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Abstract 

The Smart Grid (SG) heavily depends on the Advanced Metering Infrastructure (AMI) technology, which has shown 
its vulnerability to intrusions. To effectively monitor and raise alarms in response to anomalous activities, the Intrusion 
Detection System (IDS) plays a crucial role. However, existing intrusion detection models are typically trained on cloud 
servers, which exposes user data to significant privacy risks and extends the time required for intrusion detection. 
Training a high-quality IDS using Artificial Intelligence (AI) technologies on a single entity becomes particularly 
challenging when dealing with vast amounts of distributed data across the network. To address these concerns, 
this paper presents a novel approach: a fog-edge-enabled Support Vector Machine (SVM)-based federated learning 
(FL) IDS for SGs. FL is an AI technique for training Edge devices. In this system, only learning parameters are shared 
with the global model, ensuring the utmost data privacy while enabling collaborative learning to develop a high-
quality IDS model. The test and validation results obtained from this proposed model demonstrate its superiority 
over existing methods, achieving an impressive percentage improvement of 4.17% accuracy, 13.19% recall, 9.63% 
precision, 13.19% F1 score when evaluated using the NSL-KDD dataset. Furthermore, the model performed exception-
ally well on the CICIDS2017 dataset, with improved accuracy, precision, recall, and F1 scores reaching 6.03%, 6.03%, 
7.57%, and 7.08%, respectively. This novel approach enhances intrusion detection accuracy and safeguards user data 
and privacy in SG systems, making it a significant advancement in the field.

Keywords Advanced metering infrastructure, Artificial intelligence, Edge computing, Federated learning, Fog 
computing, Intrusion detection system, Privacy, Smart grids, Support vector machine

Introduction
Smart grid (SG) infrastructures represent an advance-
ment over conventional electricity grids with increased 
stability and efficacy to provide businesses and residences 
with uninterrupted power. It comprises communication 
and an energy network between consumers and power 
companies. The SG infrastructure depends on Advanced 
Metering Infrastructure (AMI)  [1, 2], which comprises 
smart meters, edge devices, bidirectional communica-
tion connections, and a data aggregation cloud server [3], 
for collecting data, processing it, and employing con-
trol measures like remote appliance control in smart 
homes [4, 5]. However, as the volume of transferred data 
grows, challenges to the communication network also 
grow. Thankfully, 5G wireless communication technology 
constantly improves and offers fast transmission speed, 
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an extensive bandwidth communication network, and lit-
tle transmission delay [6, 7]. It makes SG and 5G amalga-
mation an expansion path in the future.

Deploying smart meters brought adaptable applica-
tions and diversified AMI services by integrating wireless 
technologies into the SG. However, The AMI system is 
vulnerable to attacks because of widespread distribution, 
unstable environment, and bidirectional communication 
networks [8]. The secrecy and availability of the AMI sys-
tem may be harmed by attacks such as jamming [9], Man-
In-The-Middle (MITM)  [10], eavesdropping  [11], False 
Data Injection (FDI), replay  [12], and Denial of Service 
(DoS) [13] attacks. Figure 1 depicts the components of an 
SG and significant potential vulnerabilities. It represents 
the major SG components, such as smart meters, smart 
home appliances that use power, base stations, smart 
meter offices, and power sources. It further illustrates 
that intruders can exploit these vulnerabilities to dis-
rupt SG functionalities. For instance, injecting false data 
into smart meters may jeopardize the accuracy of data 

analytics and reporting, resulting in manipulated power 
costs. Therefore, Intrusion Detection Systems (IDS) have 
been extensively researched to defend the AMI system’s 
communication security. It can dynamically identify sus-
picious or anomalous behavior and promptly sound the 
alert [14–16]. To satisfy the criteria of AMI, it is crucial 
to create a compelling and quick detection IDS. The IDS 
based on Artificial Intelligence (AI) has been extensively 
implemented to increase the capacity to identify the IDS 
due to the development of AI. In these situations, the 
cloud server gathers much user data to build an intrusion 
detection AI-based model that is then utilized to watch 
over the AMI system on the cloud server side [17]. How-
ever, since personal information might directly disclose 
users’ lifestyles, there is a risk that their privacy will be 
compromised, which could impact their lives[18]. Addi-
tionally, if the assault is close to the user’s side, the detec-
tion latency would lengthen.

The majority of IDS models employ centralized 
cloud-based security mechanisms. The communication 

Fig. 1 SG Components and Potential Intrusion Vulnerabilities
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constraints associated with centralized processing of the 
enormous amounts of data generated by interconnected 
devices include requirements for data transfer, battery 
life, memory usage, and delay  [19]. SG networks, which 
are transient, are more susceptible to security risks due to 
their decentralized architecture. Their distributed nature 
necessitates a distributed security mechanism that sup-
ports scalability, interoperability, and adaptability with 
a uniform security system for heterogeneous connected 
devices. Therefore, fog computing offers distributed ser-
vices for outsourcing computations of distributed SG 
architecture. Federated Learning (FL) comes to the res-
cue to solve the issue of data privacy. Multiple users train 
a shared model in tandem by sharing only the parameters 
with cloud servers in FL instead of raw data [20, 21]. The 
widespread use of such secure and distributed architec-
ture encourages a privacy-preserved IDS for AMI. How-
ever, if the number of users increases, this feature might 
become a significant bottleneck as everyone uploads their 
local model to the cloud server in real-time, which may 
degrade network performance and increase resource uti-
lization. Therefore, this paper presents an IDS based on 
FL with a Support Vector Machine (SVM) and a layered 
architecture with a fog layer. We preferred SVM due to 
its established efficacy in handling high-dimensional fea-
ture spaces and complex nonlinear decision boundaries. 
The rationale for this decision is to offer an innovative 
solution that efficiently identifies intrusions and tackles 
the increasing apprehensions regarding data privacy in 
cloud-based IDSs. Moreover, FL allows multiple users 
to collectively train a shared model without transmit-
ting raw data. This secure and distributed architecture 
aligns seamlessly to establish a privacy-preserving IDS 
for AMI, ensuring user data remains secure and private. 
The proposed model offers improved intrusion detection 
performance, privacy preservation, real-time responsive-
ness, and scalability in SGs. It opens up new possibilities 
for secure and efficient IDSs in the era of edge comput-
ing and the Internet of Things (IoTs), where data privacy, 
latency, and resource constraints are critical considera-
tions  [22–24]. The key contributions of this paper are 
listed below: 

1. A decentralized SVM-based collaborative model has 
been proposed using FL while preserving data pri-
vacy and handling high-dimensional feature spaces 
and nonlinear decision boundaries.

2. A distributed layered architecture is proposed using 
a fog-edge layer, unlike a conventional cloud, for effi-
cient data processing, model training, and reducing 
latency. This layered approach enhances the scal-
ability and responsiveness of the IDS, particularly in 
large-scale and resource-constrained environments.

3. Mathematical and formal presentation of various 
threat models, proof of theorems and propositions, 
and use cases are presented, articulating the charac-
teristics and behaviors of different intrusion attacks 
for understanding and mitigating security threats in 
SG networks.

4. Benchmark evaluation and comparison are presented 
using established metrics such as accuracy, recall, 
precision, F1 score, and specificity between local and 
global, and global and state-of-the-art models.

The rest of the paper presents the background in 
“Background”  section and related work in “Related 
work”  section. Mathematical modeling and formal 
description are articulated in “Mathematical mod-
eling and formal description”  section. The proposed 
framework is detailed in “Proposed model”  section. 
“Experimentation”  section illustrates the experimen-
tation details, and results are discussed in “Result 
analysis”  section. Finally, a discussion is provided in 
“Discussion”  section, and the conclusion is provided in 
“Conclusion” section.

Background
This section briefly discusses SG, intrusion detection in 
SG, FL, and SVM. Table 1 provides a glance at the topics 
discussed. The key topics (used in this paper) are SG, IDS, 
FL, SVM, and the significance of fog computing in SGs.

Smart grids
The SG, also known as the intelligent grid, is a notable tech-
nological progression within the energy system. The fun-
damental objective of conventional energy grids revolves 
around efficient electricity transmission from a centralized 
power generator to a substantial user base. In particular, the 
concept of the SG encompasses a paradigm shift from the 
traditional power grid, which relies on an electromechani-
cal control system, to a digitally-driven and automated net-
work featuring decentralized control capabilities  [25]. This 
advanced grid model integrates various technologies, com-
munication systems, and control mechanisms to optimize 
electricity generation, distribution, and consumption. The 
SG has six primary components: service provider, transmis-
sion, market, customer, operation, and distribution [26].

According to the research published in  [40], the SG 
comprises many electronic-based sensing and communi-
cation technologies, control technologies, information/
network management, and sensor field devices coordi-
nating diverse electrical activities. The traditional grid 
architecture has undergone a significant transformation 
due to the integration of SG technologies and the emer-
gence of operational challenges  [27]. This transforma-
tion manifests in three crucial aspects: (a) enhancing the 
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capacity to monitor and measure processes accurately, 
(b) transmitting relevant information back to manage-
ment and control centers through an effective feedback 
mechanism, and (c) frequently responding automatically 
to adjust the system’s response finely. This evolution in 
grid architecture has paved the way for increased effi-
ciency and optimized performance [41]. Furthermore, it 
has facilitated the implementation of more refined con-
trol strategies for effectively managing electricity genera-
tion, distribution, and consumption. Second, coordinate 
data collection and transfer among various field devices 
and infrastructures. Finally, analyze, assess, and assist 
operators in accessing and using information derived 
by automated technology across the electrical grid  [42]. 
Load prediction and balancing, grid reliability assess-
ment, fault detection and monitoring, and grid security 
against cyber assaults are related issues in SGs [43–45].

The network architecture of the SG encompasses three 
interconnected domains: (a) the Home Area Network 
(HAN), (b) the Neighbourhood Area Network (NAN), 
and (c) the Wide Area Network (WAN). Each domain 
plays a distinct role in enabling the seamless function-
ing of the intelligent grid. Within this intricate frame-
work, applications, such as Supervisory Control and Data 
Acquisition (SCADA), find their place within the expan-
sive reach of the WAN, ensuring efficient monitoring 
and control of the grid on a broader scale  [46]. On the 
other hand, the HAN and NAN encompass the essential 
components of the metering infrastructure, compris-
ing smart meters and data concentrators. These local-
ized networks empower households and neighborhoods 
to actively participate in the optimization of electricity 
consumption and contribute to the overarching intel-
ligence of the grid  [47]. Through the harmonious inter-
play of these interconnected networks, the SG paves the 
way for a more sustainable and technologically advanced 
energy ecosystem [48]. Considering the interdependence 
of these parties are attached to various forms of commu-
nication technology  [49–51]. The system is increasingly 

vulnerable to internal and external assaults at higher net-
work layers.

Intrusion detection
The primary function of an IDS is to keep an eye on all 
the information flowing across a network in search of 
any indications of malicious activity or unauthorized 
access. At this point, it either alerts a system administra-
tor or takes preventative measures automatically  [28]. 
There are typically two sorts of IDS. Threats are identi-
fied by anomaly-based IDSs when they deviate from the 
usual  [29, 52]. On the other hand, signature-based IDS 
analyses incoming data for similarities to previously 
identified attack patterns and alerts administrators if 
any are found. IDS has vital roles in cybersecurity and 
can be classified into two distinct categories: host-based 
and network-based  [53]. The host-based IDS consists of 
software applications strategically installed on individual 
client computers, diligently monitoring and safeguard-
ing the integrity of their respective systems. On the other 
hand, the network-based IDS exhibits a broader reach, 
strategically positioned at multiple points within the 
network  [28]. These hardware sensors or system soft-
ware installations act as vigilant sentinels, meticulously 
examining the flow of data packets coursing through 
the network. By efficiently scrutinizing network traffic, 
these IDSs play a critical role in identifying and thwart-
ing potential security breaches, ensuring the overall 
resilience and fortitude of the system  [30]. The ideal 
deployment strategy for an SG may be either centralized 
or decentralized (or dispersed), depending on the nature 
of the environment [54].

When an SG is confronted with very real-time dynamic 
traffic patterns, conventional IDS are incapable of ade-
quately handling the dynamic nature of the communica-
tion network. They must also be able to provide security 
services for already-in-use protocols, such as those that 
ensure privacy, availability, authenticity, and integ-
rity. In addition, the IDS should accommodate system 

Table 1 Summary of Background section

Topic Description References

SGs The architecture and components of SGs, integrating diverse tech-
nologies and optimizing electricity generation.

Mohassel et al. [25], Gold et al. [26], Abou et al. [27]

Intrusion Detection Types of IDS and their roles in cybersecurity for SGs. Ahmad et al. [28], Khraisat et al. [29], Chandola et al. [30]

FL Introduction to FL and its advantages in decentralized Machine 
Learning (ML).

Deepa et al. [31], Li et al. [32], Alazab et al. [33]

SVM Explanation of SVM and their applications in image categorization, 
face recognition

Bansal et al. [34], Moqurrab et al. [35], Tanveer et al. [36]

Fog Computing in SGs The significance of Fog Computing in SGs, enhancing data process-
ing efficiency and security.

Hazra et al. [37], Singh et al. [38], Tariq et al. [39]
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maintenance cycles and limitations imposed by hardware 
and software [55]. The deployment of IDS in the SG pre-
sents unique challenges, primarily due to the profound 
implications of system security and the potential eco-
nomic ramifications arising from attacks or malfunc-
tions. The secure operation of the power system network 
is paramount, and this includes not only addressing net-
work security constraints and ensuring the reliability of 
sensor networks and the intricate communication pro-
cesses between utilities and consumers  [56]. The sensor 
network is a critical system component in the SG. Conse-
quently, addressing the security concerns associated with 
maintaining data integrity, availability, and secure con-
nections throughout the network becomes imperative. 
Safeguarding these aspects is essential to mitigate risks 
and maintain the robustness of the SG ecosystem [57].

Federated learning
FL is a modern ML technique that shifts paradigms by 
decentralizing the global ML algorithm to individual 
devices rather than transmitting raw data from multiple 
sources to a central model  [31]. In FL, the local param-
eters of each device are shared with the central ML 
algorithm, enabling global training and predictions (see 
Fig. 2). It represents that each client/local model uses its 
data and shares only the local parameters with the global 
aggregate model to preserve data privacy. The global 
model sends back the global model parameters after tun-
ing. Diverging from conventional ML practices, which 
entail sending data to a central cloud server for training, 
FL distributes the models directly to the devices or loca-
tions where the data originates [32, 58, 59]. This approach 

offers several advantages, including enhanced privacy 
protection and efficient management of large datasets. 
Moreover, FL empowers decision-makers to harness 
real-time insights, facilitating prompt and informed 
decision-making [33].

It possesses a remarkable capability for collective intel-
ligence by leveraging decentralized devices or servers, 
making it a key feature of this cutting-edge approach. 
Integrating AI techniques has emerged as a strate-
gic choice with significant benefits in SG implementa-
tions. Modern electrical grids seamlessly incorporate 
distributed components of the SG ecosystem, including 
advanced communication frameworks, metering infra-
structure, and distributed energy sources  [60]. These 
components coexist with vast power networks and intri-
cate communication systems, generating massive data. In 
such complex applications, the strategic utilization of AI 
techniques becomes imperative, serving as a cornerstone 
in effectively managing, analyzing, and extracting valu-
able insights from this data-rich landscape. By harness-
ing the power of AI, SGs are poised to achieve optimal 
performance, improved efficiency, and transformative 
advancements in energy management and delivery [61].

Support vector machine
SVMs were devised in 1963 by Alexey Ya. Chervonen-
kis and Vladimir N. Vapnik [34]. Since the introduction 
of SVM, this method has been extensively used to cope 
with several issues related to segmentation and catego-
rizing images, hyperlinks, and texts. These algorithms 
exhibit a high level of sophistication and find applica-
tions in various domains, such as classifying proteins 

Fig. 2 Representation of an FL Model
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in biological laboratories and recognizing handwrit-
ten text  [35, 62, 63]. Additionally, they have proven 
to be instrumental in diverse fields, including auton-
omous vehicles, face recognition systems, and chat-
bots [64]. Among these algorithms, SVM is one of the 
most widely used supervised learning techniques for 
addressing regression and classification problems [34]. 
It employs the identification of support vectors, which 
are extreme data points, to facilitate the construction 
of an optimal hyperplane. This hyperplane is critical 
in effectively separating and classifying the data points 
based on their attributes [65].

Furthermore, the classification of images, text catego-
rization, and Face detection are applications of the SVM 
algorithm. It takes data as input and performs initial 
classification on the given dataset. SVM classifiers pro-
duce weights or parameters that serve as input for the 
SVM classification (presented in Fig. 3). The classifier is 
initially trained using labeled data to create a decision 
boundary distinguishing between regular and intrusive 
instances. It dynamically updates the classifier by assign-
ing weights to support vectors as new classification data 
is introduced. The SVM’s ability to continuously adjust 
enables it to adapt to changing patterns and effectively 
classify network behavior. It makes it a reliable and 
adaptable solution for intrusion detection. For exam-
ple, a person encounters an image of a peculiar cat that 
resembles a dog somehow. It helps develop a model that 
accurately distinguishes between a dog and a cat [36].

Fog computing in SGs
Fog computing, an innovative paradigm in distributed 
computing, emerges as a critical aspect of SG technology. 

It integrates seamlessly with the core framework of SG, 
providing a dynamic, flexible, and efficient comput-
ing platform that caters to the complex requirements of 
modern power systems. The basic premise of fog com-
puting involves decentralizing the computational tasks 
traditionally handled by the cloud, bringing them closer 
to the data source  [35, 37]. This architecture, which 
emphasizes edge computing, enhances data processing 
efficiency and reduces latency - aspects vital to ensure 
the smooth operation of SG [39]. Fog computing is inher-
ited from cloud computing that moves data and process-
ing closer to end users. It brings computation and data 
storage in proximity to the devices themselves rather 
than depending entirely on centralized cloud servers. 
This method mitigates two main issues with conven-
tional cloud computing: (a) delays and (b) the require-
ment to send massive data across long distances  [66]. It 
makes running context-aware, real-time applications 
and services possible even when there are gaps or inter-
ruptions to the network connection. This issue becomes 
more significant with the proliferation of internet-ena-
bled devices and the consequent rise in data volume. Fog 
computing empowers organizations to make better, more 
timely choices through edge processing and analytics. 
Figure  4 illustrates a Fog-Cloud SG architecture. Fog at 
the network’s edge enables decentralized data process-
ing, reducing latency and improving real-time respon-
siveness. Meanwhile, the cloud enhances performance by 
offering scalable storage and advanced analytics capabili-
ties, optimizing data processing, security, and reliability.

Fog computing is becoming more critical in advanc-
ing the development of SGs. These grids depend on real-
time data from various sources, including sensors, smart 

Fig. 3 Representation of SVM
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meters, and weather forecasts. SGs can improve energy 
use and reduce power outages by assessing this data at 
the network’s edge. Rapid reaction time to supply and 
demand changes is essential to accomplish these objec-
tives. In addition, SGs rely heavily on fog computing to 
keep private information secure  [38, 67]. Fog comput-
ing aids data security by keeping data near its source and 
decreasing the need for long-distance data transfer. It is 
critical in SG installations, where data security is para-
mount. Fog computing is essential to realizing the aim 
of SGs to improve energy efficiency and dependability. 
Thanks to real-time data processing and secure edge 
computing, future energy networks may be more trust-
worthy and secure with the help of SGs. The fog layer, as 
described by NIST, is a transitional layer between end-
points (devices) and the cloud [68]. It offers storage and 
processing in real-time to handle the massive amounts 
of data produced by SG devices. It facilitates rapid data 
processing and decreases system latency by mediating 

communications between on-premises devices and 
remote cloud services. Integrating a fog layer into a SG 
system dramatically improves performance and reliability 
by supporting real-time processing and storage, eliminat-
ing latency, and bridging local devices and the cloud [69].

Related work
Several studies have targeted improving IDSs for SGs in 
the past few years. This section describes cutting-edge 
IDS techniques and methodologies.

Sagar et  al.  [70] proposed a fog-based IDS for SGs. 
They proposed a stacked model, using ensemble learn-
ing to represent the interdependencies among fog 
nodes susceptible to cyberattacks effectively. How-
ever, the dataset needs to be updated and reflect cur-
rent attacks. Syed et  al.  [71] proposed an IDS for IoT 
that utilizes fog-cloud technology. This framework 
involves distributed processing by dividing the data-
set based on attack class and a feature selection step 

Fig. 4 SG based on Fog-Cloud computing
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on time-series IoT data. The attack detection process 
involves utilizing deep learning Recurrent Neural Net-
work models. The proposed approach was assessed 
using the high-dimensional BoT-IoT dataset, includ-
ing realistic IoT attacks. As previously noted, reliabil-
ity in the SG’s electricity and services depends on the 
AMI system’s security. Because of this, a safe SG must 
incorporate intrusion detection techniques within its 
AMI systems. As AI has progressed, several new ML-
based techniques have been used in intrusion detec-
tion for AMI systems. To ensure the safety of the AMI, 
a novel IDS was proposed in  [72] using a transformer 
and feature extraction layers to analyze categorical and 
numerical information. Another IDS was developed for 
Modbus/TCP and DNP3-based SG systems in  [73]. It 
uses an Autoencoder-Generative Adversarial Network 
(GAN) architecture to identify irregular operations and 
categorize cyberattacks. Compared to other ML and 
DL approaches, the assessment findings show that it 
is the most effective due to its low false positive rate, 
high accuracy, and high true positive rate. Real-time 
intrusion detection was proposed in [74] using a Deep 
Neural Network (DNN) model hosted on a web server. 
Since deep-learning-based algorithms only accept 
numerical features as input, the one-hot encoding 
method is typically used to transform the categorical 
characteristics of a data sample into numerical features. 
However, this results in a high-dimensional and sparse 
input characteristics vector, which degrades intrusion 
detection capabilities. While the above techniques are 
decentralized, they rely on a central server for tasks like 
model training and intrusion detection. Users’ (smart 
meters’) locally gathered data is easily accessible by the 
cloud server under the centralized architecture, which 
raises privacy concerns. The centralized architecture 
additionally exacerbates the latency in detecting an 
assault near the user.

Another revolutionary FL-based methodology was 
proposed in  [75] for detecting cyberattacks in SGs. It 
paves the way for cooperative attack detection model 
training without disclosing sensitive information about 
available power sources. The system uses a gradient 
privacy-preserving quantization approach to increase 
communication efficiency and a Deep Auto-Encoder 
network for precise anomaly identification. The simu-
lation results show higher detection accuracy and 
communication efficiency. Similarly, an alternative FL 
model for detecting intrusion in SG AMI networks 
was proposed in  [76]. To get the best results from the 
model, they used fine-tuned DNN. Multiple data con-
centrators can work together to improve the intrusion 
detection model through shared learning and improved 
sensitivity. In addition, the IDS model is set up on the 

data concentrators themselves, allowing for continuous 
monitoring and protection of sensitive information. To 
identify intrusions in a network, a multi-stage CLAIRE 
was proposed in  [77], using nearest neighbor-based 
search, clustering, and Convolutional Neural Networks 
(CNNs). It converts network flows’ one-dimensional 
feature vector into a two-dimensional image represen-
tation. Compared to other deep learning and cluster-
ing-based systems, CLAIRE’s accuracy and intrusion 
detection performance fare better. This study inte-
grates SVM, game theory, and kernel functions. The 
researchers in  [78] suggested an FL-based IDS to deal 
with problems like the absence of authentication and 
encryption. The FL method protects sensitive infor-
mation across the network while detecting intrusions. 
IT successfully identifies significant threats on smart 
meters since the model can be trained without expos-
ing sensitive private data. An alternative FL-based IDS 
is proposed in  [79] without needing a central training 
data repository, thereby eliminating human interaction. 
The system can identify any suspicious variations in the 
way devices communicate with one another. The goal is 
to study the invaders’ behavior patterns while actively 
attempting to compromise a system’s services. The 
updated system model is transmitted to a central server 
to identify patterns of assault.

A comparison of several intrusion detection strategies 
for SGs is presented in Table 2. The methods mentioned 
above encompass a variety of approaches, includ-
ing DL-based approaches, FL, and other ML models. 
Every technique presents distinct positive and nega-
tive aspects, crucial factors to consider when choos-
ing a suitable IDS for SGs. The existing literature offers 
valuable insights into different intrusion detection tech-
niques for SGs. However, most existing approaches, 
such as [72, 73, 76], provide a centralized solution. In 
contrast, this paper caters to the issues associated with 
centralization and proposes a decentralized approach. 
In addition, this paper offers a decentralized SVM-
based collaborative model that utilizes FL to address 
the challenges of preserving data privacy and handling 
high-dimensional feature spaces and nonlinear decision 
boundaries, unlike [74]. In addition, utilizing a distrib-
uted layered architecture with a fog-edge layer instead 
of a conventional cloud represents a deviation from the 
conventional approaches. The authentication, encryp-
tion, and convergence issues are effectively resolved in 
the proposed model compared to  [77, 78]. This strate-
gic shift aims to improve scalability, responsiveness, 
data processing, model training, and latency reduction. 
These factors are essential for achieving optimal IDS 
performance, particularly in large-scale and resource-
constrained environments.
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Mathematical modeling and formal description
This section details the rigorous mathematical frame-
work, including threat models and formal description, 
to understand intrusion and its detection in SGs. It 
comprehensively explains the underlying principles and 
mechanisms that drive the proposed model. In addition, 
it examines different use cases to illustrate the practical 
implementations of the proposed methodology. Table  3 
describes all the symbols used in subsequent sections.

Threat model
1: Compromised Smart Meter Leading to Disruption in 
Power Distribution 

1. Assumptions: We assume an SG infrastructure con-
sisting of multiple smart meters µ with a subset as 
X where X = x1, x2, . . . , xn . These smart meters are 
interconnected within the SG network, enabling data 
collection and power distribution management.

2. Attack Model 1: Attack on power distribution: The 
attack Model involving a compromised X and its 
impact on power distribution can be described as 
follows: 

(a) Unauthorized Control: An attacker specifically 
targets X and gains unauthorized control over 
it, denoted as C(X), through various means, 
such as exploiting firmware vulnerabilities or 
compromising the communication protocol.

(b) Data Manipulation: With unauthorized control, 
the attacker manipulates the energy consump-
tion readings of X, resulting in altered or fabri-
cated data, denoted as MData(X).‘

(c) Ripple Effect: The manipulated data, MData(X) , 
has a ripple effect on the SG infrastructure. It 

propagates to the central data hub, denoted 
as DHub , which processes data from all smart 
meters for power distribution management.

(d) Power Disruption: Due to the manipulated 
data, DHub makes incorrect decisions regard-
ing power distribution. It can lead to imbal-
ances, fluctuations, or even disruptions in the 
power distribution across the residential area 
served by the SG. The resulting disruptions are 
denoted as PDS.

(e) Financial Losses: The manipulated energy con-
sumption data also affects billing accuracy. 
Inaccurate billing can lead to financial losses for 
the utility company, denoted as FLS . Customers 
may dispute overcharged bills, and the utility 
company incurs additional expenses for inves-
tigating and resolving billing discrepancies.

3. Remediation and Investigation: Upon detecting abnor-
malities in energy consumption patterns or identify-
ing billing discrepancies, the utility company’s security 
team initiates an investigation, denoted as IIV  . It aims 
to identify the compromised smart Meter, Meter X, 
and determine the attack’s extent. Appropriate reme-
diation measures are then taken to secure and restore 
the regular operation of Meter X, such as IDS.

Threat model
2: Firmware Exploitation We consider exploiting firm-
ware vulnerabilities in smart meters within the SG net-
work in this threat Model. Exploitation of firmware 
vulnerabilities poses significant risks to the integrity and 
reliability of the SG network. The following steps outline 
the phases and actions involved: 

Table 2 Comparison of IDS Techniques for SGs

Ref. Technique Advantages Disadvantages

[72] Transformer and feature extraction layers High accuracy, low false positives Centralized architecture, data dependency

[73] Autoencoder-GAN architecture Low false positive rate, high accuracy, high true 
positive rate

Centralized architecture, model complexity

[74] DNN Real-time detection, feature learning High-dimensional input, overfitting

[75] FL with gradient privacy-preserving quantiza-
tion

Higher detection accuracy, privacy-preserving Communication efficiency, convergence

[76] Fine-tuned DNN in FL Improved sensitivity, continuous monitoring Centralized architecture, scalability

[77] CLAIRE with CNNs Improved accuracy and performance Complex model, training data requirements

[78] FL-based IDS Protects sensitive data, collaborative training Lack of authentication and encryption, 
convergence

[79] FL-based IDS No central data repository, behavior pattern 
identification

Privacy-preserving, communication overhead
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1. Intrusion Phase: During the intrusion phase, the 
attacker identifies a specific smart meter model with 
known firmware vulnerabilities. We represent the 
set of smart meters as µ and the set of attackers as 
α . Additionally, we denote the set of smart meter 
models with known firmware vulnerabilities as V, 
where V = v1, v2, ..., vn . The attacker selects a vul-
nerable smart meter model vi ∈ V  as their target for 
exploitation.

2. Exploitation Phase: Once the vulnerable smart meter 
model is identified, the attacker proceeds to exploi-
tation. Let F represent the firmware of the µ . The 
attacker crafts a malicious firmware update or code 
injection payload denoted as Fmal . This payload is 
designed to exploit the specific firmware vulnerabili-
ties in the target smart meter model.

3. Harmful Actions: The successful exploitation of firm-
ware vulnerabilities enables the attacker to perform 
various harmful actions on the compromised smart 
meters. Let µ be the smart meters and X ⊆ µ be the 
set of compromised smart meters: X = x1, x2, ..., xm . 
The attacker can perform the following actions on 
the compromised µ : 

(a) Installation of Malicious Firmware: The 
attacker successfully installs the malicious 
firmware on the compromised µ , replacing 
the legitimate firmware. This is represented as 
F(X) = Fmal.

(b) Manipulation of Meter Readings: The attacker 
gains the ability to manipulate the meter read-
ings of the compromised µ . The readings can 
be altered to reflect inaccurate or falsified 
energy consumption data. This is denoted as 
R(X) = Rman.

(c) Tampering with Consumption Data: The 
attacker can tamper with the consumption data 
reported by the compromised µ . It includes 
modifying the recorded energy consumption 
values or injecting false data. The manipulated 
consumption data is denoted as C(X) = Cman.

(d) Disruption of Communication: The attacker 
can disrupt the compromised µ communica-
tion channels, hindering their ability to send 
or receive data. This disruption is denoted as 
D(X) = Dds.

Threat model
3: Network Exploitation In this threat Model, we exam-
ine the exploitation of network vulnerabilities within 
the SG infrastructure. These network vulnerabilities 

Table 3 Table of Symbols Used

Symbol Description

CTi Each Client in the FL setup, denoted as CTi
LSVMi Local SVM model associated with each client, 

CTi

lmpi Local model parameters of SVM model CTi , 
including weights and biases

Gsvm Global SVM model, representing the collec-
tive knowledge of all clients in the FL setup

Gmp Global model parameters, includ-
ing the weights and biases of the global SVM 
model

FedSVM Function representing the FL process 
with SVM

UdSVM Function used for updating SVM weights 
in the FL process

K Number of smart meters in the FL setup

T Number of iterations in the FL process

Iw Initial SVM weights

C Regularization parameter used in SVM train-
ing

Ib Initial SVM bias

wg Global SVM weights

bg Global SVM bias

µ Smart Meters

X Subset of Smart Meters

V Vulnerability

V = {v1, v2, . . . , vn} Set of Vulnerable Models

vi Vulnerable Smart Meter Model

F Firmware of Smart Meters

Fmal Malicious Firmware Update

X = {x1, x2, . . . , xn} Set of Smart Meters

X = {x1, x2, . . . , xm} Set of Compromised Smart Meters

F(X) = Fmal Installation of Malicious Firmware

R(X) = Rman Manipulation of Meter Readings

C(X) = Cman Tampering with Consumption Data

D(X) = Dds Disruption of Communication

G(N \ X) = Gcom Compromise of Other Devices

C(X) Unauthorized Control

MData(X) Manipulated Energy Consumption Data

DHub Central Data Hub

PDS Power Disruption

FLS Financial Losses

IIV Investigation Phase

α Set of Attackers

P Set of Potential Vulnerabilities

T ⊆ µ Target Smart Meters

P(T ) = Pidf Identified Vulnerabilities

G Compromised Network Devices

G(N) = Gcom Compromised Devices

X ⊆ µ Compromised Smart Meters

Nd Set of Network Devices (Gateways, Routers)
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pose significant risks to the network’s confidential-
ity, integrity, and availability. Let µ represent the set of 
smart meters, Nd represent the set of network devices 
(communication gateways, routers), and α represent the 
set of attackers. The following steps outline the phases 
and actions involved: 

1. Reconnaissance Phase: During reconnaissance, the 
attacker systematically assesses the SG network to 
identify potential vulnerabilities. We represent the 
set of smart meters as µ , the set of network devices 
(communication gateways, routers) as Nd , and the 
set of attackers as α . Additionally, we denote the 
set of potential vulnerabilities in the network infra-
structure as P. The attacker’s objective is to identify 
a specific target smart meter, denoted as T ⊆ µ , and 
potential vulnerabilities associated with these meters, 
represented as P(T ) = Pidf .

2. Unauthorized Access: Once the potential vulnerabili-
ties are identified, the attacker gains unauthorized 
access to the targeted T. We denote the set of com-
promised network devices as G. The attacker suc-
cessfully compromises a subset of network devices, 
specifically those associated with the µ of interest. 
This is represented as G(N ) = Gcom.

3. Harmful Actions: Upon compromising the network 
devices and gaining access to T, the attacker can 
carry out various harmful actions. We consider the 
set of compromised smart meters as X ⊆ µ . The 
attacker can perform the following actions on the 
compromised X: 

(a) Manipulation of Meter Readings: The attacker 
can manipulate the meter readings of the com-
promised X. This manipulation can result in 
inaccurate or falsified energy consumption 
data. It is represented as R(X) = Rman.

(b) Injection of False Control Commands: The 
attacker can inject false control commands into 
the compromised X, leading to unintended and 
potentially harmful actions. This injection of 
false commands is denoted as I(X) = Iinj.

(c) Exfiltration of Data: The attacker can exfiltrate 
sensitive data from compromised X, such as 
customer information or energy consumption 
patterns. This unauthorized data exfiltration is 
represented as E(X) = Eexf .

(d) Compromise of Other Network Devices: The 
compromised X can be a foothold for the 
attacker to compromise other network devices 
within the SG infrastructure. This is denoted as 
G(N \ X) = Gcom.

Case study 1: securing SGs against intrusion attacks
  

1. Background: The case study focuses on an SG 
deployment in a metropolitan area consisting 
of thousands of smart meters and a central con-
trol system managed by a utility company. Smart 
meters enable automated meter reading and facili-
tate efficient energy management. However, with 
the increasing reliance on SG technologies, the 
risk of intrusion attacks has become a significant 
concern.

2. Definition: Intrusion in SG Smart Metering: An 
intrusion in SG smart metering is an unauthorized 
and malicious activity or event that compromises the 
security and functionality of smart meters within the 
SG infrastructure. Let µ represent the set of smart 
meters in an SG deployment, and α represent the set 
of attackers attempting to intrude on the SG smart 
metering system. An intrusion attack on µ can be 
modeled as follows: 

(a) Intrusion Phase: Let X ⊆ µ be the set of com-
promised smart meters: X = x1, x2, ..., xn . The 
attacker gains unauthorized access to X in µ 
through various means, such as exploiting vul-
nerabilities, unauthorized physical access, or 
compromising network communication chan-
nels, as mentioned above.

(b) Consequences: The consequences of intru-
sion in SG smart metering can include finan-
cial losses, compromised grid operations and 
energy management, privacy breaches, and 
safety hazards or equipment damage due to 
improper control settings, as mentioned above.

(c) Analysis and Findings: Upon analyzing the cur-
rent state of IDS in SG smart metering, several 
key findings emerge: 

 i. Limited Local Detection Capabilities: 
Existing IDS solutions deployed at indi-
vidual smart meters (AMIs) often have 
limited computational resources and lack 
sophisticated detection algorithms. It 
restricts their ability to detect and mitigate 
complex intrusion attacks effectively.

 ii. Data Privacy Concerns: Traditional IDS 
architectures rely on centralized data col-
lection and analysis, which raises con-
cerns about data privacy and the secure 
transmission of sensitive information from 
smart meters to a central control system.
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 iii. Scalability Challenges: As the number 
of smart meters in an SG deployment 
increases, the centralized IDS approach 
faces scalability challenges due to the grow-
ing volume of data to be processed and the 
potential for increased false positives.

(d) Recommendations: To address the identified 
challenges and enhance the security of SG 
smart metering systems, the following recom-
mendations are proposed: 

 i. IDS with FL: Implement an IDS architec-
ture that leverages FL techniques. This 
approach allows training a global IDS 
model using data distributed across mul-
tiple smart meters while preserving data 
privacy. Local models residing at the AMIs 
can perform initial detection, and only 
aggregated model updates are shared with 
a fog-based global model residing in the fog 
layer for further analysis and refinement.

 ii. Fog Computing for Enhanced Processing: 
Utilize fog computing infrastructure located 
closer to the smart meters to enable real-
time processing and analysis of IDS data. 
Moving some computation tasks closer to 
the edge can reduce latency, enabling faster 
detection and response to intrusion attacks.

 iii. Secure Communication Channels: Estab-
lish secure communication channels 
between smart meters and the fog-based 
global IDS model. Encryption and authen-
tication mechanisms should be imple-
mented to ensure the confidentiality and 
integrity of data transmitted between the 
smart meters and the IDS infrastructure.

 iv. Continuous Model Improvement: Imple-
ment a mechanism for continuous model 
improvement through regular model 
updates and feedback loops. The global 
IDS model in the fog layer should be 
regularly updated with the latest detec-
tion algorithms and threat intelligence to 
enhance its detection capabilities.

By adopting the recommended approach of IDS with 
FL, leveraging fog computing, and ensuring secure com-
munication channels, SG smart metering systems can 
benefit from improved intrusion detection capabilities, 
enhanced data privacy, and efficient processing at the 
edge. These measures will contribute to the overall secu-
rity and resilience of SGs against intrusion attacks.

Proposed model
The suggested architecture aims to increase the security 
of SGs against intrusion assaults by utilizing a decentral-
ized IDS. This part includes a case study to help clarify 
the proposed model better and an introduction to the 
suggested architecture, which combines fog computing 
with FL to detect intrusions efficiently and privacy-pre-
serving. The design attempts to achieve scalability, real-
time detection, and resistance against intrusion attacks 
by spreading IDS functionality across smart meters and 
fog nodes. The architecture facilitates information aggre-
gation from numerous smart meters while maintaining 
data privacy due to the collaborative nature of FL. The 
global fog layer acts as a coordination and aggregation 
point rather than a single control point. The decentrali-
zation aspect is introduced by distributing local models 
and training processes across AMIs and fog nodes. The 
significant characteristics of the proposed model are as 
follows: 

1. Distribution of Local Models: In the decentralized 
IDS architecture, each fog node hosts a global model 
that performs intrusion detection on the parame-
ters collected from the smart meters (running local 
models) within its vicinity. These local models are 
trained using SVM-enabled FL, allowing the models 
to learn from the data without needing centralized 
data aggregation. The local models are trained col-
laboratively, with updates and improvements shared 
between them through the global server.

2. FL and Collaboration: FL enables the collabora-
tive training of local models without compromis-
ing data privacy. Instead of transmitting raw data to 
the fog layer, the local models send model updates 
or parameters to the global server, aggregating and 
combining the updates from all participating nodes. 
This approach ensures that sensitive data remains on 
the local nodes, preserving privacy and reducing the 
risks associated with centralized data storage.

3. Coordination and Aggregation: The training and 
aggregating model updates from the local models 
(i.e., the AMIs) are done by the global server (i.e., the 
fog). It collects the updates using privacy-protecting 
methods, such as secure aggregation or differential 
privacy, to ensure that each node’s contributions stay 
private. It is then shared with the local models so that 
they can learn from their collective experience while 
still keeping their characteristics.

4. Decentralization: The decentralized architecture of 
the IDS has various benefits. It divides the process-
ing load among several Fog nodes, enhancing scal-
ability and lessening dependency on a single central 
server. It enhances data privacy by controlling sensi-
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tive information and minimizing data transmission. 
In addition, the collaborative nature of FL enables 
knowledge sharing and model improvement among 
the local models, resulting in enhanced detection 
accuracy and adaptability.

Case study 2: a decentralized IDS system for SGs
The case study focuses on enhancing the security of SGs 
against intrusion attacks by implementing a decentral-
ized IDS. Traditional IDS solutions face challenges in 
scalability, privacy, and real-time analysis. Therefore, a 
decentralized approach using fog computing and FL is 
proposed to address these limitations.

IDS architecture
The decentralized IDS architecture consists of two key 
components: 

1. Smart Meters (SM): These are the metering devices 
deployed at consumer premises that collect energy 
consumption data and transmit it to the Fog layer. 
Each smart meter runs a local IDS model to detect 
anomalies and potential intrusions.

2. Fog Layer: The Fog layer is an intermediate comput-
ing platform between the smart meters and the cen-
tral control system. It comprises Fog nodes, which 
are geographically distributed and closer to the smart 
meters. Each Fog node hosts a local IDS model and 
coordinates the training process with other nodes 
in an FL framework. It is responsible for aggregat-
ing and analyzing the information collected from 
the SMs. It maintains a global IDS model that com-
bines the knowledge learned from the local models to 
make accurate intrusion detection decisions.

Decentralized IDS workflow
The decentralized IDS system follows the following 
workflow: 

1. Local Model Training: Each smart meter uses locally 
collected data to train its local IDS model. This train-
ing phase incorporates SVM-based algorithms suita-
ble for handling high-dimensional feature spaces and 
nonlinear patterns in intrusion detection.

2. FL: The fog nodes collaborate in an FL framework 
to improve the IDS models collectively. Only model 
parameters are exchanged instead of sharing raw data 
to preserve data privacy. Each fog node contributes 
its local model updates to the aggregator module, 

where the global IDS model is refined using federated 
averaging.

3. Model Distribution: The updated global IDS model is 
distributed back to the local nodes, ensuring the lat-
est knowledge is disseminated across the decentral-
ized IDS system. They then update their local models 
with the refined global model, enabling them to adapt 
to evolving intrusion patterns.

4. Real-time Intrusion Detection: Each smart meter uti-
lizes its updated local IDS model for real-time intru-
sion detection. Anomalies and potential intrusions 
are detected by comparing the observed metering 
data with the learned patterns in the local model. 
Alerts are generated when suspicious activities are 
identified.

Advantages of decentralized IDS
The deployment of a decentralized IDS system using a 
fog-enabled FL model offers several advantages:

• Scalability: The decentralized architecture allows for 
seamless scalability as new smart meters can join the 
system without requiring extensive modifications. 
The FL approach ensures that the IDS system can 
benefit from the collective knowledge of a large num-
ber of participating smart meters.

• Privacy Preservation: By leveraging FL, the IDS sys-
tem preserves data privacy. Raw metering data is 
kept locally, and only aggregated model updates are 
shared across the network. It protects sensitive con-
sumer information while allowing the system to learn 
from diverse data sources.

• Real-time Detection: With the IDS models deployed 
at the AMIs and fog layer, real-time intrusion detec-
tion can be achieved. The proximity of fog nodes to 
smart meters enables faster analysis and response, 
reducing the detection latency compared to a cen-
tralized approach.

• Resilience: The decentralized IDS system enhances 
system resilience by avoiding a single point of fail-
ure. Even if some fog nodes or smart meters become 
compromised, the collective intelligence of the dis-
tributed IDS models can continue to provide effec-
tive intrusion detection and mitigation.

FL‑based IDS
In this section, the proposed mechanism for the detec-
tion of intrusion for SG systems is explained. The key 
characteristics are as follows: 
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1. Each Client’s Local SVM: Each Client ( CTi ) in the 
FL setup has its own local SVM model ( LSVMi ). The 
local SVM is trained using the Client’s local dataset, 
which consists of data samples not shared with other 
clients or the central server. The local SVM learns 
the patterns and characteristics of the data specific to 
each Client, allowing it to make predictions locally.

2. Local Model Parameters: After training the local 
SVM, the Client obtains the local model parameters 
(i.e., lmpi ) associated with its SVM model. These 
parameters represent the learned weights and biases 
of the SVM, which define the decision boundary and 
enable it to classify new data samples.

3. Communication with the Server: The local model 
parameters are sent from each Client to the central 
server. This communication can be done securely, 
ensuring the privacy of the local data and model.

4. Global SVM and Global Model Parameters: At the 
server, the received local model parameters are 
aggregated and used to update the ( Gsvm ). It rep-
resents the collective knowledge of all clients and 
aims to capture a generalized representation of 
the data. The server computes the global model 
parameters ( Gmp based on the aggregated local 
model parameters.

5. Model Parameter Exchange and Iterative Training: The 
updated global model parameters are returned to the 
clients for further training and model improvement. 
This parameter exchange and iterative training process 
allow the clients to benefit from the collective knowl-
edge of the entire network while preserving the privacy 
of their local data. The iterative training continues until 
the global SVM converges to a desired level of accuracy 
or a specific number of iterations is reached. By leverag-
ing this FL architecture, multiple clients can collabora-
tively train an SVM model while keeping their local data 
private. The central server facilitates the aggregation of 
local model parameters, enabling knowledge sharing 
without direct data exchange. This approach promotes 
privacy, data security, and distributed learning in sce-
narios where data cannot be centrally stored or shared 
due to privacy concerns or legal restrictions.

In Eq.  1, the function FedSVM() represents the 
FLprocess with SVM. It takes the input data X and labels 
y, the number of smart meters K, the number of itera-
tions T, and the regularization parameter C. The output 
is the tuple (wg , bg ) representing the final global SVM 

(1)(wg , bg ) = FedSVM(X , y,K ,T ,C) =
1

K
i = 1KUdSVMi

1

K
j = 1Kw

(T )

l,j ,
1

K
j = 1K b

(T )
j ,

1

K

K

i=1

b
(T+1)
i

weights and bias. The equation shows that the global 
weights wg are obtained by averaging the updated 
weights w(T )

l,j  of each local SVM model using the UdSVM() 
function. Similarly, the global bias bg is obtained by aver-
aging the biases b(T )

j  of each local SVM model.

Algorithm 1 The Proposed Algorithm

Algorithm 1 aims to train a global model using data from 
multiple smart meters in an FL setting. The algorithm takes 
as input the number of smart meters K, the number of itera-
tions T, the SVM regularization parameter C, the local data-
set Xi of smart meter i, and the corresponding labels yi . It 
outputs the global SVM weights wg and bias bg . The algo-
rithm initializes the local SVM weights wl

(0) and bias b(0)l  
with some initial values. Then, each iteration t from 1 to T 
enters a loop where it iterates over each smart meter i from 1 
to K. Within this loop, the algorithm trains the local SVM 
model SVMi on the local dataset Xi and labels yi using the 
SVM regularization parameter C. The resulting local SVM 
weights are stored in wl

(t)
i  . After training the local models, 

the algorithm performs server aggregation by calculating the 
average of the local SVM weights wl

(t)
i  and the bias b(t)l  across 

all smart meters. These aggregated weights and bias are 
denoted as wl

(t) and b(t)l  , respectively. Next, the algorithm 
enters another loop over each smart meter i, where it 

updates the local SVM model SVMi using the aggregated 
weights wl

(t) and bias b(t)l  . The updated weights obtained 
from SVMi are stored in wl

(t+1)
i .

After updating the local models, the algorithm per-
forms server aggregation again to calculate the average of 
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returns the final global SVM weights ( wg ) and 
bias ( bg ) obtained from the Fog Layer. These 
parameters can be used for intrusion detection 
and encapsulate the information gained during 
the FL process.

2. AMI Layer: The AMI Layer stands in for the network 
of smart meters that conducts intrusion detection. 
Each smart meter functions autonomously, providing 
local data for model training without compromising 
privacy or safety. The smart meters’ local data feeds 
the global SVM model, which operates in the AMI 
Layer and is updated in real time. The following pro-
cedures are carried out by the AMI Layer, which con-
sists of smart meters: 

(a) Local Model Training: Each smart meter in 
the AMI Layer independently trains an SVM 
model ( SVMi ) using its local dataset ( Xi ) and 
labels ( yi ), guided by the global SVM weights 
and the SVM regularization parameter (C). 
This local model training captures the peculiar-
ities of each smart meter’s data while respecting 
data privacy.

(b) Local Model Update: After each iteration, 
the AMI Layer updates the local SVM mod-
els ( SVMi ) using the aggregated weights ( w(t)

l  ) 
and bias ( b(t)l  ) received from the Fog Layer. This 
update ensures that the local models align with 
the evolving global model.

(c) Intrusion Detection: Using the updated local 
models, each smart meter in the AMI Layer 
performs intrusion detection by predicting 
the labels ( ̂yi ) for its local dataset ( Xi ). Based 
on these predictions, the smart meter classi-
fies itself as either “No Intrusion” or “Intru-
sion Detected,” facilitating the identification of 
potential security breaches.

Experimentation
This section details the experimental setup and method-
ology used in the study.

Experimental setup
A computer system with an Intel Core i7-7300HQ pro-
cessor, 16 GB of RAM, and a 256 SSD for faster data 
access is used to set up the experimentation. We used 
the Windows 10 operating system, Python 3.6, and 
the Anaconda distribution for the experiment to man-
age Python environments and dependencies. We used 
a predetermined number of Fog nodes and AMIs in the 

the updated local SVM weights wl
(t+1)
i

 and the bias b(t+1)
i

 . 
These aggregated weights and bias are denoted as wl

(t+1) 
and b(t+1) , respectively. The algorithm then updates the 
global SVM weights wl and bias b with the aggregated 
values wl

(t+1) and b(t+1) . This step ensures that the global 
model incorporates the knowledge learned from the local 
models. Finally, the algorithm performs intrusion detection 
by iterating over each smart meter i once again. It obtains 
the local SVM model predictions ŷi on smart meter i using 
the local dataset Xi . Based on the predictions, a decision is 
made: if ŷi ≥ 0 , the smart meter i is classified as “No Intru-
sion,” otherwise it is classified as “Intrusion Detected.” The 
entire process is repeated for the specified number of itera-
tions T. At the end of the iterations, the algorithm returns 
the final global SVM weights wg and bias bg.

Proposed architecture
The proposed architecture consists of two main layers: 
the Fog Layer and the AMI (i.e., smart meters) Layer, as 
shown in Fig.  5. It represents the Fog-edge architecture 
for effective and timely intrusion detection without com-
promising data privacy. These layers work collaboratively 
to enable intrusion detection using SVMs in an FL set-
ting. Each layer has distinct functionalities and contrib-
utes to the overall architecture, as described below:

1. Fog Layer: The Fog Layer represents the central com-
puting infrastructure responsible for coordinating the 
intrusion detection process and hosting the global SVM 
model. It bridges the AMI Layer and external entities, 
ensuring the secure and efficient execution of the FL 
process. The Fog Layer handles several operations: 

(a) Initialization: The algorithm begins with ini-
tializing the Fog Layer by setting up the initial 
global SVM weights ( w(0)

l  ) and bias ( b(0)l  ). These 
initial values serve as the starting point for the 
FL process.

(b) Server Aggregation: After each iteration, the Fog 
Layer performs server aggregation by averaging 
the local SVM weights and bias contributed by 
the smart meters in the AMI Layer. This aggre-
gation yields the aggregated weights ( w(t)

l  ) and 
bias ( b(t)l  ), which represent the collective knowl-
edge learned from the local models.

(c) Global Model Update: Based on the aggregated 
weights and bias, the Fog Layer updates the 
global SVM weights ( wl ) and bias ( bl ). These 
updated values reflect the evolving global 
model, incorporating the insights gained from 
the local models in the AMI Layer.

(d) Return of Global Model: Once the specified 
number of iterations is completed, the algorithm  
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experimentation. There were 5 Fog nodes and 50 AMIs, 
representing a realistic scenario in an SG environment. 
We used Python to simulate each Fog node and AMI, 
where the AMIs acted as models of the regional power 
distribution and transmission systems used in the SG. 
The necessary libraries were installed to support the 
experiment. We used TensorFlow and Keras libraries to 
implement the proposed FL model. These libraries pro-
vide various resources and features for building ML mod-
els. Additionally, essential libraries were PySyft, Pandas, 
NumPy, and Scikit-learn.

Data preparation and model assessment may be 
accomplished using various ML techniques Scikit-learn 
provides. Pandas was used to perform effective data 

preprocessing and manipulation operations. While 
PySyft offered privacy-preserving calculations for safe 
cooperation in FL, NumPy provided fundamental 
numerical operations. We developed a customized AMI-
Fog communication library to streamline the integration 
of Fog nodes and AMIs to facilitate data exchange and 
coordination between the entities using Python’s native 
socket programming capabilities. It enabled data inter-
change between several simulation nodes and offered a 
low-level interface for network programming. The data-
set was split into training, testing, and validation sets 
using the standard ratio of 70:10:20, and preprocessing 
was performed to guarantee correct formatting and han-
dling of categorical and numerical variables. The SVM 

Fig. 5 Proposed Architecture
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model was initialized with 100 random values selected 
from a normal distribution using the preprocessed NSL-
KDD dataset.

Using TensorFlow and Keras, the model was then 
trained to construct an SVM-based FL technique. With 
the help of this method, the SVM model is independently 
trained on each AMI in the SG. Local model updates 
were made on each AMI as part of the FL process, and 
the changes were then encrypted and securely aggre-
gated. The global SVM model was then updated with 
the aggregated changes while protecting privacy. Up till 
convergence was reached, this iterative approach con-
tinued. A predetermined number of iterations, ranging 
from 10 to 50, were used to carry out the learning pro-
cess. The Fog nodes and AMIs updated their local mod-
els using their respective training sets at each iteration. 
The privacy and data secrecy were subsequently ensured 
by securely aggregating the local model changes using 
standard cryptographic methods. To enhance the con-
vergence and accuracy of the SVM model throughout 
the experiment, we changed the learning rate to 0.0001. 
In our investigation, it was observed that this learning 
rate was efficient in producing the desired outcomes. 
Using the testing and validation portion of the dataset, 
we assessed the trained model’s performance once the FL 
process was complete. To evaluate the model’s classifica-
tion performance, we used a variety of assessment meas-
ures, including accuracy, precision, recall, F1 score, and 
sensitivity, discussed in the later section.

Methodology
This section elaborates on the proposed methodology, 
the flow of the model, the details of the dataset, opera-
tions on the dataset, and fog and AMI layer configura-
tion. An abstract view of the proposed methodology flow 
is illustrated in Fig. 6. The AMI unit collects data in the 
designated region for detecting intrusions. The accumu-
lated data is preprocessed and used to train a local SVM 
model. Regular updates to the local model are of utmost 
importance, as they ensure the preservation of its accu-
racy and adaptability by incorporating newly acquired 
data. Once the local model is trained, the parameters 
are sent to the global model in fog. The parameters are 
aggregated, and the global model uses the average for its 
training to enhance the accuracy and performance. The 
utilization of the FL approach facilitates the ability of the 
global model to effectively capture and encompass a wide 
range of insights and patterns that are relevant and appli-
cable in various diverse contexts. As the global model 
progresses to be trained, the global parameters are subse-
quently disseminated to individual AMI units. The itera-
tions of these models exhibit enhancements in intrusion 

detection in SGs. The detailed methodology and flow are 
explained in subsequent sections.

Data set
This study uses two renowned datasets: the NSL-
KDD  [80] and the CICIDS20171. To handle imbalanced 
datasets, we adopted resampling techniques to alleviate 
class imbalance, such as oversampling of minority classes 
and undersampling of majority classes, as necessary, to 
ensure that the SVM models effectively learn from all 
classes. We employed random under-sampling, which 
reduced the number of majority class instances, and syn-
thetic over-sampling using the Synthetic Minority Over-
sampling Technique (SMOTE) to augment the minority 
class. These techniques allowed us to mitigate the imbal-
ance while preserving the integrity of the original data-
set, ensuring that our intrusion detection models were 
trained and evaluated effectively.

The NSL-KDD data set, compared to the KDD Cup’99 
data set, addresses the issue of classifier bias towards pre-
viously seen records by excluding irrelevant data from 
the training set. The selection of records from the KDD 
dataset is inversely related to their difficulty, resulting in 
varying classification percentages for different ML algo-
rithms. As a result, evaluating ML methods has become 
more systematic and comprehensive. Moreover, the 
availability of record counts in both the train and test 
data sets allows tests to be conducted on the entire data-
set, ensuring consistency in the ratings assigned to differ-
ent projects.

The efficacy of the proposed model is also verified on 
the CICIDS2017 dataset, which is a significant resource 
in network security and intrusion detection. The pro-
vided dataset replicates a network configuration found 
in real-world scenarios, consisting of two distinct layers. 
The dataset comprises a significant amount of raw data, 
totaling 50 terabytes, recorded in PCAP (Packet Capture) 
files. Additionally, it includes a comprehensive collec-
tion of 84 characteristics, which are contained in CSV 
files. Overall, it records a substantial 2,830,743 occur-
rences of network traffic, facilitating thorough empirical 
examination. 

1. Description of CICIDS2017 Dataset The dataset has 
been divided into 15 distinct categories, wherein 14 
categories reflect various network attack methods, 
and one category represents benign traffic. Notably, 
out of the total occurrences observed, 2,273,097 can 
be categorized as benign traffic; however, 557,646 
instances fall under the classification of anomalous. 
The CICIDS2017 dataset is derived from the Intru-

1 https:// www. kaggle. com/ datas ets/ cicda taset/ cicid s2017/ code

https://www.kaggle.com/datasets/cicdataset/cicids2017/code
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sion Detection Evaluation Dataset. It consists of 85 
attributes and covers a data-collecting period of five 
days, starting on July 3, 2017, and ending on July 7, 
2017. The range of attacks includes Botnet attacks, 
Distributed Denial of Service (DDoS) attacks, Web 
Attacks, Denial of Service (DoS), Brute Force Infiltra-
tion, Brute Force FTP attacks, and Force SSH attacks. 
The CIC-IDS2017 dataset is summarised in Table 4, 
which includes information on different forms of 
traffic and their corresponding counts. The table 
classifies network activity, encompassing benign traf-
fic and various forms of cyber attacks, providing a 
comprehensive summary of the dataset’s content.

2. Description of NSL-KDD Dataset The NSL-KDD 
dataset is a prominent benchmark dataset for net-
work intrusion detection. Developed as an enhanced 
iteration of the original KDD Cup 1999 dataset, the 
NSL-KDD dataset aims to rectify the limitations 
and biases inherent in its predecessor. This dataset 
encompasses network traffic data comprising both 
numerical and categorical attributes. The subsequent 
elaboration provides a comprehensive delineation of 
the features of the NSL-KDD dataset. For the prob-
lem at hand, encompassing 41 features, the dataset 
can be classified into three distinct groups: primary, 
content, and traffic-based. The NSL-KDD dataset 
is described in full in Table  5, which includes sub-
sets such as KDDTrain that classify entries based 
on incursion types. Table 6 summarises the features 
in the NSL-KDD dataset, categorized into primary, 
content-based, traffic-based, and attack-type fea-

tures. It is a reference for researchers and practition-
ers on network intrusion detection tasks. The NSL-
KDD dataset’s features are shown in Table 7, divided 
into numerical and categorical features. Examples of 
categorical features include Protocol Type, Service, 
Flag, Source IP Address, and Destination IP Address. 
The numerical features cover numerous parameters, 
including Duration, Source Bytes, Destination Bytes, 
and several others.

Dataset preparation
Load the dataset into an appropriate data structure, such 
as a pandas DataFrame, then preprocess as needed. This 
preprocessing may involve handling missing values, per-
forming feature scaling, and encoding categorical vari-
ables. Studying the features and their types is essential to 
understand the dataset thoroughly. The dataset should 
be divided into multiple non-overlapping subsets, each 
representing a different client or participant in the FL 
process. These subsets should be spread across different 
locations or devices to ensure a fair distribution.

Preprocessing
Cleaning, standardizing, modifying, and extracting 
useful features from the dataset is crucial to maximize 
data utilization. Preprocessing the data aims to reduce 
dimensionality and the time required for classification, 
thereby enhancing the performance of classification 
algorithms. The outcome of data preprocessing is either 

Fig. 6 Flow of the Proposed Methodology
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a more concise and comprehensible representation of 
the desired concept or an improvement in classification 
accuracy or precision.

• Encoding of the datasets: The process of one-hot 
encoding is employed to convert categorical fea-
tures in the dataset into numerical representations 
that ML algorithms can utilize. The following steps 
summarize the process of one-hot encoding for the 
dataset:

– Identify Categorical Features: The dataset con-
tains categorical features such as Protocol Type, 
Service, Flag, Source IP Address, and Destination 
IP Address.

– Label Encoding: Categorical features must be 
transformed into numerical labels before apply-
ing one-hot encoding. Label encoding assigns a 

unique numerical value to each category within a 
feature.

– One-Hot Encoding: Once label encoding is applied, 
one-hot encoding creates binary dummy variables 
for each category. Each category is represented by 
a separate binary feature, where a value of 1 indi-
cates the presence of that category, and 0 indicates 
its absence.

– Encoding Implementation: One-hot encod-
ing can be implemented using libraries like pan-
das in Python. The commonly used function, 
pd.get_dummies() , applies one-hot encoding and 
generates a new data frame that includes the origi-
nal numerical and encoded binary features.

– Encoded Dataset: The resulting encoded dataset 
will include the original numerical features and 
the new binary features created through one-hot 
encoding. This transformed dataset can be used for 
further analysis or as input for ML algorithms.

 Since most algorithms operate with numerical 
inputs, one-hot encoding enables ML models to inter-
pret and utilize categorical data effectively. The choice 
to use one-hot encoding depends on the specific 
characteristics of the dataset and the ML algorithm 
employed. Other encoding methods, such as ordinal 
or target encoding, may be more appropriate in spe-
cific scenarios. After encoding the dataset, it is crucial 
to partition it randomly into non-overlapping subsets, 
with each subset assigned to a specific client device. 
This partitioning should maintain the original distri-
bution of the dataset as closely as possible, ensuring 

Table 4 Details of CIC-IDS2017 Dataset

Traffic Type CIC‑IDS2017 Description

BENIGN 2,273,097 Non-malicious network traffic.

Bot 1,966 Traffic from Botnets (compromised devices).

DDoS 128,027 Distributed Denial of Service attacks.

DoS GoldenEye 10,293 Denial of Service using GoldenEye tool.

DoS Hulk 231,073 Denial of Service overwhelming target.

DoS Slowhttptest 5,499 Denial of Service exploiting web server vulnerabilities.

DoS Slowloris 5,796 Denial of Service keeping many connections open.

FTP-PATATOR 7,938 Brute-force attack on FTP servers.

Heartbleed 11 Exploitation of Heartbleed vulnerability.

Infiltration 36 Unauthorized intrusion attempts.

PortScan 158,930 Scanning to discover open ports.

SSH-PATATOR 5,897 Brute-force attack on SSH servers.

WebAttack BruteForce 1,507 Web application brute-force attack.

WebAttack SQL Injection 21 SQL Injection vulnerability exploitation.

WebAttack XSS 652 Cross-Site Scripting attack.

Total 2,830,743

Table 5 Details of NSL-KDD Dataset

Dataset Subset Number of Records Description

KDDTrain 125,973 entries Training data subset

67,343 “Normal” (Benign)

45,927 Denial of Service (DoS)

11,656 Unauthorized Access (R2L)

995 Unauthorized Access to Root 
(U2R)

52 Probing

Total Records 125,973
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the representation of different classes and fair learning 
across client devices.

Fog and AMI layer configuration
The Fog Layer is configured to serve as the central com-
puting infrastructure and host the global SVM model. 
The parameters of the SVM model, such as the regular-
ization parameter and kernel function, are set based on 
prior knowledge or through cross-validation. The AMI 
Layer is configured to represent the distributed net-
work of smart meters. To mitigate the risk of overfitting 
and underfitting in our model, we implemented sev-
eral strategies while working solely with training, test-
ing, and validation datasets. First, we incorporated L1 
(Lasso) and L2 (Ridge) regularization techniques into 
the SVM model, introducing penalty terms in the loss 
function to discourage overfitting. By carefully tuning 
the regularization parameters, we ensured the model’s 

Table 6 Features in the NSL-KDD Dataset

Feature Category Description

Basic Features
 Duration The length of the connection in seconds (continuous)

 Protocol Type The protocol used in the connection (categorical: TCP, UDP, ICMP)

 Service The network service on the destination machine (categorical)

 Flag The status of the connection (categorical)

 Source Bytes The number of data bytes sent by the source (continuous)

 Destination Bytes The number of data bytes sent by the destination (continuous)

 Land Indicator of a connection from/to the same host/port (categorical: 0, 1)

Content‑Based Features
 Source IP Address The IP address of the source machine (categorical)

 Destination IP Address The IP address of the destination machine (categorical)

 Source Port Number The port number used by the source machine (continuous)

 Destination Port Number The port number used by the destination machine (continuous)

 Number of Failed Logins The count of failed login attempts (continuous)

 Number of Successful Logins The count of successful login attempts (continuous)

 Number of Root Shell The count of root shell accesses (continuous)

 Number of File Creations The count of file creation operations (continuous)

 Number of Sudo The count of sudo (superuser) commands executed (continuous)

Traffic‑Based Features
 Number of Inbound Connections The count of inbound connections to the same host/IP address (continuous)

 Number of Outbound Connections The count of outbound connections from the same host/IP address (continuous)

 Number of Same Service Connections The count of connections to the same service (continuous)

 Number of Same Host Connections The count of connections to the same host (continuous)

 Number of Same Host with Same Service Connections The count of connections to the same host and service (continuous)

Attack Types
 DoS Denial of Service

 R2L Remote-to-Local

 U2R User-to-Root

 Probing Probing Attacks

Table 7 Table of NSL-KDD Features

Feature Type Features name

Categorical Features Protocol Type, Service, Flag, Source 
IP Address, Destination IP Address

Numerical Features Duration Source Bytes, Destination 
Bytes, Num Failed Logins, Num 
Compromised, Num Root, Num File 
Creations, Num Shells, Num Access 
Files, Num Outbound Cmds, Count, 
Srv Count, Serror Rate, Srv Serror 
Rate, Rerror Rate, Srv Rerror Rate, 
Same Srv Rate, Diff Srv Rate, Srv 
Diff Host Rate, Dst Host Count, Dst 
Host Srv Count, Dst Host Same Srv 
Rate, Dst Host Diff Srv Rate, Dst Host 
Same Src Port Rate, Dst Host Srv Diff 
Host Rate, Dst Host Serror Rate, Dst 
Host Srv Serror Rate, Dst Host Rerror 
Rate, Dst Host Srv Rerror Rate
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ability to generalize from the training data to unseen 
instances. We also ensured that our model architec-
ture remained relatively simple, focusing on the most 
informative features while avoiding extraneous ones. 
This feature selection process not only helped the mod-
el’s understanding but also mitigated overfitting risks.

Local model training
The dataset partitions are distributed to their respec-
tive client devices. On each client device, local SVM 
training is performed with the assigned partition of 
the dataset. The hyperparameters of the SVM model, 
such as the kernel function, regularization parameters, 
and other SVM parameters, are adjusted based on the 
requirements and constraints specific to each client 
device. The SVM classifier is selected as the model for 
FL, and its architecture, including the kernel function, 
regularization parameters, and other hyperparameters, 
is defined. The initial SVM model is distributed to all 
participating clients, serving as the starting point for 
training. Each client independently trains the SVM 
model on its local data using an optimization algorithm 
such as stochastic gradient descent, updating its local 
model weights based on the performance of the data. 
To protect data privacy, we applied differential privacy 
before forwarding the parameters to the global model. 
The sensitivity ( Sn ) of the model’s updates is car-
ried out using the L2 norm, and a privacy budget ( Pb ) 
of 0.1 is allocated to strike a balance between privacy 
and utility. We introduced Laplace noise, generated by 
sampling from a Laplace distribution with a scale ( Sc ) 
calculated as Sc = Sn

0.1
 . This scale ensured that the noise 

provided adequate privacy while preserving model 
utility. The Laplace noise is added to model parameter 
updates before aggregation. In managing the privacy 
budget, Pb is evenly allocated across multiple rounds 
and monitored for cumulative expenditure. If privacy 
usage approaches Pb , data contributions are capped to 
maintain privacy guarantees.

SVM components and values
SVM model training involves various components. The 
key components of the SVM model are as follows:

• Weight and Bias: The initial values for both the 
weight vector and bias were randomly set to minimal 
values (as low as zero) at the initialization of the FL 
process. This random initialization allows the SVM 
model to start with a neutral point, preventing any 
preconceived bias in the learning process.

• Kernel Function: The kernel function is a crucial 
component of SVM that maps the input data into a 
higher-dimensional feature space, enabling the non-
linear separation of data points. Commonly used 
kernel functions include the Linear Kernel, Polyno-
mial Kernel, and Radial Basis Function (RBF). We 
apply the Radial Basis Function (RBF) kernel, which 
is known to perform well in intrusion detection. The 
RBF kernel is characterized by a gamma value of 
0.1.Kernel.

• Regularization Parameters: SVM incorporates regu-
larization to control the trade-off between achieving 
a small margin and minimizing training errors. The 
primary regularization parameters are C and Gamma 
(for RBF kernel). Parameter C controls the penalty 
for misclassified training samples and the parameter 
Gamma defines the influence of each training sam-
ple. It also controls the trade-off between achieving 
a smaller margin (e.g., ’C’ = 1) and minimizing train-
ing errors (e.g., ’C’ = 0.1). In the context of the NSL-
KDD and CICIDS2017 datasets, careful tuning of ’C’ 
is essential to adapt the model to the specific charac-
teristics of the data.

• Hyperparameters: In addition to the kernel func-
tion and regularization parameters, SVM models 
have other hyperparameters that need to be tuned 
for optimal performance. These hyperparameters 
include the kernel coefficient (for polynomial ker-
nel), degree (for polynomial kernel), cache size, con-
vergence tolerance, and class weights. For instance, 
when applying the RBF kernel, the kernel coefficient 
may be set to 3.

• Optimization Algorithms: SVM models are typi-
cally trained using optimization algorithms such as 
Sequential Minimal Optimization (SMO) or the LIB-
SVM library. These algorithms aim to find the opti-
mal hyperplane that maximizes the margin between 
different classes while minimizing classification 
errors.

In our FL-based IDS, data examples consist of obser-
vations and measurements from the NSL-KDD and 
CICIDS2017 datasets. These data examples include 
information from network traffic, connection records, 
and related attributes. For instance, a data example may 
comprise details such as Protocol Type, Service, and Flag 
and numerical attributes like bytes transmitted and pack-
ets exchanged. Understanding the interplay between spe-
cific data features, labels, and the SVM model with actual 
parameter values is essential for comprehending the 
inner workings of our IDS, mainly when applied to the 
NSL-KDD and CICIDS2017 datasets. Collectively, these 
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components contribute to robust and privacy-preserving 
intrusion detection in network security environments.

The choice of the kernel function, regularization 
parameters, and other hyperparameters depends on the 
nature of the data, the problem’s complexity, and the 
application’s specific requirements. Techniques like grid 
search or random search can be employed for hyperpa-
rameter tuning. It is also recommended to preprocess the 
data, handle missing values, perform feature scaling, and 
apply techniques like cross-validation to ensure robust 
and accurate SVM model training. A secure and efficient 
communication protocol or framework should be estab-
lished to enable communication between the central 
server and the clients during the FL process, ensuring 
data privacy and security.

Model aggregation
The clients send their updated local model weights (not 
the raw data) to the central server. The central server 
aggregates the received model weights from all clients 
using a defined aggregation method, such as weighted 
averaging, to create a new global model. The conver-
gence of the proposed model was assessed by monitoring 
the stability of global model parameters over successive 
rounds of communication with client devices. When 
these parameters exhibited minimal changes, indicating 
that additional training rounds were unlikely to yield sub-
stantial improvements, the model was considered to have 
converged. 

1. Federated Averaging: It is a widely used aggregation 
model in FL that combines locally trained models 
from multiple client devices or edge nodes. It enables 
collaborative model training while preserving data 
privacy. The main idea behind Federated Averaging 
is to leverage the local training and data from multi-
ple client devices while maintaining data privacy and 
confidentiality. Instead of directly sharing raw data 
or gradients, client devices only send their model 
updates to the central server. The central server 
aggregates these updates through weighted averag-
ing, improving the global model. Federated Averag-
ing works collaboratively between a central server 
and multiple client devices in an FL setting. The fol-
lowing steps outline its operation:

• Initialization: The central server initializes a global 
model with random parameters or pre-trained 
weights. This global model represents the initial 
shared model that will be collaboratively trained.

• Local Model Training: The central server dis-
tributes the global model to participating client 

devices (edge nodes). Each client device trains 
the global model using its local dataset without 
sharing the raw data or gradients with the central 
server. The local training process typically involves 
multiple iterations, updating the local model’s 
parameters using local data.

• Local Model Updates: After training, each client 
device obtains updated model parameters spe-
cific to its local dataset. These updated parameters 
represent the local knowledge and improvements 
gained through training on the device’s specific 
data.

• Model Aggregation: The client devices send their 
locally trained model parameters (weights) back to 
the central server. The central server collects the 
model updates from the client devices.

• Weighted Averaging: The central server performs 
weighted averaging of the received model param-
eters. The weights for averaging are determined 
based on factors such as the number of samples or 
computational resources of each client.

• Global Model Update: The averaged model 
parameters obtained from the weighted averag-
ing become the updated global model. The central 
server replaces the previous global model with the 
updated one.

• Iteration: The updated global model is distrib-
uted back to the client devices for the next round 
of local training. Local model training, updates, 
aggregation, and global model updates are 
repeated iteratively for multiple rounds.

By repeating this process, the global model progressively 
incorporates knowledge from the client devices’ local 
data while preserving data privacy. Each client device 
contributes local insights to the shared model without 
sharing sensitive data or individual gradients. This col-
laborative learning approach helps improve the global 
model’s performance over time, benefiting from the col-
lective knowledge of the participating client devices. 
Federated Averaging allows for decentralized training, 
leveraging the computational resources and data diver-
sity across client devices, making it particularly suitable 
for scenarios where data privacy and locality are essential 
considerations.

Evaluation, testing, and validation
Evaluation, testing, and validation of the final federated 
model are crucial to assess its performance and deter-
mine its effectiveness in identifying intrusion. As men-
tioned earlier, a separate evaluation dataset is used to 
evaluate the model as test data for both datasets. The 
performance is measured using different metrics, such as 
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accuracy, precision, recall, or F1 score (discussed next). 
Once trained, our model can be deployed and used to 
detect intrusions on new data without further labeling. 
This is because the model has learned to identify the data 
patterns associated with intrusions.

Result analysis
The simulation results are analyzed to gain insights into 
the performance of the proposed architecture in intru-
sion detection using the NSL-KDD and CICIDS2017 
datasets. The obtained performance metrics are com-
pared to benchmark results or existing intrusion detec-
tion techniques to evaluate the effectiveness and 
efficiency of the proposed approach.

Accuracy
Accuracy in our experimentation refers to the model’s 
ability to correctly classify or predict the outcome of the 
provided data samples (i.e., intrusions). It is calculated 
by dividing the number of correctly identified intrusions 
by the total number of intrusions made by the model. It 
reflects the model’s performance in identifying the tar-
get variable or class labels, such as an intrusion. Figure 7 
illustrates the accuracy of test and validation for NSL-
KDD datasets. As the number of iterations increases, 
the simulation results demonstrate a clear and consist-
ent trend of increasing accuracy for both the test and 
validation sets. This empirical observation suggests that 
enabling models to endure more extended training peri-
ods improves their predictive performance significantly. 
The accuracy of the test set remained 97% to 98% after 
50 iterations, with an average of 98.20%, showing a minor 

but noticeable improvement. It was 97% to 98% after 50 
iterations, with an average of 97.60% for the validation 
set. This progress is due to the model’s capacity to learn 
from local data and adapt its settings to the unique fea-
tures of the dataset.

In addition to the above, we followed the same FL 
process spanned 50 iterations for the CICIDS2017 
dataset, allowing for a comprehensive examination 
of the accuracy trends over time. Figure  8 shows the 
test results and validation sets accuracy. The accuracy 
exhibited a notable increase from an initial 93% to a sta-
ble 96% on the test set with an average of 94.40%, indi-
cating the convergence of the model. For the validation 
set, it is 93% to a stable 94% on the test set with an aver-
age of 94.40%. It shows the persistence performance of 
the proposed FL model. The stability observed in the 
accuracy trends for both datasets after a certain num-
ber of iterations suggests that the FL model, coupled 
with SVM, effectively converges to reliable and com-
petitive performance levels. The ability of the model 
to adapt and learn from decentralized data sources 
is evident in the consistent accuracy improvement 
observed throughout the iterations. The test and vali-
dation percentages for accuracy on both datasets were 
comparable, with slight variations. For the CICIDS2017 
dataset, the test accuracy aligned closely with the vali-
dation accuracy, showing a consistent performance of 
the model on unseen data. In contrast, the NSL-KDD 
dataset exhibited a slightly wider gap between test and 
validation percentages, indicating potential variations 
in the generalization of the model. Further investiga-
tion into the specific characteristics of the datasets and 

Fig. 7 Accuracy of Test and Validation sets for NSL-KDD dataset
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the model’s behavior could provide insights into these 
differences.

Using the synergistic strengths of individual models, FL 
can generate substantial performance advances, as evi-
denced by this substantial disparity. These results dem-
onstrate the potential of FL in real-world contexts where 
data privacy and distributed data sources are concerns. 
FL strikes the optimal equilibrium between preserving 
privacy and enhancing performance by allowing models 
to be locally trained on sensitive data and sharing only 
model updates.

Precision
Precision is an essential evaluation metric that verifies 
a model’s positive predictions. It indicates the propor-
tion of positively predicted instances (AKA true posi-
tives) correctly identified as positive among all positive 
instances (AKA true positives and false positives). It rep-
resents the model’s ability to prevent false positives and 
is crucial in  situations where false positives have more 
severe consequences, such as intrusion detection. A high 
level of precision indicates a small number of false posi-
tives. Figure 9 presents the test and validation sets’ preci-
sion at various iterations. Analyzing the precision values, 
it is evident that as the number of iterations increases, 
both the test and validation sets exhibit an upward trend. 
The increase in precision indicates that the models are 
becoming more accurate at identifying positive instances 
within the dataset. For instance, the precision of the test 
set is 98% after 10 iterations, and the precision of the vali-
dation set is also 98%. It remained persistent throughout 

execution, signifying the capacity to generate precise 
positive predictions.

For the CICIDS2017 dataset, precision exhibited a 
notable increase from an initial 94% to a stable 94%, sig-
nifying the convergence of the model. The overall average 
precision for the CICIDS2017 dataset across all iterations 
is 94.4%, as shown in Fig.  10. The observed stability in 
precision trends for both datasets after a certain number 
of iterations suggests that the FL model, coupled with 
SVM, effectively converges to reliable and competitive 
performance levels. The model’s ability to adapt and learn 
from decentralized data sources is evident in the consist-
ent precision improvement observed over the iterations. 
Analyzing the differences between test and validation 
percentages for precision reveals nuanced insights. In 
the case of the CICIDS2017 dataset, the test and valida-
tion precision percentages are closely aligned, indicating 
consistent model performance on both seen and unseen 
data. Conversely, the NSL-KDD dataset exhibited a 
slightly wider gap between test and validation precision 
percentages, suggesting potential variations in the mod-
el’s generalization to new and unseen data. Further explo-
ration into dataset characteristics and model behavior 
can provide deeper insights into these differences.

FL’s collaborative nature allows for a more varied 
and extensive training procedure, expanding the scope 
of the Global Model’s coverage and improving the 
precision with which it predicts future events. Proof 
of the model’s learning ability is found in their stead-
ily improving accuracy as more iterations are added 
to the training process. When trained, the models 

Fig. 8 Accuracy of Test and Validation sets for CICIDS2017 dataset
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improve their ability to recognize positive cases, and 
their parameters are tweaked. Models can improve 
their predictions and better capture complicated 
data-based interactions through this repeated learn-
ing process. The outcomes show that FL is effective in 
raising the models’ accuracy. Through this cooperative 
method, the Global Model can draw upon the expertise 
of several regional models, improving its ability to fore-
tell success rates. It exemplifies the promise of FL to 
achieve precise ML in distributed settings while main-
taining privacy.

Recall
The capacity of a model to correctly identify all positive 
events is measured by recall (also known as sensitivity or 
true positive rate). The percentage of true positive exam-
ples the model correctly detects for the NSL-KDD data-
set is shown in Fig. 11. The results of the memory tests 
conducted on the test and validation sets at different 
times shed light on their relative efficacy. These findings 
also show the importance of paying attention to each era 
to improve memory. The test set performed 97% recall 
for the 50 iterations with an average of 97%. In contrast, 

Fig. 9 Precision of Test and Validation sets for NSL-KDD dataset

Fig. 10 Precision of Test and Validation sets for CICIDS2017 dataset



Page 26 of 34Tariq et al. Journal of Cloud Computing           (2024) 13:43 

it was 96% and 97% for the validation set, with an aver-
age of 97.20%. It indicates that the proposed models suc-
cessfully identified many true positives. Similarly, recall 
demonstrated a stable performance for the CICIDS2017 
dataset (as shown in Fig.  12), reaching 97% across all 
iterations. The overall average recall for the CICIDS2017 
dataset is 98.6%. It was 97% to 98% recall for the 50 itera-
tions, with an average of 97.20% for the test set. In com-
parison, it was 96% and 97% for the validation set, with 
an average of 97.66%.

The observed stability in recall trends for both datasets 
after a certain number of iterations indicates that the FL 
model, coupled with SVM, effectively converges to reli-
able and competitive recall levels. The model’s adapt-
ability and learning from decentralized data sources are 
evident in the consistent recall performance observed 
over the iterations. Examining the differences between 
test and validation recall percentages reveals interest-
ing insights. In the case of the CICIDS2017 dataset, 
the test and validation recall percentages align closely, 

Fig. 11 Recall of Test and Validation set NSL-KDD dataset

Fig. 12 Recall of Test and Validation set for CICIDS2017 dataset
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indicating a consistent model performance on both 
seen and unseen data. Conversely, the NSL-KDD data-
set exhibits a slightly wider gap between test and valida-
tion recall percentages, suggesting potential variations 
in the model’s generalization to new and unseen data. 
Further exploration into dataset characteristics and 
model behavior can provide deeper insights into these 
differences. It emphasizes the necessity of leveraging the 
collective knowledge of distributed models to enhance 
intrusion detection efficiency. The recall data show how 
both models improve with each iteration, demonstrating 
how FL may successfully boost intrusion detection over 
time. It shows that collaborative methods are important 
for improving intrusion detection accuracy by achieving 
greater recall rates.

According to the results, the recall of both models 
improves as the number of iterations grows. It indi-
cates that the models are improving at recognizing and 
recording success rates. When comparing recall values 
over time, the global model always performs better than 
the local model. It emphasizes the value of the global 
model in preventing the overlooking of potential dan-
gers. A recall is also highlighted as an essential statistic 
for IDSs. The findings suggest that FL is a viable strategy 
for intrusion detection applications. It allows for inte-
grating and utilizing data from several sources, resulting 
in more accurate and trustworthy models yet protecting 
individual privacy. The potential for the global model to 
increase the number of true positive identifications has 
implications for the safety of digital infrastructures. Fur-
thermore, it enables more reliable and comprehensive 
identification of harmful actions.

F1 score
Both models improve in performance with each iteration, 
shown by a positive connection between the number of 
iterations and the F1 Score in Figs.  13 and  14. During 
this, the models might gain insights from the data and 
fine-tune their settings to achieve better results. With an 
F1 Score of 95.00% at all the iterations for the validation 
set, the FL Model has shown to be accurate, reliable, and 
stable. It means the model has successfully reduced the 
number of false positives and negatives while correctly 
detecting positive cases. The results show that the test 
set performs better with an F1 score of 95 to 96% with an 
average of 95.20%. It indicates that the model is accurate 
while also catching a high percentage.

The F1 Score of both models increased significantly 
by iteration 40. The F1 Score is used to assess the effi-
cacy of the Local Model, which is determined to be 
95%, indicating a stable model with satisfactory preci-
sion and recall. It follows a stable trend, demonstrating 
that the models successfully gain insights from the data 
and fine-tune their settings to produce the best results. 
The fact that the F1 Score rises with time indicates that 
the models get better at identifying positive events 
with decreasing error rates. It was successful for both 
the test and validation cases by striking a good balance 
between accuracy and recall. It shows that using differ-
ent kinds of data can improve the quality of predictions 
made. The models’ F1 scores demonstrate their train-
ability, suggesting they are effective for the problem.

The study guarantees the convergence of the FL model 
by closely monitoring performance metrics during the 
execution of the model. The performance of the IDS 

Fig. 13 F1 Score of Test and Validation sets for NSL-KDD
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improves over time as the number of iterations increases, 
suggesting continual learning. However, precise con-
vergence criteria are used to evaluate the stability of 
the model. An established method involves monitor-
ing the performance parameters during the iterations. 
Convergence is indicated when these parameters stabi-
lize or show diminishing improvements, even with fur-
ther training iterations. Furthermore, the confirmation 
of convergence is strengthened by observing consistent 
model predictions across different devices or clients in 
the FL network. Performing regular model evaluation on 

an independent validation dataset ensures that the model 
has effectively learned the fundamental patterns without 
excessively conforming to the training data.

Confusion matrix
Observations about a classification model’s efficacy can 
be gained from the resulting confusion matrix. Figure 15 
provides crucial insights into the capabilities of the pro-
posed IDS for SGs for the NSL-KDD dataset. The IDS 
captured 1,944 True Positives (i.e., 91%), demonstrating 
its proficiency in correctly identifying actual intrusions. 

Fig. 14 F1 Score of Test and Validation set CICIDS2017 dataset

Fig. 15 Confusion Matrix for NSL-KDD dataset
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Although 45 instances of False Positives were identified, 
indicating that normal network activity was occasion-
ally misclassified as malicious, this number remains rela-
tively low, indicating room for improvement. It indicates 
that the model sometimes incorrectly identifies normal 
network activity as malicious. Because SG settings are 
naturally complicated and changeable, good things can 
sometimes look like alarming trends. The False Positive 
Rate is 3%, meaning that three of every 1,500 occurrences 
when the true outcome was negative were wrongly 
labeled as positive. On the other hand, the IDS identi-
fied routine network traffic as non-intrusive 1,945 times, 
ensuring network functionality while minimizing false 
alarms. A count of 55 False Negatives highlights instances 
in which the IDS missed actual intrusions, reinforcing 
the need for ongoing fine-tuning to reduce false negatives 
further. Overall, the IDS displayed a positive indicator of 
its ability to differentiate between normal and malicious 
network activities. With a precision rate of approximately 
93.26 percent and a recall rate of approximately 95.26 
percent, the system excels at detecting actual intrusions 
and sustaining precision when issuing alerts. In addition, 
the comparatively low False Positive Rate (FPR) demon-
strates its effectiveness in preventing superfluous alerts.

In the CICIDS2017 dataset, it is observed that 97 
instances of benign network activity have been wrongly 
classified as malicious. It highlights potential areas that 
can be enhanced or improved. The misclassification 
observed may be attributed to the complex and ever-
changing nature of SG operations. In this scenario, cer-
tain harmless activities may display patterns that resemble 
unauthorized access attempts. Furthermore, this dataset 

contains 53 instances of FN, indicating instances where 
the IDS could not detect real intrusions. The model has 
a 91% success rate in identifying 1,944 real invasions for 
the CICID2017 dataset, as shown in Fig. 16. It shows how 
well the model can identify harmful behavior. This model 
is effective at detecting intrusions at a 97% True Positive 
rate. Furthermore, the model correctly classified 1,906 
instances of benign network activity. In other words, the 
model successfully reduced the number of unnecessary 
warnings while maintaining a reliable network. The mod-
el’s ability to differentiate between benign and malicious 
traffic is shown by its high True Negative rate of 95.26 
percent. There were only 97 instances in which the model 
incorrectly identified benign network traffic as mali-
cious despite the model’s poor False Positive rate of 3%. A 
minor predisposition for false alarms suggests that some 
disruptions and resources may be expended for no good 
reason. The model incorrectly labeled 53 real intrusions as 
harmless. Because of this, more work has to be done to 
perfect the detection of actual invasions. The model’s low 
False Negative rate of 93.26% indicates that it effectively 
detects intrusions; however, it could be further enhanced.

Comparison with state‑of‑the‑art
To demonstrate our model’s performance and effi-
cacy, we compared our model with a model presented 
in  [81] for the NSL-KDD dataset. Accuracy, recall, pre-
cision, and the F1 score were some of the metrics used 
in the comparison (see Table  8). It was found that the 
proposed model had a 98% accuracy rate, which was 
higher than that of the FL-MGVN technique (i.e., 94%). 
It is to be noted that the proposed model has improved 

Fig. 16 Confusion Matrix for CICIDS2017 dataset
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classification performance across all categories. The 
proposed model has a 98% precision value compared to 
the state-of-the-art, which is only 89.0 percent. The sug-
gested model can detect positive instances and network 
intrusions more accurately than the previous approaches. 
In addition, accurately finding positive instances is one 
way to measure a model’s precision, which indicates the 
model’s accuracy in labeling incursions. We also com-
pared the two models’ F1 scores. The F1 score for the 
proposed model was 97%, whereas the F1 score for the 
FL-MGVN approach was 85%. Both recall and precision 
are factored into the F1 score. The proposed model bal-
anced precision and recall better, leading to more reli-
able performance. The base paper’s recall value is 85%, 
whereas the proposed model scored 97% recall. Hence, 
the proposed method outperforms the FL-MGVN tech-
nique in every metric used in the study. The study shows 
that the proposed approach is better and more efficient at 
finding network intrusions. In contrast to the FL-MGVN, 
the proposed model has improved upon the accuracy, 
recall, precision, and F1 score benchmarks.

The performance and efficacy of the proposed model 
are also evaluated using the CICIDS2017 dataset. A com-
parative analysis is done with the state-of-the-art model 
presented in [82]. The model performance is assessed uti-
lizing essential indicators, such as accuracy, recall, preci-
sion, and the F1 score, as shown in Table 8. The proposed 
model achieved a notable accuracy rate of 94%, surpass-
ing the accuracy of 88.5% achieved by the state-of-the-art. 
The recall rate was 96%, in contrast to the state-of-the-art 
model, which demonstrated a comparatively lower recall 
rate of 89%. The significant result highlights the enhanced 
ability of the proposed model to reliably detect positive 
instances of network intrusions, surpassing the effective-
ness of previous methods. Furthermore, the proposed 
model demonstrated a higher level of precision, with a 
score of 94%, compared to the state-of-the-art model’s 
precision rate of 88.5%. Moreover, we also compared the 

F1 Score of the two models. The F1 score of the suggested 
model is 95%, whereas it achieved an F1 score of 88.5% 
for the state-of-the-art. As a result, the suggested model 
achieved a careful equilibrium between precision and 
recall, increasing dependability and effectiveness. Based 
on the findings presented, it is evident that the proposed 
model is superior to the state-of-the-art technique in all 
the metrics examined. For instance, a higher recall rate 
indicates a system’s ability to accurately identify and 
mitigate potential intrusions. In practical situations, 
particularly those with potentially serious consequences 
resulting from a security breach, attaining a high recall 
rate assumes utmost significance. In IDSs, it is notewor-
thy to consider the recall rate, which can be defined as 
the proportion of actual intrusions that the system has 
correctly identified. A recall rate of 97 and 96% indicate 
that the system has successfully detected a high number 
of the total intrusions present in the system. The findings 
of our study represent the effectiveness of the model and 
also highlight its practical value in improving the security 
of SG networks. This study provides a clear demonstra-
tion that the proposed methodology significantly outper-
forms in the detection of network intrusions.

Discussion
The proposed technique is characterized by its decentral-
ized and distributed framework, data privacy-preserving, 
and incorporation of a fog layer. It exhibits significant 
potential in addressing distinct security needs while alle-
viating privacy and latency problems in SGs. Additional 
investigation and advancement in this area may result in 
the creation of resilient and efficient intrusion detection 
models for the ever-changing SG ecosystem. One of the 
primary advantages of this method is its distributed and 
decentralized architecture. In contrast to most central-
ized IDSs that depend on a single point of control or data 
repository, this approach utilizes FL to enable multiple 
locations to train and enhance the intrusion detection 
model collectively. This strategy improves the scalability 
of the system. It mitigates privacy risks with centralized 
designs, in which a central server may have access to sen-
sitive user data and is highly prone to a single point of 
failure.

The integration of fog computing optimizes the effi-
ciency and responsiveness of SGs. Fog computing 
facilitates the execution of data processing and deci-
sion-making tasks at the edge of a network, resulting in 
decreased latency in identifying security vulnerabilities 
in close proximity to users. Timely intrusion detection 
and response in SGs is paramount since timely inter-
vention can mitigate potentially detrimental cyberat-
tacks. Furthermore, the FL assures that sensitive user 
data is kept secure on the local models/servers. The 

Table 8 Performance Metrics Comparison with State-of-the-art

Dataset Metric Paper Type

Base Papers Proposed Paper Percentage 
Improvement

NSL-KDD Accuracy 94% 98% 4.17%

Precision 89% 98% 9.63%

F1 Score 85% 97% 13.19%

Recall 85% 97% 13.19%

CICID2017 Accuracy 88.5% 94% 6.03%

Precision 88.5% 94% 6.03%

F1 Score 88.5% 95% 7.08%

Recall 89% 96% 7.57%
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model can undergo training without providing data 
to the central server, rendering it a highly suitable 
option for privacy-oriented SG scenarios. Therefore, it 
aligns with the growing significance of protecting user 
information in SGs. While these advantages make the 
proposed SVM-based FL with fog computing a com-
pelling choice for SG intrusion detection, it is essential 
to acknowledge potential challenges and limitations. 
These may include issues related to convergence, com-
munication overhead, and the need for careful model 
optimization. While fog computing offers the advan-
tage of localized data processing and quicker decision-
making at the network edge, it can introduce network 
delays in specific scenarios. Fog nodes may have dif-
ferent processing power than centralized servers, and 
depending on the complexity of intrusion detection 
algorithms and the volume of data being processed, 
there might be a trade-off between latency and com-
putation time. Balancing the computational demands 
with low-latency response is a critical challenge in 
implementing fog computing for intrusion detection in 
SGs. Additionally, FL relies on communication between 
edge devices and a central server, where model updates 
are aggregated and shared. This communication can 
introduce overhead regarding network bandwidth and 
energy consumption, particularly in scenarios with fre-
quent model updates. Managing this communication 
overhead efficiently while ensuring model convergence 
is a non-trivial task.

FL often involves training ML models across distrib-
uted and potentially heterogeneous data sources. Ensur-
ing the models converge to a consistent and accurate 
representation of the intrusion detection task can be 
challenging. Variability in data distributions, quality, or 
device capabilities across SG nodes may hinder model 
convergence. Careful optimization and coordination 
are needed to address this limitation. As the SG net-
work expands, the scalability of the proposed technique 
becomes a concern. Deploying and maintaining the nec-
essary computational resources, including fog nodes and 
edge devices, can be resource-intensive. Ensuring that the 
system scales effectively with the growth of the SG infra-
structure requires careful planning and resource manage-
ment. Similarly, not all edge devices in an SG may have 
the computational capabilities to participate in FL effec-
tively. Ensuring compatibility and optimizing the model 
for resource-constrained devices is crucial to achieving 
widespread adoption of the proposed technique.

While the proposed technique aims to enhance 
security, it also introduces new security considera-
tions. Protecting the integrity of model updates during 
communication and preventing potential adversarial 
attacks on the FL process are vital concerns that must 

be addressed. Furthermore, SG data may exhibit imbal-
ances and concept drift, where normal and attack data 
distribution and characteristics change over time. The 
technique should be able to adapt to these changes 
effectively and avoid becoming obsolete. While the pro-
posed SVM-based FL with fog computing offers com-
pelling advantages for intrusion detection in SGs, it is 
essential to acknowledge and address the mentioned 
limitations. Real-world test bed experimentation is 
essential for validating the effectiveness of the model in 
practical SG environments despite the valuable insights 
provided by our simulations. In addition, the effective-
ness of our IDS could be improved by investigating 
alternative ML and deep learning models. In addition, 
overcoming these challenges will require a combination 
of algorithmic improvements, efficient communication 
protocols, resource management strategies, and ongo-
ing research to ensure the technique’s effectiveness and 
scalability in real-world SG environments. These fac-
tors emphasize the need for further investigation and 
empirical confirmation to strengthen the resilience of 
our suggested methodology.

Conclusion
Low detection accuracy, high false alarm rates, and 
limited labeled data availability challenge modern 
intrusion detection strategies. Given the escalating 
sophistication of cyber threats, robust IDSs play a piv-
otal role in safeguarding networks and protecting sen-
sitive information. This research extends its focus to 
the realm of SGs, where the interconnection of devices 
and data communication introduces substantial secu-
rity vulnerabilities. Leveraging FL and fog comput-
ing, our proposed framework offers a decentralized 
approach for identifying intrusions within SG environ-
ments. Our approach surpasses existing state-of-the-
art methods through extensive evaluations, excelling in 
accuracy, recall, precision, F1 score, and specificity for 
detecting and classifying network intrusions. It exhib-
its adaptability to evolving attack patterns, scalability 
across diverse network environments, and an effective 
balance between precision and recall. In our future 
work, we are committed to exploring diverse network 
environments, evolving attack scenarios, and varied 
data sources while enhancing real-time capabilities and 
seamless integration with established security frame-
works. It marks a critical step toward fortifying the 
security of SGs in the face of evolving cyber threats. In 
addition to this, we aim to integrate blockchain in the 
proposed solution for enhanced scalability and secu-
rity. We aim to extend it to critical infrastructure and 
the Internet of Things (IoT) to secure diverse and inter-
connected systems.
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