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Abstract 

Cloud computing provides outsourcing of computing services at a lower cost, making it a popular choice 
for many businesses. In recent years, cloud data storage has gained significant success, thanks to its advantages 
in maintenance, performance, support, cost, and reliability compared to traditional storage methods. However, 
despite the benefits of disaster recovery, scalability, and resource backup, some organizations still prefer traditional 
data storage over cloud storage due to concerns about data correctness and security. Data integrity is a critical 
issue in cloud computing, as data owners need to rely on third-party cloud storage providers to handle their data. 
To address this, researchers have been developing new algorithms for data integrity strategies in cloud storage 
to enhance security and ensure the accuracy of outsourced data. This article aims to highlight the security issues 
and possible attacks on cloud storage, as well as discussing the phases, characteristics, and classification of data integ-
rity strategies. A comparative analysis of these strategies in the context of cloud storage is also presented. Further-
more, the overhead parameters of auditing system models in cloud computing are examined, considering the desired 
design goals. By understanding and addressing these factors, organizations can make informed decisions about their 
cloud storage solutions, taking into account both security and performance considerations.
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Introduction
Cloud computing’s appeal lies in its dynamic and flex-
ible Service Level Agreement (SLA) based negotiable 
services, allowing users to access virtually limitless com-
puting resources [1]. According to the National Institute 
of Standards and Technology (NIST), cloud computing 
offers a swiftly provisioned pay-per-use model, enabling 
on-demand, accessible, and configurable network access 
to shared pool resources, requiring minimal interactions 
from service providers and reduced management efforts 
[2]. Cloud computing models include private, public, 
hybrid, and community clouds, with services categorized 
into Infrastructure as a Service (IaaS), Platform as a Ser-
vice (PaaS), and Software as a Service (SaaS). IaaS provid-
ers like Google Compute Engine, Windows Azure Virtual 
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Machines, and Amazon Elastic Cloud Compute offer 
network resources and computing storage, enhancing 
performance and reducing maintenance costs to meet 
specific customer demands [3, 4]. This evolution in cloud 
computing has transformed various sectors. Businesses 
and healthcare organizations benefit from services like 
cost reduction through resource outsourcing [3, 4], per-
formance monitoring [5, 6], resource management [7], 
and computing prediction [8]. Additionally, cloud com-
puting facilitates tasks such as resource allocation [9], 
workload distribution [10–12], capacity planning [13], 
and job-based resource distribution [14, 15]. This trans-
formative impact underscores the significance of cloud 
computing in modern digital landscapes, empowering 
organizations with unprecedented efficiency and scalabil-
ity in resource utilization [3–15].

Despite the availability of various data services, data 
owners are apprehensive about entrusting their valuable 
data to cloud service providers (CSPs) for third-party 
cloud storage due to concerns about the integrity of the 
CSPs [13, 16, 17], and the shared nature of cloud stor-
age environments. Cloud computing primarily encom-
passes data storage and computation, with Infrastructure 
as a Service (IaaS) closely linked to cloud storage. When 
accessing IaaS, cloud users often lack visibility into the 
precise location of their outsourced data within the 
cloud storage and the machines responsible for process-
ing tasks. Consequently, data privacy within cloud stor-
age is a significant security challenge, exacerbated by the 
presence of malicious users, resulting in data integrity 
and confidentiality issues. This poses a critical security 
challenge for cloud storage, and trust in remote cloud 
data storage is crucial for the success of cloud comput-
ing. Data integrity, encompassing completeness, correct-
ness, and consistency, is vital in the context of Database 
Management Systems (DBMS) and the ACID (Atomicity, 
Consistency, Isolation, Durability) properties of transac-
tions. The issue arises when CSPs cannot securely guar-
antee clients the accuracy and completeness of data in 
response to their queries [18].

Researchers are actively advancing the field of data 
integrity in cloud computing by refining data integrity 
verification techniques and bolstering data privacy-pre-
serving methods. These verification techniques primarily 
encompass Proof of Work (PoW), Proof of Data Posses-
sion (PDP), and Proof of Retrievability (PoR). Notably, 
the introduction of Message Authentication Code 
(MAC) using a unique random key within the data integ-
rity framework marked a deterministic approach to data 
integrity verification, mitigating the inefficiencies associ-
ated with remote data integrity schemes that employed 
RSA-based encryption. This approach addressed issues 
related to significant computation time and long hash 

value transfer times for large files [19]. To enhance the 
security of data integrity schemes, Provable Data Pos-
session (PDP) concepts were introduced to establish the 
legitimacy of data possession by a cloud server. Vari-
ous subsequent research efforts have continually refined 
these algorithms, introducing innovations like the Trans-
parent PDP scheme [20], DHT-PDP [21], Certificateless 
PDP Protocol for Multiple Copies [22–24], and Dynamic 
Multiple-Replica PDP [25]. Concurrently, the Proof of 
Retrievability (PoR) concept was introduced in 2007 
to address error localization and data recovery issues 
[26]. Additionally, Proof of Original Ownership (PoW) 
emerged in 2011 through the Merkle hash tree protocol 
to prevent malicious adversaries, leading to a plethora of 
subsequent research endeavors with diverse improved 
algorithms aimed at the same goals [27–29].

Fully homomorphic encryption (FHE) was proposed to 
maintain the privacy preservation of outsourced data and 
in that case, original data were converted into ciphertext 
through an encryption technique that supports multipli-
cation and additional operation over the ciphertext [30]. 
Meanwhile, drawbacks in [22] such as practically infeasi-
ble due to complex operations, were then solved by [31] 
Somewhat Homomorphic Encryption (SHE) scheme. 
Many more research works have been established in 
these few years such as biometrics face recognition 
approach [32], privacy-preserving auditing scheme for 
Cloud Storage using HLA [33], An Etiquette Approach 
for Preserving Data [34], etc.

Recently, Google cloud has introduced Zebra tech-
nologies based on a security command center (SCC) 
and security operation center (SOC) to point out some 
harmful threats such as crypto mining activity, data exfil-
tration, potential malware infections, brute force SSH 
attacks, etc. to maintain data integrity of business organi-
zation’s information [35].

In recent years, numerous cloud data integrity schemes 
have emerged, along with several survey papers, albeit 
with limited parameters to comprehensively address 
specific aspects of data integrity. Some of these surveys 
include data auditing from single copies to multiple rep-
licas [36], Proof of Retrievability [37], various data integ-
rity techniques and verification types for cloud storage, 
and different data integrity protocols [38]. However, 
these surveys often fall short in providing a compre-
hensive understanding of data integrity strategies and 
their classification. A concise taxonomy of data integrity 
schemes was presented in a survey paper [39], which dis-
cussed a comparative analysis of existing data integrity 
schemes, their evolution from 2007 to 2015, and covered 
fewer physical storage issues, fewer security challenges, 
and design considerations. This survey paper aims to 
address this gap by offering an in-depth discussion on the 
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security challenges within physical cloud storage, poten-
tial threats, attacks, and their mitigations. It will also 
categorize data integrity schemes, outline their phases 
and characteristics, provide a comparative analysis, and 
project future trends. This comprehensive approach 
underscores the significance of data integrity schemes in 
securing cloud storage.

Discussion
Although there are several articles arise on similar issues, 
our research work differs from all mentioned research 
works in the following ways: Unlike [36, 37, 39], our 
research work focused on different types of storage-based 
attacks and also comprised up-to-date methods to resist 
storage-based attacks which always violate data integrity 
schemes on physical cloud storage. Like [37], it includes 
storage-based security issues, threats, and it’s existing 
mitigation solutions. Unlike [36, 37, 39] our research 
work focused on the different types of proposals of data 
integrity verification which is broadly classified into file-
level verification, entire blocks verification, metadata ver-
ification, and randomly block-level verification.

Unlike [37], our survey work is not constricted to 
only proof of retrievability (POR). It covers all verifi-
cation types like the power of ownership (PoW), proof 
of retrievability (POR), and provable data possession 
(PDP). It also includes different types of auditing veri-
fications techniques to elaborate job roles on the TPA’s 
side and DO’s side. It also includes a discussion of the 
benefit of public auditing to reduce the overhead of com-
putational and communication overhead of DO. Unlike 
[36–38, 40–43], our survey work reviews a wide range 
of quality features of data integrity schemes that have 
individually prime importance in cloud storage secu-
rity. Unlike [36, 37, 41], we focused on different types 
of security challenges according to existing symptoms, 
effects, and probable solutions of data integrity schemes. 
Like [42–44], we include a discussion about malicious 
insider attacks, forgery attacks, and dishonest TPA and 
CSP. Unlike [41, 43, 44], in comparative analysis, we 
introduce here different performance analysis param-
eters of existing works based on the work’s motivations 
and limitations in addition to a discussion of public and 
private data auditing criteria. Like [32], we include all 
existing data integration methods briefly in the Compar-
ative analysis of data integrity strategies section.

Research gap
According to the above discussion, this research focuses 
on the following points to summarize the research gaps:

• In contrast to [36, 37, 39], our research included cur-
rent strategies to fend against storage-based attacks, 

which consistently compromise data integrity tech-
niques on physical cloud storage.

• Our research, in contrast to [36, 37, 39], concentrated 
on the various approaches to data integrity verifica-
tion, which is categorised into four categories: file-
level verification, full block verification, metadata 
verification, and randomized block-level verification.

• Our survey study is not limited to proof of retriev-
ability (POR), in contrast to [37]. It includes all forms 
of verification, including proven data possession 
(PDP), proof of retrievability (POR), and power of 
ownership (PoW). Different Key Management Tech-
niques used in cloud storage to improve security at 
cloud storage were also added here .

• In contrast to [36–38, 40–43], our survey work 
examines a variety of data integrity scheme quality 
features, each of which is crucial to the security of 
cloud storage.

• In contrast to [36, 37, 41], we concentrated on vari-
ous security issues based on the impacts, symptoms, 
and likely fixes of data integrity techniques.

• In contrast to [41, 43, 44], we present here vari-
ous performance analysis parameters of previous 
efforts based on the goals and constraints of the work 
together with a discussion of auditing criteria for 
both public and private data.

Contribution
On the basis of our knowledge, this is the first attempt to 
overlook all the related issues of cloud data storage with 
possible directions under a single article. The Key contri-
butions of this research paper are summarized below:

– Identification of possible attacks on storage level ser-
vices which may arise on physical cloud storage miti-
gating explored solutions

– Summarizing of possible characteristics of data 
integrity strategies to examine data integrity auditing 
soundness, phases, classification, etc. to understand 
and analyse security loopholes

– Literature review on comparative analysis based on 
all characteristics, motivation, limitation, accuracy, 
method, and probable attacks

– Discussion on design goal issues along with secu-
rity level issues on data integrity strategy to analyse 
dynamic performance efficiency, different key man-
agement techniques to achieve security features, to 
analyse server attacks, etc.

– Identification of security issues in data integrity strat-
egy and its mitigation solution

– Discussion about the future direction of new data 
integrity schemes of cloud computing.
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This review article is described in 8 sections. Issues of 
physical cloud storage section, discusses issues of physi-
cal cloud storage, and attacks in storage level service. Key 
management techniques with regards to storage level in 
cloud section describes some existing key management 
techniques to enhance security of cloud storage. Poten-
tial attacks in storage level service section describes pos-
sible potential attacks in cloud storage. Phases of data 
integrity technique section phases of the data integrity 
scheme and summarizes all possible characteristics of 
the data integrity strategy. Classification of data integrity 
strategy section describes a classification of data integrity 
strategy. Characteristics of data integrity technique sec-
tion describes characteristics of data integrity technique. 
Challenges of data integrity technique in cloud environ-
ment section describes Challenges of data integrity tech-
nique in cloud Environment. Desire design challenges of 
data integrity strategy section describes Desire design 
challenges of data integrity strategy. Comparative analysis 
of data integrity strategies section represents a compara-
tive analysis of existing research works of data integrity 
strategy. At the end,design goal issues and future trends 
of cloud storage based on existing integrity schemes 
using a timeline infographic from 2016 to 2022 in Future 
trends in data integrity approaches section.

Issues of physical cloud storage
Generally, the physical cloud storage in terms of IaaS 
services gives cloud users the opportunity of using com-
puting resources at a minimum cost without taking any 
responsibility for infrastructure maintenance. But in the 
actual scenario, CSP and other authorized users have no 
trusted actors in cloud computing. Hence, cloud storage 
is an attack-prone area due to the malicious intentions of 
CSP and insider-outsider attackers. We have listed here 
cloud storage issues along with possible attacks. Table 1 
shows below all possible mitigating solutions.

• In capability of CSP: Managing big cloud storage 
may create a data loss problem for CSP due to lack of 
insufficient computational capacity, sometimes can-
not meet user’s requirement, missing a user-friendly 
data serialization standard with easily readable and 
editable syntax, due to changes of a life cycle in a 
cloud environment [66].

• Loses control of cloud data over a distributed cloud 
environment may give vulnerable chances to unau-
thorized users to manipulate valuable data of valid 
one [67].

• Lack of Scalability of physical cloud storage: Scal-
ability means all hardware resources are merged to 
provide more resources to the distributed cloud sys-

tem. It might be beneficial for illegitimate access and 
modify cloud storage and physical data centers [68].

• Unfair resource allocation strategy: Generally, monitor-
ing data is stored in a shared pool in a public cloud envi-
ronment which might not be preferable to cloud users 
who are not interested to leave any footprint on their 
work distribution/data transmission by a public cloud-
hosted software component which will be the reason 
for a future mediocre of original data fetching [69].

• Lack of performance monitoring of cloud storage: 
Generally, monitoring data is stored in a shared pool 
in a public cloud which might not be preferable to 
cloud users who are not interested to leave any foot-
print on their work distribution/data transmission by 
a public cloud-hosted software component [70].

• Data threat: Cloud users store sensitive data in cloud 
environments about their personal information or 
business information. Due to the lack of data threat 
prevention techniques of cloud service providers, 
data may be lost or damaged [64, 71].

• Malicious cloud storage provider: Lack of transpar-
ency and access control policies are basic parameters 
of a cloud service provider being a malicious storage 
provider. Due to the missing of these two parameters, 
it’s quite easy to disclose confidential data of cloud 
users towards others for business profit [72].

• Data Pooling: Resource pooling is an important 
aspect of cloud computing. Due to this aspect, data 
recovery policies and data confidentiality schemes 
are broken [73].

• Data lock-in: Every cloud storage provider does not 
have a standard format to store data. Therefore, cloud 
users face a binding problem to switch data from 
one provider to another due to dynamic changes in 
resource requirements [39].

• Security against internal and external malicious 
attack: Data might be lost or data can be modified by 
insider or outsider attacks [49, 74–76].

Key management techniques with regards 
to storage level in cloud
In order to prevent data leakage and increase the diffi-
culty of attack, this paper presents a method combining 
data distribution and data encryption to improve data 
storage security. We have listed here some key techniques 
used in cloud storage to enhance security and transpar-
ency between cloud storage, cloud users.

• Hierarchical Key Technique: Some research articles 
[77] provide secret sharing and key hierarchy deriva-
tion technique in combination with user password to 
enhance key security, protecting the key and prevent-
ing the attacker from using the key to recover the data.
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• Private Key Update Technique:This identity-based 
encryption technique [78] helps to update the private 
keys of the non-revoked group users instead of the 
authenticators of the revoked user when the authen-
ticators are not updated, and it does away with the 
complex certificate administration found in standard 
PKI systems.

• Key Separation Technique: This cryptographic 
method aids in maintaining the privacy of shared 
sensitive data while offering consumers effective and 
efficient storage services [79].

• Attribute-based Encryption Key Technique: Instead 
of disclosing decryption keys, this method achieves 
the conventional notion of semantic security for 
data secrecy, whereas existing methods only do so by 
establishing a lesser security notion [80, 81]. It is used 
to share data with users in a confidential manner.

• Multiple Key Technique:This k-NN query-based 
method improves security by assisting the Data 
owner(DO) and each query user in maintaining sepa-
rate keys and not sharing them [82]. In the meantime, 
the DO uses his own key to encrypt and decrypt data 
that has been outsourced.

Potential attacks in storage level service
Storage level service in cloud computing offers ser-
vices of resource computation, virtual network, shared 
storage over the internet in lease. It provides more 
flexible and scalable benefits than on-premise physi-
cal hardware. Due to these two aspects of the cloud, 
storage-level services can be the victim of malicious 
attacks attempting to steal computing resources for 
the publication of original data or data exfiltration in 
data braces. If attackers can successfully enter into the 
infrastructure services of an organization, they can 
then grip those parts to obtain access to other impor-
tant parts of the enterprise architecture causing secu-
rity issues of data integrity. We have listed here possible 
attacks on storage-level services.

• DoS/DDoS: Ultimate purpose of this attack is to do 
unavailable original services towards users and over-
load the system by flooding spam results in a single 
cloud server. Due to the high workload, the perfor-
mance of cloud servers slumps, and users lose the 
accessibility to their cloud services.

• Phishing: Attackers steal important information in 
the form of a user’s credentials like name, password, 
etc. after redirecting the user to a fraud webpage as 
an original page.

• Brute Force attack/ Online dictionary attack: It’s one 
type of cryptographic hack. Using an exhaustive key 
search engine, malicious attackers can violate the 

privacy policy of the data integrity scheme in cloud 
storage.

• MITC: Man in the cloud attack helps attackers to 
gain the capability to execute any code on a victim 
machine through installing their synchronization 
token on a victim’s machine instead of the original 
synchronization token of a victim machine and using 
this token, attackers get control over target machine 
while target machine synchronizes this token to the 
attacker’s machine.

• Port scanning: Attackers perform port scanning 
methods to identify open ports or exposed server 
locations, analyze the security level of storage and 
break into the target system.

• Identity theft: Using password recovery method, 
attackers can get account information of legitimate 
users which causes loss of credential information of 
the user’s account.

• Risk spoofing: Resource workload balancing is a good 
managerial part of cloud storage but due to this aspect 
of cloud computing, attackers can steal credential data 
of cloud users, able to spread malware code in host 
machines and create internal security issues.

• Data loss/leakage: During data transmission time 
by external adversaries, incapability of cloud service 
providers, by unauthorized users of the same cloud 
environment, by internal malicious attackers, data 
can be lost or manipulated.

• Shared technology issue: Compromising hypervisors, 
cloud service providers can run concurrently multi-
ple OS as guests on a host computer. For the feeble-
ness of hypervisor, attackers create vulnerabilities like 
data loss, insider malicious attacks, outsider attacks, 
loss of control on machines, and service disruption 
by taking control over all virtual machines.

Phases of data integrity technique
Data integrity always keeps the promise of data consist-
ency and accuracy of data at cloud storage. Its proba-
bilistic nature and resistance capability of storing data 
from unauthorized access help cloud users to gain trust 
for outsourcing their data to remote clouds. It consists 
of mainly three actors in this scheme: Data owner (DO), 
Cloud Storage/Service Provider (CSP), and Third-Party 
Auditor(optional) [39] as depicted in Fig.  1. The data 
owner produces data before uploading it to any local 
cloud storage to acquire financial profit. CSP is a third-
party organization offering Infrastructure as a service 
(IaaS) to cloud users. TPA exempts the burden of man-
agement of data of DO by checking the correctness and 
intactness of outsourced data. TPA also reduces com-
munication overhead costs and the computational cost 
of the data owner [83, 84]. Sometimes, DO ownself takes 
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responsibility for data integrity verification without TPA 
interference. There are three phases in data integrity 
strategy described below in Table 2:

• Data processing phase: In data processing phase, data 
files are processed in many way like file is divided into 
blocks [60], applying encryption technique on blocks 
[90], generation of message digest [87], applying ran-
dom masking number generation [88], key genera-
tion and applying signature on encrypted block [93] 
etc. and finally encrypted data or obfuscated data is 
outsourced to cloud storage.

• Acknowledgement Phase: This phase is totally 
optional but valuable because sometimes there may 
arise a situation where CSP might conceal the mes-
sage of data loss or discard data accidentally to main-
tain their image [88]. But most of the research works 
skip this step to minimize computational overhead 
costs during acknowledgment verification time.

• Integrity verification phase: In this phase, DO/ TPA 
sends a challenge message to CSP and subsequently, 
CSP sends a response message as metadata or proof 
of information to TPA/DO for data integrity verifica-
tion. The audit result is sent to DO if verification is 
done by TPA.

Classification of data integrity strategy
Classification of data integrity depends on a variety of con-
ceptual parameters and sub-parameters. Table 3 shows all 
parameters, and sub-parameters with references to give 

a clear idea about data integrity strategy. The deployment 
setup of data integrity strategy is dependent on the environ-
ment of the proposed system. Clients can store their data 
in public cloud set up [98], multi-cloud setup [99, 100] or 
hybrid cloud set up [101]. If data are placed in a public cloud 
setup, clients lose access control visibility on data due to the 
outsider data management policy of CSP. As a result, data 
integrity problems arise because both CSP and public cloud 
storage are not honest in practical scenarios. Multi-cloud 
means more than one cloud service, more than one ven-
dor in the same heterogeneous cloud architecture. A hybrid 
cloud is also a combination of private and public clouds. 
Hence, in the shared storage structure of multi and hybrid 
cloud environments, security issues of data integrity is a 
genuine concern. The guarantee of data integrity scheme 
can be proposed in two types: deterministic and probabilis-
tic approaches. The performance of probabilistic verification 
is better than deterministic verification because of its higher 
accuracy in error correction of blocks without accessing 
the whole file and low computational overhead [102]. But, 
the deterministic approach gives adequate accuracy of data 
integrity whereas the probabilistic approach gives less than 
data integrity accuracy of deterministic approach [39]. 

a) Type of proposal

– File level verification: This is a deterministic verifi-
cation approach. Here, data integrity verification is 
generally done by either TPA or the client. The cli-
ent submitted an encoded file to the storage server 

Fig. 1 Entire Cycle of Data Integrity Technique



Page 8 of 23Goswami et al. Journal of Cloud Computing           (2024) 13:45 

Table 2 Classified Phases of Data Integrity Schemes

Ref. Technical 
Methods

Data Processing Phase Acknowledgement 
Phase

Auditing Phase

Initial Phase Key & Signature 
Generation 
Phase

Encryption Using TPA Using Data 
Owner/
Client

Challenge 
phase

Proof 
Verification 
Phase

[85] Confidential-
ity Preserving 
Auditing

Yes Yes Yes No Yes No Yes Yes

[60] Ensuring 
of confidential-
ity and integrity 
data

Yes No Yes No Yes No No No

[86] Privacy preserv-
ing integrity 
checking model

Yes Yes Yes No Yes No Yes Yes

[61] Verifying Data 
Integrity

Yes Yes Yes No No Yes Yes Yes

[87] Data audit-
ing mitigat-
ing with data 
privacy and data 
integrity

Yes No Yes No Yes No Yes Yes

[88] Public Verifica-
tion of Data 
Integrity

Yes Yes Yes No Yes No Yes Yes

[89] Ternary Hash 
Tree Based Integ-
rity Verification

Yes Yes Yes No Yes No Yes Yes

[84] Third-party 
auditing 
for cloud service 
providers

Yes Yes No No Yes No Yes Yes

[90] Identity-Based 
Integrity Audit-
ing and Data 
Sharing

Yes Yes Yes No Yes No Yes Yes

[91] A Secure Data 
Dynamics 
and Public Audit-
ing

Yes No Yes No Yes No Yes Yes

[83] Oruta: privacy-
preserving 
public auditing

Yes Yes No No Yes No Yes Yes

[92] Dynamic Audit-
ing Protocol

Yes Yes No No Yes No Yes Yes

[93] Dynamic Data 
Integrity Audit-
ing Method

Yes Yes No No Yes No Yes Yes

[94] Algebraic 
Signatures-Based 
Data Integrity 
Auditing

Yes Yes No Yes Yes No Yes Yes

[95] Efficient public 
verification 
on the integrity

Yes Yes Yes No Yes No Yes Yes

[96] Attribute-Based 
Cloud Data 
Integrity Audit-
ing

Yes Yes No No Yes No Yes Yes
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and for data integrity verification a verifier veri-
fied the encoded file through the challenge key and 
secret key which is chosen by the client [103].

– Block Level Verification : This type of verification is 
a deterministic verification approach. Firstly, a file 
is divided into blocks, encrypted, generated mes-
sage digest, and sent encrypted blocks to CSP. Later, 
CSP sends a response message to TPA for verifica-
tion and TPA verifies all blocks by comparing the 
newly generated message digest with the old mes-
sage digest generated by the client [87].

– Randomly block level verification: This is a proba-
bilistic verification approach. In this verification, 
a file is divided into blocks, next generate anyone 
signatures or combination of any two signatures of 
hash [86], BLS [88], HLA [124], random masking 
[88], or ZSS [97] for all blocks and submits both of 
them to cloud storage. Later, TPA generates a chal-
lenge message for randomly selected blocks which 
will be verified for data integration checking and 
sent to CSP. Next, CSP sends a proof message to 
TPA for verification. The proof message is verified 
by TPA for randomly selected blocks by generating 
new signatures and comparing old and new signa-
tures of particular blocks [61, 86].

– Metadata verification: In this deterministic 
approach, firstly cloud users generate a secret key, 
and using this secret key, cloud users prepare meta-
data of the entire file through HMAC-MD5 authen-
tication. Later, the encrypted file is sent to CSP, and 
metadata is sent to TPA. Later this metadata is used 
for integrity verification via TPA [85].

b) Category of data

– Static data: In static nature, no need to modify 
data that are stored in cloud storage. In [105], a 

basic RDPC scheme is proposed for the verifi-
cation of static data integrity. In remote cloud 
data storage, all static files are of state-of-the-art 
nature which gets the main attention but in prac-
tical scenarios, TPA gets permission to possess 
the original data file creates security problems. In 
[106], the RSASS scheme is introduced for static 
data verification by applying a secure hash signa-
ture (SHA1) on file blocks.

– Dynamic Data: Data owners don’t have any 
restriction policy for applying updation, inser-
tion and deletion operations on outsourced data 
for unlimited time which is currently stored in 
remote cloud storage. In [111], a PDP scheme is 
introduced by assuming a ranked skipping list to 
hold up completely dynamic operation on data to 
overcome the problem of limited no. of insertion 
and query operation on data which is described 
in [118]. In [117], dynamic data graph is used to 
restrict conflict of the dynamic nature of big-sized 
graph data application.

c) Verification type

– Proof of ownership verification: The proof of own-
ership (PoW) scheme is introduced in the data 
integrity scheme to prove the actual data owner-
ship of original data owner to server and to restrict 
unauthorized access to outsourced data of data 
owner from valid malicious users in the same cloud 
environment. PoW scheme is enclosed with data 
duplication scheme to reduce security issues about 
an illegal endeavor of a malicious user to access 
unauthorized data [27]. Three types of PoW scheme 
is defined: s-POW, s-Pow1, s-Pow2 in [29] which 
have satisfactory computation and I/O efficiency 
at user side but I/O burden on the remote cloud 

Table 2 (continued)

Ref. Technical 
Methods

Data Processing Phase Acknowledgement 
Phase

Auditing Phase

Initial Phase Key & Signature 
Generation 
Phase

Encryption Using TPA Using Data 
Owner/
Client

Challenge 
phase

Proof 
Verification 
Phase

[78] Efficient User 
Revocation 
in Identity-Based 
Cloud Storage 
Auditing

Yes Yes No No Yes No Yes Yes

[97] Secure and Effi-
cient Data Integ-
rity Verification 
Scheme

Yes Yes No No Yes No Yes Yes
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are significantly increased and this problem was 
overcome in [28] through establishing a balance 
between server and user side efficiency.

– Provable of data possession: Provable of data pos-
session (PDP) scheme promises statically the 
exactness of data integrity verification of cloud 
data without downloading on untrusted cloud 
servers and restricts data leakage attacks at cloud 
storage. In [104], research work described aspects 
of the PDP technique from a variety of system 
design perspectives like computation efficiency, 
robust verification, lightweight and constant com-
munication cost, etc. in related work. In [112], 
certificateless PDP is proposed for public cloud 
storage to address key escrow problems and key 
management of general public key cryptography 
and solve the security problems(verifiers were able 
to extract original data of users during integrity 
verification time) of [113, 120].

– Proof of retrievability verification: Proof of 
retrievability(PoR) ensures data intactness in 
remote cloud storage. Both PoR and PDP perform 
similar functions with the difference that PoR 
scheme has the ability to recover faulty outsourced 
data whereas PDP only supports data integrity and 
availability of data to clients [108]. In [109], IPOR 
scheme is introduced which ensures 100% retrieval 
probability of corrupted blocks of original data 
file. DIPOR scheme also supports data retrieval 
technique of partial health records along with data 
update operation [115].

– Auditing verification: Verification of cloud data 
which is outsourced by the data owner is known 
as the audit verification process. Data integrity 
scheme supports two types of verification: Private 
auditing verification(verification is done between 
CSP and data owner i.e. cloud user) and Public 
auditing verification (cloud user hiers a TPA to 
reduce computational and communication over-
head at ownside and verification is done between 
CSP and TPA) [122]. Privacy-preserving public 
auditing [83, 122], certificateless public audit-
ing [125],optimized public auditing scheme [123] 
,bitcoin-based public auditing [88], S-audit public 
auditing scheme [108], shared data auditing [83], 
Dynamic data public auditing [126] Non-privacy 
preserving public auditing scheme [127], digital 
signature(BLS, hash table, RSA etc. ) based pub-
lic auditing scheme [88, 119, 128] etc. are some 
types of public auditing schemes. A private audit-
ing scheme was first proposed by [110] called SW 
method and further reviewed by some research 
works[[87, 116].

Characteristics of data integrity technique
In this review article, focuses on several quality features 
of data integrity, which have individually prime impor-
tance in cloud storage security. These are:

• Public Auditability: The auditability scheme exam-
ines the accuracy of stored outsourced data from 
data owner at cloud storage by TPA according to the 
request of data owners [94, 95].

• Audit correctness: The proof message of CSP can 
pass the validation test of TPA only if CSP and TPA 
are being honest and CSP, data owner properly follow 
the pre-defined process of data storing [89, 78].

• Auditing soundness: The one and only way to pass 
TPA’s verification test is that CSP has to store the data 
owner’s entire outsourced data at cloud storage [90].

• Error localization at block level: It helps to find out 
error blocks of a file in cloud storage during verifica-
tion time [89].

• Data Correctness: It helps to rectify error data block 
with available replica block’s information in cloud 
storage [89].

• Stateless Auditor: During verification, a state-
less auditor is not necessary to maintain, store or 
update previous results of verification for future 
usages [88, 95].

• Storage Correctness: CSP prepares a report which 
shows that all data is entirely stored in cloud storage 
even if the data are partially tempered or lost. There-
fore, the system needs to guarantee data owners that 
their outsourced data are the same as what was pre-
viously stored [129].

• Robustness: In probabilistic data integrity strategy, 
errors in smaller size data should be identified and 
rectified [39].

• Unforgeability: Authenticated users can only gener-
ate a valid signature/metadata on shared data [129].

• Data Dynamic support: It allows data owners to 
insert, edit and delete data in the cloud storage by 
maintaining the constant level of integrity verifica-
tion support like previous [89].

• Dependability: Data should be available during man-
aging all the file blocks time [89].

• Replica Audibility: It helps to examine the replicas of 
the data file stored in the cloud storage by TPA on 
demand with data owners [89].

• Light Weight: It means that due to the occurrence 
of a large number of blocks and the presence of 
multiple users in the system, signature process time 
should be short to reduce the computational over-
head of clients[88, 97].

• Auditing Correctness: It ensures that the response 
message from the CSP side can pass only the veri-
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fication trial of TPA when CSP properly stores out-
sourced data perfectly into cloud storage [97].

• Privacy Protection: During verification, the auditing 
scheme should not expose a user’s identity informa-
tion in front of an adversary [90, 97].

• Efficient User Revocation: The repeal users are not 
able to upload any data to cloud storage and can not 
be authorized users any more [78].

• Batch Auditing: In the public auditing scheme, batch 
auditing method is proposed for doing multiple 
auditing tasks from different cloud users which TPA 
can instantly perform [95].

• Data Confidentiality: TPA can not acquire actual data 
during data integrity verification time [90].

• Boundless Verification: Data owners never give TPA 
any obligate condition about a fixed no. of verifica-
tion interaction of data integrity [88].

• Efficiency: The size of test metadata and the test time 
on multi-owner’s outsourced data in cloud comput-
ing are both individualistic with the number of data 
owners [95].

• Private Key Correctness: Private key can pass verifica-
tion test of cloud user only if the Private key Generator 
(PKG) sends a right private key to the cloud user [90].

• Blockless Verification: TPA no need to download 
entire blocks from cloud storage for verification [95].

Challenges of data integrity technique in cloud 
environment
Security challenges of data integrity technique in 
cloud computing always come with some fundamental 
questions:

• how outsourced data will be safe in a remote server 
and how data will be protected from any loss, dam-
age, or alteration in cloud storage?

• how security will assure cloud data if a malicious user 
is present inside the cloud?

• On which location of shared storage, outsourced data 
will be stored?

• Will legitimate access to the cloud data be by an 
authorized user only with complete audit verification 
availability?

All the above questions are associated with the term pri-
vacy preservation of data integrity scheme and that’s why 
data integrity in cloud computing is a rapidly growing 
challenge still now. Refer Table 4, for existing solutions to 
security challenges and corresponding solutions of data 
integrity techniques. 

a) Risk to integrity of data: This security is divided into 
three parts:

– during globally acquiring time, cloud services are 
hampered by many malicious attacks if integrity of 
database, network etc. are properly maintained.

– Data availability and integrity problems occur if 
unauthorized changes happened with data by CSP.

– Segregation problem of data among cloud users in 
cloud storage is another problem of data integrity. 
Therefore, SLA-based patch management policy, 
standard validation technique against unauthorized 
use and adequate security parameters need to be 
included in data integrity technique [131].

Table 4 Security Challenges of Cloud Storage with its Solutions

Types of Security Issues Symptoms Affects Solution with references

Risk to integrity of data Unauthorized access, segregation 
problem of data, lack of maintenance 
of database

hamperness of cloud storage service, 
lack of data integrity

Data encryption method, Public data 
auditing technique [83, 88–90]

Dishonest TPA tempering of original file, by the gener-
ation of wrong audit message, spoiling 
of CSP’s intention

Lack of data confidentiality, lack of data 
integrity

hash function with collision resistant 
property [87], Secure Hash Algorithm 
(SHA-2) [87], RSA algorithm [91], Threat 
Model [83], panda public auditing(PPA) 
[130]

Dishonest CSP Data leakage, data modification, loss 
of data

loss of reputation of CSP, data unavail-
ability, lack of data integrity

Zero knowledge proof [117], data pos-
session verification scheme [97], string 
authentication technique [53], firewall 
policies [54]

Forgery Attack Forge audit message, forge proof 
message

Violate data integrity policy, lack 
of reputation of CSP

soundness criteria [88], one way hash 
function [83], metadata of storage block 
order [89], hardness of diffie-Hellman 
computation in bilinear group [117], pass 
the challenge proof with non negligible 
probability [90]

Malicious Insider Attack Data leakage, data modification, data 
loss

Violate data integrity policy string authentication technique [14], 
digital signature [88, 97, 124, 125]
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b) Dishonest TPA: A dishonest TPA has two prime 
intentions:

– TPA can spoil the image of CSP by generating 
wrong integrity verification messages.

– TPA can exploit confidential information with the 
help of malicious attackers through repeated verifi-
cation interaction messages with cloud storage.

  Hence, an audit message verification method 
must be included in a data integrity verification 
scheme to continuously analyze the intentional 
behavior of TPA

c) Dishonest CSP: An adversary CSP has three motives: 
i) CSP tries to retrieve either the original content of the 
entire data file or all block information of the data file 
and this leakage data information are used by CSP for 
business profit. ii) CSP can modify the actual content 
of a file and use it for personal reasons. But in both 
cases, the data owner can not detect the actual culprit. 
iii) CSP always tries to maintain its business reputation 
even if outsourced data of owner are partially tempered 
or lost Particularly, for that reason, an acknowledged 
verification method, an error data detection method 
and an error data recovery method should be included 
in data integrity scheme to maintain intactness of data 
and confidentiality of data [89, 132].

d) Forgery Attack at Cloud Storage: Outsider attacker 
may forge a proof message which is generated by 
CSP for the blocks indicated by challenge message to 
respond TPA. Malicious auditors may forge an audit-
proof that passes the data integrity verification [88, 90].

e) Data modification by an insider malicious user into 
cloud storage : An insider malicious user can sub-
vert or modify a data block at his/her will and can 

fool the auditor and data owner to trust that the data 
blocks are well maintained at the cloud storage even 
if that malicious user alters the interaction messages 
in the network channel. Hence data confidential-
ity scheme or obfuscation data technique should be 
included in data integrity technique [92].

Desire design challenges of data integrity strategy
Below are the main design issues for data integrity 
schemes: 

a) Communication overhead: It means total outsourc-
ing data, which is transferred from client to storage 
server, transfer of challenge message to CSP, trans-
fer of the proof message to TPA, transfer of audit 
message to client all are communication overhead. 
Table  5 ,compares the communication overhead 
incurred during public auditing by DO, LCSP, and 
RTPA. Since DO always sends either their original 
file, an encrypted file, or an encrypted file with a sig-
nature to a cloud server, most articles here consider 
communication overhead for creating challenge mes-
sages and challenge-response messages, which is not 
included in DO’s communication overhead.

b) Computational overhead: Data preprocessing, sig-
nature generation and audit message verification 
from data owner side or trusted agent side, chal-
lenge message generation, data integrity verifica-
tion and audit message generation from the TPA 
side, prof message generation from CSP side all are 
computational overhead. In [97], the computational 
overhead of client, CSP and TPA are less than [124] 
because ZSS signature requires less overhead of 
power exponential and hash calculation than BLS 
signature. Table 6 compares the computational over-
head incurred during public auditing by DO, LCSP, 

Table 5 Comparison of Communication Overhead between DO, CSP and TPA During Auditing Phase

Ref. Data Owner Cloud Service Provider Third Party Auditor

[88] Not Considerable log2c + 160 (s+ 1)p

[89] Not Considerable 2j|k| + |r| 2|hash| + 2j|k| + 360

[90] Not Considerable |p| + |q| c.(|n| + |p|)

[133] Not Considerable log2c + (c + 1)log2p (s+ 1)log2p

[78] Not Considerable n|p| + n|q| (c + 1).|q| + |p| + c|id|

[87] Not Considerable j|k| j|Hash|

[105] Not Considerable j|k| Not Applicable (Private Auditing)

[134] Not Considerable c|s| + |p| |p| + 2|q|

[97] Not Considerable K(|p| + |q|) 2p.(k + q)

[135] Not Considerable c(|p| + |n|) (s+ 1)|p|

[94] Not Considerable |hash| + j|id| + j|k| |k|(j + 1)+ |c|
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and RTPA. Here, Pair denotes bilinear pairing opera-
tons, Hash denotes hash function, Mul denotes mul-
tiplication operation, ADD denotes addition opera-
tion, Exp denotes exponential operation,Inv denotes 
inverser operation,Encrypt denotes encryption oper-
ation, decrypt denotes decryption operation,and Sub 
denotes subtraction operation etc.

c) Storage overhead: Entire file or block files, meta-
data, signature, and replica blocks are required to be 
stored at cloud storage and at client side depending 
on the policy of system models. Cloud user storage 
overhead should be little during auditing verification 
to save extra storage overhead [36].

d) Cost overhead: It denotes the summarized cost of 
communication overhead, computational overhead, 
and storage overhead.

e) Data Dynamic Analysis: Stored data in cloud storage 
is not always static. Sometimes, alternation of data, 
deletion of data or addition of new data with old one 
are basic functions that come into the practical pic-

ture due to the dynamic demanding nature of clients. 
Therefore, data integrity verification should be done 
after all dynamic operations on stored data. In [93], 
the insertion, deletion and updation time of increas-
ing data blocks are less than [123] due to less depth 
of the authenticated structure of the dynamic data 
integrity auditing scheme.

Comparative analysis of data integrity strategies
integrity checking scheme

This section presents a comparative study and compari-
son of data integrity strategies. Table 7 shows a compara-
tive analysis of the data integrity strategy of cloud storage 
for expected design methods with limitations. Zang et al. 
[88] introduced a random masking technique in public 
audibility scheme during the computation of proof infor-
mation generation time. Due to the linear relationship 
between the data block and proof information, malicious 

Table 7 Comparative Analysis of the data integrity strategy of cloud storage

Ref. Objectives Limitations

[88] Public auditing, resist all external adversary, protect data from a mali-
cious auditor

Due to the missing of data storing acknowledge verification, the reputa-
tion of the Cloud server may be destroyed

[89] Public data integrity, error localization, replica level auditing, dynamic 
update

Due to missing of data storing acknowledge verification, the reputation 
of CS may be destroyed

[90] Data integrity auditing, sensitive data hiding Due to missing of audit message verification scheme, TPA can deceive 
user about audit message

[85] Data auditing, privacy-preserving Audit report needs to verify otherwise TPA may be malicious TPA

[61] Data integrity, resist replay attack and MITC attack Data privacy issue because after repeatedly passed challenging phase, 
CSP becomes capable of getting original data block

[87] Public auditing, data integrity Audit message verification scheme need to be presented otherwise TPA 
may be malicious

[86] Data integrity for static data resist from the external adversary The author assumes that TPA is a trusted one but practically not possible

[91] Public auditing, data integrity, dynamic data operation Acknowledgment message about insert, modification and deletion 
of data needs to verify otherwise CS may be malicious CS

[136] Public auditing, dynamic big graph data operation During verifying time of dynamic graph operations, data privacy 
is not properly maintained

[93] Dynamic update, data integrity auditing, reply forgery and reply attack An audit message verification scheme needs to be present otherwise 
TPA may be malicious TPA

[78] Public auditing, data integrity Audit message and acknowledge message verification scheme needs 
to be present otherwise TPA and cloud may be malicious

[97] Public auditing, reduce computational overhead, resist adaptive 
chosen-message attack

Validation results need to be verified otherwise TPA may be malicious

[137] Data integrity, privacy-preserving An audit message verification scheme needs to be present otherwise 
TPA may be malicious TPA

[122] Data integrity, resist forge attack No effective and secure data integrity scheme is present to support 
the data deduplication process of fog and cloud node

[126] Dynamic auditing, dynamic data operation, resist reply attack 
and replace attack

BLS signature is not suitable for a big data environment

[125] Certificateless public verification Searching time over encrypted outsourced data in blockchain system 
takes much time

[124] Zero-knowledge public auditing, privacy-preserving Not applicable for large scale big data and TPA don’t have the capability 
of auditing multiple user’s data simultaneously



Page 16 of 23Goswami et al. Journal of Cloud Computing           (2024) 13:45 

adversaries are capable of inert the effectiveness of the 
SWP scheme. In the SWP scheme, CSP generates proof 
information and sends it to TPA for verification. There 
may be an uncertain situation arise when CSP is intruded 
on by an external and malicious adversary that can alter 
every data block’s information. To hoax TPA and pass the 
verification test, a malicious adversary can eavesdrop chal-
lenge message and break off the proof message. Therefore, 
in the SWP scheme, we assume that TPA is the trustwor-
thy element. But practically, it is not possible. To defend 
against external malicious adversaries without a protec-
tive channel, the author proposed here a nonlinear dis-
turbance code as a random masking technique to alter the 
linear relationship into a nonlinear relationship between 
data blocks and proof messages. The author applied a BLS 
hash signature on each block to help the verifier for ran-
dom block verification. These public audibility verification 
techniques assure boundless, effective, stateless auditor 
and soundness criteria with two limitations are that due 
to the missing data storing acknowledge verification, the 
reputation of the Cloud services may be destroyed and this 
scheme is applicable for only static data.

M Thangavel et  al. [89] proposed a novel auditing 
framework, which protects cloud storage from malicious 
attacks. This technique is based on a ternary and rep-
lica-based ternary hash tree which ensures dynamically 
block updating, data correctness with error localization 
operation, data insertion, and data deletion operations. 
W. Shen et al. [90] introduced identity-based data audit-
ing scheme to hide sensitive information at the block 
level for securing cloud storage during data sharing time. 
Using this scheme, sanitizer sanitizes data blocks con-
taining sensitive information. Chameleon hash and an 
unforgeable chameleon hash signature do not provide 
blockless auditing and require high computational over-
head. Hence, this PKG-based signature method assures 
blockless verification and reduces computational over-
head. These public audibility verification techniques 
assure auditing soundness, private key correctness, 
and sensitive information hiding one limitation is that 
due to missing audit messages, TPA can deceive users 
about data verification. S.Mohanty et  al. [85] introduce 
a confidentiality-preserving auditing scheme by which 
cloud users can easily verify the risk of the used ser-
vice from the audit report which is maintained by TPA. 
This scheme has two benefits. First, it helps to check 
the integrity of cloud users’ data. Second, it verifies the 
TPA’s authentication and repudiation. In this scheme, 
the author proposed a system model which supports 
the basic criteria of cloud security auditing, confiden-
tiality, and availability. HMAC-MD5 technique is used 
on metadata to maintain data privacy on the TPA side. 
Chen et  al. [61] proposed MAC oriented data integrity 

technique based on the metadata verification method 
which reinforces auditing correctness. These technique 
helps to protect stored data in cloud storage from MitM 
and replay attacks. But this scheme needs to improve 
because, after some repeated pass of challenge-proof 
messages, CSP will have the ability to get actual block 
elements of the user’s confidential data.

S. Hiremath et  al. [87] established a public blockless 
data integrity scheme that secures fixed time to check 
data of variable size files. For data encryption, the author 
uses the AES algorithm and SHA-2 algorithm for the data 
auditing scheme. The author uses the concept of random 
masking and Homomorphic Linear Authenticator (HLA) 
techniques to ensure stored data confidentiality during 
auditing time. But this scheme is only applicable for static 
data stored in cloud storage. Hence, it needs to expand 
for dynamic data operations. T. Subha. et  al. [86] intro-
duced the idea of public auditability to check the correct-
ness of stored data in cloud storage and assume that TPA 
is a trusty entity. Data privacy mechanisms like Knox and 
Oruta have been proposed here to grow the security level 
at cloud storage and resist active adversary attacks. The 
author uses the Merkle hash tree to encrypt data block 
elements. B.Shao et  al. [93] established a hierarchical 
Multiple Branches Tree(HMBT) which secures users’ 
data auditing correctness, fulfills the crypto criteria of 
data privacy, and gives protection against forgery and 
replay attacks. The scheme is used a special hash func-
tion to give BLS signature on block elements and helps in 
public auditing.DCDV is a concept based on a hierarchi-
cal time tree and Merkle hash tree. Simultaneous execu-
tion of access control and data auditing mechanism rarely 
happens in attribute-based cryptography. Hence, Dual 
Control and Data Variable(DCDV) data integrity scheme 
is proposed in [132]. This scheme ensures the solution 
of the private data leakage problem by the user’s secret 
key and assures the correctness of the auditing scheme. 
A PDP technique is proposed for data integrity verifica-
tion scheme that supports dynamic data update opera-
tions, reduces communication overhead for fine-grained 
dynamic update of Bigdata increases the protection 
level of stored data at cloud storage, and resists collu-
sion resistance attacks and batch auditing [114]. Another 
novel public auditing scheme based on an identity-based 
cryptographical idea ensures low computational over-
head from revocated users during the possession of all 
file blocks. It fulfills the crypto criteria of soundness, cor-
rectness, security, and efficiency of revoke users [78].

Some research works introduced BLS cryptographical 
signature which has the shortest length among all avail-
able signatures [88]. This signature is based on a special 
hash function that is probabilistic, not deterministic. 
Also, it has more overhead of power exponential and hash 
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calculation. To overcome signature efficiency and compu-
tational overhead, a new signature ZSS is proposed [97]. 
This integrity scheme supports crypto criteria like privacy 
protection, public auditing correctness, and resisting mes-
sage and forgery. An attribute-based data auditing scheme 
is proposed in [137] which proved data correctness and 
soundness based on discrete logarithm and Diffie-Hell-
man key exchange algorithm. This scheme maintains the 
privacy of confidential data of cloud users and resists col-
lusion in blocks during auditing verification time. attacks. 
ID-based remote data auditing scheme(ID-PUIC) is intro-
duced here which secures efficiency, security, and flex-
ibility with the help of the Diffie-Hellman problem [98]. 
It also supports ID-based proxy data upload operation 
when users are restricted to access public cloud servers. 
It shows a lower computation cost of server and TPA than 
[107]. Both researches works [105, 126] have worked on 
public checking of data intactness of outsourced data and 
reducing communication and computational cost of the 
verifier. These also support dynamic data auditing, block-
less verification, and privacy preservation.

Future trends in data integrity approaches
As further research work, we are discussing here the 
future direction of the data integrity scheme to enlarge 
the scope of cloud data security for research process con-
tinuity. New emerging trends in data integrity schemes 
are listed below.In [39], authors have already discussed 
and shown evolutionary trends of data integrity schemes 

through a timeline representation from 2007 to 2015 
which presented possible scopes of data integrity strat-
egy. Hence, we show a visual representation of all prob-
able trends of the integrity scheme from 2016 to 2022 in 
the timeline infographic template, Fig. 2. 

a) Blockchain data-based integrity : Blockchain tech-
nology is decentralized, peer-peer technology. It sup-
ports scalable and distributed environments in which 
all the data are treated as transparent blocks that con-
tain cryptographic hash information of the previous 
block, and timestamps to resist any alteration of a sin-
gle data block without modifying all the subsequent 
linked blocks. This feature of this technology improves 
the performance of cloud storage and maintains 
the trust of data owners by increasing data privacy 
through the Merkle tree concept. In [138], a distrib-
uted virtual agent model is proposed through mobile 
agent technology to maintain the reliability of cloud 
data and to ensure trust verification of cloud data via 
multi-tenant. In [139], a blockchain-based generic 
framework is proposed to increase the security of the 
provenance data in cloud storage which is important 
for accessing log information of cloud data securely. 
In [140–142], all research works have the same inten-
tion of using blockchain technology to enhance data 
privacy and maintain data integrity in cloud storage.In 
Table 8, this article show use Blockchain technology to 
overcome some issues of cloud storage.

Fig. 2 Timeline Infographic of Data Integrity
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b) Data integrity in fog computing : Generally, pri-
vacy protection schemes are able to resist completely 
insider attacks in cloud storage. In [147], a fog com-
puting-based TLS framework is proposed to main-
tain the privacy of data in Fog servers. The extension 
part of cloud computing is fog computing which was 
firstly introduced in 2011 [148]. The three advan-
tages of fog computing are towering real-time, low 
latency, and broader range geographical distribution 
which is embedded with cloud computing to ensure 
the privacy of data in fog servers which is a powerful 
supplement to maintain data privacy preservation in 
cloud storage.

c) Distributed Machine Learning Oriented Data 
Integrity : In artificial intelligence, maintaining the 
integrity of training data in the distributed machine 
learning environment is a rapidly growing challenge 
due to network forge attacks. In [136], distributed 
machine learning-oriented data integrity verification 
scheme (DML-DIV) is introduced to assure training 
data intactness and to secure training data model. 
PDP sampling auditing algorithm is adopted here to 
resist tampering attacks and forge attacks. Discrete 
logarithm problem (DLP) is introduced in the DML-
DIV scheme to ensure privacy preservation of train-
ing data during TPA’s challenge verification time. To 
reduce key escrow problem and certificate cost, iden-
tity-based cryptography and key generation technol-
ogy is proposed here.

d) Data Integrity in Edge Computing : Edge comput-
ing is an extensional part of distributed computing. 
Cache data integrity is a new concept in edge com-
puting developed based on cloud computing which 
serves optimized data retrieval latency on edge serv-
ers and gives centralized problems of cloud storage 
server.Edge data integrity(EDI) concept is first pro-
posed to effectively handle auditing of vendor apps’ 
cache data on edge servers which is a challenging 
issue in dynamic, distributed, and volatile edge envi-
ronments described In [149]. Research work pro-
posed here EDI-V model using variable Merkle hash 
tree (VMHT) structure to maintain cache data audit-
ing on a large scale server through generating integ-
rity of replica data of it. In [150], the EDI-S model is 
introduced to verify the integrity of edge data and to 
localize the corrupted data on edge servers by gener-
ating digital signatures of each edge’s replica.

Conclusion
With the continuously enlarging popularity of attrac-
tive and optimized cost-based cloud services, it is 
inconvenient to make sure data owners the intactness 
of outsourced data in cloud storage environments has 

become a disaster security challenge. We have tried to 
highlight several issues and the corresponding solution 
approaches for cloud data integrity which will provide 
a visualization as well as clear directions to researchers. 
The current state of the art in this mentioned research 
field will provide extra milestones in several areas like 
cloud-based sensitive health care, secured financial ser-
vice, managing social media flat-forms, etc. In this paper, 
we have discussed phases of data integrity, characteristics 
of data integrity scheme, classification of data integrity 
strategy based on the type of proposal, nature of data and 
type of verification schemes, and desired design chal-
lenges of data integrity strategy based on performance 
overhead. We have also identified issues in physical cloud 
storage and attacks on storage-level services along with 
mitigating solutions. Lastly, we have established here a 
timeline infographic visual representation of a variety of 
data integrity schemes and future aspects of data integ-
rity strategy to explore all the security directions of cloud 
storage.
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