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Abstract 

In the field of meteorology, the global radar network is indispensable for detecting weather phenomena and offer-
ing early warning services. Nevertheless, radar data frequently exhibit anomalies, including gaps and clutter, aris-
ing from atmospheric refraction, equipment malfunctions, and other factors, resulting in diminished data quality. 
Traditional radar blockage correction methods, such as employing approximate radial information interpolation 
and supplementing missing data, often fail to effectively exploit potential patterns in massive radar data, for the large 
volume of data precludes a thorough analysis and understanding of the inherent complex patterns and dependen-
cies through simple interpolation or supplementation techniques. Fortunately, edge computing possesses certain 
data processing capabilities and cloud center boasts substantial computational power, which together can collabo-
ratively offer timely computation and storage for the correction of radar beam blockage. To this end, an edge-cloud 
collaborative driven deep learning model named DenMerD is proposed in this paper, which includes dense connec-
tion module and merge distribution (MD) unit. Compared to existing models such as RC-FCN, DenseNet, and VGG, 
this model greatly improves key performance metrics, with 30.7% improvement in Critical Success Index (CSI), 30.1% 
improvement in Probability of Detection (POD), and 3.1% improvement in False Alarm Rate (FAR). It also performs 
well in the Structure Similarity Index Measure (SSIM) metrics compared to its counterparts. These findings under-
score the efficacy of the design in improving feature propagation and beam blockage accuracy, and also highlights 
the potential and value of mobile edge computing in processing large-scale meteorological data.

Keywords Mobile edge computing, Radar beam blockage correction, Image restoration, Deep learning

Introduction
Weather radar, as an active remote sensing instrument, 
employs electromagnetic waves to ascertain precipita-
tion location and intensity. Contemporary weather radar 
offers high spatial and temporal resolution data, proving 
valuable for meteorological services [1–3]. Due to atmos-
pheric refraction, equipment failure and other factors, 
radar echoes can suffer from beam blockage [4, 5]. Filling 
in the correction of radar beam blockage and achieving 
radar data quality control can effectively improve disas-
ter prevention and mitigation capabilities under extreme 
weather conditions, and strongly guarantee the safety of, 
for example, maritime transport and aviation.
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Traditional methods for addressing weather radar 
beam blockage involve leveraging the radar’s actual 
position and the angle of the data-deficient region 
at the same or neighboring elevations, accompanied 
by manual observation of data patterns, rule design, 
model customization, and subsequent data supplemen-
tation based on adjacent information [6]. A sophisti-
cated quality control algorithm has been developed for 
dual PRF radial velocity data, comprising noise isola-
tion based on echo size, deblurring via local continu-
ity, and targeted singular value adjustments to rectify 
inherent data errors [7]. Concurrently, an innovative 
correction method using averaged reflectivity factor 
vertical profiles has been employed to mitigate radar 
beam blockage effects, significantly enhancing quanti-
tative precipitation estimation accuracy in obstructed 
regions [8].

Despite the efficacy of traditional interpolation and 
data-filling approaches in performing beam blockage 
correction, these methods are relatively inefficient and 
limited due to the fact that they do not take advan-
tage of the superb arithmetic power of the big data 
era, which makes them limited in taking full advantage 
of the deep regularities that exist in a wide range of 
weather radar data. In recent years, deep learning has 
found widespread applications across various domains 
such as computer vision, edge computing, anomaly 
detection, and data mining, yielding remarkable results 
[9–14]. The training of deep learning models is an 
intensively resource-dependent task, necessitating sub-
stantial computational capabilities and storage capacity 
[15–19]. Mobile Edge Computing (MEC) utilises the 
computational resources of edge devices to save energy 
consumption for smart devices and reduce computa-
tional latency of tasks, while avoiding network conges-
tion in traditional cloud computing. Therefore, many 
researchers have worked on the application of MEC in 
different scenarios [20–25]. The challenge presented 
by radar beam blockage correction is manifested as a 
distortion or deficiency in the radar echo images. This 
observation implies that a potential solution could be 
explored through the application of image restoration 
methods, which are designed to rectify and enhance 
visual data integrity in similar contexts. In the realm of 
image restoration, deep learning methodologies have 
advanced rapidly and achieved substantial progress. 
However, the application of such techniques in radar 
beam blockage correction research remains relatively 
unexplored. The potential for applying these techniques 
to radar beam blockage correction is considerable and 
anticipated to yield superior revision outcomes.

The main contributions of this paper are summarised 
as follows:

• An edge-cloud collaboration deep learning radar 
beam blockage correction approach is proposed, 
which effectively improves the radar big data pro-
cessing efficiency and beam blockage correction 
accuracy.

• A radar beam blockage correction deep learning 
model is designed, which includes dense connec-
tion module and merged distribution transition unit. 
Compared with other advanced models, the pro-
posed model has better correction performance.

• The beam blockage correction experiments in this 
paper are carried out on two datasets based on the 
radar echo data of Guangzhou Station and achieve 
good results in the evaluation metrics in the fields 
of meteorology and image restoration, such as CSI, 
POD, FAR and SSIM.

The rest of the paper is presented as follows: The Related 
work section discusses relevant research advances in 
radar beam blockage correction. The Method section 
dicusses the system model proposed in this paper, the 
cloud depth model and the important components of it. 
The Experiments section dicusses the production of the 
dataset, the evaluation metrics, the loss function and the 
experimental results. The Conclusion section summa-
rises the findings of the work in this paper.

Related work
This section discusses the research status of radar beam 
blockage and the related research progress of image res-
toration, and briefly introduces how to solve the related 
problems in this paper.

Traditional beam blockage correction methods
Currently, there are two main types of radar beam block-
age revision methods, one that relies on terrain data 
and another that does not. Terrain data, specifically the 
Digital Elevation Model (DEM), encompasses the eleva-
tion information of terrain grid points. Zhang et al. [26] 
utilized the distance bank mean fill method pertaining to 
DEM data, utilizing neighboring Plan Position Indicator 
(PPI) echo information, to ascertain real-time correction 
factors that enable the revision of sparse smaller radial 
blockages. Chen et al. from [27] used DEM data from the 
Shuttle Radar Topography Mission (SRTM) and DEM 
data from Google to calculate the beam blockage rate 
at low elevation angles of S-band radars located in the 
southern suburbs of Beijing, respectively, and established 
a revised relationship for the echo reflectivity in partially 
blocked areas. Liu et al. [28] used SRTM digital elevation 
data to simulate and calculate the beam occlusion of 212 
new generation weather radars currently operating in 
China.
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These methods depend on topographic information, 
and due to rapid high-rise construction accompany-
ing societal development, it becomes challenging for 
topographic data to be promptly reflected in DEM data, 
consequently impacting data revision accuracy. Gou 
et al. [29] used the method of first removing the partially 
blocked radar echoes and then revising the discontinuity 
effect caused by partial blockage by re-gridding the puz-
zle. Huang et  al. [30] proposed a beam blockage identi-
fication and revision algorithm that does not rely on a 
superior accuracy DEM. The algorithm performs block-
age identification first and then linear interpolation for 
the inaccurate echo data caused by partial blockage or 
small-area complete blockage to achieve the revision of 
the blockage data. Wang et al. [31] analysed the climatic 
characteristics of the frequency of radar echoes of dif-
ferent intensities and their spatial distribution and other 
characteristics from the perspective of radar climate sta-
tistics, based on which the radar clutter was identified 
and revised.

Although these two types of traditional beam blockage 
correction methods have achieved some results, these 
manual interpolation methods based on neighbouring 
contexts fail to exploit the superb arithmetic power of the 
big data era to mine the potential laws of massive radar 
data, which leads to inefficient beam revision.

Advanced deep learning approaches for image restoration 
and radar beam blockage correction
As deep learning techniques have evolved in contem-
porary studies, a variety of deep learning approaches 
have been extensively employed in image restoration 
tasks. Mao et  al. [32] proposed a single image restora-
tion method for generative adversarial networks based 
on a self-attentive mechanism, incorporating WGAN to 
ensure comprehensive coherence of the restored region 
through the learning of generative adversarial models. 
The proposed model employs the earth moving distance 
to quantify the resemblance amidst a pair of distribu-
tions. Phutke et  al. [33] suggested computationally effi-
cient, lightweight networks for image restoration with 
minimal parameters and without guidance information. 
Ma et  al. [34] presented a versatile restoration frame-
work capable of addressing incomplete images exhibit-
ing considerable missing regions, encompassing both 
continuous and discontinuous areas. Region opera-
tions are implemented in the generator and discrimina-
tor, catering to distinct region types specifically, existing 
and missing regions. Quan et  al. [35] proposed a novel 
three-stage restoration framework encompassing local 
and global refinement. An encoder-decoder network 
with skip connections is initially utilized for generating 
coarse preliminary results. Aishwarya et al. [36] utilized 

two adversarial networks for this task, the first targeting 
restoration and the second super-resolution. In order to 
make the image of the restored region enhanced smooth-
ness and increased definition, Nazeri et  al. [37] intro-
duced a new image restoration algorithm facilitating the 
accurate recovery of missing regions. Experimental out-
comes demonstrate that this approach surpasses previ-
ous methodologies in terms of both speed and quality. 
Hong et al. [38] approached image restoration from the 
unique perspective of generating a seamless transition, 
devising a streamlined DFNet.

Considering radar beam blockage correction as an 
image restoration issue, the obstructed area can be per-
ceived as the image’s covered portion. Consequently, the 
algorithm’s objective is to discover the interrelation of 
data within obstructed and recognized areas in extensive 
radar datasets. This allows for the estimation of the pixel 
value with the highest probability of occurrence for each 
pixel point in the blocked region, which corresponds to 
the image’s missing area. Wu et al. [39] proposed a deep 
learning network to correct the weather radar beam 
revision, on the basis of which [40] proposed an edge 
assisted cloud framework in which individual site radar 
echo signals could be analysed and pre-processed at the 
edge and then trained in the cloud using elastic resources 
and distributed learning capabilities, a RC-FCN for beam 
blockage revision was suggested, integrated into the 
framework, and compared with alternative deep learning 
models.

Overall, mobile edge computing and deep learning 
techniques have made great progress in recent years 
[41–46]. Therefore, applying similar techniques to beam 
blockage correction has great potential and is expected to 
achieve better correction results. The focus of this paper 
is to introduce the concept of mobile edge computing 
and adopt an edge-cloud cooperative approach to correct 
radar data loss due to various reasons.

Method
System model
In this paper, the proposition of integrating radar 
stations as mobile edge nodes is articulated as a cor-
nerstone for the advancement of edge computing 
frameworks. This integration is especially critical for 
the initial processing of data procured from radar 
systems. Such a preprocessing phase is crucial in the 
data handling sequence, involving a sophisticated 
method of minimizing and transmuting the exten-
sive radar data. This procedure effectively extracts 
and condenses the fundamental attributes required 
for subsequent analytical computations. Following 
this phase, the processed data is transmitted to an 
advanced, cloud-based deep learning architecture for 
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intensive training. This rigorous analytical undertak-
ing is indispensable for the development and enhance-
ment of predictive models, focusing specifically on the 
improvement of algorithms related to beam blockage 
correction. This method highlights the critical role of 
edge computing in enhancing both the precision and 
the efficiency of data processing within radar systems. 
It exemplifies the transformative potential that edge 
computing holds for advancing predictive modeling in 
this field.

Upon the completion of this training paradigm, the 
elaborately constructed model is then disseminated 
from the cloud to the aforementioned edge nodes. 
This transfer equips the nodes with the capability to 
execute beam blockage corrections in a decentralized 
manner, leveraging the computational power embed-
ded at the edge of the network. The integration of such 
a system underscores the inherent efficiency and reli-
ability that edge computing confers upon meteoro-
logical services, as it enables the swift processing of 
large-scale datasets pertinent to meteorological analy-
sis. The deployment of this architecture, as depicted in 
Fig. 1, represents a significant shift in the methodology 
of processing meteorological data. It serves as a prime 
example of the substantial influence and essential use-
fulness of mobile edge computing in the handling and 
analysis of extensive meteorological datasets across 
various applications.

Overall pipeline in cloud
The pre-processed datasets, procured from each des-
ignated mobile edge site, are systematically relayed to a 
centralized cloud computing facility. This transmission is 
orchestrated in such a manner that it facilitates the amal-
gamation and synchronization of data from disparate 
geographic locales. Upon the arrival at the cloud centre 
server, this data then serves as the foundational bedrock 
upon which sophisticated model training is conducted. 
The model proposed in this paper is bifurcated into two 
distinct segments: encoding and decoding frameworks. 
The encoding framework incorporates the concept of 
dense connectivity to facilitate learning of more feature 
mappings and contains three dense connection modules. 
The decoding framework utilizes the upsampling struc-
ture similar to that in U-net to restore the image size.

The initial input is a 360 × 250 radar echo map to be 
restored, resized to 224 × 224, and subsequently pro-
cessed by the encoder after one convolution with a 7 × 7 
convolution kernel, a stride of 2, and padding of 3. It then 
proceeds through three dense connection modules with 
five transposed convolutions, all with a 3 × 3 convolution 
kernel, a stride of 2, and no padding. Finally, the image 
size is restored to 360 × 250 by an adaptive pooling oper-
ation, and the output of each layer of the decoder section 
is passed to the MD transition unit for pooling operation 
and then through the fully connected layer, with the final 
output being the restored radar echo map. The specific 

Fig. 1 System model
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architecture is depicted in Fig. 2. Through this methodi-
cal and rigorous training, the model progressively learns 
and adapts, effectively encapsulating the complex pat-
terns and variances inherent in the meteorological data.

Dense connection module
Within the scope of this paper, the architecture of the 
proposed model incorporates a robust configuration of 
dense connectivity within its encoder segment. These 
modules are specifically designed to enhance the flow 
of information and gradients throughout the network, 
thereby significantly improving the model’s ability to cap-
ture and encode complex data representations.

In this network structure, each layer establishes direct 
connections with all previous layers, receives additional 
input data from them, and passes its own feature map-
ping to all subsequent layers.

This design employs a cascading approach that helps to 
transfer collective knowledge from the previous layers in 

the network. This densely connected structure helps to 
overcome the gradient vanishing problem as each layer 
can more easily access gradient information from the 
previous layer, thus enhancing feature propagation. In 
addition, this design also reduces the number of model 
parameters relative to the traditional network structure 
because the layers are more tightly connected. The spe-
cific architecture is depicted in Fig. 3.

Merge‑distribution transition unit
In the domain of meteorology, particularly in the 
context of radar beam blockage correction tasks, the 
utilization of information harvested from various lev-
els of preceding convolutional layers is of paramount 
importance. Acknowledging this, the paper intro-
duces an innovative structural component termed 
the Merge-Distribution (MD) transition unit. This 
unit is ingeniously crafted to amalgamate and distrib-
ute information more efficiently across the temporal 

Fig. 2 Structure of the overall pipeline in cloud

Fig. 3 Structure of the dense connection module
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dimension. The primary objective of the MD transi-
tion unit is to augment the existing informational par-
adigm by incorporating additional inputs derived from 
prior temporal states, thus substantially enriching 
the feature propagation mechanism within the multi-
layer convolutional neural network architecture. The 
introduction of such a unit is intended to significantly 
bolster the resilience and accuracy of the model by 
enabling a more nuanced and comprehensive synthesis 
of information, thereby ensuring a more robust feature 
representation that is vital for the precise adjustment 
of beam blockage phenomena in weather radar sys-
tems. This innovative approach underscores a pivotal 
advancement in enhancing the convolutional neural 
network’s ability to discern and adapt to the complex 
dynamics inherent in meteorological data processing.

Specifically, the MD transition unit takes the follow-
ing steps to achieve this goal: First, it concatenates the 
output results of multiple convolutional layers, which 
means that these outputs are connected in one dimen-
sion to be represented by rich features. Next, this con-
catenated feature vector is passed to a convolution 
layer with a kernel size of 1 × 1, which helps to further 
integrate and refine the features. The output of this 
convolutional layer is then pooled to reduce the fea-
ture dimension and extract the most significant feature 
information. Finally, the processed output is passed to 
the convolution layer at the next time step to ensure 
that the new feature information can be propagated 
and utilized throughout the network. The specific 
architecture is depicted in Fig. 4.

Experiments
Experiment details
Mobile edge devices generate massive amounts of 
radar data, which are pre-processed at the edge end. In 
this paper, two radar echo datasets were created, both 
derived from aggregated reflectance images from the 
Guangzhou station. In order to achieve a more accurate 
beam blocking correction and also to provide the nec-
essary features for the deep learning model, a series of 
preprocessing steps on the raw data were performed. 
First, the array of raw pixel values were converted into 
an array of radar echo strength dBZ values, and denois-
ing and interpolation were performed considering the 
presence of noise values beyond the grey scale range in 
the aggregated reflectance images from the Guangzhou 
station. Each pixel in the array was determined whether 
it belongs to the set of grey values, and if not, mark it 
as an outlier and replace and fill it with the largest ele-
ment in its upper, lower, left and right neighbourhood. 
Points with values less than 10 dBZ and greater than 70 
dBZ typically represent non-meteorological clutter, so 
these values were replaced with zeros to prevent any det-
rimental effect on the model’s modelling of the effective 
echoes. After the denoising and interpolation operations 
were completed, the raw image data were converted to 
greyscale format to reduce computational complexity. 
Then, the image were expanded into a rectangular rep-
resentation along the radius. Finally, randomly generated 
rectangles and irregular masks were manually applied on 
the processed images. The associated process is shown 
in Algorithm 1.

Fig. 4 Structure of the MD transition unit
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Algorithm 1 Main steps of data preprocessing

In this way, two datasets were obtained: one contain-
ing 12,000 radar echo images with random rectangular 
masks, of which the first 10,000 were used as a train-
ing set and the remaining 2,000 were used as a test set; 
and the other containing 2,000 radar echo images with 
random irregular masks, of which the first 1,600 were 
used as a training set and the remaining 400 were used 
as a test set. An example of the home-made dataset is 
shown in Fig. 5. Radar echo image with random rectan-
gular mask on the left and radar echo image with ran-
dom irregular mask on the right.

This paper approaches the weather radar echo block-
age revision issue as an instance of an image restoration 
problem, aiming to uncover the distribution relation-
ship between data in the blockage and known regions 
within radar big data. This is carried out to estimate 
the pixel value exhibiting the highest probability of 
occurrence for each pixel point in the blockage region, 
which corresponds to the missing portion of the image. 
A multi-classification cross-entropy loss function is 
employed to compute the most probable pixel value 
for each pixel point within the area to be restored. This 
step can be formulated as Eq.(1):

where z represents the predicted pixel value, c denotes 
the sample label, and z[c] is negative log likelihood loss. 
After calculating a pixel’s loss, the total loss is obtained 
by summing the losses of all pixels within the region to 
be repaired.

Evaluation metrics
The experiments conducted in this paper entail the com-
parison of all pixel points and the calculation of accuracy 
within the image restoration domain, utilizing SSIM [40] 
as the evaluative criterion. The calculation formula is 
demonstrated in Eq.(2):

where x denotes the true input image, y signifies the 
restored image, µx and µy represent the means of x and 
y respectively, and σx and σy correspond to the stand-
ard deviations of x and y respectively. σxy symbolizes 
the covariance of x and y, while c1 and c2 are constants 
employed to prevent systematic errors due to a zero 
denominator.

Nonetheless, since the radar echo revision prob-
lem primarily concerns the meteorological domain, 
this paper also incorporates the Critical Success Index 
(CSI [2]), False Alarm Ratio (FAR [2]), and Probability 
of Detection (POD [2]) as evaluation metrics to assess 
the model’s restoration effectiveness. The correspond-
ing calculation equations can be found in Eq.(3), Eq.(4), 
and Eq.(5):

where TP is a hit, FP is a false alarm and FN is a missed 
alarm.

Experiment results
As demonstrated in Fig.  6, the radar echo image beam 
revision effect of the proposed model can be visualized. 
Regarding the area of the image to be restored, the model 

(1)Loss(z, c) = −z[c]+ log(

c−1

j=0

exp(z[j]))

(2)SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ 2
x + σ 2

y + c2)

(3)CSI =
TP

TP + FP + FN

(4)FAR =
FP

TP + FP

(5)POD =
TP

TP + FN

Fig. 5 Example graph of datasets
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yields satisfactory outcomes, in terms of both overall 
image external contours and specific detail levels.

Accuracy is used to describe the pixel-level difference 
between the predicted image and the true value and 
measures the performance of the model. As shown in 
Figs. 7 and 8, the accuracy of the beam blockage revi-
sion of the proposed model has been improved com-
pared to VGG, DenseNet, DFNet and RC-FCN. These 
models are chosen in this paper because the model 
proposed in this paper use ecoding and decoding struc-
tures and contain modules such as dense connection, 
and these model structures are also relevant. Therefore, 
by comparing with these models, the improvement 
of the model proposed in this paper in terms of beam 
blockage correction accuracy can be more comprehen-
sively assessed and demonstrated.

The proposed model incorporates encoding and 
decoding frameworks, complemented by the dense 
connection module and MD transition unit. Quan-
titative comparisons with VGG, DenseNet, DFNet, 
and RC-FCN are performed. The detailed results are 
exhibited in Tables  1, 2, 3, and 4, with the top results 

displayed in bold and the runner-up results underlined. 
In the evaluation metrics used in this paper, higher 
values of CSI, POD, and SSIM represent better model 
performance, and lower values of FAR represent better 
model performance.

Under the CSI evaluation metric, DenMerD excels in 
most dBZ value ranges in the Rectangular Mask data-
set, improving 17.4% , and 30.1% relative to the next best 
models, RC-FCN, and VGG, respectively. This highlights 
the effectiveness of the dense connection module and 
MD transition unit in enhancing feature propagation in 
DenMerD. In the Irregular Mask dataset, DenMerD also 
shows excellent performance, improving 14.6% and 30.7% 
with respect to the second-best models RC-FCN and 
VGG, respectively, which further validates the usefulness 
of these modules.

Under the FAR evaluation metric, DenMerD improves 
3.1% and 2.2% relative to the second-best model in the 
45-50 and 35-40 dBZ value ranges, respectively. These 
boosts can be traced back to DenMerD’s dense connec-
tion module, which helps to propagate feature informa-
tion more efficiently and improve model performance. 

Fig. 6 Example of restored image with beam blockage
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Fig. 7 Accuracy based on rectangular mask

Fig. 8 Accuracy based on irregular mask
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However, the boosts are lower in other ranges, which 
may be constrained by the characteristics of the input 
data.In the Irregular Mask dataset, DenMerD improves 
relative to the next-best model by 3.1% , 0.4% , and 2.2% 
over the 35-40, 15-20, and 0-5 dBZ value ranges. These 
performance gains are also attributed to DenMerD’s 
dense connection modules and MD transition units, 
which enhance feature propagation and network depth.

Under the POD evaluation metric, DenMerD achieves 
significant performance improvement relative to the 
next best model in both datasets in the high dBZ value 
ranges (55-60 and 50-55), reaching 32.8% and 47.7% , 
respectively.

The model’s performance under the SSIM metric is 
noteworthy, indicating a high level of restoration effec-
tiveness and completion precision, demonstrating the 

effectiveness of introducing image restoration meth-
ods into the field of weather radar beam blockage 
revision.

The ablation experiment is conducted on the Rec-
tangular Mask Dataset to demonstrate the effective-
ness of the Dense Connection Moudle and the MD 
Transition Unit. The objects of the ablation experi-
ment including the RC-FCN, DenMerD wo. Dense 
Connection Moudle (DenMerD without Dense Con-
nection Moudle), DenMerD wo. MD Transition Unit 
(DenMerD without MD Transition Unit), and the 
standard DenMerD. As shown in Table  5, the intro-
duction of dense connection modules and MD transi-
tion units plays a key role in beam blockage correction 
under the evaluation metrics average CSI, average 
FAR and average POD. These three metrics are the 

Table 1 A comparative assessment of CSI

dBZ Dataset VGG DenseNet DFNet RC‑FCN DenMerD*

55‑60 Rectangular Mask 0.0141 0.0152 0.0144 0.0133 0.0308
50‑55 0.0724 0.0641 0.0647 0.0736 0.0864
45‑50 0.1938 0.1325 0.1722 0.1065 0.2521
40‑45 0.1916 0.1489 0.1323 0.1122 0.2101
35‑40 0.1777 0.1351 0.1745 0.1802 0.1912
30‑35 0.2291 0.1825 0.1691 0.2368 0.2563
25‑30 0.2001 0.1629 0.1982 0.2052 0.2246
20‑25 0.1362 0.1945 0.136 0.2181 0.2215
15‑20 0.2015 0.1903 0.1589 0.1046 0.2134
10‑15 0.2352 0.2238 0.2563 0.2675 0.2517

5‑10 0.2974 0.3011 0.3029 0.4102 0.3133

0‑5 0.2643 0.2689 0.2692 0.2663 0.2759
‑20‑0 0.3541 0.3612 0.3614 0.4387 0.3728

NULL 0.7665 0.7668 0.8156 0.8481 0.8021

55‑60 IrregularMask 0.0135 0.0134 0.0138 0.0129 0.0295
50‑55 0.0728 0.0626 0.0645 0.0731 0.0838
45‑50 0.1652 0.1302 0.1712 0.1921 0.2511
40‑45 0.1905 0.1436 0.1319 0.1113 0.2105
35‑40 0.1726 0.1329 0.1727 0.1248 0.1916
30‑35 0.2278 0.1811 0.1678 0.1553 0.2572
25‑30 0.1956 0.1609 0.1216 0.1969 0.2237
20‑25 0.1353 0.1935 0.1352 0.2157 0.2209
15‑20 0.2015 0.1869 0.1568 0.1027 0.2125
10‑15 0.2311 0.2219 0.2427 0.2648 0.2519

5‑10 0.2959 0.2976 0.3019 0.4067 0.3126

0‑5 0.2616 0.2645 0.2678 0.2654 0.2742
‑20‑0 0.3532 0.3607 0.3615 0.4362 0.3723

NULL 0.7642 0.7634 0.8129 0.8468 0.8011
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mean values of CSI, FAR, and POD in each dBZ range. 
In particular, the introduction of the Dense Con-
nection Module fosters a more efficient propaga-
tion of information through the network, resulting 
in improved performance across the aforementioned 
metrics. Meanwhile, the MD Transition Unit demon-
strates its effectiveness in further refining the correc-
tion process, leading to noteworthy improvements in 
the model’s accuracy and reliability.

These findings underscore the crucial importance of 
these architectural components in addressing beam 
blockage challenges and highlight their potential appli-
cability in advancing other areas of research within the 
domain of deep learning and meteorology. Further-
more, they provide valuable insights for future enhance-
ments and optimizations of the DenMerD model and 
related techniques in real-world applications.

Conclusion
In this paper, an edge-cloud collaborative driven deep 
learning model named DenMerD is proposed, which 
includes dense connection module and merge distribu-
tion (MD) unit. The radar sites are regarded as mobile 
edge nodes, and the edge-cloud collaboration is used 
for the correction service. The radar beam blockage 
correction problem is regarded as an image restoration 
problem. The model proposed in this paper improves 
30.7% and 30.1% over the existing models in the evalua-
tion metrics of meteorological domains such as CSI and 
POD, and also shows excellent performance in SSIM 
metrics, which proves the effectiveness of the dense 
connection module and MD transition unit designed 
in this paper in enhancing the feature propagation to 
improve the accuracy of the beam blockage correction, 
and also highlights the role of mobile edge computing 

Table 2 A comparative assessment of FAR

dBZ Dataset VGG DenseNet DFNet RC‑FCN DenMerD*

55‑60 Rectangular Mask 0.0446 0.0645 0.0578 0.1958 0.0464

50‑55 0.1923 0.2545 0.3253 0.3386 0.2089

45‑50 0.6052 0.5916 0.5575 0.4965 0.4814
40‑45 0.6992 0.6852 0.7001 0.6052 0.5965
35‑40 0.6335 0.6966 0.7585 0.6221 0.6088
30‑35 0.6321 0.6954 0.6853 0.7172 0.6319
25‑30 0.6264 0.6693 0.7622 0.6235 0.6143
20‑25 0.6358 0.6764 0.6462 0.6342 0.6295
15‑20 0.6202 0.6602 0.7589 0.7461 0.6121
10‑15 0.5857 0.6053 0.5859 0.5654 0.5742

5‑10 0.5203 0.5329 0.5201 0.4629 0.5194

0‑5 0.4859 0.4833 0.4935 0.4913 0.4736
‑20‑0 0.2806 0.3412 0.3529 0.3711 0.2724
NULL 0.1685 0.1761 0.1777 0.0979 0.1782

55‑60 Irregular Mask 0.0478 0.0654 0.0453 0.1962 0.0461

50‑55 0.1956 0.2549 0.3268 0.1948 0.2092

45‑50 0.4998 0.5925 0.4871 0.6507 0.4818
40‑45 0.6067 0.6023 0.7015 0.6991 0.5969
35‑40 0.6349 0.6973 0.7592 0.6281 0.6095
30‑35 0.6334 0.6961 0.6868 0.7178 0.6323
25‑30 0.6279 0.6703 0.7639 0.6153 0.6147
20‑25 0.6361 0.6774 0.6329 0.7538 0.6302
15‑20 0.6232 0.6615 0.7597 0.6192 0.6167
10‑15 0.5869 0.6069 0.5863 0.5662 0.5756

5‑10 0.5232 0.5331 0.5212 0.4633 0.5211

0‑5 0.4862 0.4837 0.4948 0.4919 0.4731
‑20‑0 0.2809 0.342 0.3539 0.2789 0.2737
NULL 0.1664 0.1772 0.1661 0.0984 0.1789
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in processing large-scale meteorological data. Future 
research could explore how to further optimise the 
performance of the model, including improving the 

design of the dense connection moudle and MD units 
to accommodate a wider range of meteorological data 
characteristics. In addition, the model’s edge-cloud col-
laboration approach can be applied to other areas such 
as radar echo extrapolation, semantic segmentation, 
etc. for wider real-time data processing and decision 
support.
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Table 3 A comparative assessment of POD

dBZ Dataset VGG DenseNet DFNet RC‑FCN DenMerD*

55‑60 Rectangular Mask 0.0172 0.0163 0.0132 0.0189 0.0251
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45‑50 0.2941 0.2028 0.2534 0.2956 0.2986
40‑45 0.2965 0.2386 0.2357 0.2980 0.3089
35‑40 0.2770 0.2062 0.2169 0.2215 0.2674

30‑35 0.3878 0.3236 0.3552 0.3882 0.3898
25‑30 0.3054 0.2441 0.2576 0.2021 0.3080
20‑25 0.3565 0.3288 0.3379 0.3572 0.3577
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55‑60 Irregular Mask 0.0163 0.0156 0.0135 0.0172 0.0254
50‑55 0.0893 0.0819 0.0992 0.0872 0.1134
45‑50 0.2923 0.2011 0.2547 0.2965 0.2975
40‑45 0.2952 0.2375 0.2362 0.1853 0.3071
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30‑35 0.3852 0.3234 0.3869 0.2829 0.3902
25‑30 0.3041 0.2439 0.3055 0.2026 0.3077
20‑25 0.3552 0.3277 0.3371 0.3557 0.3568
15‑20 0.3051 0.3066 0.2876 0.1645 0.3091
10‑15 0.3434 0.3275 0.3436 0.3629 0.3532

5‑10 0.4267 0.4411 0.4134 0.6031 0.4438

0‑5 0.3813 0.3742 0.3833 0.3672 0.3949
‑20‑0 0.4477 0.4662 0.4458 0.5921 0.4372

NULL 0.8965 0.9048 0.9169 0.9351 0.9188

Table 4 A comparative assessment of SSIM

Dataset VGG DenseNet DFNet RC‑FCN DenMerD*

Rectangular Mask 0.7039 0.6854 0.6351 0.7422 0.7543
Irregular Mask 0.6816 0.6108 0.6542 0.6948 0.7021

Table 5 Ablation Experiment on the Rectangular Mask Dataset

Model CSI‑AVG FAR‑AVG POD‑AVG

RC‑FCN 0.2487 0.4977 0.3497

wo. Dense Connection 0.2579 0.4852 0.3488

wo. MD Unit 0.2543 0.4712 0.3475

DenMerD 0.2644 0.4605 0.3516
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