
Guo et al. Journal of Cloud Computing (2024) 13:28
https://doi.org/10.1186/s13677-024-00593-0

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

An enhanced state-aware model learning
approach for security analysis in lightweight
protocol implementations
Jiaxing Guo1, Dongliang Zhao1, Chunxiang Gu1*, Xi Chen1, Xieli Zhang1 and Mengcheng Ju1

Abstract

Owing to the emergence and rapid advances of new-generation information and digitalization technologies,
the concept of model-driven digital twin has received widespread attentions and is developing vigorously. Driven
by data and simulators, the digital twin can create the virtual twins of physical objects to perform monitoring, simula-
tion, prediction, optimization, and so on. Hence, the application of digital twin can increase efficiency and security
of systems by providing reliable model and decision supports. In this paper, we propose a state-aware model learning
method to simulate and analyze the lightweight protocol implementations in edge/cloud environments. We intro-
duce the data flow of program execution and network interaction inputs/outputs (I/O) into the extended finite state
machine (EFSM) to expand the modeling scope and insight. We aim to calibrate the states and construct an accurate
state-machine model using a digital twin based layered approach to reasonably reflect the correlation of a device’s
external behavior and internal data. This, in turn, improves our ability to verify the logic and evaluate the security
for protocol implementations. This method firstly involves instrumenting the target device to monitor variable activ-
ity during its execution. We then employ learning algorithms to produce multiple rounds of message queries. Both
the I/O data corresponding to these query sequences and the state calibration information derived from filtered
memory variables are obtained through the mapper and execution monitor, respectively. These two aspects of infor-
mation are combined to dynamically and incrementally construct the protocol’s state machine. We apply this method
to develop SALearn and evaluate the effectiveness of SALearn on two lightweight protocol implementations. Our
experimental results indicate that SALearn outperforms existing protocol model learning tools, achieving higher
learning efficiency and uncovering more interesting states and security issues. In total, we identified two violation sce-
narios of rekey logic. These situations also reflect the differences in details between different implementations.

Keywords Model learning, State aware, Digital twin, Lightweight protocol implementations

Introduction
With the flourishing development of smart and digi-
tal technologies including Internet of Things (IoT), the
fifth-generation cellular network (5G), cloud computing,
and big data, various kinds of intelligent and digitalized

products are widely revolutionizing today’s society [1–3].
To provide efficient monitoring, modeling, analysis, and
optimization from an overall perspective for these smart
systems and devices, digital twin, an emerging technol-
ogy based on model-driven to achieve physical-virtual
convergence, is proposed [4, 5]. Digital twin can map
the physical world to the digital world by using novel
hybrid simulation and data-driven modeling approach
[6]. Therefore, the digital twin model can support design
decisions, function tests, logic verifications, and perfor-
mance statistics for the complex system [7].

*Correspondence:
Chunxiang Gu
gcx5209@126.com
1 Henan Key Laboratory of Network Cryptography Technology,
Zhengzhou 450000, China

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-024-00593-0&domain=pdf

Page 2 of 17Guo et al. Journal of Cloud Computing (2024) 13:28

To evaluate and test the functionality, logic, and secu-
rity of network protocols in actual operation, model
learning methods have been studied and applied in
both researches and practical applications [8–12].
These methods employ automata learning algorithms
and corresponding learning frameworks to automati-
cally establish a state-machine model of a protocol
device’s behavior. The inferred state-machine model is
then analyzed to uncover vulnerabilities and violations
thus improving the security of the protocol systems.
Serving as a complementary technique in model-driven
digital twin construction, model learning is character-
ized by its simplicity, intuitiveness, and broad adapt-
ability. It offers a focused lens to examine the execution
logic of protocols and identify anomalous behaviors
[13–15].

Most current protocol automata learning are based
on black-box setup, focusing exclusively on I/O interac-
tions. They assume that the model is finite and employ
learning algorithms (such as L* [16] or TTT [17]) to infer
hypotheses of the model. They also set an upper limit,
known as the testing depth, for input sequence combina-
tions and perform equivalence queries, such as the Wp
method [18], to confirm if the inferred hypothesis aligns
with the true model. While this black-box approach is
straightforward and requires minimal setup, it tends to
produce models that only reflect observable interactions,
neglecting the internal complexities of the program. This
limitation gives rise to several challenges in inferring and
analyzing protocol state machines:

1. Difficulty in inferring accurate models: Black-box
learning verifies the hypotheses through equiva-
lence tests constrained by a set testing depth [8–10].
If the testing depth is too low, the model may miss
critical behaviors, such as a backdoor activated by a
series of repeated messages. However, increasing the
depth exponentially elevates query costs, particularly
in worst-case scenarios. Restricted by learning time
and query limitations, black-box learning struggles to
uncover deep and concealed protocol states, imped-
ing the inference of an accurate model.

2. Limitations in identifying security risks: Since black-
box learning relies entirely on I/O observations, it
lacks the capability to perceive or interpret other
vital information within the protocol such as cryp-
tographic primitive algorithms [11, 12, 19]. This
limitation not only hampers the discovery of logi-
cal issues at different program state nodes—such as
authentication bypasses or key leakages—but also
impedes the detection of code implementation prob-
lems, such as memory leaks, buffer overflows, or null
pointer invocations.

3. Challenges in filtering redundant queries: To ensure
the completeness of the state-machine model, black-
box learning typically queries all messages in every
possible state. However, for certain states where the
tested program has terminated its interactions—such
as disconnection or periods of implicit silence—these
queries become not only time-consuming but also
minimally informative.

The aforementioned issues arise from the conventional
black-box learning framework’s exclusive reliance on
I/O observations. Mere parameter modifications can-
not overcome these limitations. Some scholars proposed
potential solutions including learning register automatas
from source code based on taint analysis [20], inferring
state machines via symbolic execution [21], and deriv-
ing models from specification documents [22]. However,
these methods are generally applicable only for small-
scale protocols or fall short in revealing vulnerabilities in
real-world implementations.

To enhance the perception of state machines, a more
comprehensive approach is required. In this study, we
propose a state-aware model learning method that syn-
ergistically integrates network interaction I/O with
filtered dynamic lifetime memory variables. This integra-
tion enables the inferred state-machine model to pro-
vide a more nuanced understanding of the system under
learning (SUL), increasing the probability of discovering
deep-level abnormal states and behaviors. As illustrated
in Fig. 1, the first step involves instrumenting the SUL
to monitor variables used during testing. Subsequently,
the learning engine generates multiple rounds of mes-
sage queries based on the learning algorithms. A map-
per retrieves the results from these interactions with the
SUL, while an execution monitor gathers state calibra-
tion information from filtered memory variables. Utiliz-
ing both I/O data and state calibration information, the
learning engine incrementally constructs the protocol
extended finite state machine (EFSM). This workflow
continues until the learning process is completed, result-
ing in the final output of the state-machine model. For
the inferred state machine, further analysis can be con-
ducted to identify the potential suspicious paths that cor-
respond to the search for program vulnerabilities.

We applied this novel method to develop SALearn,
focusing on IKEv2 as our protocol for analysis. In recent
studies, a lightweight version of the IKEv2 protocol has
been standardized [23] and has been applied for multiple
security schemes in edge/cloud environments [24–26].
We conducted tests on two widely used IKEv2 imple-
mentations—StrongSwan and Libreswan—and compared
our method with existing model learning methods. Our
experimental results demonstrate that state-aware model

Page 3 of 17Guo et al. Journal of Cloud Computing (2024) 13:28

learning not only reduces the learning time but also
exhibits greater adaptability, enabling the discovery of
more intriguing states and security issues. Specifically, we
identified two violation scenarios as follows: abnormal
management when rekeying IPsec SA in Strongswan and
anomalous logic of rekeying IKE SA in Libreswan.

Our contributions in this study can be summarized as
follows:

1. First, we propose a state-aware model learning
method that enhances the quality of inferred states
by correlating them more closely with the internal
dynamics of the program. Automated model-driven
digital twins reduce barriers to understanding the
behaviors and analyzing the security for lightweight
protocol implementations.

2. Second, we develop SALearn based on the state-
aware model learning approach, designing a testing
scheme and implementing a mapper for IKEv2 model
learning.

3. Third, we conduct an extensive evaluation of two
widely used IKEv2 implementations: Strongswan and
Libreswan. Our results demonstrate that SALearn is
more efficient in learning and is capable of discover-
ing more interesting states and security issues. We
also discuss the impacts of the two specific violations
we identified.

The remainder of this paper is structured as follows:
Related works section provides an overview of the related
work in the fields of model learning and state-aware
fuzzing test. Preliminaries section offers background
knowledge of network protocol models and IPsec. State-
aware model learning framework using digital twins
section unveils a comprehensive framework and method-
ology for state-aware model learning. Experimental eval-
uation and analysis section introduces the results of our

experimental evaluation and analysis. Finally, Conclu-
sion section concludes the article and proposes potential
directions for future research.

Related works
Program states serve as observable running attributes
that can differentiate program behaviors or can be com-
bined with certain specifications to determine the cor-
rectness of those behaviors. These states can further
guide model inference or optimize adversarial test cases
[27]. In the realm of network protocols, which are engi-
neered to fulfill communication, program states can be
expressed from two levels: how the program processes
response events, known as its external representation,
and the data context within which the program oper-
ates, known as its internal representation [28]. Academic
research in protocol analysis and testing has been exten-
sive, which includes model learning and state-aware
fuzzing tests.

Model learning
Model learning, also known as state-machine inference,
is a technique used for constructing state-machine mod-
els of both software and hardware systems. This is done
by providing input and observing the corresponding
output, which is crucial for comprehending the system’s
functionality and behavior [29]. Existing research in this
field can be broadly classified into two categories: active
learning, which involves generating queries and analyz-
ing responses, and passive learning, which is based on
collected samples. Our study predominantly focuses on
the active learning approach.

The concept of model learning was formalized in
1987 when Angluin proposed the L* learning algorithm,
providing a foundational framework for modeling reac-
tive systems [16] . In 1999, Peled et al. [30] applied
model learning to software analysis. More recently, the

Intermediate
mapper

System under
learning
(SUL)

Concrete message

Received concrete
 message

Learning engine

Abstract message

Abstract message
feedback

Execution
monitor

Memory variables

Watch points

State calibration

State machine inference Compile-time
 instrumentation

State machine

Output

Vulnerabilities
Further analysis

Fig. 1 Basic framework of state-aware based model learning method

Page 4 of 17Guo et al. Journal of Cloud Computing (2024) 13:28

model learning has been widely employed in network
protocol testing [31]. For instance, Joeri de Ruiter and
Poll [8] grabbed scholarly attention with their work
on analyzing SSL/TLS protocols using state-machine
inference. They created a tool called StateLearner for
black-box state-machine inference and applied it to
nine SSL/TLS implementations. Their approach led to
the discovery of three security vulnerabilities, includ-
ing client authentication bypasses, encrypted data
leakages, and anomalies during rekeying. Stone et al.
[9] conducted state-machine inference to seven Wi-Fi
implementations and unearthed two downgrade attacks
and one encrypted multicast leakage. Brostean et al.
[10] inferred state-machine models from three SSH
implementations, identifying seven subtle violations of
specifications. Furthermore, Brostean et al. [11] pro-
posed a protocol state fuzzing framework for DTLS to
analyze 13 widely used DTLS servers and discover four
security vulnerabilities, including client authentication
bypass and handshake sequencing anomalies. Moreo-
ver, Brostean et al. [12] inferred state machines and
constructed bug pattern catalogs to test implementa-
tion flaws. They tested 12 SSH and DTLS implementa-
tions and discovered 96 new vulnerabilities and errors.

Furthermore, model learning can be synergistically
combined with other techniques such as symbolic exe-
cution, formal analysis, and fuzzing tests to broaden its
scope and efficacy. For example, Marcovich et al. [22]
combined model learning and symbolic execution to
directly infer state machines and message formats from
binary codes. They developed PISE, a tool based on this
hybrid method, which successfully inferred the com-
mand-and-control (C &C) protocol state machine for the
Gh0st RAT malware. In a similar vein, Wang et al. [32]
combined model learning with formal analysis to create
an automated solution, MPInspector, designed to scru-
tinize the security of message-passing (MP) protocols.
When applied to nine popular IoT platforms—includ-
ing MQTT, CoAP, and AMQP—MPInspector identified
252 attribute violations and proposed 11 different types
of attacks within two realistic scenarios. Brostean et al.
[33] developed a tool called DTLS-Fuzzer that couples
model learning with fuzzing tests. The tool can generate
DTLS state-machine models and subsequently perform
fuzzing tests based on the states to uncover specification
violations or security vulnerabilities. Similarly, Shu and
Yan [19] explored a new heuristic method based on finite
state machine inference to guide the generation of black
box fuzzy test cases for IoT network protocol implemen-
tation. They implemented IoTInfer for Bluetooth and
Telnet protocols. The experimental results indicate that
IoTInfor can effectively generate meaningful test cases
based on state guidance.

Despite the promise of such hybrid approaches, most
inferred state models remain heavily dependent on I/O
interactions and show a limited understanding of the
broader program context. To address this issue, Stone
et al. [34] combined runtime memory analysis with I/O
observations developing a tool named StateInspector.
Their approach enabled the exploration of deeper states
within the program and was successfully tested on five
TLS and two WPA/WPA2 protocol implementations,
revealing two new CVEs in WolfSSL and IWD. Although
effective for detecting backdoor behavior, this gray-box
method largely focuses on candidate state variables in
heap memory and may not be applicable to protocols
that use stack memory or have system calls distributed
across multiple subprocesses.

State‑aware fuzzing test
State-aware fuzzing generally refers to tracing program
variables in network protocols to perceive insight into
program states, thereby optimizing test-case generation
and identifying vulnerabilities. The called program state
refers to the complete execution context of a running
program, encompassing all variable values from a soft-
ware perspective, as well as virtual memory and register
states from a hardware perspective [28].These state vari-
ables are typically accessed and shared by different seg-
ments of the program and can influence control flows
or memory access pointers either directly or indirectly.
Therefore, comprehensively exploring these states is ben-
eficial to uncover hidden vulnerabilities in a program.

Recently, the field of state-aware fuzz testing has seen
significant advancements. Aschermann et al. [35] pro-
posed IJON, an innovative mechanism using artificial
annotations to trace program states, which allows fuzz-
ers to explore a program’s behavior more systematically.
Experimental evaluations indicate that IJON, based on
manual annotations, can explore deeper into program
states than traditional fuzzing or symbolic execution
tools. Fioraldi et al. [27] developed InsvCov, which uses
program invariants as boundaries to partition a pro-
gram’s state space. It employs a combination of control
flow and program invariants as feedback for fuzz test-
ing. Similarly, Pham et al. [36] designed AFLNET, which
leverages server response codes as indicators of program
states in network protocols. AFLNET not only performs
substantially better than its counterparts but also iden-
tified two new CVEs. Natella [37] designed StateAFL, a
tool that employs localized sensitive hashing on long-
lifetime variables to identify program states. It incre-
mentally builds a protocol state machine for guiding
the fuzzing process. Compared to AFLNET, StateAFL
achieves comparable, if not superior, code coverage and
produces more accurate state inferences. Ba et al. [38]

Page 5 of 17Guo et al. Journal of Cloud Computing (2024) 13:28

developed SGFuzz, which annotates program states
based on various variable types like enumerations and
macros. Experimental data indicates that SGFuzz dis-
covers state errors and achieves code coverage more
quickly than other mainstream stateful fuzzers. It has
also unearthed eight new CVEs. Wen et al. [39] proposed
MemLock, a memory-usage-oriented fuzzing technique.
It uses extreme memory allocation values as additional
feedback to detect memory leaks, outperforming other
fuzzing techniques and identifying 15 new CVEs. Zhou
et al. [40] presented Ferry, a state-aware symbolic exe-
cution approach that considers conditionally branched
and input-influenced variables. Experimental evalua-
tions demonstrate that compared to existing tools, Ferry
achieves broader code coverage and triggers more states
and vulnerabilities. Zhao et al. [28] developed StateFuzz,
which employs static analysis to select long-lifetime,
real-time updated variables that influence program
control flow. It employs a unique feedback mechanism,
proving effective in discovering new vulnerabilities and
identifying 15 new CVEs. However, these state-aware
approaches mainly focus on optimizing test-case gen-
eration using coarse-grained combinations of variables.
They lack the nuance needed for fine-grained state cali-
bration and accurate state-machine inference.

Our study takes a different approach. We combine
network interaction I/O with carefully selected dynamic
lifetime memory variables for a more nuanced state cali-
bration. Compared to black-box model learning, our
method offers a deeper understanding of the program’s
internal context. Unlike Stone et al.’s gray-box approach
[34], we directly obtain runtime variable content, bypass-
ing limitations imposed by stack memory and multiple
subprocesses. Lastly, distinct from state-aware fuzzing,
our focus is on inferring a detailed state-machine model
to improve the efficiency of discovering both crash errors
and logic issues, setting our work apart from traditional
state-aware fuzzing.

Preliminaries
In this section, we introduce the foundational concepts of
network protocol models and the IPsec-IKE protocol.

Network protocol model
In general, a network protocol model depends on a server
operating in a continuous cycle of receiving, processing,
and responding to requests. In this scheme, both the cli-
ent and server participate in a session, marked by a series
of request and response messages. This basic loop can
be succinctly captured by the following pseudocode in
Algorithm 1:

Algorithm 1 A network server process model

As the session progresses, driven by various external
events, the internal execution of the program adjusts and
adapts, leading to updates in the program’s state. In this
context, “state” encompasses both the program’s external
expected behaviors and internal runtime data.

Externally, the protocol’s state is typically reflected in terms
of the actions the process is allowed to take, which events it
expects to happen, and how it will respond to those events
[37]. Most internet protocols elucidate their standardized
states either through natural language descriptions or, less
commonly, through finite state machines, as comprehen-
sively illustrated in RFC documents. These states are closely
tied to the current stage of the protocol, where both inputs
and outputs are fully contextualized within this framework.

Internally, the state of the program refers to a rigorously
maintained execution environment that includes all pres-
ently active components. These facets are accessed and
manipulated by various program operations, which in turn
can impact the program’s control flow or memory point-
ers [28]. During the protocol’s execution, variables and
data are created, used, and eventually released, residing
in both heap and stack memory. These variables undergo
updates as the server handles each request and response
interaction. Nonetheless, among these variables, there
exist indeterminate values, such as those associated with
time, random numbers, and temporary keys. Although
they impact the program’s operations, they lack the desira-
bility of distinguishing and designating a concrete state. In
this paper, we focus on calibrating the state using variables
that record previous program operations or user interac-
tions, possess deterministic values for the same operation,
and are tied to critical nodes such as the client’s current
authentication status or working directory [37]. By care-
fully filtering and monitoring these variables, we achieve a
more nuanced understanding of the program’s state.

IPsec‑IKE protocol
IPsec [41–43] is a suite of security protocols that oper-
ate at the IP layer and is composed of three sub-pro-
tocols: IKE, AH, and ESP. The IKE protocol handles

Page 6 of 17Guo et al. Journal of Cloud Computing (2024) 13:28

cryptographic algorithm selection, session key nego-
tiation, and identity authentication. By contrast, AH and
ESP are used for secure communication.

IKE serves as the signaling protocol for IPsec, over-
seeing secure communications by maintaining security
associations (SAs): repositories of cipher and identity
information for communicating parties. Initially, these
parties set up an IKE SA, which is followed by negotiating
an IPsec SA within the encrypted channel of the existing
IKE SA. The IPsec SA is used for secure ESP or AH com-
munications, while the IKE SA manages this IPsec SA.

IKE exists in two versions: IKEv1 [42] and IKEv2 [43].
Compared to the multi-modal complexities of IKEv1,
IKEv2 offers a streamlined approach with only four types
of interactions:

1. Initial exchange (IKE_SA_INIT)
2. Authentication exchange (IKE_AUTH)
3. Creating child SA exchange (CREATE_CHILD_SA)
4. Informational exchange (INFORMATIONAL)

Figure 2 illustrates the generic interaction flow within
the IKEv2 protocol. Detailed explanations of payload
field meanings and symbol notations are available in
RFC7296 [43].

In the initial phase of communication, the two parties
commence with the negotiation of cryptographic parame-
ters and identity authentication via IKE_SA_INIT and IKE_
AUTH interactions, respectively. Consequently, separate
IKE SA and IPsec SA instances are established. The IPsec
SA specifies parameters for safeguarding data communica-
tion. Moreover, during the course of communication, the
CREATE_CHILD_SA interaction allows rekeying proce-
dures, facilitating the creation of new IKE SA or IPsec SA

instances to ensure forward secrecy. The communication
session concludes when both parties utilize notification pay-
loads to delete the established IPSec and IKE SAs.

State‑aware model learning framework using
digital twins
In the following section, we delve into the intricate details
of the overarching insight, framework, and methodology
for state-aware based model learning. We describe the
techniques for defining states, capturing relevant state
variables, and the specific learning processes involved.

Insights from digital twins
Linking digital twins with a state-aware model learning
approach for security analysis in lightweight protocol
implementations entails combining these two principles
to improve digital system knowledge and protection.
We can integrate the proposed model with in the digital
twins through a layer approach as shown in Fig. 3.

1. Digital twin layer: This layer represents the system’s
digital twins, which are virtual representations of
physical elements. Device twin: A digital twin that
represents particular system devices. Communica-
tion twin: A digital twin that records the channels
and patterns of communication between devices.
Data flow twin: A digital twin that depicts the data
flow within the system. This layer’s digital twins cap-
ture real-time data using instrumentation and sen-
sors implanted into the represented things.

2. State-aware model layer: This layer incorporates the
state-aware model learning technique, which entails
developing models that comprehend the dynamic
states and behaviors of lightweight protocols. Dynamic
states and behaviors model: A model that encapsu-
lates the lightweight protocol’s numerous states and

Fig. 2 General negotiation process for IKEv2 Fig. 3 Four layers of State-aware approach

Page 7 of 17Guo et al. Journal of Cloud Computing (2024) 13:28

behaviors throughout operation. Algorithms for state
machine learning: Algorithms included into the model
for learning and adapting to observable patterns. The
state-aware model is intended to develop and learn
from data gathered by digital twins.

3. Integration layer: This layer allows data from digital
twins to be integrated with the state-aware model.
Data fusion: The process of merging real-time data
from digital twins with state-aware model knowl-
edge. Correlation analysis: Methods for comparing
data from digital twins to predicted states and behav-
iors provided by the state-aware model. This layer
guarantees that the information gathered from the
digital twins improves the state-aware model’s learn-
ing capabilities.

4. Security analysis and response layer: The purpose
of this layer is to use the integrated information for
security analysis and response. Anomaly detection:
Using integrated data, the system discovers abnor-
malities in lightweight protocol implementations.
This layer tries to improve system security by proac-
tively addressing possible security concerns.

Overall framework
Figure 4 describes the design of our state-aware based
model learning framework, which comprises five major
components: the state-machine learning engine, interme-
diate mapper, execution monitor, SUL, and vulnerability
analysis and exploitation modules.

The state-machine learning engine employs a specific
learning algorithm to generate multi-round message
queries, process the results, and dynamically construct
a protocol state-machine. It operates on an input alpha-
bet consisting of abstract protocol messages. Guided by
the learning algorithm, sequences of abstract message
requests are formed and dispatched to the intermediate
mapper for further processing. Upon receiving feedback
sequences from the mapper and the state calibration
identifications provided by the execution monitor, the
learning algorithm incrementally constructs a protocol
state machine, eventually yielding the final state-machine
model. To enhance the learning process’s efficiency and
facilitate debugging, the engine comes equipped with fea-
tures for query caching and logging.

The intermediate mapper serves as a critical interme-
diary, bridging the gap between abstract and concrete

Intermediate mapper
System under learning (SUL)

Concrete message request

Concrete message

feedback

Learning engine

Abstract message request

Abstract message

feedback

Execution monitor

Memory variable information

Watch point

State calibration information

Instrument

Protocol state machine

Output

Vulnerability analysis and exploitation

State machine analysis

learning algorithm

Alphabet

Cache/Log

Watch point

recording

Message encryption
encapsulation/

decryption parsing

Compile-time instrumentation

Request 1, 2, 3

Reply 1, 2, 3Answer 1, 2, 3

Memory variable set 1, 2, 3State variable calibration 1, 2, 3

Error exception Bug Fixes

s0 s1 s2 s3

s5 s6

s4

Query 1, 2, 3

Fig. 4 Detailed framework of state-aware model learning method

Page 8 of 17Guo et al. Journal of Cloud Computing (2024) 13:28

messages. It also captures specific watch points dur-
ing each packet transmission cycle. Functioning as a
simulated client, the mapper converts abstract mes-
sage queries from the learning engine into actionable
packet requests for the SUL. After the SUL processes
these packet requests, the mapper converts the result-
ing concrete messages back into abstract form for the
learning engine’s consumption. Each query cycle resets
the SUL to its original state. The mapper processes
each request in the query sequence sequentially, col-
lecting the responses, and then furnishing the learn-
ing engine with a feedback sequence composed of
abstract response messages. During these interactions,
the intermediate mapper not only simulates the client’s
role but also maintains the session information with
the SUL. If the message exchange involves encryption
or decryption, the mapper handles these processes in
real time, ensuring smooth interaction with the SUL. It
also monitors and records various watch points related
to SUL behavior during the learning phase—such as
query initiation, encryption procedures, authentica-
tion completion, rekeying processes, disconnections,
and query terminations—and communicates this data
to the execution monitor, facilitating the selection of
state-related variables.

The execution monitor plays a pivotal role in observ-
ing and filtering memory variables during the execution
process of the SUL, it also calculates state calibration
metrics in sync with specific watch points, thereby aiding
the learning engine in crafting an accurate state machine.
During each message interaction, the monitor identifies
and logs variable values created by the SUL, focusing on
those with lifetimes that align with the established watch
points. Using hash calculations, it then derives the state
calibration value pertinent to the current interaction. In
this way, the execution monitor calculates the state cali-
bration sequence that correlates with the query sequence
from the learning engine, forwarding this information for
the construction of the state machine.

The SUL functions as the protocol server under evalu-
ation and can either be a white-box software library or
a gray-box binary program that is susceptible to instru-
mentation. Before undergoing any tests, the SUL is com-
piled and instrumented to allow variable tracking during
execution through shared memory.

The vulnerability analysis component scrutinizes the
output state-machine model generated for the SUL,
which involves using manual techniques or model check-
ing methods to identify suspicious pathways within the
state machine. These are then cross-referenced with
predefined specifications or debugging tools to identify
violations.

Description of state
To describe the state model, enriched with both I/O
and memory information, we introduce the following
definitions:

Definition 1 An alphabet is a finite, nonempty set of
single letters, denoted as � , such as � = a, b, The
concatenation of letters is denoted as a · b , where the
concatenation symbol · can be omitted.

Definition 2 An extended finite state machine (EFSM)
with memory calibration based on alphabet � can be repre-
sented by a seven-tuple A =< S, s0, I ,O,M, δ, � > , where

1. S is a finite, nonempty set of states;
2. s0 ∈ S is the initial state;
3. I ⊆ � is an input set;
4. O ⊆ � is an output set;
5. M is a set of memory calibrations;
6. δ : S ×� → S is the state transition function, where

δ(s, i) = s1 means that the state machine accepts
input i in state s and transitions to s1.

7. � : S ×� → O ×M is the state output function,
where �(s, i) = (o,m) indicates that the state machine
accepts input i in state s, generates output o, and
updates its memory calibration to m.

State machines with memory calibration have graphi-
cal representations that describe states as nodes and state
transitions as edges. Figure 5 illustrates a simple graphi-
cal example. When the state machine is in state s0 ∈ S
and receives input i ∈ I , the state transition δ(s0, i) = s1
and the output �(s0, i) = (o1,m1) correspond to an edge
from s0 to s1 in the graph with the label i/(o1,m1) . Because
memory-calibrated strings are only used to distinguish
between different states and not as inputs for state transi-
tions, they can be omitted from graphical representations.

Definition 3 A finite sequence of concatenated letters
is called a string and is denoted as ω , and the set of strings
it forms is denoted as �∗ . The concatenation of letters
can be extended to the concatenation of strings, denoted
as ω1 · ω2 . In particular, ǫ denotes the empty string with a

Fig. 5 An example of state machine

Page 9 of 17Guo et al. Journal of Cloud Computing (2024) 13:28

length of 0. Similarly, I∗ ⊂ �∗ represents the set of input
containing strings.

Definition 4 δ can be extended to �∗ by defining
δ∗ : S ×�∗ → S , where

δ denotes a special form of δ∗ when the length of the
second parameter is 1. Since it does not cause ambiguity,
δ can be used instead of δ∗ to represent the state transi-
tion function.

Furthermore, the state output function �(s, i) of A can be
extended to �∗ , that is, �(s, a · ω) = �(s, a) · �(δ(s, a),ω).

Definition 5 Binary relation ∼� is defined for
∀s, s

′

, s ∼� s
′ if and only if ∀i ∈ I

∗, �(s, i) = �(s
′

, i) . It can
be observed that this binary relationship is equivalent.
The two equivalent states imply that the same input
always produces the same output.

Definition 6 Based on the equivalence relation ∼� , an
EFSM M =< SM , s0,M , IM ,OM ,MM , δM , �M > is con-
structed for state-aware model learning, where the sub-
script M is only used to distinguish the state machine,
and is constructed as follows:

1. SM = S/ ∼�;
2. s0,M ∈ SM is the initial state;
3. IM is a set of input strings that is a subset of �∗;
4. OM is a set of output strings;
5. MM is a set of memory calibrations;
6. δM(sM , iM) = s

′

M
 , where under the action of the

equivalence relation ∼� , δM transitions the state from
sM to s′

M
 upon receiving input iM;

7. �M(sM , iM) = (oM ,mM)∼�
 , where under the action

of the equivalence relation ∼� , �M generates output
oM and updates the memory calibration information
to mM upon receiving input iM in state sM.

Capture memory state variables
In the EFSM model, states are described by a combination
of network I/O behaviors and memory calibrations. Mem-
ory calibration, calculated from a specific set of memory
variables during state transition, plays a significant role in
determining the program’s behavior through that transi-
tion. We elaborate on these concepts as follows:

Definition 7 Dynamic lifetime state variables refer to a
group of memory variables that consistently produce the

(1)δ∗(s, ǫ) = s, ∀s ∈ S,

(2)
δ∗(s, a · ω) = δ∗(δ(s, a),ω),∀s ∈ S, a ∈ �,ω ∈ �∗

.

same value for identical inputs during a state transition
instigated by message interactions. Importantly, the lifetime
of these variables encompasses the time interval defined by
the watch point range for that particular transition.

Watch point range refers to the time interval divided by
the watch point. We define the watch points as follows:

Definition 8 Watch points refer to specific temporal
markers associated with the start or end of learning que-
ries, as well as any alterations in security attributes that
may occur during program runtime.

In this paper, we provide six watch points: initiation of
queries, enabling of encryption, completion of authenti-
cation, rekeying, disconnection, and query termination.
These watch points unfold chronologically from the start
of each query round. Scenarios may arise where these
watch points overlap (such as enabling of encryption and
completion of authentication at the same time) or are
absent by default (such as the absence of rekeying). Mem-
ory variables according to these watch points are used
to refine state calibration, thereby making state partition
more relevant to the protocol’s security attributes.

To collect real-time feedback regarding the proto-
col’s state, we need to instrument probes within the tar-
get program’s code during its compilation phase. These
probes consist of external functions that are invoked
during specific conditions. Running concurrently with
the SUL, these probes detect triggering conditions and
invoke external functions to either update or trace corre-
sponding state memory variables. The probes are strate-
gically placed in five specific code locations: query_start,
memory_allocate, interaction_update, memory_deallo-
cate, and query_end. The specific functionalities of these
probes are detailed in Table 1.

These functions invoked by the probes are initialized at
the start of a query and continuously monitor relevant vari-
ables through both memory allocation and deallocation
phases. During each iteration of interaction, these tracked
data are updated to reflect the shifts in state variables. At
the termination of the query, the functions sift through and
identify dynamic lifetime memory variables, computing
the state’s identification in the process. Information such as
the start and end times of queries, interaction cycles, and
watch points is transmitted to the probe’s external function
through shared memory by the intermediate mapper. The
architecture of this system is illustrated in Fig. 6.

Calculate state identification
Once a query round concludes, the monitor scrutinizes
the memory variables involved in the interactions. It

Page 10 of 17Guo et al. Journal of Cloud Computing (2024) 13:28

then refines this list to further filter and determine the
dynamic lifetime memory variables. These variables are
used to compute unique state identifiers, commonly
referred to as “state_id,” for each state transition.

Algorithm 2 Filter the dynamic lifetime memory vari-
ables and calculate the state identification

As shown in Algorithm 2, the process for computing
state identification involves several steps. First, it
excludes short lifetime variables that do not span any
watch point range. Then, as interactions incrementally
progress from the initial number, the variables encom-
passing the current watch point range are selectively fil-
tered. These filtered variables are sorted, and their hash
values are computed to serve as the state identifiers for
the ongoing program interactions. Utilizing this meth-
odology, the monitor calculates a sequence of state
identifiers that align with the query sequence of the

learning engine, facilitating the construction of a state
machine.

Overall learning process
Our learning methodology is grounded in this state
description and state identification method. The inputs
for the learning algorithm include an alphabet, a happy
flow (which is a standard negotiation sequence based
on the given alphabet), a configurable depth for equiva-
lence checking, an optional dictionary of variables that
are irrelevant to the SUL states, and a optional number
of dry run repetitions. The output is a finely inferred
state-machine model.

Algorithm 3 State aware based model learning

As shown in Algorithm 3, the learning process unfolds
in two primary phases. The first phase centers on gather-
ing preliminary data and building an initial state-machine
model. Leveraging the happy flow, initial query sequences
are assembled and executed in a loop, with the monitor
tracking and capturing relevant memory variables. The
monitor uses the dictionary of state-irrelevant variables
along with a differential comparison method to filter out
unrelated variables. It also updates this filtering diction-
ary in real time. Upon capturing this data, the monitor
assembles an initial state-machine model founded on the
query outcomes. The second phase entails additional scru-
tiny of state variables and further refinement of the state-
machine model. The algorithm generates query sequences

Table 1 Probe types and descriptions

Probe Description

Query_start Initialize the record data at the beginning
of the query

Memory_allocate Record the address, size, and value of a mem-
ory area when it is allocated on the heap
or stack

Interaction_update Update the interaction number and add
record values of tracked variables

Memory_deallocate End the tracking of a memory when it
is deallocated

Query_end Determine the dynamic lifetime memory
variables and calculate the state identifica-
tion hash when the query terminates

Page 11 of 17Guo et al. Journal of Cloud Computing (2024) 13:28

based on the existing alphabet and model. These queries
are then iteratively executed, and the results are integrated
into the state transition paths of the model. Specifically, if a
new state is uncovered, the algorithm reiterates the query,
employs differential testing to eliminate potential state-
irrelevant variables, updates the variable dictionary, and
locks in the precise state identification. Moreover, the algo-
rithm performs equivalence checks at each iteration, con-
templating the consolidation of states with identical state
identification. This iterative process continues until no new
states emerge, culminating in a comprehensive and final-
ized state-machine model.

Specifically, the methodology for equivalence check-
ing operates as follows: Starting from a designated initial
state, if two distinct sequences ultimately lead to states
sharing the same state identification, the algorithm delves
further. It either seeks I/O sequences that can differenti-
ate these similar states, guided by the pre-set equivalence
checking depth, or it evaluates the feasibility of merging
these states into one. This added layer of scrutiny ensures
a robust and accurate representation of states within the
final state-machine model. In addition, we set up judg-
ment and optimization for the disconnected state, which
accurately identifies the normal communication end state
through state identification, and no further query testing
will be performed in this state.

Experimental evaluation and analysis
In this section, we delve into the experimental results, the
inferred models, and the issues identified, all stemming
from our state-aware model learning framework, SALearn.

IPsec implementations
We evaluated SALearn using two mainstream open-
source IPsec implementations: Strongswan and
Libreswan. These implementations offer a range of
IKEv2-based VPN functionalities, as outlined in Table 2.

Our experiments were conducted on two platforms:
The model learning platform: Ubuntu 20.04 OS + 11th

Gen Intel (R) Core (TM) i9-11900 CPU + 32GB RAM +
1T ROM

SUL platform: Ubuntu 20.04 OS + Intel Xeon E5-2680
v2 CPU + 32GB RAM + 4T ROM

Learning scheme for IPsec
To develop a comprehensive model for IPsec, we utilized
alphabets based on RFC7296 to facilitate learning under
IKEv2 protocols.

In IKEv2, the alphabet focused primarily on standard
negotiation messages and additional messages for rekey-
ing, deleting, and testing both IKE and IPsec SAs, detailed
in Table 3. Importantly, we differentiate between new and
old SAs based on their creation time, assigning labels that
allow the mapper to retrieve them in chronological order.

Fig. 6 Memory variables tracking architecture

Table 2 Information of IPsec SUL

SUL Version Auth method IKEv1/IKEv2 Support Description

Strongswan 5.9.9 Cert+PSK All An open-source, modular, and cross plat-
form IPsec VPN solution developed based
on the FreeS/WAN project, but completely
rewritten

Libreswan 4.11 Cert+PSK All An IPsec implementation for Linux that supports
IKEv1, IKEv2, and most IPsec related exten-
sions. Based on the FreeS/WAN code library, it
has been extended on this basis

Page 12 of 17Guo et al. Journal of Cloud Computing (2024) 13:28

After a successful rekeying operation based on RFC7296,
the mapper transitions the IPsec SA from the old to the
new IKE SA, while maintaining the previously assigned
labels. It is worth noting that the unrestricted creation
of SAs can lead to models that are overly complex and
difficult to analyze. Therefore, we imposed a constraint:
each IKE SA can have no more than two associated IPsec
SAs. If a rekeying request exceeds this limit, the map-
per returns a “None,” thereby keeping the number of SAs
within our defined range.

To enhance learning efficiency, we implemented several
optimization strategies and integrated a message inspection
mechanism to aid in the detection of anomalous behavior.

1. Mapper configuration and optimization: We config-
ured reasonable timeout periods for each message
type to speed up transmission. The mapper’s message-
parsing mechanism was also fine-tuned to reduce
inconsistent feedback. To build on this, we introduced
a query result cache. If a test’s query sequence yielded
a result that differed from a cached response, we con-
ducted multiple retests until a consistent response
was confirmed as the final query outcome. To ensure
reliable interactions, TCP transmission is employed
between the learning machine and the mapper.

2. Time synchronization: A synchronized clock is main-
tained between the intermediate mapper and the
execution monitor, ensuring accurate interaction
counts and watchpoints.

3. State-machine model refinements: In the final learn-
ing state-machine model, edges with identical start
and end points are combined to simplify model
inspection and analysis. For transitions lacking prac-
tical significance-such as querying to delete an IPsec
SA when none exists-the mapper directly returns
a “None” response. As a result, irrelevant edges are
omitted from the final model.

4. A mechanism is integrated into the mapper to scruti-
nize both incoming and outgoing messages. This fea-
ture checks for behaviors that deviate from expected
responses and flags abnormal messages, which could
be indicative of service crashes or other issues.

Learning result
We tested two leading IPsec implementations and com-
pared the performance of our approach, SALearn, with
two existing tools: StateInspector [34] and StateLearner
[8]. The statistical outcomes of the learning process are
summarized in Table 4.

Table 3 IKEv2 learning alphabet

Alphabet Message type Description

IKE_SA_INIT IKE_SA_INIT 34 IKE SA initialization

IKE_AUTH_CERT IKE_AUTH 35 IKE certificate authentication

Rekey_IKE CREATE_CHILD_SA 36 Create new IKE SA

Rekey_ESP_over_Current_IKE CREATE_CHILD_SA 36 Create new IPsec SA(ESP) over current IKE SA

Rekey_ESP_over_Old_IKE CREATE_CHILD_SA 36 Create new IPsec SA(ESP) over old IKE SA

Delete_Current_ESP_over_Current_IKE INFORMATIONAL 37 Delete new IPsec SA(ESP) over current IKE SA

Delete_Old_ESP_over_Current_IKE INFORMATIONAL 37 Delete old IPsec SA(ESP) over current IKE SA

Delete_Current_ESP_over_Old_IKE INFORMATIONAL 37 Delete new IPsec SA(ESP) over old IKE SA

Delete_Old_ESP_over_Old_IKE INFORMATIONAL 37 Delete old IPsec SA(ESP) over old IKE SA

Delete_Current_IKE INFORMATIONAL 37 Delete current IKE SA

Delete_Old_IKE INFORMATIONAL 37 Delete old IKE SA

Test_Current_IKE_Current_ESP ESP Test current IPsec SA(ESP) over current IKE SA

Test_Current_IKE_Old_ESP ESP Test old IPsec SA(ESP) over current IKE SA

Test_Old_IKE_Current_ESP ESP Test current IPsec SA(ESP) over old IKE SA

Test_Old_IKE_Old_ESP ESP Test old IPsec SA(ESP) over old IKE SA

Table 4 Statistics of state-aware model learning

SUL Protocol Associated
variables

Queries States Time
(hh:mm)

Queries States Time
(hh:mm)

Queries States Time
(hh:mm)

SALearn StateInspector StateLeaner

Strong-
swan

IKEv2 122 672 29 00:41 - - - 9536 20 12:15

Libreswan IKEv2 47 1127 57 01:33 562 39 00:40 17634 43 23:42

Page 13 of 17Guo et al. Journal of Cloud Computing (2024) 13:28

The results reveal that SALearn significantly outpaces the
black-box learning tool StateLearner in terms of both the
number of queries required and the time needed for model
inference. This efficiency stems from SALearn’s use of cor-
related state variables, which allows for quicker differentia-
tion between distinct states without the need for exhaustive
queries. This ability to finely distinguish states also results
in a state-machine model with greater complexity and
depth. When compared to the gray-box tool StateInspec-
tor, SALearn demonstrates comprehensive model inference
capabilities. StateInspector’s limitations become evident
when handling StrongSwan, as it can only trace the system
calls in a single process. This constraint makes it incapable
of capturing the right time to take a memory snapshot to
filter candidate state memory for state-machine inference.
Further, SALearn’s fine-grained variable calibration leads to
the inference of models with a greater number of states on
Libreswan, as compared to StateInspector.

Case analysis
In this subsection, we discuss the characteristics and
shortcomings of these implementations based on the
state-machine model inferred by SALearn. Presenting
the complete model would be cumbersome; therefore,
we have optimized it for clarity. First, we removed cer-
tain non-essential transition paths to highlight the crucial
aspects of the model. For example, in the case of IKEv2,
some key IKE and rekey ESP transitions were omitted.

Second, irrelevant transitions were eliminated. Transi-
tions with a “None” response have been excluded. Finally,
transitions with identical starting and ending nodes were
merged, and any remaining unspecified input strings for
the state were represented as “Other.”

To further clarify the state machine, each model fea-
tures bold lines to indicate normal negotiations (happy
flows). Red dotted lines mark paths with issues were iden-
tified. Labels on the edges of the state-machine model
correspond to the current state’s inputs and outputs,
denoted by “IO.” Abbreviations are used to represent cor-
responding abstract messages. Labels for messages that
resulted in meaningful responses and led to state transi-
tions are highlighted in larger font sizes.

1. Strongswan IKEv2

Figure 7 presents a streamlined state-machine model of
StrongSwan operating under the IKEv2 alphabet. The
interaction sequence goes from states s0 to s1 and finally
to s2, where IKE_SA_INIT and IKE_AUTH occur. In state
s2, both parties establish IKE and IPsec SAs, thereby ena-
bling Encapsulating Security Payload (ESP) communica-
tions. Advancing from s2 to s3, and finally to s4, involves
deleting the active IPsec and IKE SAs, culminating in
a communication termination. Furthermore, Strong-
Swan prohibits the insertion of unexpected messages
during negotiations prior to authentication. As a result,

IKE_SA_INIT / IKE_SA_INIT

IKE_AUTH / IKE_AUTH

Rekey_IKE / No_Response
D_C_IKE / No_Response

Rekey_ESP_C_IKE / No_Response
IKE_SA_INIT / No_Response

D_C_ESP_C_IKE / D_ESP

Rekey_IKE / Rekey_IKE

s0

s1

s5

s2

s9

s3 s4

T_C_IKE_C_ESP / ESP
IKE_AUT / No_Response

IKE_SA_INIT / No_Response

s7

s11

Rekey_ESP_C_IKE / Rekey_ESP
D_O_ESP_C_IKE / D_ESP

D_C_IKE / D_IKE
s6 s8

Rekey_IKE / No_Response
D_C_IKE / No_Response

Rekey_ESP_C_IKE / No_Response
IKE_SA_INIT / No_Response
IKE_AUTH / No_Response

T_C_IKE_C_ESP / ESP
T_C_IKE_O_ESP / No_Response

IKE_AUT / No_Response
IKE_SA_INIT / No_Response

D_O_IKE / D_IKE

Rekey_ESP_C_IKE / Rekey_ESP

D_C_ESP_C_IKE / D_ESP

D_O_IKE / D_IKE

D_C_ESP_C_IKE / D_ESP

T_C_IKE_O_ESP / ESP

D_O_ESP_C_IKE / D_ESP

D_C_IKE / D_IKE

s10
Rekey_IKE / Rekey_IKE

D_O_IKE / D_IKE

Rekey_ESP_C_IKE / Rekey_ESP

D_O_ESP_C_IKE / D_ESP

T_C_IKE_C_ESP / ESP
IKE_AUT / No_Response

IKE_SA_INIT / No_Response
Rekey_ESP_O_IKE / No_Response

D_C_IKE / D_IKE

Rekey_ESP_C_IKE / Rekey_ESP

IKE_AUT / No_Response
IKE_SA_INIT / No_Response

Rekey_ESP_O_IKE / No_Response

Rekey_IKE / Rekey_IKE

IKE_AUT / No_Response
IKE_SA_INIT / No_Response

T_C_IKE_C_ESP / ESP
T_C_IKE_O_ESP / No_Response

IKE_AUT / No_Response
IKE_SA_INIT / No_Response

Rekey_ESP_O_IKE / No_Response

D_C_IKE / D_IKE

Start

D_O_IKE / D_IKE

IKE_SA_INIT / No_Response
Rekey_ESP_O_IKE / No_Response

IKE_SA_INIT / No_Response

Fig. 7 Simplified state-machine model of StrongSwan with IKEv2 alphabet

Page 14 of 17Guo et al. Journal of Cloud Computing (2024) 13:28

submitting an abnormal authentication request in state s1
terminates the negotiation and transitions to state s5.

States s6, s7, s8, s9, s10, and s11 describe various sce-
narios that involve rekeying or deletion of IKE or IPsec
SAs after completing authentication in state s2. Some of
these states are interchangeable in terms of transitions.
For instance, state s2 can morph into either s6 (by rekeying
the IKE SA and then deleting the previous one) or s9 (by
rekeying the IPsec SA and discarding the old one). Impor-
tantly, when multiple IPsec SAs are active, StrongSwan only
supports ESP communication via the most recently estab-
lished SA, such as in states s9 and s10. Whether initiating
direct ESP creation (transitioning from s2 to s9), rekeying
IKE before ESP creation (going from s2 to s6 and then to
s10), or creating an ESP prior to IKE rekeying (transitioning
from s2 to s9 and then to s10), StrongSwan exclusively facil-
itates ESP communication through the latest tunnel. Delet-
ing the most recent ESP enables communication through
the older, still-active ESP (transitioning from s9 to s11).

2. Libreswan IKEv2

Figure 8 presents a simplified state-machine model of
Libreswan operating under the IKEv2 alphabet. Like Strong-
Swan, the sequence from state s0 to s1 and then to s2 cov-
ers interactions involving IKE_SA_INIT and IKE_AUTH.
Transitions from s2 to s3 and then to s4 are concerned with
deleting the active ESP and IKE, effectively terminating the
connection. Regarding the management of multiple ESPs,
Libreswan also supports ESP communication through the

most recently created instance, as evidenced by the transi-
tion from s2 to s5. However, once the latest ESP is deleted,
the older ESPs cannot be reactivated for communication, as
illustrated by the transition from s5 to s6.

In contrast to StrongSwan, Libreswan demonstrates
more flexibility in state s1. Specifically, after completing
the IKE_SA_INIT interaction, Libreswan can still com-
plete IKE_AUTH requests after receiving some unex-
pected request. Moreover, Libreswan allows the creation
of an ESP on an older IKE channel, facilitating communi-
cation through that newly established ESP, as seen in the
transition from s7 to s8. Note that ESPs created on these
older IKE channels interfere with ESP communication on
the current channel. Even deleting the ESP established on
the older IKE channel does not reinstate the communica-
tion capabilities of the ESP on the current IKE channel, as
shown by the transition from s8 to s9.

Discussion
Based on the comparative analysis between SALearn and
various model learning tools, as well as SALearn’s perfor-
mance in dissecting different IPsec implementations, sev-
eral key observations emerge:

1. SALearn exhibits superior efficiency in both query
and learning times when compared to the traditional
black-box learning tool, StateLearner. This efficiency
advantage becomes increasingly noticeable as the
scale and complexity of the learning objects escalate.

Rekey_IKE / No_Response
IKE_SA_INIT / No_Response

D_C_IKE / No_Response
Rekey_ESP_C_IKE / No_Response

IKE_SA_INIT / IKE_SA_INIT

IKE_AUTH / IKE_AUTH

D_O_ESP_C_IKE / D_ESP

Rekey_ESP_C_IKE / Rekey_ESP

Rekey_ESP_C_IKE / Rekey_ESP

D_C_ESP_C_IKE / D_ESP

D_C_IKE / D_IKE

T_C_IKE_C_ESP / ESP
IKE_AUTH / No_Response

IKE_SA_INIT / No_Response

T_C_IKE_O_ESP / No_Response
IKE_AUTH / No_Response

IKE_SA_INIT / No_Response

Rekey_IKE / Rekey_IKE

T_C_IKE_C_ESP / ESP
T_C_IKE_O_ESP / No_Response

IKE_AUTH / No_Response

IKE_SA_INIT / No_Response

IKE_AUTH / No_Response

IKE_SA_INIT / No_Response

Rekey_ESP_O_IKE / Rekey_ESP

D_C_ESP_O_IKE / D_ESP

D_O_IKE / D_IKE

T_C_IKE_C_ESP / ESP
IKE_AUTH / No_Response

IKE_SA_INIT / No_Response

T_C_IKE_C_ESP / No_Response
T_O_IKE_C_ESP / ESP

IKE_AUTH / No_Response

IKE_SA_INIT / No_Response

s0

s1 s2

s3

s5

s6

s4

s7

s8

s9

s10

Start

D_O_ESP_C_IKE / D_ESP

Rekey_ESP_C_IKE / Rekey_ESP

D_C_IKE / D_IKE

D_C_IKE / D_IKE

D_C_IKE / D_IKE

IKE_SA_INIT / No_Response
Other / None

D_O_IKE / D_IKE

D_C_IKE / D_IKE

D_C_ESP_C_IKE / D_ESP

IKE_AUTH / No_Response

IKE_SA_INIT / No_Response

T_C_IKE_C_ESP / No_Response
IKE_AUTH / No_Response

IKE_SA_INIT / No_Response

Fig. 8 Simplified state-machine model of Libreswan with IKEv2 alphabet

Page 15 of 17Guo et al. Journal of Cloud Computing (2024) 13:28

2. When compared with the similar gray-box model
learning tool StateInspector, SALearn offers broader
applicability across protocol implementations. It
relies solely on the collection of code instrumenta-
tion data for learning, thereby circumventing the
limitations of StateInspector, such as stack memory
constraints and multi-process complexities.

3. SALearn is capable of inferring comprehensive state-
machine models based on symbolic alphabets. These
models faithfully encapsulate the intricate logic gov-
erning message interactions within the protocol
implementations.

4. Analysis of the models generated by SALearn enables
the identification of not only abnormal paths and log-
ical inconsistencies that contravene protocol specifi-
cations but also uncovers potential anomalous states.
These findings can catalyze the detection of issues in
the protocol’s code implementation.

Despite these strengths, SALearn is not without limitations:

1. For SALearn to operate effectively, the protocol code
needs to be instrumented, thereby imposing higher
learning requirements compared with StateInspector
and StateLearner.

2. The learning process in SALearn necessitates the
gathering and filtering of state-variable information,
introducing computational overhead.

3. The task of collating state-variable information to identify
abnormal paths and states in SALearn involves manual
effort, adding to the overall complexity of the process.

Further discussion on the implications of identified anomalies:

1. Inconsistent IPsec SA Management in StrongSwan:
The StrongSwan state machine under IKEv2 reveals
that when multiple IPsec SAs are active, StrongSwan
prioritizes communication through the most recently
established ESP. Intriguingly, further packet analy-
sis shows that StrongSwan crafts response messages
using the latest ESP key, even if a test request is sent
using a previously established ESP key. Conversely,
upon deleting the newest ESP and sending a test
request via the previous ESP, StrongSwan invariably
replies using the second most recent ESP. Accord-
ing to Section 2.8 of RFC 7296, “to rekey a child SA
within an existing IKE SA, create a new, equivalent
SA, and when the new one is established, delete the
old one.” In contradiction to this specification, Strong-
Swan neither deletes the old IPsec SA upon establish-
ing a new one, nor prevents communication between
the old and new IPsec SAs. This behavior violates the
standards and undermines forward secrecy.

2. Flawed Logic in IKE SA Updating in Libreswan: The
IKEv2 state machine for Libreswan reveals that the
system allows for the creation of ESP on older IKE
channels, and such ESPs are functional for regular
communication. In contradiction to Section 2.8 of
RFC 7296, which states that “after the new equivalent
IKE SA is created, the initiator deletes the old IKE
SA, and the Delete payload to delete itself MUST be
the last request sent over the old IKE SA,” Libreswan
neither mandates the deletion of the old IKE SA upon
establishing a new one, nor restricts ESP creation on
the old IKE SA. This lapse contradicts the RFC guide-
lines and compromises forward secrecy.

Conclusion
In this research, we introduce a state-aware model
learning approach aimed at bridging the gap between
inferred states and the inner workings of a protocol
device. By synchronizing network interaction I/O and
filtering dynamic memory variables across their life-
times, our method refines the inferred state machine to
include more relevant elements. Our evaluation, cover-
ing two widely used IKEv2 implementations, reveals two
instances where these systems violate expected behav-
ior. The results validate the efficacy of our approach; a
digital twin paired with a state-aware model can give
insights into predicted communication patterns in edge
computing scenarios where devices connect with each
other in a decentralized way utilizing lightweight pro-
tocols. Based on the learnt behaviors, the system may
update its security measures in real-time, detecting any
abnormalities or potential attacks on lightweight proto-
col implementations.

Regarding memory information management, the cur-
rent approach is somewhat simplistic, focusing primarily
on the lifespan and values of memory variables for filter-
ing. This approach leaves much to be desired in terms of
the precision and interpretability of these variables within
the context of the program. To address this issue, future
work could involve several improvements. First, utiliz-
ing more specific variables like macro definitions or enu-
merated types could refine state calibration and enhance
its interpretability. Second, considering advanced analy-
sis methods such as symbolic execution or taint analy-
sis could provide a more accurate understanding of how
variables influence program states, thereby honing the
precision of state inference. Additionally, a formal analy-
sis model could be developed based on the inferred state
paths and calibrated variables to assess compliance with
security requirements. Taken together, this research not
only broadens the methodologies available for proto-
col model learning but also offers valuable insights into
enhancing the security analysis of network protocols.

Page 16 of 17Guo et al. Journal of Cloud Computing (2024) 13:28

Authors’ contributions
J. G. and D. Z. designed the research and wrote the paper. C. G. and X. C.
analyzed the proposed research. X. Z. and M. J. made suggestions on research
methodology and experimental evaluation. All authors reviewed and edited
the manuscript.

Funding
This work was supported by the National Natural Science Foundation of China
(Grant No. 61772548), the Science Foundation for the Excellent Youth Scholars
of Henan Province (Grant No. 222300420099), and the Major Public Welfare
Projects in Henan Province (201300210200).

Availability of data and materials
Not applicable.

Declarations

Ethics approval and consent to participate
This article does not contain any studies with human participants or animals
performed by any of the authors.

Competing interests
The authors declare no competing interests.

Received: 26 October 2023 Accepted: 6 January 2024

References
 1. Ahmad I, Niazy MS, Ziar RA, Khan S (2021) Survey on iot: security

threats and applications. J Robot Control (JRC) 2(1):42–46
 2. Li W, Wu J, Cao J, Chen N, Zhang Q, Buyya R (2021) Blockchain-based

trust management in cloud computing systems: a taxonomy, review
and future directions. J Cloud Comput 10(1):1–34

 3. Vaezi M, Azari A, Khosravirad SR, Shirvanimoghaddam M, Azari MM,
Chasaki D, Popovski P (2022) Cellular, wide-area, and non-terrestrial iot:
A survey on 5g advances and the road toward 6g. IEEE Commun Surv
Tutorials 24(2):1117–1174

 4. Tao F, Xiao B, Qi Q, Cheng J, Ji P (2022) Digital twin modeling. J Manuf
Syst 64:372–389

 5. VanDerHorn E, Mahadevan S (2021) Digital twin: Generalization, char-
acterization and implementation. Decis Support Syst 145:113524

 6. Rasheed A, San O, Kvamsdal T (2020) Digital twin: Values, challenges
and enablers from a modeling perspective. IEEE Access 8:21980–22012

 7. Liu Y, Ong S, Nee A (2022) State-of-the-art survey on digital twin imple-
mentations. Adv Manuf 10(1):1–23

 8. De Ruiter J, Poll E (2015) Protocol state fuzzing of tls implementations.
24th USENIX Security Symposium (USENIX Security 15). USENIX Asso-
ciation, Washington, D.C., pp 193–206

 9. McMahon Stone C, Chothia T, De Ruiter J (2018) Extending automated
protocol state learning for the 802.11 4-way handshake. In: Computer
Security: 23rd European Symposium on Research in Computer Secu-
rity, ESORICS 2018, Barcelona, Spain, September 3-7, 2018, Proceedings,
Part I 23. Springer, pp 325–345

 10. Fiterău-Broştean P, Lenaerts T, Poll E, de Ruiter J, Vaandrager F, Verleg P
(2017) Model learning and model checking of ssh implementations. In:
Proceedings of the 24th ACM SIGSOFT International SPIN Symposium
on Model Checking of Software. Santa Barbara, pp 142–151

 11. Fiterau-Brostean P, Jonsson B, Merget R, De Ruiter J, Sagonas K,
Somorovsky J (2020) Analysis of dtls implementations using protocol
state fuzzing. In: 29th USENIX Security Symposium (USENIX Security
20). USENIX Association, ELECTR NETWORK, pp 2523–2540

 12. Fiterau-Brostean P, Jonsson B, Sagonas K, Tåquist F (2023) Automata-
based automated detection of state machine bugs in protocol imple-
mentations. In: NDSS. Internet Society, San Diego

 13. Bordeleau F, Combemale B, Eramo R, van den Brand M, Wimmer
M (2020) Towards model-driven digital twin engineering: Current
opportunities and future challenges. In: Systems Modelling and

Management: First International Conference, ICSMM 2020, Bergen,
Norway, June 25–26, 2020, Proceedings 1. Springer, Bergen, pp 43–54

 14. Bibow P, Dalibor M, Hopmann C, Mainz B, Rumpe B, Schmalzing D, Schmitz
M, Wortmann A (2020) Model-driven development of a digital twin for
injection molding. In: International Conference on Advanced Information
Systems Engineering. Springer, ELECTR NETWORK, pp 85–100

 15. Kirchhof JC, Malcher L, Rumpe B (2021) Understanding and improv-
ing model-driven iot systems through accompanying digital twins. In:
Proceedings of the 20th ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences. Association for
Computing Machinery, Chicago, pp 197–209

 16. Angluin D (1987) Learning regular sets from queries and counterexam-
ples. Inf Comput 75(2):87–106

 17. Isberner M, Howar F, Steffen B (2014) The ttt algorithm: a redundancy-
free approach to active automata learning. In: Runtime Verification: 5th
International Conference, RV 2014, Toronto, ON, Canada, September
22-25, 2014. Proceedings 5. Springer, Toronto, pp 307–322

 18. Khendek FB, Fujiwara S, Bochmann G, Khendek F, Amalou M, Ghedamsi
A (1991) Test selection based on finite state models. IEEE Trans Softw
Eng 17(591–603):10–1109

 19. Shu Z, Yan G (2022) Iotinfer: Automated blackbox fuzz testing of iot
network protocols guided by finite state machine inference. IEEE Inter-
net Things J 9(22):22737–22751

 20. Howar F, Jonsson B, Vaandrager F (2019) Combining Black-Box and
White-Box Techniques for Learning Register Automata. In: Steffen B,
Woeginger G (eds) Computing and Software Science. Lecture Notes in
Computer Science, vol 10000. Springer, Cham. https:// doi. org/ 10. 1007/
978-3- 319- 91908-9_ 26

 21. Marcovich R, Grumberg O, Nakibly G (2023) Pise: Protocol inference
using symbolic execution and automata learning. In: Proceedings 2023
Workshop on Binary Analysis Research. Internet Society, San Diego

 22. Pacheco ML, von Hippel M, Weintraub B, Goldwasser D, Nita-Rotaru C
(2022) Automated attack synthesis by extracting finite state machines
from protocol specification documents. In: 2022 IEEE Symposium on
Security and Privacy (SP). IEEE, San Francisco, pp 51–68

 23. Kivinen T (2016) Minimal internet key exchange version 2 (ikev2) initia-
tor implementation. Tech. rep

 24. Ko M, Kim H, Min SG (2022) An ikev2-based hybrid authentication
scheme for simultaneous access network and home network authenti-
cation. IEICE Trans Commun 105(2):250–258

 25. Rafique W, Qi L, Yaqoob I, Imran M, Rasool RU, Dou W (2020) Com-
plementing iot services through software defined networking and
edge computing: A comprehensive survey. IEEE Commun Surv Tutor
22(3):1761–1804

 26. Cui Q, Zhu Z, Ni W, Tao X, Zhang P (2021) Edge-intelligence-empow-
ered, unified authentication and trust evaluation for heterogeneous
beyond 5g systems. IEEE Wirel Commun 28(2):78–85

 27. Fioraldi A, D’Elia DC, Balzarotti D (2021) The use of likely invariants as
feedback for fuzzers. In: 30th USENIX Security Symposium (USENIX
Security 21). USENIX Association, ELECTR NETWORK, pp 2829–2846

 28. Zhao B, Li Z, Qin S, Ma Z, Yuan M, Zhu W, Tian Z, Zhang C (2022) State-
fuzz: System call-based state-aware linux driver fuzzing. In: 31st USENIX
Security Symposium (USENIX Security 22). USENIX Association, Boston,
pp 3273–3289

 29. Neele T, Sammartino M (2023) Compositional automata learning of
synchronous systems. International Conference on Fundamental
Approaches to Software Engineering. Springer Nature Switzerland,
Cham, pp 47–66

 30. Peled D, Vardi MY, Yannakakis M (1999) Black box checking. In: Interna-
tional Conference on Protocol Specification, Testing and Verification.
Springer, Beijing, pp 225–240

 31. Zhu X, Wen S, Camtepe S, Xiang Y (2022) Fuzzing: a survey for road-
map. ACM Comput Surv (CSUR) 54(11s):1–36

 32. Wang Q, Ji S, Tian Y, Zhang X, Zhao B, Kan Y, Lin Z, Lin C, Deng S, Liu
AX, et al (2021) Mpinspector: A systematic and automatic approach
for evaluating the security of iot messaging protocols. In: 30th USENIX
Security Symposium (USENIX Security 21). USENIX Association, ELECTR
NETWORK, pp 4205–4222

 33. Fiterău-Broştean P, Jonsson B, Sagonas K, Tåquist F (2022) Dtls-fuzzer: A
dtls protocol state fuzzer. In: 2022 IEEE Conference on Software Testing,
Verification and Validation (ICST). IEEE, ELECTR NETWORK, pp 456–458

https://doi.org/10.1007/978-3-319-91908-9_26
https://doi.org/10.1007/978-3-319-91908-9_26

Page 17 of 17Guo et al. Journal of Cloud Computing (2024) 13:28

 34. McMahon Stone C, Thomas SL, Vanhoef M, Henderson J, Bailluet N,
Chothia T (2022) The closer you look, the more you learn: A grey-box
approach to protocol state machine learning. In: Proceedings of the
2022 ACM SIGSAC Conference on Computer and Communications
Security. Association for Computing Machinery, Los Angeles, pp
2265–2278

 35. Aschermann C, Schumilo S, Abbasi A, Holz T (2020) Ijon: Exploring
deep state spaces via fuzzing. In: 2020 IEEE Symposium on Security
and Privacy (SP). IEEE, ELECTR NETWORK, pp 1597–1612

 36. Pham VT, Böhme M, Roychoudhury A (2020) Aflnet: a greybox fuzzer
for network protocols. In: 2020 IEEE 13th International Conference
on Software Testing, Validation and Verification (ICST). IEEE, Porto, pp
460–465

 37. Natella R (2022) Stateafl: Greybox fuzzing for stateful network servers.
Empir Softw Eng 27(7):191

 38. Ba J, Böhme M, Mirzamomen Z, Roychoudhury A (2022) Stateful
greybox fuzzing. In: 31st USENIX Security Symposium (USENIX Security
22). USENIX Association, Boston, pp 3255–3272

 39. Wen C, Wang H, Li Y, Qin S, Liu Y, Xu Z, Chen H, Xie X, Pu G, Liu T (2020)
Memlock: Memory usage guided fuzzing. In: Proceedings of the ACM/
IEEE 42nd International Conference on Software Engineering. Associa-
tion for Computing Machinery, Seoul, pp 765–777

 40. Zhou S, Yang Z, Qiao D, Liu P, Yang M, Wang Z, Wu C (2022) Ferry: State-
aware symbolic execution for exploring state-dependent program
paths. In: 31st USENIX Security Symposium (USENIX Security 22). USE-
NIX Association, Boston, pp 4365–4382

 41. Kent S, Seo K (2005) Rfc 4301: Security architecture for the internet
protocol. RFC Editor, p 101. https:// doi. org/ 10. 17487/ RFC43 01. https://
www. rfc- editor. org/ info/ rfc43 01

 42. Harkins D, Carrel D (1998) Rfc2409: The internet key exchange (ike). RFC
Editor, p 41. https:// doi. org/ 10. 17487/ RFC24 09. https:// www. rfc- editor.
org/ info/ rfc24 09

 43. Kaufman C, Hoffman P, Nir Y, Eronen P, Kivinen T (2014) Rfc 7296: Internet
key exchange protocol version 2 (ikev2). RFC Editor, p 142. https:// doi.
org/ 10. 17487/ RFC72 96. https:// www. rfc- editor. org/ info/ rfc72 96

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.17487/RFC4301
https://www.rfc-editor.org/info/rfc4301
https://www.rfc-editor.org/info/rfc4301
https://doi.org/10.17487/RFC2409
https://www.rfc-editor.org/info/rfc2409
https://www.rfc-editor.org/info/rfc2409
https://doi.org/10.17487/RFC7296
https://doi.org/10.17487/RFC7296
https://www.rfc-editor.org/info/rfc7296

	An enhanced state-aware model learning approach for security analysis in lightweight protocol implementations
	Abstract
	Introduction
	Related works
	Model learning
	State-aware fuzzing test

	Preliminaries
	Network protocol model
	IPsec-IKE protocol

	State-aware model learning framework using digital twins
	Insights from digital twins
	Overall framework
	Description of state
	Capture memory state variables
	Calculate state identification
	Overall learning process

	Experimental evaluation and analysis
	IPsec implementations
	Learning scheme for IPsec
	Learning result
	Case analysis
	Discussion

	Conclusion
	References

