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Abstract 

Ensuring application service availability is a critical aspect of delivering quality cloud computing services. However, 
placing virtual machines (VMs) on computing servers to provision these services can present significant chal-
lenges, particularly in terms of meeting the requirements of application service providers. In this paper, we present 
a framework that addresses the NP-hard dynamic VM placement problem in order to optimize application availability 
in cloud computing paradigm. The problem is modeled as an integer nonlinear programming (INLP) optimization 
with multiple objectives and constraints. The framework comprises three major modules that use optimization 
methods and algorithms to determine the most effective VM placement strategy in cases of application deploy-
ment, failure, and scaling. Our primary goals are to minimize power consumption, resource waste, and server failures 
while also ensuring that application availability requirements are met. We compare our proposed heuristic VM place-
ment solution with three related algorithms from the literature and find that it outperforms them in several key areas. 
Our solution is able to admit more applications, reduce power consumption, and increase CPU and RAM utilization 
of the servers. Moreover, we use a deep learning method that has high accuracy and low error loss to predict applica-
tion task failures, allowing for proactive protection actions to reduce service outage. Overall, our framework provides 
a comprehensive solution by optimizing dynamic VM placement. Therefore, the framework can improve the quality 
of cloud computing services and enhance the experience for users.
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Introduction
Cloud computing has emerged as a popular paradigm 
that offers Application Service Providers (ASPs) such as 
Netflix and Spotify the ability to leverage a pool of virtual 
infrastructure resources for hosting their applications. By 
accessing resources from Cloud Service Providers (CSPs) 

based on workload demands, ASPs are able to real-
ize the pay-as-you-go business model where they only 
pay for resources they use. This cost-effectiveness has 
encouraged many ASPs to migrate their applications to 
the cloud. However, despite its many advantages, cloud 
computing presents quality of service (QoS) challenges 
that have become top priorities for ASPs. In particular, 
service availability has emerged as a key non-functional 
requirement, denoting the percentage of time a ser-
vice is available to users [1]. Some users demand highly 
available (HA) services, with a ratio of 99.999% (aka five 
nines) or more of the time the service is available being 
the gold standard for service HA [1]. Other users require 
service continuity in order to resume the service from its 
last state before interruption. CSPs are responsible for 
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ensuring application service availability in accordance 
with the requirements laid out in Service Level Agree-
ments (SLAs), which detail QoS expectations. Provid-
ing availability that is lower than the demand can have a 
significant negative impact on service performance and 
quality, resulting in significant losses, with downtime in 
web applications costing businesses up to $300,000 per 
hour [2]. Conversely, providing availability above the 
demand can raise costs and reduce the admissibility of 
new applications, lowering CSP profits. Therefore, effec-
tively managing service availability is critical for both 
ASPs and CSPs in order to balance the service quality 
with profitability.

Managing service availability in the cloud is a complex 
task that comes with several challenges. Applications in 
the cloud are composed of software components hosted 
on virtual computing nodes such as Virtual Machines 
(VMs) or containers. These components depend on 
physical computing nodes, also known as servers, to 
host them. Due to this heterogeneous stack dependency, 
any failure in any layer can cause a service outage at any 
time. Detecting and quickly recovering from a resource 
failure requires an efficient monitoring and manage-
ment mechanism. Moreover, cloud environments are 
highly dynamic, with resources being frequently added or 
removed on the fly. Failure to provide required resources 
at the right time can compromise service availability and 
quality. On the other hand, keeping extra resources for 
an extended period can increase operational and main-
tenance costs.

Ensuring high service availability in the cloud is not 
an easy task that requires a careful balance between cost 
and performance. Numerous approaches have been pro-
posed to address this challenge. Reactive solutions focus 
on addressing outages as they occur by using redundancy 
models to failover to standby resources when an active 
resource fails. While effective, this approach can be costly 
due to the need for additional standby resources. Pro-
active solutions aim to predict and prevent service fail-
ure through prediction methods and protective actions. 
This approach can be cost-effective but relies heavily 
on the accuracy of the prediction method. Protection 
mechanisms can also increase the availability of applica-
tion components, such as using a strong VM placement 
strategy. However, the proximity of VMs providing the 
same service can lower the overall availability level of 
the service, making VM placement a significant chal-
lenge. Clustering VMs together can help to reduce the 
total number of computing servers required to host the 
VMs, leading to reduced energy consumption and asso-
ciated costs. However, placing active and standby VMs 
responsible for a specific service instance on the same 
server can result in a service outage in the event of server 

failure. Alternatively, distributing VMs across servers can 
improve workload balancing and server performance, but 
may increase the number of active computing servers 
and associated costs. Thus, choosing the optimal place-
ment strategy for VMs is critical to maintaining high ser-
vice availability in the cloud.

The management of virtual machine (VM) placement 
in cloud computing presents a challenging combinato-
rial problem that is NP-hard. Static VM placement is only 
suitable when a new VM is requested, while dynamic 
placement involves changes to the location of VMs, trig-
gered at any time for any reason such as elasticity and 
migration. Achieving multiple objectives through VM 
placement can further complicate the problem, which 
grows exponentially with the number of VMs. In this 
paper, we introduce the “Multiple-Objectives Dynamic 
VM Placement for Application Availability in Cloud” 
(MoVPAAC) framework, which focuses on ensuring 
application service availability and optimizing resource 
usage. The framework comprises various modules that 
use a set of optimization solutions to handle dynamic 
VM placement during deployment, scaling, and applica-
tion failure, with the aim of meeting availability require-
ments and achieving multiple objectives. The following 
are the main contributions of this research work:

• Introducing a formal definition for application ser-
vice availability in cloud computing platforms, ena-
bling better management and optimization of cloud 
resources.

• The proposed Multiple-Objectives Dynamic VM 
Placement for Application Availability in Cloud 
(MoVPAAC) framework is a novel approach to 
dynamic VM placement that integrates several 
optimization goals, including minimizing power 
consumption and resource waste, and maximiz-
ing service uptime, while ensuring high application 
availability.

• To tackle the complex multi-objective dynamic VM 
placement problem, this work formulates an inte-
grated non-linear programming (INLP) model with a 
set of constraints, which can efficiently handle multi-
ple optimization goals and complex requirements.

• The Ant Colony heuristic algorithm and VM pro-
tection method are employed in tandem to solve 
the INLP model, providing an effective approach to 
dynamic VM placement that is highly efficient and 
robust.

• To enhance the accuracy of failure prediction and 
protective actions, the deep learning Artificial Neural 
Network (ANN) method is utilized, delivering highly 
accurate results and enabling proactive protection of 
cloud applications and services.
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• This work develops a prototype that showcases the 
proposed framework, algorithms, and methods, and 
provides a comparative analysis of the results against 
three existing VM placement solutions from the liter-
ature. The prototype provides an empirical validation 
of the effectiveness and efficiency of the proposed 
approach.

The remainder of this article is structured as follows: 
“Background”  section provides a brief background of 
cloud application service availability and summarizes the 
problem statement. “Related work” section discusses the 
related work. “Multiple-objectives dynamic VM place-
ment for application availability in cloud framework” sec-
tion introduces the MoVPAAC proposed framework, 
which includes modules, problem formalization, and 
optimization solutions. “Experiments and results”  sec-
tion presents the results of the experiments. Finally, 
“Conclusion” section summarizes the conclusion.

Background
Cloud computing allows application service providers 
(ASPs) to request the deployment of end-to-end applica-
tion services from cloud service providers (CSPs) based 
on specific requirements, such as availability. In response, 
the CSP gives the ASP online access to a set of virtual 
machines (VMs) where the application components can 
be deployed. Each application component is a software 
module that provides a specific type of functionality in 
a specific domain, such as web hosting (using an HTTP 
server) or networking (using network address translation 

or a firewall). In a data center (DC), each VM is hosted 
on a single physical server, and is associated with a spe-
cific application that requires a set of resources, such as 
CPU and RAM. Each server has its own set of proper-
ties, including availability and capacity for each resource 
type. The availability of a server sj can be calculated using 
Eq. (1), where MTTFj is the mean time between two con-
secutive failures of server sj , and MTTRj is the mean time 
to repair server sj.

To illustrate how application availability is formulated, 
consider the following example. Figure  1a presents an 
abstract model of Application app1 , composed of three 
distinct functionalities provided by separate compo-
nents located on different virtual machines ( vm1 , vm2 , 
and vm3 ), each hosted on a single server. The availability 
requirement for app1 is set to 0.9, and specific resource 
demands are requested for each VM. To simplify the 
illustration, we only show the CPU demand next to each 
VM, along with the CPU capacity and availability next to 
each server. For application availability, we assume that 
VMs providing the same application functionality can-
not be collocated on the same server, and that application 
availability depends on the availability of all its function-
alities. We model an application as a set of functionalities 
provided by a set of VMs, with application availability 
depending on the availability of all the functionalities that 
together provide an end-to-end application service.

(1)AV s
j =

MTTFj

MTTFj +MTTRj

Fig. 1 Applications Deployment Model in Cloud Data Center
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To compute application availability, denoted by 
AV

app
a  , we multiply the availability of all the functionali-

ties that comprise the application, as defined in Eq. (2), 
where AV func

f  is the availability of the functionality 
funcf  and Fa is the set of functionalities required to pro-
vide application appa . The availability of funcf  is deter-
mined by the availability of the virtual machines that 
provide it, which can be computed as the complement 
of the failure probability of all the VMs that provide 
funcf  , as defined in  Eq. (3), where vmv provides func-
tionality f and V func

f  is the set of all VMs that provide 
functionality f. The failure of vmv is equivalent to the 
failure of the server sj that hosts it. The failure of a 
server sj is defined as the complement of its availability, 
as in Eq. (4). According to Eq. (2), the availability of the 
deployed application ( app1 ) depicted in Fig. 1a can be calculated 
as AVapp

1 = AV s
1 ∗ AV

s
2 ∗ AV

s
8 = 0.97 ∗ 0.95 ∗ 0.98 = 0.9 , 

which meets the requested availability of app1 . By host-
ing vm2 on server 6 instead of server 2, as shown in 
Fig.  1b, the availability of app1 can be increased to 
AV

app
1 = AV s

1 ∗ AV
s
6 ∗ AV

s
8 = 0.97 ∗ 0.99 ∗ 0.98 = 0.94  . 

Moreover,  adding a standby VM vm2_2 for vm2_1 
and hosting it  on ser ver 3,  as depicted in 
Fig .   1c ,  increases the availability of app1 to 
AV

app
1

= AV s
1
∗ (1− (Fails

6
∗ Fails

3
)) ∗ AV s

8
= 0.97 ∗ (1− (0.010.05))0.98 = 0.95  . 

However, when a CPU scaling-up request is made for 
vm1 with two additional units, server 1 cannot host vm1 
with the requested four CPU units because its CPU 
capacity is limited to three units. Therefore, vm1 must 
be migrated to another server. As shown in Fig. 1d, vm1 
can be migrated to server 5, where 
AV

app
1 = 0.96 ∗ (1− (0.01 ∗ 0.05)) ∗ 0.98 = 0.94.

To illustrate the application admissibility issue, let’s 
consider an additional scenario where a new applica-
tion, app2 , is requested by another ASP. The appli-
cation consists of three virtual machines, vm4 , vm5 , 
and vm6 , and requires an availability of 0.88. Sup-
pose that the CSP has a placement policy that 
deploys VMs on servers with the highest availabil-
ity. In this case, app2 would be deployed as shown in 

(2)AV
app
a =

|Fa|

f=1

AV
func
f

(3)AV
func
f = 1−

|V
func
f |
∏

v=1

Failvmv

(4)Failsj = 1− AV s
j

Fig.  1e. The availability of app2 can be calculated as 
AV

app
2 = AV s

6 ∗ AV
s
7 ∗ AV

s
4 = 0.99 ∗ 0.99 ∗ 0.99 = 0.97, which 

meets the availability requirement. However, note that 
the CSP is providing a much higher availability than 
what the ASP requires for app2 . Now, let’s assume that 
another ASP requests a new application, app3 , consist-
ing of three virtual machines, vm7 , vm8 , and vm9 , with 
an availability requirement of 0.97. Based on the current 
state of the data center, as shown in Fig. 1e, the request 
for app3 would be denied because the required availabil-
ity cannot be met. This means that the CSP would lose 
the profit from hosting app3 . However, if the CSP adopts 
a policy of providing application availability that is close 
to the requested level, then app3 could be admitted to the 
data center. Figure  1f shows the placement of all three 
applications in the data center, with app1 , app2 , and app3 
meeting their respective availability requirements of 0.94, 
0.88, and 0.97. By adopting this policy, the CSP can sat-
isfy the requirements of multiple ASPs and maximize its 
profits.

Related work
The literature on cloud computing has numerous stud-
ies that focus on different aspects of virtual machine 
(VM) placement and application task scheduling, such 
as resource utilization, network performance, and opera-
tional costs. However, only a limited number of studies 
have explored the problem of ensuring end-to-end appli-
cation service availability. In light of this, we will examine 
previous research that deals with VM placement and task 
scheduling in cloud computing, as well as approaches 
that ensure availability, reliability, and fault tolerance.

Availability‑aware VM placement
Jammal et  al. [3, 4] proposed CHASE, a scheduler that 
takes into account high availability of application compo-
nents in cloud-based systems. The authors formulated the 
scheduling problem as an Integer Linear Programming 
(ILP) model with the objective of maximizing component 
availability. To schedule components, CHASE selects 
servers with the highest availability. However, this work 
does not consider the problem of application admissibil-
ity. The authors used IBM ILOG CPLEX optimization 
solver to find the optimal scheduling plan for the com-
ponents. In another work, Zhu and Huang [5] focused on 
the availability of Mobile Edge Computing (MEC) appli-
cations during the component placement process. The 
authors proposed a stochastic model to measure the cost 
of availability impact when changing the placement of 
components. The heuristic algorithms FirstFit and Best-
Fit were used to place the MEC application. Lera et al. [6] 
proposed a two-phase placement strategy based on graph 
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partitioning and traversal approach to address service 
placement in the fog computing platform for applica-
tion fault tolerance. The authors optimized the placement 
process to improve the fault tolerance of applications. 
Dehury et al. [7] addressed fault tolerance for application 
components in the cloud. They proposed a fault tolerance 
strategy based on the significance of each deployed com-
ponent. The ranks of components were determined based 
on their communication, failure rate, failure impact, 
and historical performance. The proposed strategy used 
Markov Decision Process (MDP) to determine the num-
ber of replicas of each component.

The problem of reliability of VM placement (RVMP) 
has been addressed in works such as [8, 9]. Yang et  al. 
[8] proposed an INLP model to determine the mini-
mum number of computing nodes required to host VMs, 
ensuring that the VM placement plan’s availability meets 
the requirement and the communication delay between 
VMs is less than a certain threshold. To solve the RVMP 
model, the authors used CPLEX. Similarly, Liu et al. [9] 
also mapped VM placement as an ILP model, but with 
the additional goals of reducing communication traffic 
and network bandwidth in DC while increasing the relia-
bility of hosted VMs. To solve the ILP model, the authors 
employed a graph k-cut approach. Yang et al. [10] created 
a variance-based metric to assess the risk of application 
availability violations during the VM placement process. 
The authors examined the possibility of Top-of-Rack 
(ToR) switch and server failures in DC and formalized 
VM placement as an ILP model with the goal of reducing 
resource power consumption while increasing applica-
tion availability.

The Virtual Network Function (VNF) placement 
problem in the Network Function Virtualization (NFV) 
platform has been the subject of several research 
works, including [11–19]. Ayoubi et  al. [11] proposed 
a framework for elastic and dependable Virtual Net-
works (VNs) embedding in cloud environments, aiming 
to meet the availability requirement of VN throughout 
its lifetime and increase the admissibility of new VNs. 
The authors modeled VN as a collection of connected 
Virtual Network Functions (VNFs), each mapped to a 
single VM. The approach utilized backup VNFs and a 
tabu-search optimization method to achieve reliable 
VNF placement. Alahmad et  al. [12] proposed a VNF 
placement model that prioritizes availability and mini-
mizes Network Service (NS) failure probability in NFV, 
evaluated using CPLEX. Thiruvasagam et al. [13] tack-
led the placement of reliable virtual monitoring func-
tions (vMFs) by minimizing communication delay 
between Service Function Chains (SFCs) in the NS 
while also reducing the number of vMFs. The authors 
used CPLEX to determine the best vMF placement 

strategy. Yala et  al. [14] employed a genetic algorithm 
to determine the VNF placement in a virtual Con-
tent Delivery Network (vCDN) and to balance vCDN 
deployment cost and availability level. Yang et  al. [15] 
addressed stateful VNF placement for NS fault-tol-
erance and modeled the problem as an optimization 
function, aiming to increase user request availabil-
ity. In [16], the authors proposed an availability-aware 
SFC placement scheme for the NFV substrate network, 
aiming to reduce SFC’s end-to-end delay. Sharma et al. 
[17] focused on maximizing the Telecom Service Pro-
vider’s (TSP) profit by achieving high NS availability 
in NFV during VNF placement using redundant VNFs 
and a geographic placement approach. Abdelaal et  al. 
[18] addressed the VNF Forwarding Graph (VNF-FG) 
deployment problem with the goals of minimizing 
network bandwidth, convergence time, and resource 
power consumption while protecting VNF service from 
failures using redundant VNFG. Mao et  al. [19] pro-
posed an online fault-tolerant SFC placement solution 
in NFV, modeled as a Markov decision process, using 
a deep reinforcement learning (DRL) method to maxi-
mize the number of accepted user requests.

Several works have proposed cloud fault-tolerance 
solutions using virtual machine (VM) placement. Li and 
Qian [20] focused on reducing network traffic in data 
centers by addressing multitenant cloud VM placement. 
Jammal et al. [21] addressed the issue of VM placement 
during live migration to reduce service downtime in the 
event of a failure. Zhou et al. [22, 23] aimed to minimize 
network resource consumption and increase cloud ser-
vice reliability through optimal redundant VM placement 
(ORVMP) using genetic algorithms. Gonzalez and Tang 
[24] used the FirstFit algorithm to place VM replicas for 
service fault tolerance. Alameddine [25] proposed a pro-
tection plan to determine number of backup VMs and 
placement to meet critical cloud application’s availability 
requirements. Cost functions were also used to address 
VM placement. Chen and Jiang [26] proposed an adap-
tive selection method for fault-tolerant application ser-
vice during the VM placement process. Zhang et al. [27] 
investigated VM placement in cloud DCs using a star 
topology to minimize SLA violations, power consump-
tion, and failure rate. Tran et al. [28] proposed a proac-
tive fault-tolerant approach for Kubernetes containerized 
services using Bidirectional Long Short Term Memory 
(LSTM) node fault prediction and container-based ser-
vice stateful migration mechanism. Finally, Saxena et al. 
[29] proposed the fault-tolerant elastic resource manage-
ment (FTERM) framework to handle cloud outages based 
on online Multi-Input and Multi-Output Evolutionary 
Neural Network (MIMO-ENN) to predict resource fail-
ure and take action.
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Fault‑tolerance task scheduling
Previous research studies have explored the impact of task 
scheduling on application task failures in cloud computing 
clusters. However, many of these studies fail to account for 
recovery measures for failed tasks or preventative meas-
ures for predicted failures. Moreover, they do not assess the 
application task’s availability in meeting specific require-
ments. Our research sets itself apart by considering the 
migration of virtual machines (VMs) that host predicted 
failed tasks and ensuring that the application meets its avail-
ability requirements throughout its operational lifetime.

Several studies have proposed fault tolerance solutions 
for cloud application task scheduling. Guo et al. [30] devel-
oped a fault-tolerant and energy-efficient primary-back 
scheduling architecture for real-time tasks in a cloud envi-
ronment. Marahatta et al. [31] proposed an energy-aware 
and fault-tolerant dynamic task scheduling scheme that 
reduces rejection rates by replicating tasks in case of VM 
failure or delay. Sun et al. [32] introduced a QoS-aware task 
scheduling model with fault tolerance for an edge-cloud 
platform, using a primary-backup redundancy approach 
to improve task availability while adhering to time con-
straints. Yao et al. [33] analyzed fault-tolerant properties of 
task scheduling and migrating VMs based on the Primary-
Backup model and proposed a fault-tolerant elastic algo-
rithm for task scheduling that considers host and network 
device faults in a cloud data center. Additionally, Yao et al. 
[34] presented a hybrid fault-tolerant algorithm for sched-
uling tasks with deadlines in a cloud platform. The algo-
rithm selects the most suitable fault-tolerant strategy, such 
as task resubmission or replication, based on the charac-
teristics of the task and available resources. Weikert et al. 
[35] studied node failure in IoT networks and proposed 
a task allocation algorithm based on multiple objective 
optimization. The algorithm utilizes an archive-selection 
mechanism to identify the most reliable assignment for the 
backup task in case of node failure. Overall, while previ-
ous research has examined the effect of task scheduling 
on application task failures in cloud computing clusters, 
our research goes beyond existing works by incorporat-
ing migration measures and ensuring that the application 
meets its availability requirements. Additionally, a range 
of fault tolerance strategies have been proposed for cloud 
application task scheduling, including energy-efficient, 
QoS-aware, and hybrid fault-tolerant algorithms that con-
sider host and network device faults, as well as multiple 
objective optimization techniques.

Several research studies have leveraged the Google cloud 
trace dataset [36] to predict application job and task failures 
in cloud cluster systems. Chen et al. [37] explored the criti-
cal characteristics of application job and task failures and 
used a deep learning Recurrent Neural Network (RNN) 
to predict such failures. To predict task failure, Soualhia 

et al. [38] combined machine learning methods, including 
Decision Tree (DT), Boost, and Random Forest (RF). Jas-
sas and Mahmoud [39, 40] compared multiple prediction 
models, including DT, Logistic Regression (LR), K-Near-
est Neighbors (K-NN), Naive Bayes (NB), RF, and Quad-
ratic Discrimination Analysis (QDA), to select the most 
accurate method. Islam and Manivannan [41] employed a 
deep learning method called LSTM to predict task failure. 
While these works focused on predicting failures, other 
works proposed recovery actions for failing tasks or jobs. 
For instance, Rosa et  al. [42] suggested terminating a job 
that is predicted to fail to save consumed resources, while 
Islam and Manivannan [43] proposed rescheduling tasks 
that are predicted to fail to a more reliable computing node. 
Soualhia et al. [44] proposed a fault-tolerant task schedul-
ing framework (ATLAS) for Hadoop clusters, which can 
dynamically reschedule tasks that are predicted to fail. Our 
previous work [45] also utilized the Google dataset [36] to 
predict task failure during execution time, proposing three 
corrective actions to protect the task before it fails: chang-
ing the priority, scheduling class level, or task scheduling 
node. Chen et  al. [46] proposed advance approach called 
IWC to improve the search method of Whale Optimiza-
tion Algorithm (WOA) for Cloud task scheduling. Authors 
show IWC has better speed and accuracy to find the opti-
mal task scheduling plan compared to existing meta-heu-
ristic algorithms. Cheng et al. [47] proposed an enhanced 
deep reinforcement learning (DRL) to improve the existing 
studies that used DRL for job scheduling in Cloud plat-
forms. They tried to optimize job execution time while 
meeting the expected response time of the users. Zhang 
et  al. [48] proposed a new method called GA-DQN that 
combines DRL and Genetic Algorithms (GA) for schedul-
ing jobs in cloud. The method benefits from the GA global 
search ability and awareness of decision-making of DRL 
to have optimized sub-task scheduling that can reduce the 
execution times of the jobs, and hence have better response 
time for the end users. Notably, none of these studies com-
puted application service availability in the cloud to meet 
the requirements during VM placement or task scheduling 
procedures. Table 1 provides a summary of related work.

Multiple‑objectives dynamic VM placement 
for application availability in cloud framework
We introduce a novel framework for dynamic VM 
placement in cloud platforms that prioritizes applica-
tion service availability. Our framework generates and 
manages a comprehensive placement plan for VMs 
that provide services inside data centers, adhering to 
specific requirements to achieve multiple objectives 
and meet the availability needs of each application as 
requested by the ASP. Additionally, our framework has 
the ability to swiftly modify VM placement in response 
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to application scaling or failure events. As shown in 
Fig.  2, the proposed MoVPAAC (Multi-Objective Vir-
tual Machine Placement with Availability-Aware Com-
puting) framework comprises three main modules: the 
Availability-Aware Application Deployment module, 
which optimizes VM placement to maximize availabil-
ity; the Proactive Application Failure Detection module, 
which uses deep learning algorithms to detect potential 
application failures and take corrective actions before 
they occur; and the Dynamic Application Reconfigura-
tion module, which allows for prompt reconfiguration 
of VM placement in response to application failures or 
changes in demand. We delve into the specific features 
of each module in detail in the following subsections.

Availability‑aware application deployment
The Availability-Aware Application Deployment module 
is a critical component of our proposed framework, as it is 
responsible for generating the VM placement plan that will 
deploy the requested applications at the underlying servers 
located in the data center (DC). The module ensures that 
the objectives are achieved, while also taking into considera-
tion the specific requirements of each application, particu-
larly their availability as requested by ASPs. Given a set of 
applications with their respective requirements, each appli-
cation is comprised of a set of VMs, and each VM provides 
a specific functionality towards providing end-to-end appli-
cation services. The goal is to find the optimal placement 
plan for these VMs on the DC servers, such that power 
consumption, resource wastage, and server failure ratios 
are minimized, while ensuring that the availability require-
ments of the applications are maintained throughout their 
entire execution times. However, as we mentioned in the 
background section, VM placement is an NP-hard problem 
with contradictory objectives. To address this, we have for-
mulated the problem as an INLP optimization model with 
multiple objectives and constraints. Moreover, we propose 
a heuristic approach based on the AntColony optimization 
method, in conjunction with the VM standby protection 
approach, to find a solution for the model and maximize 
the admissibility of the requested applications. Specifi-
cally, we define and formulate the problem statement we 
address in this manuscript as follows: assume there is a set 

Table 1 Summary of related work

‘X’ denotes not applicable

Research Topic Reference App Availability

Application Component Placement [3–7] X

Reliability-Aware VM Placement [8–10] X

Network Service Fault Tolerance using 
VNF Placement

[11–19] X

Fault Tolerance Solutions using VM/
container Placement

[20–29] X

Fault Tolerance Solutions using Task 
Scheduling

[30–35] X

Application Job/Task Failure Prediction [37–48] X

Fig. 2 Multiple-Objectives Dynamic VM Placement for Application Availability in Cloud (MoVPAAC) Framework
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A of applications that are requested by ASPs. Each applica-
tion appa ∈ A is requested to be deployed at Data Center 
(DC), and has availability requirement that is denoted by 
AV

appReq
a  . Each application appa is composed of a set of 

VMs Va , each VM vmi ∈ Va has a set of resources demands 
such as CPU, RAM and disk. The VMs of applications set A 
require to be placed (hosted) at the underlying set of servers 
S that are located in DC. Each server sj ∈ S has a resource 
capacity of different types such as CPU, RAM and disk. 
The main goal is to deploy (admit) applications set A at DC 
in such a way that can meet the availability requirement 
AV

app
a >= AV

appReq
a  for each appa ∈ A , and achieve the 

following objectives. The first objective is to minimize the 
total power consumption of the active servers that are used 
to host VMs that compose applications in A. To compute 
the power consumption of server sj in the DC, we adopt the 
linear relationship between server power consumption and 
its CPU utilization as described in [49]. We define the aver-
age power consumption of server sj as Pj in Eq. (5), where 
Pactive
j  and Pidle

j  are the average power consumption values 
when sj is active and idle, respectively, and Uc

j  is the CPU 
utilization of sj , where Uc

j ∈ [0, 1] . The first objective is for-
mulated in Eq. (6), where V is the set that includes all the 
VMs that compose all the requested applications in A, yj 
is a binary decision variable where value 1 indicates that sj 
is active and a value 0 indicates that sj is idle, as defined in 
Eq. (10). Rc

i  is the CPU resource demand by vmi , and xij is 
a binary decision variable where value 1 indicates that vmi 
is placed on sj and value 0 otherwise, as defined in Eq. (11).

The second objective of the Availability-Aware Applica-
tion Deployment module is to minimize the wastage of 
resources of active servers in the data center (DC). The 
cost of wasting resources for server sj is denoted as Wj and 
is defined in Eq. (7). The remaining CPU, RAM, and Disk 
resources of server sj are normalized and represented by Lcj  , 
Lrj  , and Ldj  respectively. Uc

j  , Ur
j  , and Ud

j  represent the nor-
malized resource usage of server sj . To ensure a positive 
value, we set β as a very small value of 0.00001. The second 
objective is formulated in Eq. (8). Tc

j  , Tr
j  , and Td

j  represent 
the upper utilization thresholds of CPU, RAM, and Disk of 
server sj respectively. These thresholds are set to the same 
value for all servers in the DC to prevent any server from 
reaching a full usage state that could negatively impact its 

(5)Pj =
(

Pactive
j − Pidle

j

)

×Uc
j + Pidle

j

(6)

Minimize

|S|
∑

j=1

Pj =

|S|
∑

j=1

(

yj ×
((

Pactive
j − Pidle

j

)

×

|V |
∑

i=1

(

Rc
i × xij

)

+ Pidle
j

))

performance. The RAM and Disk resource demand of vmi 
are represented by Rr

i  and Rd
i  respectively. The third objec-

tive of the module is to minimize the overall failure ratio 
of servers in the DC. The module computes the failure of 
server sj as the complement of its availability, as defined 
in Eq. (4), where AV s

j  is computed as defined in Eq. (1). The 
third objective is formalized in Eq. (9). By optimizing these 
objectives in a multi-objective optimization model, the 
module aims to find a placement plan for VMs on the DC 
servers that reduces power consumption, resource wastage, 
and failures ratio while meeting the availability require-
ments of the applications. To solve this problem, the mod-
ule proposes a heuristic approach based on the Ant Colony 
Optimization method in conjunction with VM standby 
protection approach to maximize the admissibility of the 
requested applications.

Our VM placement model is governed by a set of care-
fully defined constraints. Firstly, each server sj can be either 
active or idle at any given time, as specified in Eq. (10). To 
indicate whether a VM vmi is placed on a particular server 
sj , we use a binary decision variable xij , as outlined in Eq. 
(11). Additionally, each VM can be placed on at most 
one server, as mandated by Eq. (12). To ensure that each 
server has adequate resources to host any VM, we impose 
constraints on the amount of CPU, RAM, and disk space 
available on each server. Specifically, Eqs. (13) through (15) 
outline the resource requirements that must be met for 
each server. We also enforce an “anti-affinity” constraint 
to ensure that VMs belonging to the same application 
appa are not co-located on the same server. This helps to 
increase the availability of the application, as specified in 
Eq. (16). Our work considers the dependency between the 

(7)Wj =
||Lcj − Lrj | − Ldj | + β

Uc
j +Ur

j + Ud
j

(8)

Minimize

|S|
∑

j=1

Wj =

|S|
∑

j=1

(

yj ×

(

||(Tc
j −

|V |
∑

i=1

(

Rc
i × xi,j

)

)

−

(

Tr
j −

|V |
∑

i=1

(

Rr
i × xi,j

)

)

|

−

(

Td
j −

|V |
∑

i=1

(

Rd
i × xi,j

)

)

| + β

)

/

(

|V |
∑

i=1

(

Rc
i × xi,j

)

+

|V |
∑

i=1

(

Rr
i × xi,j

)

+

|V |
∑

i=1

(

Rd
i × xi,j

)

)

(9)Minimize

|S|
∑

j=1

Failsj =

|S|
∑

j=1

(

yj × Failsj

)
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components of the same application. For example, peer, 
active-standby, proxy and proxied components of the same 
application should be hosted on different servers. Finally, to 
ensure that the requested applications are available to the 
application service provider (ASP) as required, we require 
that the availability of each application be greater than or 
equal to the level requested by the ASP. This requirement 
is captured in Eq. (17). By carefully balancing these con-
straints, we can optimize the placement of VMs to meet the 
needs of both users and service providers.

Subject to:

To address the INLP model and determine the optimal 
placement of VMs for requested applications, we introduce a 
heuristic algorithm called Availability-Aware Applications 
Deployment (AvAAD) (Algorithm  1). The AvAAD algo-
rithm employs an AntColony optimization approach to 
achieve its objectives of VM placement, while utilizing a 
standby protection technique to ensure the availability 
requirements of the applications are met. The AvAAD takes 
a list of requested applications, their requirements, available 
servers at the data center, and VMs as input. It returns a list 
of non-admitted applications as output. Initially, the algo-
rithm initializes three empty variables: paretoSet, violate-
dAvApps, and nonAdmittedApps. It then calls the 
MOAntColony algorithm with VMs and servers as 

(10)yj =

{

1, if sj is active
0, if sj is idle

(11)xij =

{

1, if vmi is placed on sj
0, otherwise

(12)
|S|
∑

j=1

xij ≤ 1 ∀i ∈ |V |

(13)
|V |
∑

i=1

(

Rc
i × xij

)

≤ Tc
j ∀j ∈ |S|

(14)
|V |
∑

i=1

(Rr
i × xij) ≤ Tr

j ∀j ∈ |S|

(15)
|V |
∑

i=1

(Rd
i × xij) ≤ Td

j ∀j ∈ |S|

(16)xij + xzj <= 1 ∀vmi, vmz ∈ V
app
a , ∀j ∈ S

(17)AV
app
a ≥ AV

appReq
a ∀appa ∈ A

arguments. MOAntColony returns a paretoSet that includes 
the placement of VMs at the available servers. Using the 
paretoSet, AvAAD computes the availability AVapp

a  of each 
requested application appa . It adds each application that vio-
lates its availability requirement ( AVapp

a < AVappReq
a  ) to vio-

latedAvApps. For each application in violatedAvApps, the 
algorithm tries to enhance its availability to meet the require-
ment. Specifically, it attempts to add a new standby VM for 
the functionality with the minimum availability AV func

f  
among all the functionalities in the application. The algo-
rithm adds one standby VM at a time until it meets the avail-
ability requirement of the application or the number of 
added standby VMs reaches the threshold of appa . The 
newly added standby VM is placed on the server with the 
maximum value of 1

Pj+Wj+Failsj
 among all servers, without 

violating any of the constraints defined in Eqs. (10 - 17). This 
maintains consistency with the objectives of the MoVPAAC 
framework. After AvAAD handles all violated applications, it 
checks again for any applications that still violate their availa-
bility requirements. If an application still violates its require-
ment, AvAAD considers it rejected and adds it to the list of 
non-admitted applications (nonAdmittedApps) that is 
returned at the end of the algorithm execution. AvAAD opti-
mizes VM placement while ensuring application availability, 
making it a robust and effective solution for the INLP model.

Algorithm 1 Availability-Aware Application Deployment (AvAAD)

The time complexity of AvAAD (Algorithm  1), can 
be analyzed as follows. At line (2), the algorithm calls 
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MOAntColony (Algorithm 2) to find the placement plan 
of the virtual machines (VMs) in V at the servers in S. 
The performance of AvAAD mainly depends on the per-
formance of MOAntColony. AntColony is a meta-heu-
ristic algorithm that takes a polynomial execution time 
of O(nk) to find the optimal solution [50]. In the con-
text of the VM placement problem, the value of k mainly 
depends on the number of iterations, ants, VMs, and 
servers that AntColony uses to find the placement solu-
tion. At lines (3-8), the algorithm takes O(n) to determine 
the list of applications in violatedAvApps that violate their 
availability requirements. At lines (9-17), it takes O(n2) to 
satisfy the availability for each application that violates its 
required availability. At lines (18-22), the algorithm takes 
O(n) to determine the list of rejected applications in non-
AdmittedApps that cannot be admitted at the data center 
(DC) since they violate their availability requirements. 
Therefore, the total time complexity of Algorithm 1 can 
be expressed as O(nk)+O(n)+O(n2)+O(n) , which 
can be simplified to O(nk) . It is worth noting that the 
performance of the algorithm may vary depending on the 
input parameters, such as the number of VMs, servers, 
and applications.

To achieve the objectives of application deploy-
ment, we propose a heuristic algorithm called Mul-
tiple Objectives AntColony (MOAntColony) that 
utilizes the Ant Colony Optimization (ACO) algorithm 
to find the placement of VMs for requested applica-
tions. Algorithm 2 outlines the steps of MOAntColony. 
The algorithm begins by initializing the parameters 
and pheromone trials. In each iterative step, an ant z 
receives a set of VMs V that need to be placed in a set 
of servers S located at the data center (DC). The ant z 
then selects a server sj and starts placing the VMs in 
V at sj using the pseudo-random-proportional rule 
[37]. The desirability of selecting the next vmi to place 
at sj depends on the pheromone concentration level 
and the heuristic information that guides ant z. After 
each movement (placement) step, the local pheromone 
concentration level is updated. Ant z continues mov-
ing until it completes the placement of V and builds 
its solution. Once all ants complete and build their 
solutions, a global pheromone is updated based on 
the pareto set PS that includes the best-located solu-
tions. The algorithm initializes the pheromone level 
τ0 using Eq. (18). Here, n is the total number of VMs 
that require placement, P

′
(sol0) is the normalized 

power consumption of the servers listed in the initial 
placement solution sol0 generated by the FirstFit VM 
placement algorithm, W ′

(sol0) and Fail′(sol0) are the 
resource wastage and server failures of sol0 , respec-
tively. Equation (19) defines P ′

(sol0) , where Pmax
j  is 

the maximum power consumption of server j, and M 
is the total number of servers used in solution sol0 . 
W

′
(sol0) and Fail′(sol0) are defined in Eqs. (22) and 

(23), respectively. The heuristic information ηi,j indi-
cates the desirability of an ant z to place vmi at server 
sj . The desirability ηi,j considers the partial contribution 
for each objective. Every ant z begins with V and starts 
placing them sequentially on the available servers in S, 
which are arranged randomly. The sequence of serv-
ers from 1 to j is known during the placement of vmi 
at sj . The partial contributions of the first, second, and 
third objectives are defined in Eqs. (24), (25), and (26), 
respectively. These contributions are combined for the 
heuristic placement decision, as defined in Eq. (27).

(18)τ0 =
1

n× (P
′
(sol0)+W

′
(sol0)+ Fail

′
(sol0)

(19)P
′

(sol0) =

M
∑

j=1

(

Pj/P
max
j

)

(20)W
′

(sol0) =

M
∑

j=1

(Wj)

(21)Fail
′

(sol0) =

M
∑

j=1

(Failj)

(22)W
′

(sol0) =

M
∑

j=1

(Wj)

(23)Fail
′

(sol0) =

M
∑

j=1

(Failj)

(24)
ηi,j,1 =

1

β +
j
∑

k=1

(

Pk/P
max
k

)

(25)
ηi,j,2 =

1

β +
j
∑

k=1

Wk

(26)
ηi,j,3 =

1

β +
j
∑

k=1

Failk
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Ant z uses the pseudo-random-proportional rule, as 
defined in Eqs. (28) [37], to select the next VM, vmi , to 
be placed on server sj . The rule employs the parameter 
α to control the importance of pheromone trails, and q 
is a random number between 0 and 1. If q is less than or 
equal to the fixed value of q0 (where 0 < q0 < 1 ), it falls 
under exploitation, otherwise it falls under exploration, 
as specified in  Eq. (28). U denotes the set of VMs that 
can be hosted on sj . ηu,j represents the pheromone value, 
as defined in  Eq. (27), while τu,j is the local pheromone 
update, as defined in Eq. (30). Furthermore, Pr denotes the 
probability distribution of the random-proportional rule, 
as described in  Eq. (29) [37]. The pheromone is updated 
locally and globally. During the local update, ant z assigns 
vmi to sj and updates the pheromone, as described in Eq. 
(30). Here, τ0 represents the initial pheromone level, and 
0 < ρl < 1 denotes the local pheromone evaporation 
parameter. The current iteration is denoted as t. The global 
pheromone update is performed based on the rule stated 
in  Eq. (31), where 0 < ρg < 1 is the global pheromone 
evaporation parameter. The coefficient � , as defined in Eq. 
(32), incorporates the number of ants Z and iterations Tg 
needed to locate the global solution solg in the pareto set 
PS. Furthermore, P ′

(solg ) , W
′
(solg ) , and Fail′(solg ) repre-

sent the normalized power consumption, resource wast-
age, and failures, respectively, of the servers listed in the 
solution solg . It is important to note that algorithm 2 pri-
marily utilizes the Ant Colony metaheuristic optimization 
algorithm, which requires an execution time of O(nk) [37]. 
The value of k depends on the number of iterations T, ants 
Z, VMs in V, and servers in S used by the Ant Colony algo-
rithm to determine the placement plan for V.

(27)ηi,j = ηi,j,1 + ηi,j,2 + ηi,j,3

(28)

i =

{

maxu∈U {α × τu,j + (1− α)× ηu,j}, q ≤ q0
Pr, otherwise

(29)Pru,j =











α×τu,j+(1−α)×ηu,j
|U |
�

u=1

(α×τu,j+(1−α)×ηu,j)

, u ∈ U

0, otherwise

(30)τi,j(t) = (1− ρl)× τi,j(t − 1)+ ρl × τ0

(31)
τi,j(t) = (1− ρg )× τi,j(t − 1)+

ρg × �

P
′
(solg )+W ′(solg )+ Fail′(solg )

(32)� =
Z

t − Tg + 1

Algorithm 2 MOAntColony

Proactive application failure detection
The proactive application failure detection module is 
crucial for detecting application failure at an early stage, 
before it actually occurs. Service outages caused by appli-
cation failures can lead to significant negative impacts on 
QoS, SLA compliance as well as negative end user experi-
ence. The module uses proactive approach to detect task 
failure regardless of its type from historical dataset. The 
dataset includes historical information about failures of 
tasks and their types such as network, hardware, soft-
ware failures. Note the module does not react to instant 
failures of any type. Detecting failures at an early stage 
allows for appropriate service recovery actions to be 
taken quickly. The module adopts polling communica-
tion approach to get information about the current sta-
tus of the cluster and hosted applications from the Cloud 
Manager. The information is used as a historical data for 
training and testing the used prediction method Artificial 
Neural Network (ANN) to predict the application failure. 
To validate this module, we conducted an analysis of the 
Google dataset [36] in our previous work [45]. This data-
set consists of logs of application jobs and their associ-
ated tasks executed on a cloud cluster for 29 consecutive 
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days in 2011. We extracted information about the 
resources required and used by each task, as well as the 
termination status (finished, failed, evicted, or killed) of 
the tasks. Out of 48,261,777 tasks, 38% were successfully 
terminated, while 29% failed. Through our analysis, we 
identified several features that were correlated with task 
termination status, including the task ID, job ID, machine 
ID, CPU and RAM demands, mean CPU and RAM usage, 
and termination status. We trained a deep learning ANN 
method on this data to predict task failure. To detect pre-
dicted failed tasks and initiate recovery actions, our pro-
active application failure module employs the approach 
outlined in Algorithm  3. The input for the algorithm is 
a list of tasks that need to have their termination status 
predicted, and it returns a list of predicted failed tasks. 
It is worth noting that the ANN is trained and tested on 
a cleaned and prepared dataset before it is used by Algo-
rithm 3. In terms of time complexity, Algorithm 3 takes 
O(n) time to predict the termination status of each task 
in the input list. By proactively detecting and responding 
to application failure, we can minimize service outages 
and maintain high levels of QoS and SLA compliance.

Algorithm 3 Proactive Application Failure Detection

Algorithm 4 VM Placement for Application Recovery

Algorithm 5 VM Placement for Application Scaling

Dynamic application reconfiguration
The dynamic application reconfiguration module is 
responsible for handling reconfiguration requests that 
arise when the availability requirements of provisioned 
applications are threatened to be violated. These requests 
can originate from either the proactive application fail-
ure module, which notifies the module of predicted failed 
applications, or from the cloud manager, which sends 
scaling requests. In the case of a proactive notification, 
the module adds a new VM to replace the existing VM 
responsible for each predicted failed task. The placement 
of these new VMs is crucial to the successful recovery of 
the application services. The proposed placement process 
is designed to fulfill the objectives outlined in formu-
las Eqs. (6), (8), and (9) while respecting the constraints 
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defined in formulas Eqs. (10) through (17), which align 
with the objectives of the MoVPAAC framework. Algo-
rithm 4 outlines the placement procedure for these new 
VMs to recover the application services. The algorithm 
takes in a list of application tasks predicted as failed, fail-
PredTasksList, and a list of servers, S, as input. It returns 
a map that includes the placement of the new VMs 
required to provision the failed tasks as output. For each 
failed task in failPredTasksList, the algorithm adds a new 
VM to provide the task and searches for a server sj ∈ S 
that can host the VM and has the minimum summation 
value of power consumption, resource waste, and fail-
ure without violating any constraints defined in formu-
las Eqs. (10) through (17). The algorithm then adds the 
record < vmi, sj > to the map vmsPlacementMap. Finally, 
the algorithm returns the map vmsPlacementMap. The 
time complexity of Algorithm 4 is O(n2) because for each 
added VM, the algorithm searches for the best server sj 
among S that can host the VM.

The cloud manager at CSP can request one of four scal-
ing types: scaling out, scaling up, scaling in, or scaling 
down. Scaling out request involves adding a set of new 
virtual machines (VMs), while scaling up request involves 
adding virtual resources, such as virtual central process-
ing units (vCPUs) and virtual random-access memory 
(vRAM), to an existing set of individual VMs. Scaling 
in request involves removing a set of existing individual 
VMs, and scaling down request involves removing virtual 
resources from an existing set of VMs. If the request is 
for application scaling out, the reconfiguration module 
handles the placement of the new VMs in the same way 
that it handles requests from the proactive application 
failure module. However, in some cases, scaling up may 
require migrating VMs to other servers that can accom-
modate the updated resources without violating any con-
straints. The migration process must be done carefully, as 
it can significantly affect the outage period of the applica-
tion service. The problem can be summarized as finding 
the optimal way to migrate all the VMs with minimum 
migration time while obeying the constraints.

To solve the problem, we propose an integer nonlin-
ear programming (INLP) model with the objective of 
minimizing the migration time of the VMs that need to 
be migrated while obeying the constraints. The model 
includes a set of VMs that need to be migrated (G), a set 
of available servers at the data center (S), and the time 
to migrate a VM from a source server to a destination 
server ( migrationTimei,j,d ). Binary decision variables ( xij 
and zid ) are defined to indicate the hosting server of each 
VM and whether a VM needs to be migrated to a specific 
server, respectively. We also propose a heuristic approach 
described in Algorithm  5 to solve the INLP model and 
find the placement servers of the VMs that require 

scaling. The algorithm takes as input the set of VMs that 
need to be scaled (vmsScaleList), available servers (S), 
and the scaling type (scaleType) and returns a map that 
includes the placement of the VMs on the servers in the 
data center. Note that Algorithm 5 is called for one corre-
sponding application at a time where the scaling request 
is required to fulfill the needs of the application. If the 
scaling type is out, the algorithm searches for a server 
that can host each added VM with minimum summation 
value of power consumption, resource waste, and fail-
ure, while meeting all the constraints. For scaling up, the 
algorithm determines which VMs need to be migrated 
and finds a destination server that minimizes the total 
migration time. For scaling in and down, the algorithm 
rejects any scaling action that violates the application 
availability requirement constraint. The time complexity 
of Algorithm 5 can be analyzed as follows. For a scale out 
request at lines (1-15), the algorithm searches for the best 
server with minimum cost that can host each vmi . Since 
this operation is performed for each vmi , the time com-
plexity of this operation is O(n2) , where n is the number 
of available servers. Similarly, for a scaling up request 
at lines (16-33), the algorithm searches for the server 
that can host each vmi with minimum migration time. 
Again, this operation is performed for each vmi , result-
ing in a time complexity of O(n2) . For scaling requests 
of type in or down, the algorithm takes O(n) to check 
whether the scaling action should be taken or rejected. 
Overall, the time complexity of the algorithm is the sum 
of the time complexities of each operation, which is 
O(n2)+O(n2)+O(n)+O(n) . This can be simplified to 
O(n2) . Therefore, the time complexity of the algorithm is 
quadratic in the number of available servers n.

Experiments and results
To evaluate the effectiveness of the MoVPAAC frame-
work, we conducted a variety of experiments testing its 
modules and algorithms. As a proof of concept for our 
research, we developed a simulation that models the key 
elements of the framework, including data centers, serv-
ers, VMs, and applications, and implemented it using the 
C++ programming language. All experiments were con-
ducted on a 64-bit Windows 10 machine equipped with 
an Intel Core i7-8665U 2.11GHz processor and 16 GB of 
RAM, ensuring reliable and consistent results.

We conducted experiments to evaluate the perfor-
mance of the availability-aware application deploy-
ment module in the proposed MoVPAAC framework. 
The experiments were divided into two groups. The 
first group consisted of a set of application deployment 
requests with no standby VMs. The first group includes 
four requests for applications deployment by different 
ASPs. Each request includes deployment of different 
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number of applications. Each application has availability 
requirement (Req Availability), number of functionalities 
that compose the application (Funct No) which we add 
to simulate real-world applications and emphasize the 
concept of redundancy, (VMs No) which indicates num-
ber of VMs that host the components that provide the 
functionalities of the application. We simulated one DC 
with 85 heterogeneous servers. Server properties, such 
as CPU and RAM capacities and availability levels, were 
randomly generated using a uniform distribution with 
values ranging from 8-15 units and 0.7-0.99, respectively. 
For all servers, Pactive and Pidle were set to 215 and 162, 
respectively. Table  2 describes the structure, number of 
VMs, and availability requirements of the applications. 
VM CPU and RAM demands were randomly generated 
using a uniform distribution with values ranging from 2-5 
units. We submitted each request in Table  2 separately 
to the availability-aware application deployment mod-
ule to deploy the applications and return the VM place-
ment plan. We used the MOAntColony algorithm with a 
set number of iterations and ants for VM placement. We 

compared the placement results generated by AvAAD 
algorithm with three other baseline algorithms from the 
literature, CHASE [4], Convolutional Neural Network 
(CNN) [51], and FirstFit. We selected these algorithms 
based on their awareness of application availability dur-
ing VM placement. CHASE is aware of application avail-
ability and is very close to our work, CNN is not aware 
but we incorporate the application availability into it, and 
FirstFit is unaware. Based on our best knowledge, exist-
ing VMs placement algorithms do not consider applica-
tion availability as an objective. Table 3 summarizes the 
parameters used in the experiments. We simulated VMs 
placement for 1000 applications with their availability 
requirements and achieved ones after their placement at 
DC to train and test CNN.

We conducted an availability comparison of the appli-
cations deployed by the proposed AvAAD algorithm and 
three other VM placement baseline algorithms, CHASE, 
CNN and FirstFit, to evaluate the ability of the deploy-
ment module to deploy applications while satisfying their 
availability requirements. We computed the availability 
of all applications after deployment and compared it with 
the requested availability by ASPs. For request 1, Fig. 3a 
shows the achieved availability by the suggested place-
ment for 5 applications of request 1 in Table  2 by each 
algorithm. As Fig. 3a shows, AvAAD algorithm met the 
availability requirements because it is greater than or 
equal to the requested availability for all of the requested 
applications, CHASE algorithm violated the availabil-
ity requirements of 4 applications out of 5 requested 
ones, CNN algorithm met the availability of 3 applica-
tions out of requested applications, and FirstFit did not 
meet any availability requirement for any requested 
applications. Application admissibility refers to the abil-
ity of hosting (placement) the application and meet its 
requirements including the requested availability at the 
data center. If the application meets its requirements 
we count it as admitted based on its suggested place-
ment by each algorithm. In other words, the availability 
plays a major decision to admit or reject the application. 
As Fig. 3c shows, for request 1, AvAAD admitted all the 

Table 2 Description of applications requests - group 1

Req Availability Funct No VMs No

Request 1
Application 1 0.97 3 3

Application 2 0.88 4 4

Application 3 0.94 5 5

Application 4 0.95 6 6

Application 5 0.99999 3 3

Request 2
Application 1 0.95 3 3

Application 2 0.93 3 3

Application 3 0.98 2 2

Application 4 0.8 2 2

Application 5 0.82 2 2

Request 3
Application 1 0.97 4 4

Application 2 0.98 4 4

Application 3 0.96 4 4

Application 4 0.95 5 5

Application 5 0.98 4 5

Application 6 0.96 6 6

Request 4
Application 1 0.85 3 3

Application 2 0.87 4 4

Application 3 0.83 3 3

Application 4 0.8 4 4

Application 5 0.99 5 5

Application 6 0.96 5 5

Application 7 0.98 6 6

Table 3 Parameters used in the experiments

Parameter Value

Asj 0.6-0.99

Pactive 215

Pidle 162

T 10 and 15

Z 12, 16, 20, 24, and 28

taks 1000000

epochs 100
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5 requested applications since it met their availability, 
CHASE admitted 1 application and violated 4 applica-
tions out of 5 requested, CNN admitted 3 and violated 2 
out of 5 requested, and FirstFit did not admit any applica-
tion since it violated their requested availability. AvAAD 
algorithm is completely aware of the requested appli-
cation availability, so it searches for any possible VMs 
placement for application to meet its availability require-
ment. CHASE tries to select servers that have maximum 
availability to host the VMs, but it does consider the 
entire application availability. So CHASE can assign VMs 
of application with low availability requirement at high 
available servers, and assign VMs of application with 
high requested availability at low available servers. CNN 

learns from the previous and historical applications that 
are hosted on the same DC, so it is trained and hence 
can predict the requested availability and place the VMs 
of the application accordingly. Therefore CNN achieved 
good results compare to AvAAD. FirstFit is not aware at 
all of the application availability, it places the VM on the 
first available server. Therefore, FirstFit achieved worst 
results in terms of availability. We selected FirstFit algo-
rithm to emphasize the point that the existing VM place-
ment algorithms do not consider application availability, 
which can have impact on quality of the application ser-
vice and experience of the end users. For all requests 
in the first group, Fig.  3b shows that both AvAAD and 
CNN achieved mean availability close to the mean of the 

Fig. 3 Evaluation of Availability-Aware Application Deployment Module - Group 1
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required availability of the applications, while CHASE 
and FirstFit achieved mean availability far from the 
required ones.

In order to evaluate the performance of the servers in 
the data center with various placement algorithms, we 
conducted an analysis of the mean power consumption 
of the servers that host VMs of the requested applica-
tions for first and second groups. As seen in Fig.  3d, 
AvAAD has a higher power consumption compared to 
CHASE, CNN and FirstFit algorithms. This can be attrib-
uted to approach of AvAAD by adding extra standby 
VMs to meet the availability requirements of only those 
applications that violate their availability. Consequently, 
the additional standby VMs consume more power, con-
tributing to a higher overall power consumption. We also 
computed the mean CPU and RAM utilization of the 
servers after the deployment of the applications for each 
request. Figure 3e and f show the CPU and RAM utiliza-
tion of the servers, respectively. We consider utilization 
of the resources as indicator for usage of the resources. 
The more resources utilization the better usage and lower 
wastage. AvAAD achieved stable and high CPU and 
RAM utilization, as one of its primary objectives is to 
minimize wastage of the resources. It is worth noting that 
the CPU and RAM utilization of AvAAD does not exceed 
the 80% utilization ratio, unlike the other algorithms, 
which sometimes exceed this ratio for certain requests. 
This is because we have set an upper threshold of 80% 
for both CPU and RAM utilization to prevent any server 
from reaching a full state of VMs, which could have a 
negative impact on the availability of the server as well as 
its performance.

In the second group of experiments, we included 
standby virtual machines (VMs) in the applications to 
recover the application service in case of active VM fail-
ure. The structure of the applications in the second group 
is described in Table 4, and we maintained the same VM 
and server properties as in the first group of experiments, 
except that we randomly generated availability values 
for servers using a uniform random distribution with a 
new range of 0.6-0.9, for illustrative purposes. Figure 4a 
displays the availability achieved by each placement 
algorithm for the six applications that belong to request 
number 6 of Group 2 in 4. The AvAAD algorithm can 
satisfy availability requirements for applications without 
adding standby VMs, which helps reducing the over-
all power consumption in the data center, as shown in 
Fig.  4d. The CNN and CHASE algorithm could satisfy 
availability requirements for most requested applications 
because standby VMs are present and they target avail-
ability during the VM placement process. Still FirstFit 
algorithm violates availability requirements for most of 
the requested applications because its approach that is 

not aware of the availability concept. Therefore, applica-
tions admissibility is high for the algorithms except for 
FirstFit as shown in Fig.  4c. As shown in Fig.  4d, using 
AvAAD and CNN result in servers consuming less power 
compared to using CHASE and FirstFit, as AvAAD does 
not require the addition of extra standby VMs for the 
protection approach. CNN searches for similar applica-
tions that have lower power consumption and can meet 
the requested availability.

We conducted a performance comparison of the four 
VM placement algorithms by measuring the execution 
time required to place different large sets of VMs, rang-
ing from 500 to 3000. The results are presented in Fig. 5a. 
AvAAD algorithm outperformed CHASE in terms of 
execution time, took around 1700 seconds to place 500 
VMs while CHASE required around 2215 seconds to do 
the same. This is because CHASE requires optimization 
solver to find solution that maximizes the availability 
of the hosted VMs which usually consumes extra time 
to find final solution. Still AvAAD takes a long time to 

Table 4 Description of applications requests - group 2

Req Availability Funct No VMs No

Request 5
Application 1 0.9 2 4

Application 2 0.88 2 4

Application 3 0.93 2 4

Application 4 0.87 2 4

Application 5 0.85 2 4

Request 6
Application 1 0.92 3 6

Application 2 0.96 3 6

Application 3 0.94 3 6

Application 4 0.9 3 6

Application 5 0.93 3 6

Application 6 0.88 3 6

Request 7
Application 1 0.95 3 9

Application 2 0.93 3 9

Application 3 0.94 3 9

Application 4 0.89 3 9

Application 5 0.93 3 9

Application 6 0.94 3 9

Request 8
Application 1 0.9 4 8

Application 2 0.94 4 8

Application 3 0.91 4 8

Application 4 0.95 4 8

Application 5 0.85 4 8

Application 6 0.9 4 8

Application 7 0.94 4 8
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find placement solution for large set of VMs and this is 
because it uses meta-heuristic AntColony to find initial 
placement of VMs for all the requested application that 
consumes more time. On the other hand, CNN took 
less time than both AvAAD and CHASE because it only 
requires to predict the placement of the VMs based on 
historical dataset. However, FirstFit algorithm was the 
fastest taking less than a second to place the same num-
ber of VMs. This is because FirstFit only looks for the 
first available server that can host the current VM.

To see the impact of AntColony on the performance 
of AvAAD algorithms, we measure the execution time 

of AvAAD using different number of ants of two differ-
ent number of iterations 10 and 15 for placement 500 
VMs. As Fig. 5b shows, the execution time increases by 
increasing number of ants and iterations. For example, 
AvAAD took around 1700 seconds to place 500 VMs for 
10 iterations using 12 ants, while took around 1900 sec-
onds with the 15 iterations to place the same number of 
VMs using the same number of ants.

To evaluate the effectiveness of the Artificial Neural 
Network (ANN) prediction method for application task 
failure, we utilized the same ANN structure as [45]. Our 
training and testing process employed a cleaned dataset 

Fig. 4 Evaluation of Availability-Aware Application Deployment Module - Group 2

Fig. 5 Execution Time of VM Placement Algorithms
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containing 1 million tasks over 100 epochs, with 500,000 
tasks marked as “finished” and the other half marked as 
“failed”. The accuracy and error loss of the ANN method 
were computed as illustrated in Fig.  6a and  b, respec-
tively. Accuracy denotes the percentage of correct pre-
dictions for task termination status. The ANN achieved 
a high accuracy of up to 93%, whereas the error loss was 
low, up to 14%.

Conclusion
In this research, we address the challenge of the dynamic 
placement of virtual machines (VMs) in the cloud, with a 
focus on ensuring application availability. To achieve this, 
we formalize the concept of application availability and 
model the dynamic VM placement problem as an INLP 
model with multiple objectives and a set of constraints. 
We propose a comprehensive framework that includes 
three modules to handle VM placement during deploy-
ment, failure, and scaling requests. The deployment mod-
ule uses an AntColony optimization algorithm and a VM 
standby protection approach to achieve multiple objec-
tives and satisfy the availability requirements of the appli-
cations. The results demonstrate that our proposed VM 
placement algorithm outperforms CHASE, CNN and 
FirstFit algorithms in terms of application service avail-
ability, accommodating higher number of applications, 
and CPU and RAM utilization. The prediction module 
of our framework employs deep learning ANN to predict 
application task failure, with an accuracy of up to 93% 
and a low error loss of up to 14%. Finally, the dynamic 
application reconfiguration module of the framework 
uses a heuristic approach to migrate VMs during scaling 
up requests. The migration solution is capable of migrat-
ing VMs with a lower migration time without compro-
mising the availability requirements of the applications.

As future work, we plan to validate the overall perfor-
mance of our proposed framework MoVPAAC including 
a large dataset and check for the possible comparisons 
with more existing methods from the literature. For 

example, the communication cost between the modules 
of the framework has a room for validation. In addition, 
we plan to incorporate the concept of application avail-
ability into existing cloud simulators such as CloudSim 
and validate our work using it.

Abbreviations
A  Set of requested applications for deployment
AV s

j   Availability of server of index j

AV
func
f   Availability of functionality of index f

appa  Application of index a
α  Parameter to control pheromone trail importance
β  Factor with value = 0.00001
Failvmv   Failure of vm of index v
Failsj   Failure of server of index j
Fail

′
(sol0)  Normalized failures ratio of serves located in solution sol0

Lcj   Normalized remaining CPU utilization of server of index j
Lrj   Normalized remaining RAM utilization of server of index j
M  Number of servers that are used in solution sol0
MTTFj  Mean time to fail server of index j
MTTRj  Mean time to repair server of index j
ηi,j  Desirability of placement vm of index i at server of index j
ηi,j,1  Contribution to the first objective of placement vmi at sj
ηi,j,2  Contribution to the second objective of placement vmi at sj
ηi,j,3  Contribution to the third objective of placement vmi at sj
ρl  Local pheromone evaporating parameter
ρg  Global pheromone evaporating parameter
�  Coefficient
Pj  Average power consumption of server j
Pactive
j   Average power consumption of server j when it is active

Pidle
j   Average power consumption of server j when it is idle

Pmax
j   Maximum power consumption of server of index j

Pru,j  Probability placement vm of index u at server of index j
PS  Pareto set
q  Random number with value between 0 and 1
q0  Constant number with value between 0 and 1
Rc
i   CPU demand of vm of index i

Rr
i   RAM demand of vm of index i

S  Set of servers located at data center
sj  Server of index j
sol0  Initial placement solution that is used by MOAntColony
solg  Global solution in PS
T  Number of iterations that are used by MOAntColony
Tc
j   Upper threshold of CPU utilization of server of index j

Td
j   Upper threshold of Disk utilization of server of index j

Tr
j   Upper threshold of RAM utilization of server of index j

Tg  Number of the iterations to find the global solution
τ0  Initial local pheromone level

Fig. 6 Evaluation of Proactive Application Failure Detection Module
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τi,j  Local pheromone of placement vm of index i at server j
U  Set of VMs that can be hosted at server of index j
Uc
j   Normalized CPU utilization of server of index j

Ud
j   Normalized Disk utilization of server of index j

Ur
j   Normalized RAM utilization of server of index j

V  Set of VMs that compose all the requested applications
V

app
a   Set of VMs that provide application of index a

V
func
f   Set of VMs that provide functionality of index f

vmi  Virtual machine of index i
Wj  Average resources wastage of server of index j
W

′
(sol0)  Normalized resources wastage of servers in solution sol0

xij  Binary decision variable if vmi is hosted at sj or not
yj  Binary decision variable if server sj is active or not
Z  Number of ants that are used by MOAntColony
zid  Binary variable if vmi is migrated to server d or not
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