outset, the agent 
evaluates the condition of the SDN and determines the 
most appropriate course of action for engaging with it. 
A reward is obtained upon taking action, and the envi-
ronment moves to a new state. Through continual inter-
actions with the environment, the agent observes a 
sequence of state-action-reward occurrences and evalu-
ates the reward in conjunction with the corresponding 
state and action pair. The primary objective is attaining 

Fig. 5 The operation flow of cost-sensitive AdaBoost
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the expected maximum cumulative discounted reward, 
which the agent accomplishes by computing the optimal 
action-value function.

where Q(•) is the expected reward, and α is the learn-
ing rate set to be the same value as QLAODV [50]. γ (> 1) 
is the discount factor, determining the importance of the 
reward. In addition, Q ′ (s ′, a ′) is the maximum reward 
given the new state, s ′, and all possible actions at s ′. The 
proposed scheme defines the state, action, and reward as 
follows.

Definition 7 (State). The state is deemed the loca-
tion that the end device has formerly accessed, with 
each position signifying a semantic locale such as the 
office, home, station, etc. As previously mentioned, L 
denotes this.
Definition 8 (Action). An action possessing a par-
ticular state can be delineated as the duration dur-
ing which the device remains stationary in its pre-
sent position (state). This duration can be calibrated 
in seconds, ranging from 1-10 secs, and is therefore 
classified as an action space, A, comprising of the 
values {1, 2,...,10}. This is because the device’s state 
is assessed at intervals of 10 secs. It should be noted 
that a decrease in the number of actions enhances 
the precision of prediction since the number of pre-
dicted actions is curtailed.
Definition 9 (Reward). The reward is given for a tran-
sition between two states with an action. The reward 
with si, Ri, is represented as follows.

where wij is the probability of a visit to lj from li.

Here a = l1,…,li is a sequence of i recent positions vis-
ited and N(•, L) is the number of occurrences of one 
sequence of the visited locations, L.

In Software-Defined Networking (SDN), the control-
ler regularly verifies the location of the end device and its 
connectivity to a switch every 10 seconds. The OpenFlow 
protocol facilitates the collection of network information, 
thereby resulting in no additional burden in executing the 
suggested approach for acquiring network information.

(12)
Q(s, a) = (1− α)× Q(s, a)+ α

[

R(s, a)+ γ ×maxQ′
(

s′ , a′
)

− Q(s, a)
]

(13)Ri =

n
∑

j=1

wijPij

(14)wij = P
(

lt+1 = lj|L
)

=
N
(

alj , L
)

N (a, L)

Prediction operation
For predicting the following location, the Q-values are 
evaluated. Here the input is the current location, li, 
and the output is a vector, Q(li) = (Q(li,a1), Q(li,a2),…
,Q(li,a10)), consisting of 10 estimated Q-values for each 
possible action. The following action ai is chosen accord-
ing to the vector Q(li).

Given the possibility of encountering a local opti-
mum, the decision-making process employs the 
ε-greedy policy to determine the subsequent action 
[56]. Specifically, an action is randomly and uniformly 
selected with a small probability of ε, while the best 
action is chosen from the Q-table based on Eq. (15) 
with a probability of (1-ε). The controller selects the 
action with the highest value with a probability of (1-ε), 
and a random action with a probability of ε, thereby 
facilitating exploration of the environment with a low 
probability. It is noteworthy that the parameter, ε, is 
not constant, but rather varies based on the operational 
status of the scheme. Specifically, ε is set to 1/c, where 
c denotes the number of successful predictions. The 
value of ε decreases gradually as the frequency of suc-
cessful predictions increases, thereby promoting explo-
ration during the initial stages of training, while the 
degree of exploitation in the later stages is contingent 
on experience.

Update operation
The model gets <L, T, S > of the end device delivered by 
the switch. Then the state of the end device is updated, 
and the corresponding reward for the action is com-
puted. Lastly, the last state, current state, previous 
action, and its corresponding reward are logged in the 
training dataset for future use.

Train
The data are periodically sampled from the training 
dataset to perform experience replay, which utilizes 
previous data to remove the samples’ associations. 
With the input consisting of past states, the Q-value of 
the pair of (s,a) is updated with the previous pair using 
the Bellman equation [57], while other Q-values are 
unchanged. The updated results are stored as the out-
put. The key to using the Bellman equation is that if 
the Q-value of all the subsequent states is known, the 
optimal strategy is the action maximizing the expected 
value of R(s, a) + γ × max (Q ′ (s ′,a ′) − Q(s, a)).

(15)ai = arg max Q
(

li, aj
)

jε[1, . . . , 10]
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The proposed QL algorithm for reinforcement learn-
ing exhibits a significant deviation from other such 
algorithms in that the subsequent state and correspond-
ing reward are not immediately procured upon the 
selection of a specific action. Rather, they are obtained 
post the relocation of the end device by the controller. 
This implies that the parameters of QL do not undergo 
any alteration until the end device is relocated. Moreo-
ver, the choice of the next action is not contingent on 
the current action. The process of predicting the loca-
tion of a device is explicated in the following manner.

Procedure 3: Prediction of location.

Rule placement
In an SDN-based IoT environment, the network com-
prises numerous end devices that are connected 
through distinct switches. These switches maintain 
flow tables that require consistent updates to opti-
mize the hit ratio, considering the movement of the 
end devices. The proposed scheme known as MAPQ 
(mobility-aware flow rule placement with Q-learn-
ing) offers a resolution to this particular challenge by 
employing a proactive methodology to refresh the flow 
rules within the switches. In order to accomplish this, 
it is of utmost importance to monitor the future posi-
tions of end devices based on their past movements. 
This tracking mechanism establishes the foundation 
for effective flow rule placement subsequent to device 
movement within wireless environments.

Here is a comprehensive analysis of the flow rule place-
ment process that transpires in response to device move-
ment in such an environment:

 i. Continuous Device Tracking: The SDN control-
ler and associated network infrastructure are 
equipped with mechanisms to continuously mon-
itor the movements of IoT end devices. These 
mechanisms can encompass various technologies 
such as GPS, signal strength monitoring, or trian-
gulation techniques.

 ii. Movement Prediction: Drawing upon historical 
movement patterns and real-time data collected, 
the SDN controller prognosticates the future loca-
tion of each end device through the implementa-
tion of Q-learning algorithm.

 iii. Proactive Rule Update: As an IoT device com-
mences movement, the SDN controller proac-
tively identifies the switch or switches that will be 
responsible for managing the device’s traffic at its 
impending location. This is accomplished by con-
sidering factors such as proximity, the load on 
switches, and network traffic conditions.

 iv. Flow Rule Placement: Once the future switch (or 
switches) has been ascertained, the SDN con-
troller proceeds to update the flow table(s) of the 
corresponding switch(es) according to the flow 
classification using the cost-sensitive AdaBoost 
algorithm. This update entails the placement or 
modification of flow rules that delineate how traf-
fic from the moving IoT device should be pro-
cessed and forwarded.

 v. Rule Removal at Previous Location: Concurrently, 
the SDN controller eliminates or adjusts the flow 
rules at the switch that corresponds to the device’s 
previous location. This ensures the efficient utili-
zation of network resources and the exclusion of 
unnecessary rules that are no longer pertinent to 
the switches.

 vi. Seamless Connectivity: With the updated flow 
rules in effect, the IoT device can seamlessly main-
tain communication as it traverses the network. 
The flow rules at the current switch are consistently 
aligned with the device’s anticipated or actual loca-
tion, thereby optimizing the hit ratio and minimiz-
ing latency.

 vii. Iterative Process: This process is iterative and 
dynamic, constantly adapting to changes in device 
movement patterns and network conditions. The 
SDN controller continuously refines its predictions 
and updates flow rules accordingly.
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To summarize, the MAPQ scheme capitalizes on pro-
active flow rule placement based on predictive device 
movement tracking in wireless IoT environments. This 
approach ensures that the network remains responsive 
to the mobility of IoT devices, thereby upholding optimal 
connectivity and efficient resource utilization throughout 
the network.

Performance evaluation
In this section, a computer simulation is performed to 
assess the proposed approach and contrast it with the 
existing methods, namely the standard hard time-out 
scheme and Mobi-Flow scheme [51] which employs a 
location prediction mechanism in conjunction with an 
adapted time-out.

Simulation setting
The simulation is implemented on Intel Core i7 proces-
sor, 2.50GHz PC with 16GB RAM, and Matlab R2015a. 
The prediction accuracy of a scheme, Acc, indicates 
the rate of correct prediction of the flow entry hav-
ing the most negligible matching probability. When the 
hard time-out is up, the predicted flow entry is checked 
whether it has the smallest matching number. Then the 
number of successful predictions, ns, is incremented by 
1. After the entire operation is over, the accuracy is cal-
culated as:

where ne is the number of evicted flow entries. Table  4 
lists the simulation parameters. The flows are generated 
according to an exponential distribution with λ = 1, and 
the contents of the flow entries are decided randomly.

A virtual network of tree topology of 25 switches and 
200 hosts of Fig. 6 is constructed using NS3 with the fol-
lowing elements: Open vSwitch, open daylight controller, 
and end-host nodes with the service provider (SP) ena-
bled. The host nodes, the switch, and the controller are 

(16)Acc =
ns

ne

running on Ubuntu 16.04 LTS, and all the switches are 
connected to a controller.

Experiment results
Suppose that f and g denote the number of incoming 
flows and flow entries of a flow table, respectively. The 
performance metrics adopted in the simulation are Pre-
cision, Recall, F1-score, and Garbage rate (Grate). The 
number of data correctly classified as positive while they 
are positive is defined as true positive (TP). The number 
of data mistakenly classified as a positive class for a nega-
tive one is defined as false positives (FP). TN and FN are 
defined similarly. Precision, obtained by Eq. (17), is the 
ratio of True Positives to all the Positives. Recall, defined 
as Eq. (18), represents the portion of correctly classi-
fied positive data from the positive dataset. F1_score of 
Eq. (19) is a parameter obtained by the harmonic mean 
of precision and recall. FP and FN deteriorate the per-
formance of a classifier. Grate, defined as Eq. (20), is the 
portion of false classification out of entire classifications 
used to show the overall inaccuracy.

Table 5 compares the Precision and Grate of the clas-
sification of the proposed cost-sensitive AdaBoost 
approach and that of the traditional AdaBoost. Our anal-
ysis reveals that the cost-sensitive AdaBoost consistently 
outperforms AdaBoost in Precision and Grate. AdaBoost 
cannot filter bursty error readings, resulting in lower pre-
cision when error cost is not considered. Our simulation 
results demonstrate that incorporating error cost signifi-
cantly enhances classification precision.

The comparison of table misses for the various schemes 
is presented in Fig.  7, with (8000,100) for (f,g). TI and 
TH are 18 s and 30s, respectively. Notably, the number 
of table misses exhibits an increase when f is increased 
from 8000 to 16,000 while g remains unchanged, as evi-
denced in the middle of the figure. However, it is worth 
mentioning that the number of table misses associated 
with the proposed scheme is considerably lower than 
that of other schemes. Furthermore, upon increasing 
the number of flow entries to 200, there is a significant 
reduction in table misses. It is noteworthy that the pro-
posed MAPQ scheme substantially reduces the number 
of table misses compared to the other schemes, owing to 

(17)Precision = TP/(TP + FP)

(18)Recall = TP/(TP + FN )

(19)F1− score = 2 • Precision • Recall/(Precision+ Recall)

(20)Grate = (FP + FN )/(TP + TN + FP + FN )

Table 4 The simulation parameters

Parameter Value

Number of switches 3

Number of flow entries per table 100 ~ 200

Upper bound on controller-to-switch delay 3.043 ms

Upper bound on end-to-end delay 0.341 ms

Average packet arrival rate per switch 0.005 ~ 0.025mpps
(million packets 
per second)

Average packet service rate per switch 0.30mpps

Flow-table lookup time 33.333 μsec
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its ability to predict the locations of the end devices with 
great accuracy.

The impact of TH and TI on the frequency of table 
misses is analyzed in Fig. 8, utilizing a sample size of 300 
matches and employing the (8000,100) configuration. 
The data depicted in the figures reveal that the proposed 

scheme demonstrates a significant superiority over alter-
native schemes, irrespective of the values assigned to TH 
and TI. This suggests that factors such as network speed, 
packet processing rate, or collision/hashing efficiency 
in table management play a dominant role in the per-
formance metrics. In such scenarios, even if the time-
outs are adjusted, these other factors may have a greater 
impact, resulting in a consistent number of table misses.

Subsequently, to assess the efficacy of the flow table, 
an analysis is conducted on the number of obsolete flow 
rules and the volume of packets dispatched to the con-
troller. It is worth noting that the (f,g) values employed 
correspond to those illustrated in Fig.  7, whereby TI 
and TH are 18 s and 30s, respectively. Remarkably, the 

Fig. 6 The simulated topology

Table 5 The comparison of the metrics

Method Recall Precision F1-score Grate

Adaboost 0.74 0.91 0.81 0.05

Cost-sensitive 
Adaboost

0.56 0.95 0.71 0.03

Fig. 7 The comparison of the number of tables misses with varying (f,g). (a) Varying TH. (b) Varying TI
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proposed approach consistently outperforms other meth-
ods. Specifically, when utilizing (16,000,100), the num-
ber of inactive flow rules is inferior to that of (8000,100), 
given that the former facilitates support for additional 
flows with the same flow table size. However, when the 
number of flow entries is raised to 200, the number esca-
lates due to an increase in unmatched flow entries. As 
illustrated in Fig. 9, the proposed mechanism consistently 
results in a notably reduced number of packets transmit-
ted to the controller.

Figure 10 presents a comparison of the table occupancy 
rates among various schemes. This rate is the ratio of 
occupied flow entries to the total number of entries in the 
flow table. Notably, the table occupancy rate decreases 
when f increases from 8000 to 16,000 while g remains 
constant. This phenomenon can be attributed to the utili-
zation of more flow entries with an increase in incoming 

flows. However, the proposed scheme exhibits signifi-
cantly lower table occupancy rates compared to other 
schemes, owing to a reduction in the number of idle 
flow entries. Notably, when the number of flow entries 
increases to 200, the rate also increases, albeit being 
smaller than that of (8000,100), since more unmatched 
flow entries exist. Note that the proposed scheme shows 
a much lower occupancy rate than the other schemes, 
regardless of the operational condition, due to efficient 
flow classification and hybrid flow rule placement with 
the flow table.

Table  6 compares the prediction accuracy of the 
MAPQ scheme and Mobi-Flow. The (f,g) values used for 
the comparison are (8000,100) and TI is set at 30 sec-
onds. It is important to note that Mobi-Flow employs 
an order-k Markov predictor, whereas MAPQ utilizes 
Q-learning for flow prediction. The table demonstrates 
that the proposed scheme consistently achieves greater 
accuracy than Mobi-Flow across all tested scenarios.

Finally, the performance of the schemes is investi-
gated in terms of average transmission delay and the 
ratio of packet drop in the switch with 300 matchings 
(8000,100). The comparison summary is presented in 
Table 7. The findings indicate that the proposed scheme 
is superior as it accurately predicts the end-device loca-
tion, leading to reduced table misses. This reduction 
is achieved by minimizing the unnecessary flow entry 
placement, which enables the overhead of flow setup. 
As a result, the proposed scheme necessitates the small-
est delay and packet drop rate, which, in turn, ensures 
the maintenance of free space in the SDN buffers (such 
as the datapath buffer that retains unmatched packets) 
while keeping the current connections undisturbed.

Conclusion
This paper presents an innovative approach to plac-
ing flow rules within the context of Software-Defined 
Networking (SDN) to support Internet of Things (IoT) 
applications. The proposed method leverages the 
Q-learning algorithm to anticipate the location of end 
devices, enabling proactive placement of flow entries. 
Using the forecasted results, the controller adjusts flow 
rules accordingly. Additionally, the cost-sensitive Ada-
Boost algorithm is applied to filter out small or rarely 
encountered flows. A computer simulation demon-
strates that this approach significantly improves match 
probability and reduces the number of table misses 
compared to existing methods.

Future research will refine this approach by incor-
porating additional factors that influence prediction 
accuracy, such as idle time-out. The paper empha-
sizes proactive flow rule placement based on predicted 

Fig. 8 The comparison of the number of tables misses with varying 
TH and TI
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Fig. 9 The comparison of the number of idle flow entries

Fig. 10 The comparison of table occupancy rates

Table 6 The comparison of prediction accuracy

Method 1 2 3

MAPQ 0.815 0.832 0.809

Mobi-Flow 0.684 0.732 0.726

Table 7 The comparison of average delay and rate of packet 
drop

Scheme MAPQ Mobi-Flow Table Miss

Average delay (ms) 3.29 4.21 7.35

Rate of packet drop 0.389 0.602 0.764
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end-device locations and intends to explore a hybrid 
flow rule placement approach to better adapt to chang-
ing network conditions. Furthermore, an analytical 
model will be developed to achieve optimal designs 
for specific scenarios by establishing relationships 
between the considered factors and desired perfor-
mance metrics.
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