
Alahmad and Agarwal
Journal of Cloud Computing (2024) 13:46
https://doi.org/10.1186/s13677-024-00610-2

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

Multiple objectives dynamic VM placement
for application service availability in cloud
networks
Yanal Alahmad1*† and Anjali Agarwal2†

Abstract

Ensuring application service availability is a critical aspect of delivering quality cloud computing services. However,
placing virtual machines (VMs) on computing servers to provision these services can present significant chal-
lenges, particularly in terms of meeting the requirements of application service providers. In this paper, we present
a framework that addresses the NP-hard dynamic VM placement problem in order to optimize application availability
in cloud computing paradigm. The problem is modeled as an integer nonlinear programming (INLP) optimization
with multiple objectives and constraints. The framework comprises three major modules that use optimization
methods and algorithms to determine the most effective VM placement strategy in cases of application deploy-
ment, failure, and scaling. Our primary goals are to minimize power consumption, resource waste, and server failures
while also ensuring that application availability requirements are met. We compare our proposed heuristic VM place-
ment solution with three related algorithms from the literature and find that it outperforms them in several key areas.
Our solution is able to admit more applications, reduce power consumption, and increase CPU and RAM utilization
of the servers. Moreover, we use a deep learning method that has high accuracy and low error loss to predict applica-
tion task failures, allowing for proactive protection actions to reduce service outage. Overall, our framework provides
a comprehensive solution by optimizing dynamic VM placement. Therefore, the framework can improve the quality
of cloud computing services and enhance the experience for users.

Keywords VM placement, Task scheduling, Application availability, Deep learning, Cloud computing, AntColony

Introduction
Cloud computing has emerged as a popular paradigm
that offers Application Service Providers (ASPs) such as
Netflix and Spotify the ability to leverage a pool of virtual
infrastructure resources for hosting their applications. By
accessing resources from Cloud Service Providers (CSPs)

based on workload demands, ASPs are able to real-
ize the pay-as-you-go business model where they only
pay for resources they use. This cost-effectiveness has
encouraged many ASPs to migrate their applications to
the cloud. However, despite its many advantages, cloud
computing presents quality of service (QoS) challenges
that have become top priorities for ASPs. In particular,
service availability has emerged as a key non-functional
requirement, denoting the percentage of time a ser-
vice is available to users [1]. Some users demand highly
available (HA) services, with a ratio of 99.999% (aka five
nines) or more of the time the service is available being
the gold standard for service HA [1]. Other users require
service continuity in order to resume the service from its
last state before interruption. CSPs are responsible for

†Yanal Alahmad and Anjali Agarwal contributed equally to this work.

*Correspondence:
Yanal Alahmad
yanal.alahmad@concordia.ca
1 Department of Computer Science and Software Engineering, Concordia
University, Montreal, Canada
2 Department of Electrical and Computer Engineering, Concordia
University, Montreal, Canada

http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13677-024-00610-2&domain=pdf

Page 2 of 20Alahmad and Agarwal Journal of Cloud Computing (2024) 13:46

ensuring application service availability in accordance
with the requirements laid out in Service Level Agree-
ments (SLAs), which detail QoS expectations. Provid-
ing availability that is lower than the demand can have a
significant negative impact on service performance and
quality, resulting in significant losses, with downtime in
web applications costing businesses up to $300,000 per
hour [2]. Conversely, providing availability above the
demand can raise costs and reduce the admissibility of
new applications, lowering CSP profits. Therefore, effec-
tively managing service availability is critical for both
ASPs and CSPs in order to balance the service quality
with profitability.

Managing service availability in the cloud is a complex
task that comes with several challenges. Applications in
the cloud are composed of software components hosted
on virtual computing nodes such as Virtual Machines
(VMs) or containers. These components depend on
physical computing nodes, also known as servers, to
host them. Due to this heterogeneous stack dependency,
any failure in any layer can cause a service outage at any
time. Detecting and quickly recovering from a resource
failure requires an efficient monitoring and manage-
ment mechanism. Moreover, cloud environments are
highly dynamic, with resources being frequently added or
removed on the fly. Failure to provide required resources
at the right time can compromise service availability and
quality. On the other hand, keeping extra resources for
an extended period can increase operational and main-
tenance costs.

Ensuring high service availability in the cloud is not
an easy task that requires a careful balance between cost
and performance. Numerous approaches have been pro-
posed to address this challenge. Reactive solutions focus
on addressing outages as they occur by using redundancy
models to failover to standby resources when an active
resource fails. While effective, this approach can be costly
due to the need for additional standby resources. Pro-
active solutions aim to predict and prevent service fail-
ure through prediction methods and protective actions.
This approach can be cost-effective but relies heavily
on the accuracy of the prediction method. Protection
mechanisms can also increase the availability of applica-
tion components, such as using a strong VM placement
strategy. However, the proximity of VMs providing the
same service can lower the overall availability level of
the service, making VM placement a significant chal-
lenge. Clustering VMs together can help to reduce the
total number of computing servers required to host the
VMs, leading to reduced energy consumption and asso-
ciated costs. However, placing active and standby VMs
responsible for a specific service instance on the same
server can result in a service outage in the event of server

failure. Alternatively, distributing VMs across servers can
improve workload balancing and server performance, but
may increase the number of active computing servers
and associated costs. Thus, choosing the optimal place-
ment strategy for VMs is critical to maintaining high ser-
vice availability in the cloud.

The management of virtual machine (VM) placement
in cloud computing presents a challenging combinato-
rial problem that is NP-hard. Static VM placement is only
suitable when a new VM is requested, while dynamic
placement involves changes to the location of VMs, trig-
gered at any time for any reason such as elasticity and
migration. Achieving multiple objectives through VM
placement can further complicate the problem, which
grows exponentially with the number of VMs. In this
paper, we introduce the “Multiple-Objectives Dynamic
VM Placement for Application Availability in Cloud”
(MoVPAAC) framework, which focuses on ensuring
application service availability and optimizing resource
usage. The framework comprises various modules that
use a set of optimization solutions to handle dynamic
VM placement during deployment, scaling, and applica-
tion failure, with the aim of meeting availability require-
ments and achieving multiple objectives. The following
are the main contributions of this research work:

• Introducing a formal definition for application ser-
vice availability in cloud computing platforms, ena-
bling better management and optimization of cloud
resources.

• The proposed Multiple-Objectives Dynamic VM
Placement for Application Availability in Cloud
(MoVPAAC) framework is a novel approach to
dynamic VM placement that integrates several
optimization goals, including minimizing power
consumption and resource waste, and maximiz-
ing service uptime, while ensuring high application
availability.

• To tackle the complex multi-objective dynamic VM
placement problem, this work formulates an inte-
grated non-linear programming (INLP) model with a
set of constraints, which can efficiently handle multi-
ple optimization goals and complex requirements.

• The Ant Colony heuristic algorithm and VM pro-
tection method are employed in tandem to solve
the INLP model, providing an effective approach to
dynamic VM placement that is highly efficient and
robust.

• To enhance the accuracy of failure prediction and
protective actions, the deep learning Artificial Neural
Network (ANN) method is utilized, delivering highly
accurate results and enabling proactive protection of
cloud applications and services.

Page 3 of 20Alahmad and Agarwal Journal of Cloud Computing (2024) 13:46

• This work develops a prototype that showcases the
proposed framework, algorithms, and methods, and
provides a comparative analysis of the results against
three existing VM placement solutions from the liter-
ature. The prototype provides an empirical validation
of the effectiveness and efficiency of the proposed
approach.

The remainder of this article is structured as follows:
“Background” section provides a brief background of
cloud application service availability and summarizes the
problem statement. “Related work” section discusses the
related work. “Multiple-objectives dynamic VM place-
ment for application availability in cloud framework” sec-
tion introduces the MoVPAAC proposed framework,
which includes modules, problem formalization, and
optimization solutions. “Experiments and results” sec-
tion presents the results of the experiments. Finally,
“Conclusion” section summarizes the conclusion.

Background
Cloud computing allows application service providers
(ASPs) to request the deployment of end-to-end applica-
tion services from cloud service providers (CSPs) based
on specific requirements, such as availability. In response,
the CSP gives the ASP online access to a set of virtual
machines (VMs) where the application components can
be deployed. Each application component is a software
module that provides a specific type of functionality in
a specific domain, such as web hosting (using an HTTP
server) or networking (using network address translation

or a firewall). In a data center (DC), each VM is hosted
on a single physical server, and is associated with a spe-
cific application that requires a set of resources, such as
CPU and RAM. Each server has its own set of proper-
ties, including availability and capacity for each resource
type. The availability of a server sj can be calculated using
Eq. (1), where MTTFj is the mean time between two con-
secutive failures of server sj , and MTTRj is the mean time
to repair server sj.

To illustrate how application availability is formulated,
consider the following example. Figure 1a presents an
abstract model of Application app1 , composed of three
distinct functionalities provided by separate compo-
nents located on different virtual machines (vm1 , vm2 ,
and vm3), each hosted on a single server. The availability
requirement for app1 is set to 0.9, and specific resource
demands are requested for each VM. To simplify the
illustration, we only show the CPU demand next to each
VM, along with the CPU capacity and availability next to
each server. For application availability, we assume that
VMs providing the same application functionality can-
not be collocated on the same server, and that application
availability depends on the availability of all its function-
alities. We model an application as a set of functionalities
provided by a set of VMs, with application availability
depending on the availability of all the functionalities that
together provide an end-to-end application service.

(1)AV s
j =

MTTFj

MTTFj +MTTRj

Fig. 1 Applications Deployment Model in Cloud Data Center

Page 4 of 20Alahmad and Agarwal Journal of Cloud Computing (2024) 13:46

To compute application availability, denoted by
AV

app
a , we multiply the availability of all the functionali-

ties that comprise the application, as defined in Eq. (2),
where AV func

f is the availability of the functionality
funcf and Fa is the set of functionalities required to pro-
vide application appa . The availability of funcf is deter-
mined by the availability of the virtual machines that
provide it, which can be computed as the complement
of the failure probability of all the VMs that provide
funcf , as defined in Eq. (3), where vmv provides func-
tionality f and V func

f is the set of all VMs that provide
functionality f. The failure of vmv is equivalent to the
failure of the server sj that hosts it. The failure of a
server sj is defined as the complement of its availability,
as in Eq. (4). According to Eq. (2), the availability of the
deployed application (app1) depicted in Fig. 1a can be calculated
as AVapp

1 = AV s
1 ∗ AV

s
2 ∗ AV

s
8 = 0.97 ∗ 0.95 ∗ 0.98 = 0.9 ,

which meets the requested availability of app1 . By host-
ing vm2 on server 6 instead of server 2, as shown in
Fig. 1b, the availability of app1 can be increased to
AV

app
1 = AV s

1 ∗ AV
s
6 ∗ AV

s
8 = 0.97 ∗ 0.99 ∗ 0.98 = 0.94 .

Moreover, adding a standby VM vm2_2 for vm2_1
and hosting it on ser ver 3, as depicted in
Fig . 1c , increases the availability of app1 to
AV

app
1

= AV s
1
∗ (1− (Fails

6
∗ Fails

3
)) ∗ AV s

8
= 0.97 ∗ (1− (0.010.05))0.98 = 0.95 .

However, when a CPU scaling-up request is made for
vm1 with two additional units, server 1 cannot host vm1
with the requested four CPU units because its CPU
capacity is limited to three units. Therefore, vm1 must
be migrated to another server. As shown in Fig. 1d, vm1
can be migrated to server 5, where
AV

app
1 = 0.96 ∗ (1− (0.01 ∗ 0.05)) ∗ 0.98 = 0.94.

To illustrate the application admissibility issue, let’s
consider an additional scenario where a new applica-
tion, app2 , is requested by another ASP. The appli-
cation consists of three virtual machines, vm4 , vm5 ,
and vm6 , and requires an availability of 0.88. Sup-
pose that the CSP has a placement policy that
deploys VMs on servers with the highest availabil-
ity. In this case, app2 would be deployed as shown in

(2)AV
app
a =

|Fa|

f=1

AV
func
f

(3)AV
func
f = 1−

|V
func
f |
∏

v=1

Failvmv

(4)Failsj = 1− AV s
j

Fig. 1e. The availability of app2 can be calculated as
AV

app
2 = AV s

6 ∗ AV
s
7 ∗ AV

s
4 = 0.99 ∗ 0.99 ∗ 0.99 = 0.97, which

meets the availability requirement. However, note that
the CSP is providing a much higher availability than
what the ASP requires for app2 . Now, let’s assume that
another ASP requests a new application, app3 , consist-
ing of three virtual machines, vm7 , vm8 , and vm9 , with
an availability requirement of 0.97. Based on the current
state of the data center, as shown in Fig. 1e, the request
for app3 would be denied because the required availabil-
ity cannot be met. This means that the CSP would lose
the profit from hosting app3 . However, if the CSP adopts
a policy of providing application availability that is close
to the requested level, then app3 could be admitted to the
data center. Figure 1f shows the placement of all three
applications in the data center, with app1 , app2 , and app3
meeting their respective availability requirements of 0.94,
0.88, and 0.97. By adopting this policy, the CSP can sat-
isfy the requirements of multiple ASPs and maximize its
profits.

Related work
The literature on cloud computing has numerous stud-
ies that focus on different aspects of virtual machine
(VM) placement and application task scheduling, such
as resource utilization, network performance, and opera-
tional costs. However, only a limited number of studies
have explored the problem of ensuring end-to-end appli-
cation service availability. In light of this, we will examine
previous research that deals with VM placement and task
scheduling in cloud computing, as well as approaches
that ensure availability, reliability, and fault tolerance.

Availability‑aware VM placement
Jammal et al. [3, 4] proposed CHASE, a scheduler that
takes into account high availability of application compo-
nents in cloud-based systems. The authors formulated the
scheduling problem as an Integer Linear Programming
(ILP) model with the objective of maximizing component
availability. To schedule components, CHASE selects
servers with the highest availability. However, this work
does not consider the problem of application admissibil-
ity. The authors used IBM ILOG CPLEX optimization
solver to find the optimal scheduling plan for the com-
ponents. In another work, Zhu and Huang [5] focused on
the availability of Mobile Edge Computing (MEC) appli-
cations during the component placement process. The
authors proposed a stochastic model to measure the cost
of availability impact when changing the placement of
components. The heuristic algorithms FirstFit and Best-
Fit were used to place the MEC application. Lera et al. [6]
proposed a two-phase placement strategy based on graph

Page 5 of 20Alahmad and Agarwal Journal of Cloud Computing (2024) 13:46

partitioning and traversal approach to address service
placement in the fog computing platform for applica-
tion fault tolerance. The authors optimized the placement
process to improve the fault tolerance of applications.
Dehury et al. [7] addressed fault tolerance for application
components in the cloud. They proposed a fault tolerance
strategy based on the significance of each deployed com-
ponent. The ranks of components were determined based
on their communication, failure rate, failure impact,
and historical performance. The proposed strategy used
Markov Decision Process (MDP) to determine the num-
ber of replicas of each component.

The problem of reliability of VM placement (RVMP)
has been addressed in works such as [8, 9]. Yang et al.
[8] proposed an INLP model to determine the mini-
mum number of computing nodes required to host VMs,
ensuring that the VM placement plan’s availability meets
the requirement and the communication delay between
VMs is less than a certain threshold. To solve the RVMP
model, the authors used CPLEX. Similarly, Liu et al. [9]
also mapped VM placement as an ILP model, but with
the additional goals of reducing communication traffic
and network bandwidth in DC while increasing the relia-
bility of hosted VMs. To solve the ILP model, the authors
employed a graph k-cut approach. Yang et al. [10] created
a variance-based metric to assess the risk of application
availability violations during the VM placement process.
The authors examined the possibility of Top-of-Rack
(ToR) switch and server failures in DC and formalized
VM placement as an ILP model with the goal of reducing
resource power consumption while increasing applica-
tion availability.

The Virtual Network Function (VNF) placement
problem in the Network Function Virtualization (NFV)
platform has been the subject of several research
works, including [11–19]. Ayoubi et al. [11] proposed
a framework for elastic and dependable Virtual Net-
works (VNs) embedding in cloud environments, aiming
to meet the availability requirement of VN throughout
its lifetime and increase the admissibility of new VNs.
The authors modeled VN as a collection of connected
Virtual Network Functions (VNFs), each mapped to a
single VM. The approach utilized backup VNFs and a
tabu-search optimization method to achieve reliable
VNF placement. Alahmad et al. [12] proposed a VNF
placement model that prioritizes availability and mini-
mizes Network Service (NS) failure probability in NFV,
evaluated using CPLEX. Thiruvasagam et al. [13] tack-
led the placement of reliable virtual monitoring func-
tions (vMFs) by minimizing communication delay
between Service Function Chains (SFCs) in the NS
while also reducing the number of vMFs. The authors
used CPLEX to determine the best vMF placement

strategy. Yala et al. [14] employed a genetic algorithm
to determine the VNF placement in a virtual Con-
tent Delivery Network (vCDN) and to balance vCDN
deployment cost and availability level. Yang et al. [15]
addressed stateful VNF placement for NS fault-tol-
erance and modeled the problem as an optimization
function, aiming to increase user request availabil-
ity. In [16], the authors proposed an availability-aware
SFC placement scheme for the NFV substrate network,
aiming to reduce SFC’s end-to-end delay. Sharma et al.
[17] focused on maximizing the Telecom Service Pro-
vider’s (TSP) profit by achieving high NS availability
in NFV during VNF placement using redundant VNFs
and a geographic placement approach. Abdelaal et al.
[18] addressed the VNF Forwarding Graph (VNF-FG)
deployment problem with the goals of minimizing
network bandwidth, convergence time, and resource
power consumption while protecting VNF service from
failures using redundant VNFG. Mao et al. [19] pro-
posed an online fault-tolerant SFC placement solution
in NFV, modeled as a Markov decision process, using
a deep reinforcement learning (DRL) method to maxi-
mize the number of accepted user requests.

Several works have proposed cloud fault-tolerance
solutions using virtual machine (VM) placement. Li and
Qian [20] focused on reducing network traffic in data
centers by addressing multitenant cloud VM placement.
Jammal et al. [21] addressed the issue of VM placement
during live migration to reduce service downtime in the
event of a failure. Zhou et al. [22, 23] aimed to minimize
network resource consumption and increase cloud ser-
vice reliability through optimal redundant VM placement
(ORVMP) using genetic algorithms. Gonzalez and Tang
[24] used the FirstFit algorithm to place VM replicas for
service fault tolerance. Alameddine [25] proposed a pro-
tection plan to determine number of backup VMs and
placement to meet critical cloud application’s availability
requirements. Cost functions were also used to address
VM placement. Chen and Jiang [26] proposed an adap-
tive selection method for fault-tolerant application ser-
vice during the VM placement process. Zhang et al. [27]
investigated VM placement in cloud DCs using a star
topology to minimize SLA violations, power consump-
tion, and failure rate. Tran et al. [28] proposed a proac-
tive fault-tolerant approach for Kubernetes containerized
services using Bidirectional Long Short Term Memory
(LSTM) node fault prediction and container-based ser-
vice stateful migration mechanism. Finally, Saxena et al.
[29] proposed the fault-tolerant elastic resource manage-
ment (FTERM) framework to handle cloud outages based
on online Multi-Input and Multi-Output Evolutionary
Neural Network (MIMO-ENN) to predict resource fail-
ure and take action.

Page 6 of 20Alahmad and Agarwal Journal of Cloud Computing (2024) 13:46

Fault‑tolerance task scheduling
Previous research studies have explored the impact of task
scheduling on application task failures in cloud computing
clusters. However, many of these studies fail to account for
recovery measures for failed tasks or preventative meas-
ures for predicted failures. Moreover, they do not assess the
application task’s availability in meeting specific require-
ments. Our research sets itself apart by considering the
migration of virtual machines (VMs) that host predicted
failed tasks and ensuring that the application meets its avail-
ability requirements throughout its operational lifetime.

Several studies have proposed fault tolerance solutions
for cloud application task scheduling. Guo et al. [30] devel-
oped a fault-tolerant and energy-efficient primary-back
scheduling architecture for real-time tasks in a cloud envi-
ronment. Marahatta et al. [31] proposed an energy-aware
and fault-tolerant dynamic task scheduling scheme that
reduces rejection rates by replicating tasks in case of VM
failure or delay. Sun et al. [32] introduced a QoS-aware task
scheduling model with fault tolerance for an edge-cloud
platform, using a primary-backup redundancy approach
to improve task availability while adhering to time con-
straints. Yao et al. [33] analyzed fault-tolerant properties of
task scheduling and migrating VMs based on the Primary-
Backup model and proposed a fault-tolerant elastic algo-
rithm for task scheduling that considers host and network
device faults in a cloud data center. Additionally, Yao et al.
[34] presented a hybrid fault-tolerant algorithm for sched-
uling tasks with deadlines in a cloud platform. The algo-
rithm selects the most suitable fault-tolerant strategy, such
as task resubmission or replication, based on the charac-
teristics of the task and available resources. Weikert et al.
[35] studied node failure in IoT networks and proposed
a task allocation algorithm based on multiple objective
optimization. The algorithm utilizes an archive-selection
mechanism to identify the most reliable assignment for the
backup task in case of node failure. Overall, while previ-
ous research has examined the effect of task scheduling
on application task failures in cloud computing clusters,
our research goes beyond existing works by incorporat-
ing migration measures and ensuring that the application
meets its availability requirements. Additionally, a range
of fault tolerance strategies have been proposed for cloud
application task scheduling, including energy-efficient,
QoS-aware, and hybrid fault-tolerant algorithms that con-
sider host and network device faults, as well as multiple
objective optimization techniques.

Several research studies have leveraged the Google cloud
trace dataset [36] to predict application job and task failures
in cloud cluster systems. Chen et al. [37] explored the criti-
cal characteristics of application job and task failures and
used a deep learning Recurrent Neural Network (RNN)
to predict such failures. To predict task failure, Soualhia

et al. [38] combined machine learning methods, including
Decision Tree (DT), Boost, and Random Forest (RF). Jas-
sas and Mahmoud [39, 40] compared multiple prediction
models, including DT, Logistic Regression (LR), K-Near-
est Neighbors (K-NN), Naive Bayes (NB), RF, and Quad-
ratic Discrimination Analysis (QDA), to select the most
accurate method. Islam and Manivannan [41] employed a
deep learning method called LSTM to predict task failure.
While these works focused on predicting failures, other
works proposed recovery actions for failing tasks or jobs.
For instance, Rosa et al. [42] suggested terminating a job
that is predicted to fail to save consumed resources, while
Islam and Manivannan [43] proposed rescheduling tasks
that are predicted to fail to a more reliable computing node.
Soualhia et al. [44] proposed a fault-tolerant task schedul-
ing framework (ATLAS) for Hadoop clusters, which can
dynamically reschedule tasks that are predicted to fail. Our
previous work [45] also utilized the Google dataset [36] to
predict task failure during execution time, proposing three
corrective actions to protect the task before it fails: chang-
ing the priority, scheduling class level, or task scheduling
node. Chen et al. [46] proposed advance approach called
IWC to improve the search method of Whale Optimiza-
tion Algorithm (WOA) for Cloud task scheduling. Authors
show IWC has better speed and accuracy to find the opti-
mal task scheduling plan compared to existing meta-heu-
ristic algorithms. Cheng et al. [47] proposed an enhanced
deep reinforcement learning (DRL) to improve the existing
studies that used DRL for job scheduling in Cloud plat-
forms. They tried to optimize job execution time while
meeting the expected response time of the users. Zhang
et al. [48] proposed a new method called GA-DQN that
combines DRL and Genetic Algorithms (GA) for schedul-
ing jobs in cloud. The method benefits from the GA global
search ability and awareness of decision-making of DRL
to have optimized sub-task scheduling that can reduce the
execution times of the jobs, and hence have better response
time for the end users. Notably, none of these studies com-
puted application service availability in the cloud to meet
the requirements during VM placement or task scheduling
procedures. Table 1 provides a summary of related work.

Multiple‑objectives dynamic VM placement
for application availability in cloud framework
We introduce a novel framework for dynamic VM
placement in cloud platforms that prioritizes applica-
tion service availability. Our framework generates and
manages a comprehensive placement plan for VMs
that provide services inside data centers, adhering to
specific requirements to achieve multiple objectives
and meet the availability needs of each application as
requested by the ASP. Additionally, our framework has
the ability to swiftly modify VM placement in response

Page 7 of 20Alahmad and Agarwal Journal of Cloud Computing (2024) 13:46

to application scaling or failure events. As shown in
Fig. 2, the proposed MoVPAAC (Multi-Objective Vir-
tual Machine Placement with Availability-Aware Com-
puting) framework comprises three main modules: the
Availability-Aware Application Deployment module,
which optimizes VM placement to maximize availabil-
ity; the Proactive Application Failure Detection module,
which uses deep learning algorithms to detect potential
application failures and take corrective actions before
they occur; and the Dynamic Application Reconfigura-
tion module, which allows for prompt reconfiguration
of VM placement in response to application failures or
changes in demand. We delve into the specific features
of each module in detail in the following subsections.

Availability‑aware application deployment
The Availability-Aware Application Deployment module
is a critical component of our proposed framework, as it is
responsible for generating the VM placement plan that will
deploy the requested applications at the underlying servers
located in the data center (DC). The module ensures that
the objectives are achieved, while also taking into considera-
tion the specific requirements of each application, particu-
larly their availability as requested by ASPs. Given a set of
applications with their respective requirements, each appli-
cation is comprised of a set of VMs, and each VM provides
a specific functionality towards providing end-to-end appli-
cation services. The goal is to find the optimal placement
plan for these VMs on the DC servers, such that power
consumption, resource wastage, and server failure ratios
are minimized, while ensuring that the availability require-
ments of the applications are maintained throughout their
entire execution times. However, as we mentioned in the
background section, VM placement is an NP-hard problem
with contradictory objectives. To address this, we have for-
mulated the problem as an INLP optimization model with
multiple objectives and constraints. Moreover, we propose
a heuristic approach based on the AntColony optimization
method, in conjunction with the VM standby protection
approach, to find a solution for the model and maximize
the admissibility of the requested applications. Specifi-
cally, we define and formulate the problem statement we
address in this manuscript as follows: assume there is a set

Table 1 Summary of related work

‘X’ denotes not applicable

Research Topic Reference App Availability

Application Component Placement [3–7] X

Reliability-Aware VM Placement [8–10] X

Network Service Fault Tolerance using
VNF Placement

[11–19] X

Fault Tolerance Solutions using VM/
container Placement

[20–29] X

Fault Tolerance Solutions using Task
Scheduling

[30–35] X

Application Job/Task Failure Prediction [37–48] X

Fig. 2 Multiple-Objectives Dynamic VM Placement for Application Availability in Cloud (MoVPAAC) Framework

Page 8 of 20Alahmad and Agarwal Journal of Cloud Computing (2024) 13:46

A of applications that are requested by ASPs. Each applica-
tion appa ∈ A is requested to be deployed at Data Center
(DC), and has availability requirement that is denoted by
AV

appReq
a . Each application appa is composed of a set of

VMs Va , each VM vmi ∈ Va has a set of resources demands
such as CPU, RAM and disk. The VMs of applications set A
require to be placed (hosted) at the underlying set of servers
S that are located in DC. Each server sj ∈ S has a resource
capacity of different types such as CPU, RAM and disk.
The main goal is to deploy (admit) applications set A at DC
in such a way that can meet the availability requirement
AV

app
a >= AV

appReq
a for each appa ∈ A , and achieve the

following objectives. The first objective is to minimize the
total power consumption of the active servers that are used
to host VMs that compose applications in A. To compute
the power consumption of server sj in the DC, we adopt the
linear relationship between server power consumption and
its CPU utilization as described in [49]. We define the aver-
age power consumption of server sj as Pj in Eq. (5), where
Pactive
j and Pidle

j are the average power consumption values
when sj is active and idle, respectively, and Uc

j is the CPU
utilization of sj , where Uc

j ∈ [0, 1] . The first objective is for-
mulated in Eq. (6), where V is the set that includes all the
VMs that compose all the requested applications in A, yj
is a binary decision variable where value 1 indicates that sj
is active and a value 0 indicates that sj is idle, as defined in
Eq. (10). Rc

i is the CPU resource demand by vmi , and xij is
a binary decision variable where value 1 indicates that vmi
is placed on sj and value 0 otherwise, as defined in Eq. (11).

The second objective of the Availability-Aware Applica-
tion Deployment module is to minimize the wastage of
resources of active servers in the data center (DC). The
cost of wasting resources for server sj is denoted as Wj and
is defined in Eq. (7). The remaining CPU, RAM, and Disk
resources of server sj are normalized and represented by Lcj ,
Lrj , and Ldj respectively. Uc

j , Ur
j , and Ud

j represent the nor-
malized resource usage of server sj . To ensure a positive
value, we set β as a very small value of 0.00001. The second
objective is formulated in Eq. (8). Tc

j , Tr
j , and Td

j represent
the upper utilization thresholds of CPU, RAM, and Disk of
server sj respectively. These thresholds are set to the same
value for all servers in the DC to prevent any server from
reaching a full usage state that could negatively impact its

(5)Pj =
(

Pactive
j − Pidle

j

)

×Uc
j + Pidle

j

(6)

Minimize

|S|
∑

j=1

Pj =

|S|
∑

j=1

(

yj ×
((

Pactive
j − Pidle

j

)

×

|V |
∑

i=1

(

Rc
i × xij

)

+ Pidle
j

))

performance. The RAM and Disk resource demand of vmi
are represented by Rr

i and Rd
i respectively. The third objec-

tive of the module is to minimize the overall failure ratio
of servers in the DC. The module computes the failure of
server sj as the complement of its availability, as defined
in Eq. (4), where AV s

j is computed as defined in Eq. (1). The
third objective is formalized in Eq. (9). By optimizing these
objectives in a multi-objective optimization model, the
module aims to find a placement plan for VMs on the DC
servers that reduces power consumption, resource wastage,
and failures ratio while meeting the availability require-
ments of the applications. To solve this problem, the mod-
ule proposes a heuristic approach based on the Ant Colony
Optimization method in conjunction with VM standby
protection approach to maximize the admissibility of the
requested applications.

Our VM placement model is governed by a set of care-
fully defined constraints. Firstly, each server sj can be either
active or idle at any given time, as specified in Eq. (10). To
indicate whether a VM vmi is placed on a particular server
sj , we use a binary decision variable xij , as outlined in Eq.
(11). Additionally, each VM can be placed on at most
one server, as mandated by Eq. (12). To ensure that each
server has adequate resources to host any VM, we impose
constraints on the amount of CPU, RAM, and disk space
available on each server. Specifically, Eqs. (13) through (15)
outline the resource requirements that must be met for
each server. We also enforce an “anti-affinity” constraint
to ensure that VMs belonging to the same application
appa are not co-located on the same server. This helps to
increase the availability of the application, as specified in
Eq. (16). Our work considers the dependency between the

(7)Wj =
||Lcj − Lrj | − Ldj | + β

Uc
j +Ur

j + Ud
j

(8)

Minimize

|S|
∑

j=1

Wj =

|S|
∑

j=1

(

yj ×

(

||(Tc
j −

|V |
∑

i=1

(

Rc
i × xi,j

)

)

−

(

Tr
j −

|V |
∑

i=1

(

Rr
i × xi,j

)

)

|

−

(

Td
j −

|V |
∑

i=1

(

Rd
i × xi,j

)

)

| + β

)

/

(

|V |
∑

i=1

(

Rc
i × xi,j

)

+

|V |
∑

i=1

(

Rr
i × xi,j

)

+

|V |
∑

i=1

(

Rd
i × xi,j

)

)

(9)Minimize

|S|
∑

j=1

Failsj =

|S|
∑

j=1

(

yj × Failsj

)

Page 9 of 20Alahmad and Agarwal Journal of Cloud Computing (2024) 13:46

components of the same application. For example, peer,
active-standby, proxy and proxied components of the same
application should be hosted on different servers. Finally, to
ensure that the requested applications are available to the
application service provider (ASP) as required, we require
that the availability of each application be greater than or
equal to the level requested by the ASP. This requirement
is captured in Eq. (17). By carefully balancing these con-
straints, we can optimize the placement of VMs to meet the
needs of both users and service providers.

Subject to:

To address the INLP model and determine the optimal
placement of VMs for requested applications, we introduce a
heuristic algorithm called Availability-Aware Applications
Deployment (AvAAD) (Algorithm 1). The AvAAD algo-
rithm employs an AntColony optimization approach to
achieve its objectives of VM placement, while utilizing a
standby protection technique to ensure the availability
requirements of the applications are met. The AvAAD takes
a list of requested applications, their requirements, available
servers at the data center, and VMs as input. It returns a list
of non-admitted applications as output. Initially, the algo-
rithm initializes three empty variables: paretoSet, violate-
dAvApps, and nonAdmittedApps. It then calls the
MOAntColony algorithm with VMs and servers as

(10)yj =

{

1, if sj is active
0, if sj is idle

(11)xij =

{

1, if vmi is placed on sj
0, otherwise

(12)
|S|
∑

j=1

xij ≤ 1 ∀i ∈ |V |

(13)
|V |
∑

i=1

(

Rc
i × xij

)

≤ Tc
j ∀j ∈ |S|

(14)
|V |
∑

i=1

(Rr
i × xij) ≤ Tr

j ∀j ∈ |S|

(15)
|V |
∑

i=1

(Rd
i × xij) ≤ Td

j ∀j ∈ |S|

(16)xij + xzj <= 1 ∀vmi, vmz ∈ V
app
a , ∀j ∈ S

(17)AV
app
a ≥ AV

appReq
a ∀appa ∈ A

arguments. MOAntColony returns a paretoSet that includes
the placement of VMs at the available servers. Using the
paretoSet, AvAAD computes the availability AVapp

a of each
requested application appa . It adds each application that vio-
lates its availability requirement (AVapp

a < AVappReq
a) to vio-

latedAvApps. For each application in violatedAvApps, the
algorithm tries to enhance its availability to meet the require-
ment. Specifically, it attempts to add a new standby VM for
the functionality with the minimum availability AV func

f
among all the functionalities in the application. The algo-
rithm adds one standby VM at a time until it meets the avail-
ability requirement of the application or the number of
added standby VMs reaches the threshold of appa . The
newly added standby VM is placed on the server with the
maximum value of 1

Pj+Wj+Failsj
 among all servers, without

violating any of the constraints defined in Eqs. (10 - 17). This
maintains consistency with the objectives of the MoVPAAC
framework. After AvAAD handles all violated applications, it
checks again for any applications that still violate their availa-
bility requirements. If an application still violates its require-
ment, AvAAD considers it rejected and adds it to the list of
non-admitted applications (nonAdmittedApps) that is
returned at the end of the algorithm execution. AvAAD opti-
mizes VM placement while ensuring application availability,
making it a robust and effective solution for the INLP model.

Algorithm 1 Availability-Aware Application Deployment (AvAAD)

The time complexity of AvAAD (Algorithm 1), can
be analyzed as follows. At line (2), the algorithm calls

Page 10 of 20Alahmad and Agarwal Journal of Cloud Computing (2024) 13:46

MOAntColony (Algorithm 2) to find the placement plan
of the virtual machines (VMs) in V at the servers in S.
The performance of AvAAD mainly depends on the per-
formance of MOAntColony. AntColony is a meta-heu-
ristic algorithm that takes a polynomial execution time
of O(nk) to find the optimal solution [50]. In the con-
text of the VM placement problem, the value of k mainly
depends on the number of iterations, ants, VMs, and
servers that AntColony uses to find the placement solu-
tion. At lines (3-8), the algorithm takes O(n) to determine
the list of applications in violatedAvApps that violate their
availability requirements. At lines (9-17), it takes O(n2) to
satisfy the availability for each application that violates its
required availability. At lines (18-22), the algorithm takes
O(n) to determine the list of rejected applications in non-
AdmittedApps that cannot be admitted at the data center
(DC) since they violate their availability requirements.
Therefore, the total time complexity of Algorithm 1 can
be expressed as O(nk)+O(n)+O(n2)+O(n) , which
can be simplified to O(nk) . It is worth noting that the
performance of the algorithm may vary depending on the
input parameters, such as the number of VMs, servers,
and applications.

To achieve the objectives of application deploy-
ment, we propose a heuristic algorithm called Mul-
tiple Objectives AntColony (MOAntColony) that
utilizes the Ant Colony Optimization (ACO) algorithm
to find the placement of VMs for requested applica-
tions. Algorithm 2 outlines the steps of MOAntColony.
The algorithm begins by initializing the parameters
and pheromone trials. In each iterative step, an ant z
receives a set of VMs V that need to be placed in a set
of servers S located at the data center (DC). The ant z
then selects a server sj and starts placing the VMs in
V at sj using the pseudo-random-proportional rule
[37]. The desirability of selecting the next vmi to place
at sj depends on the pheromone concentration level
and the heuristic information that guides ant z. After
each movement (placement) step, the local pheromone
concentration level is updated. Ant z continues mov-
ing until it completes the placement of V and builds
its solution. Once all ants complete and build their
solutions, a global pheromone is updated based on
the pareto set PS that includes the best-located solu-
tions. The algorithm initializes the pheromone level
τ0 using Eq. (18). Here, n is the total number of VMs
that require placement, P

′
(sol0) is the normalized

power consumption of the servers listed in the initial
placement solution sol0 generated by the FirstFit VM
placement algorithm, W ′

(sol0) and Fail′(sol0) are the
resource wastage and server failures of sol0 , respec-
tively. Equation (19) defines P ′

(sol0) , where Pmax
j is

the maximum power consumption of server j, and M
is the total number of servers used in solution sol0 .
W

′
(sol0) and Fail′(sol0) are defined in Eqs. (22) and

(23), respectively. The heuristic information ηi,j indi-
cates the desirability of an ant z to place vmi at server
sj . The desirability ηi,j considers the partial contribution
for each objective. Every ant z begins with V and starts
placing them sequentially on the available servers in S,
which are arranged randomly. The sequence of serv-
ers from 1 to j is known during the placement of vmi
at sj . The partial contributions of the first, second, and
third objectives are defined in Eqs. (24), (25), and (26),
respectively. These contributions are combined for the
heuristic placement decision, as defined in Eq. (27).

(18)τ0 =
1

n× (P
′
(sol0)+W

′
(sol0)+ Fail

′
(sol0)

(19)P
′

(sol0) =

M
∑

j=1

(

Pj/P
max
j

)

(20)W
′

(sol0) =

M
∑

j=1

(Wj)

(21)Fail
′

(sol0) =

M
∑

j=1

(Failj)

(22)W
′

(sol0) =

M
∑

j=1

(Wj)

(23)Fail
′

(sol0) =

M
∑

j=1

(Failj)

(24)
ηi,j,1 =

1

β +
j
∑

k=1

(

Pk/P
max
k

)

(25)
ηi,j,2 =

1

β +
j
∑

k=1

Wk

(26)
ηi,j,3 =

1

β +
j
∑

k=1

Failk

Page 11 of 20Alahmad and Agarwal Journal of Cloud Computing (2024) 13:46

Ant z uses the pseudo-random-proportional rule, as
defined in Eqs. (28) [37], to select the next VM, vmi , to
be placed on server sj . The rule employs the parameter
α to control the importance of pheromone trails, and q
is a random number between 0 and 1. If q is less than or
equal to the fixed value of q0 (where 0 < q0 < 1), it falls
under exploitation, otherwise it falls under exploration,
as specified in Eq. (28). U denotes the set of VMs that
can be hosted on sj . ηu,j represents the pheromone value,
as defined in Eq. (27), while τu,j is the local pheromone
update, as defined in Eq. (30). Furthermore, Pr denotes the
probability distribution of the random-proportional rule,
as described in Eq. (29) [37]. The pheromone is updated
locally and globally. During the local update, ant z assigns
vmi to sj and updates the pheromone, as described in Eq.
(30). Here, τ0 represents the initial pheromone level, and
0 < ρl < 1 denotes the local pheromone evaporation
parameter. The current iteration is denoted as t. The global
pheromone update is performed based on the rule stated
in Eq. (31), where 0 < ρg < 1 is the global pheromone
evaporation parameter. The coefficient � , as defined in Eq.
(32), incorporates the number of ants Z and iterations Tg
needed to locate the global solution solg in the pareto set
PS. Furthermore, P ′

(solg) , W
′
(solg) , and Fail′(solg) repre-

sent the normalized power consumption, resource wast-
age, and failures, respectively, of the servers listed in the
solution solg . It is important to note that algorithm 2 pri-
marily utilizes the Ant Colony metaheuristic optimization
algorithm, which requires an execution time of O(nk) [37].
The value of k depends on the number of iterations T, ants
Z, VMs in V, and servers in S used by the Ant Colony algo-
rithm to determine the placement plan for V.

(27)ηi,j = ηi,j,1 + ηi,j,2 + ηi,j,3

(28)

i =

{

maxu∈U {α × τu,j + (1− α)× ηu,j}, q ≤ q0
Pr, otherwise

(29)Pru,j =

α×τu,j+(1−α)×ηu,j
|U |
�

u=1

(α×τu,j+(1−α)×ηu,j)

, u ∈ U

0, otherwise

(30)τi,j(t) = (1− ρl)× τi,j(t − 1)+ ρl × τ0

(31)
τi,j(t) = (1− ρg)× τi,j(t − 1)+

ρg × �

P
′
(solg)+W ′(solg)+ Fail′(solg)

(32)� =
Z

t − Tg + 1

Algorithm 2 MOAntColony

Proactive application failure detection
The proactive application failure detection module is
crucial for detecting application failure at an early stage,
before it actually occurs. Service outages caused by appli-
cation failures can lead to significant negative impacts on
QoS, SLA compliance as well as negative end user experi-
ence. The module uses proactive approach to detect task
failure regardless of its type from historical dataset. The
dataset includes historical information about failures of
tasks and their types such as network, hardware, soft-
ware failures. Note the module does not react to instant
failures of any type. Detecting failures at an early stage
allows for appropriate service recovery actions to be
taken quickly. The module adopts polling communica-
tion approach to get information about the current sta-
tus of the cluster and hosted applications from the Cloud
Manager. The information is used as a historical data for
training and testing the used prediction method Artificial
Neural Network (ANN) to predict the application failure.
To validate this module, we conducted an analysis of the
Google dataset [36] in our previous work [45]. This data-
set consists of logs of application jobs and their associ-
ated tasks executed on a cloud cluster for 29 consecutive

Page 12 of 20Alahmad and Agarwal Journal of Cloud Computing (2024) 13:46

days in 2011. We extracted information about the
resources required and used by each task, as well as the
termination status (finished, failed, evicted, or killed) of
the tasks. Out of 48,261,777 tasks, 38% were successfully
terminated, while 29% failed. Through our analysis, we
identified several features that were correlated with task
termination status, including the task ID, job ID, machine
ID, CPU and RAM demands, mean CPU and RAM usage,
and termination status. We trained a deep learning ANN
method on this data to predict task failure. To detect pre-
dicted failed tasks and initiate recovery actions, our pro-
active application failure module employs the approach
outlined in Algorithm 3. The input for the algorithm is
a list of tasks that need to have their termination status
predicted, and it returns a list of predicted failed tasks.
It is worth noting that the ANN is trained and tested on
a cleaned and prepared dataset before it is used by Algo-
rithm 3. In terms of time complexity, Algorithm 3 takes
O(n) time to predict the termination status of each task
in the input list. By proactively detecting and responding
to application failure, we can minimize service outages
and maintain high levels of QoS and SLA compliance.

Algorithm 3 Proactive Application Failure Detection

Algorithm 4 VM Placement for Application Recovery

Algorithm 5 VM Placement for Application Scaling

Dynamic application reconfiguration
The dynamic application reconfiguration module is
responsible for handling reconfiguration requests that
arise when the availability requirements of provisioned
applications are threatened to be violated. These requests
can originate from either the proactive application fail-
ure module, which notifies the module of predicted failed
applications, or from the cloud manager, which sends
scaling requests. In the case of a proactive notification,
the module adds a new VM to replace the existing VM
responsible for each predicted failed task. The placement
of these new VMs is crucial to the successful recovery of
the application services. The proposed placement process
is designed to fulfill the objectives outlined in formu-
las Eqs. (6), (8), and (9) while respecting the constraints

Page 13 of 20Alahmad and Agarwal Journal of Cloud Computing (2024) 13:46

defined in formulas Eqs. (10) through (17), which align
with the objectives of the MoVPAAC framework. Algo-
rithm 4 outlines the placement procedure for these new
VMs to recover the application services. The algorithm
takes in a list of application tasks predicted as failed, fail-
PredTasksList, and a list of servers, S, as input. It returns
a map that includes the placement of the new VMs
required to provision the failed tasks as output. For each
failed task in failPredTasksList, the algorithm adds a new
VM to provide the task and searches for a server sj ∈ S
that can host the VM and has the minimum summation
value of power consumption, resource waste, and fail-
ure without violating any constraints defined in formu-
las Eqs. (10) through (17). The algorithm then adds the
record < vmi, sj > to the map vmsPlacementMap. Finally,
the algorithm returns the map vmsPlacementMap. The
time complexity of Algorithm 4 is O(n2) because for each
added VM, the algorithm searches for the best server sj
among S that can host the VM.

The cloud manager at CSP can request one of four scal-
ing types: scaling out, scaling up, scaling in, or scaling
down. Scaling out request involves adding a set of new
virtual machines (VMs), while scaling up request involves
adding virtual resources, such as virtual central process-
ing units (vCPUs) and virtual random-access memory
(vRAM), to an existing set of individual VMs. Scaling
in request involves removing a set of existing individual
VMs, and scaling down request involves removing virtual
resources from an existing set of VMs. If the request is
for application scaling out, the reconfiguration module
handles the placement of the new VMs in the same way
that it handles requests from the proactive application
failure module. However, in some cases, scaling up may
require migrating VMs to other servers that can accom-
modate the updated resources without violating any con-
straints. The migration process must be done carefully, as
it can significantly affect the outage period of the applica-
tion service. The problem can be summarized as finding
the optimal way to migrate all the VMs with minimum
migration time while obeying the constraints.

To solve the problem, we propose an integer nonlin-
ear programming (INLP) model with the objective of
minimizing the migration time of the VMs that need to
be migrated while obeying the constraints. The model
includes a set of VMs that need to be migrated (G), a set
of available servers at the data center (S), and the time
to migrate a VM from a source server to a destination
server (migrationTimei,j,d). Binary decision variables (xij
and zid) are defined to indicate the hosting server of each
VM and whether a VM needs to be migrated to a specific
server, respectively. We also propose a heuristic approach
described in Algorithm 5 to solve the INLP model and
find the placement servers of the VMs that require

scaling. The algorithm takes as input the set of VMs that
need to be scaled (vmsScaleList), available servers (S),
and the scaling type (scaleType) and returns a map that
includes the placement of the VMs on the servers in the
data center. Note that Algorithm 5 is called for one corre-
sponding application at a time where the scaling request
is required to fulfill the needs of the application. If the
scaling type is out, the algorithm searches for a server
that can host each added VM with minimum summation
value of power consumption, resource waste, and fail-
ure, while meeting all the constraints. For scaling up, the
algorithm determines which VMs need to be migrated
and finds a destination server that minimizes the total
migration time. For scaling in and down, the algorithm
rejects any scaling action that violates the application
availability requirement constraint. The time complexity
of Algorithm 5 can be analyzed as follows. For a scale out
request at lines (1-15), the algorithm searches for the best
server with minimum cost that can host each vmi . Since
this operation is performed for each vmi , the time com-
plexity of this operation is O(n2) , where n is the number
of available servers. Similarly, for a scaling up request
at lines (16-33), the algorithm searches for the server
that can host each vmi with minimum migration time.
Again, this operation is performed for each vmi , result-
ing in a time complexity of O(n2) . For scaling requests
of type in or down, the algorithm takes O(n) to check
whether the scaling action should be taken or rejected.
Overall, the time complexity of the algorithm is the sum
of the time complexities of each operation, which is
O(n2)+O(n2)+O(n)+O(n) . This can be simplified to
O(n2) . Therefore, the time complexity of the algorithm is
quadratic in the number of available servers n.

Experiments and results
To evaluate the effectiveness of the MoVPAAC frame-
work, we conducted a variety of experiments testing its
modules and algorithms. As a proof of concept for our
research, we developed a simulation that models the key
elements of the framework, including data centers, serv-
ers, VMs, and applications, and implemented it using the
C++ programming language. All experiments were con-
ducted on a 64-bit Windows 10 machine equipped with
an Intel Core i7-8665U 2.11GHz processor and 16 GB of
RAM, ensuring reliable and consistent results.

We conducted experiments to evaluate the perfor-
mance of the availability-aware application deploy-
ment module in the proposed MoVPAAC framework.
The experiments were divided into two groups. The
first group consisted of a set of application deployment
requests with no standby VMs. The first group includes
four requests for applications deployment by different
ASPs. Each request includes deployment of different

Page 14 of 20Alahmad and Agarwal Journal of Cloud Computing (2024) 13:46

number of applications. Each application has availability
requirement (Req Availability), number of functionalities
that compose the application (Funct No) which we add
to simulate real-world applications and emphasize the
concept of redundancy, (VMs No) which indicates num-
ber of VMs that host the components that provide the
functionalities of the application. We simulated one DC
with 85 heterogeneous servers. Server properties, such
as CPU and RAM capacities and availability levels, were
randomly generated using a uniform distribution with
values ranging from 8-15 units and 0.7-0.99, respectively.
For all servers, Pactive and Pidle were set to 215 and 162,
respectively. Table 2 describes the structure, number of
VMs, and availability requirements of the applications.
VM CPU and RAM demands were randomly generated
using a uniform distribution with values ranging from 2-5
units. We submitted each request in Table 2 separately
to the availability-aware application deployment mod-
ule to deploy the applications and return the VM place-
ment plan. We used the MOAntColony algorithm with a
set number of iterations and ants for VM placement. We

compared the placement results generated by AvAAD
algorithm with three other baseline algorithms from the
literature, CHASE [4], Convolutional Neural Network
(CNN) [51], and FirstFit. We selected these algorithms
based on their awareness of application availability dur-
ing VM placement. CHASE is aware of application avail-
ability and is very close to our work, CNN is not aware
but we incorporate the application availability into it, and
FirstFit is unaware. Based on our best knowledge, exist-
ing VMs placement algorithms do not consider applica-
tion availability as an objective. Table 3 summarizes the
parameters used in the experiments. We simulated VMs
placement for 1000 applications with their availability
requirements and achieved ones after their placement at
DC to train and test CNN.

We conducted an availability comparison of the appli-
cations deployed by the proposed AvAAD algorithm and
three other VM placement baseline algorithms, CHASE,
CNN and FirstFit, to evaluate the ability of the deploy-
ment module to deploy applications while satisfying their
availability requirements. We computed the availability
of all applications after deployment and compared it with
the requested availability by ASPs. For request 1, Fig. 3a
shows the achieved availability by the suggested place-
ment for 5 applications of request 1 in Table 2 by each
algorithm. As Fig. 3a shows, AvAAD algorithm met the
availability requirements because it is greater than or
equal to the requested availability for all of the requested
applications, CHASE algorithm violated the availabil-
ity requirements of 4 applications out of 5 requested
ones, CNN algorithm met the availability of 3 applica-
tions out of requested applications, and FirstFit did not
meet any availability requirement for any requested
applications. Application admissibility refers to the abil-
ity of hosting (placement) the application and meet its
requirements including the requested availability at the
data center. If the application meets its requirements
we count it as admitted based on its suggested place-
ment by each algorithm. In other words, the availability
plays a major decision to admit or reject the application.
As Fig. 3c shows, for request 1, AvAAD admitted all the

Table 2 Description of applications requests - group 1

Req Availability Funct No VMs No

Request 1
Application 1 0.97 3 3

Application 2 0.88 4 4

Application 3 0.94 5 5

Application 4 0.95 6 6

Application 5 0.99999 3 3

Request 2
Application 1 0.95 3 3

Application 2 0.93 3 3

Application 3 0.98 2 2

Application 4 0.8 2 2

Application 5 0.82 2 2

Request 3
Application 1 0.97 4 4

Application 2 0.98 4 4

Application 3 0.96 4 4

Application 4 0.95 5 5

Application 5 0.98 4 5

Application 6 0.96 6 6

Request 4
Application 1 0.85 3 3

Application 2 0.87 4 4

Application 3 0.83 3 3

Application 4 0.8 4 4

Application 5 0.99 5 5

Application 6 0.96 5 5

Application 7 0.98 6 6

Table 3 Parameters used in the experiments

Parameter Value

Asj 0.6-0.99

Pactive 215

Pidle 162

T 10 and 15

Z 12, 16, 20, 24, and 28

taks 1000000

epochs 100

Page 15 of 20Alahmad and Agarwal Journal of Cloud Computing (2024) 13:46

5 requested applications since it met their availability,
CHASE admitted 1 application and violated 4 applica-
tions out of 5 requested, CNN admitted 3 and violated 2
out of 5 requested, and FirstFit did not admit any applica-
tion since it violated their requested availability. AvAAD
algorithm is completely aware of the requested appli-
cation availability, so it searches for any possible VMs
placement for application to meet its availability require-
ment. CHASE tries to select servers that have maximum
availability to host the VMs, but it does consider the
entire application availability. So CHASE can assign VMs
of application with low availability requirement at high
available servers, and assign VMs of application with
high requested availability at low available servers. CNN

learns from the previous and historical applications that
are hosted on the same DC, so it is trained and hence
can predict the requested availability and place the VMs
of the application accordingly. Therefore CNN achieved
good results compare to AvAAD. FirstFit is not aware at
all of the application availability, it places the VM on the
first available server. Therefore, FirstFit achieved worst
results in terms of availability. We selected FirstFit algo-
rithm to emphasize the point that the existing VM place-
ment algorithms do not consider application availability,
which can have impact on quality of the application ser-
vice and experience of the end users. For all requests
in the first group, Fig. 3b shows that both AvAAD and
CNN achieved mean availability close to the mean of the

Fig. 3 Evaluation of Availability-Aware Application Deployment Module - Group 1

Page 16 of 20Alahmad and Agarwal Journal of Cloud Computing (2024) 13:46

required availability of the applications, while CHASE
and FirstFit achieved mean availability far from the
required ones.

In order to evaluate the performance of the servers in
the data center with various placement algorithms, we
conducted an analysis of the mean power consumption
of the servers that host VMs of the requested applica-
tions for first and second groups. As seen in Fig. 3d,
AvAAD has a higher power consumption compared to
CHASE, CNN and FirstFit algorithms. This can be attrib-
uted to approach of AvAAD by adding extra standby
VMs to meet the availability requirements of only those
applications that violate their availability. Consequently,
the additional standby VMs consume more power, con-
tributing to a higher overall power consumption. We also
computed the mean CPU and RAM utilization of the
servers after the deployment of the applications for each
request. Figure 3e and f show the CPU and RAM utiliza-
tion of the servers, respectively. We consider utilization
of the resources as indicator for usage of the resources.
The more resources utilization the better usage and lower
wastage. AvAAD achieved stable and high CPU and
RAM utilization, as one of its primary objectives is to
minimize wastage of the resources. It is worth noting that
the CPU and RAM utilization of AvAAD does not exceed
the 80% utilization ratio, unlike the other algorithms,
which sometimes exceed this ratio for certain requests.
This is because we have set an upper threshold of 80%
for both CPU and RAM utilization to prevent any server
from reaching a full state of VMs, which could have a
negative impact on the availability of the server as well as
its performance.

In the second group of experiments, we included
standby virtual machines (VMs) in the applications to
recover the application service in case of active VM fail-
ure. The structure of the applications in the second group
is described in Table 4, and we maintained the same VM
and server properties as in the first group of experiments,
except that we randomly generated availability values
for servers using a uniform random distribution with a
new range of 0.6-0.9, for illustrative purposes. Figure 4a
displays the availability achieved by each placement
algorithm for the six applications that belong to request
number 6 of Group 2 in 4. The AvAAD algorithm can
satisfy availability requirements for applications without
adding standby VMs, which helps reducing the over-
all power consumption in the data center, as shown in
Fig. 4d. The CNN and CHASE algorithm could satisfy
availability requirements for most requested applications
because standby VMs are present and they target avail-
ability during the VM placement process. Still FirstFit
algorithm violates availability requirements for most of
the requested applications because its approach that is

not aware of the availability concept. Therefore, applica-
tions admissibility is high for the algorithms except for
FirstFit as shown in Fig. 4c. As shown in Fig. 4d, using
AvAAD and CNN result in servers consuming less power
compared to using CHASE and FirstFit, as AvAAD does
not require the addition of extra standby VMs for the
protection approach. CNN searches for similar applica-
tions that have lower power consumption and can meet
the requested availability.

We conducted a performance comparison of the four
VM placement algorithms by measuring the execution
time required to place different large sets of VMs, rang-
ing from 500 to 3000. The results are presented in Fig. 5a.
AvAAD algorithm outperformed CHASE in terms of
execution time, took around 1700 seconds to place 500
VMs while CHASE required around 2215 seconds to do
the same. This is because CHASE requires optimization
solver to find solution that maximizes the availability
of the hosted VMs which usually consumes extra time
to find final solution. Still AvAAD takes a long time to

Table 4 Description of applications requests - group 2

Req Availability Funct No VMs No

Request 5
Application 1 0.9 2 4

Application 2 0.88 2 4

Application 3 0.93 2 4

Application 4 0.87 2 4

Application 5 0.85 2 4

Request 6
Application 1 0.92 3 6

Application 2 0.96 3 6

Application 3 0.94 3 6

Application 4 0.9 3 6

Application 5 0.93 3 6

Application 6 0.88 3 6

Request 7
Application 1 0.95 3 9

Application 2 0.93 3 9

Application 3 0.94 3 9

Application 4 0.89 3 9

Application 5 0.93 3 9

Application 6 0.94 3 9

Request 8
Application 1 0.9 4 8

Application 2 0.94 4 8

Application 3 0.91 4 8

Application 4 0.95 4 8

Application 5 0.85 4 8

Application 6 0.9 4 8

Application 7 0.94 4 8

Page 17 of 20Alahmad and Agarwal Journal of Cloud Computing (2024) 13:46

find placement solution for large set of VMs and this is
because it uses meta-heuristic AntColony to find initial
placement of VMs for all the requested application that
consumes more time. On the other hand, CNN took
less time than both AvAAD and CHASE because it only
requires to predict the placement of the VMs based on
historical dataset. However, FirstFit algorithm was the
fastest taking less than a second to place the same num-
ber of VMs. This is because FirstFit only looks for the
first available server that can host the current VM.

To see the impact of AntColony on the performance
of AvAAD algorithms, we measure the execution time

of AvAAD using different number of ants of two differ-
ent number of iterations 10 and 15 for placement 500
VMs. As Fig. 5b shows, the execution time increases by
increasing number of ants and iterations. For example,
AvAAD took around 1700 seconds to place 500 VMs for
10 iterations using 12 ants, while took around 1900 sec-
onds with the 15 iterations to place the same number of
VMs using the same number of ants.

To evaluate the effectiveness of the Artificial Neural
Network (ANN) prediction method for application task
failure, we utilized the same ANN structure as [45]. Our
training and testing process employed a cleaned dataset

Fig. 4 Evaluation of Availability-Aware Application Deployment Module - Group 2

Fig. 5 Execution Time of VM Placement Algorithms

Page 18 of 20Alahmad and Agarwal Journal of Cloud Computing (2024) 13:46

containing 1 million tasks over 100 epochs, with 500,000
tasks marked as “finished” and the other half marked as
“failed”. The accuracy and error loss of the ANN method
were computed as illustrated in Fig. 6a and b, respec-
tively. Accuracy denotes the percentage of correct pre-
dictions for task termination status. The ANN achieved
a high accuracy of up to 93%, whereas the error loss was
low, up to 14%.

Conclusion
In this research, we address the challenge of the dynamic
placement of virtual machines (VMs) in the cloud, with a
focus on ensuring application availability. To achieve this,
we formalize the concept of application availability and
model the dynamic VM placement problem as an INLP
model with multiple objectives and a set of constraints.
We propose a comprehensive framework that includes
three modules to handle VM placement during deploy-
ment, failure, and scaling requests. The deployment mod-
ule uses an AntColony optimization algorithm and a VM
standby protection approach to achieve multiple objec-
tives and satisfy the availability requirements of the appli-
cations. The results demonstrate that our proposed VM
placement algorithm outperforms CHASE, CNN and
FirstFit algorithms in terms of application service avail-
ability, accommodating higher number of applications,
and CPU and RAM utilization. The prediction module
of our framework employs deep learning ANN to predict
application task failure, with an accuracy of up to 93%
and a low error loss of up to 14%. Finally, the dynamic
application reconfiguration module of the framework
uses a heuristic approach to migrate VMs during scaling
up requests. The migration solution is capable of migrat-
ing VMs with a lower migration time without compro-
mising the availability requirements of the applications.

As future work, we plan to validate the overall perfor-
mance of our proposed framework MoVPAAC including
a large dataset and check for the possible comparisons
with more existing methods from the literature. For

example, the communication cost between the modules
of the framework has a room for validation. In addition,
we plan to incorporate the concept of application avail-
ability into existing cloud simulators such as CloudSim
and validate our work using it.

Abbreviations
A Set of requested applications for deployment
AV s

j Availability of server of index j

AV
func
f Availability of functionality of index f

appa Application of index a
α Parameter to control pheromone trail importance
β Factor with value = 0.00001
Failvmv Failure of vm of index v
Failsj Failure of server of index j
Fail

′
(sol0) Normalized failures ratio of serves located in solution sol0

Lcj Normalized remaining CPU utilization of server of index j
Lrj Normalized remaining RAM utilization of server of index j
M Number of servers that are used in solution sol0
MTTFj Mean time to fail server of index j
MTTRj Mean time to repair server of index j
ηi,j Desirability of placement vm of index i at server of index j
ηi,j,1 Contribution to the first objective of placement vmi at sj
ηi,j,2 Contribution to the second objective of placement vmi at sj
ηi,j,3 Contribution to the third objective of placement vmi at sj
ρl Local pheromone evaporating parameter
ρg Global pheromone evaporating parameter
� Coefficient
Pj Average power consumption of server j
Pactive
j Average power consumption of server j when it is active

Pidle
j Average power consumption of server j when it is idle

Pmax
j Maximum power consumption of server of index j

Pru,j Probability placement vm of index u at server of index j
PS Pareto set
q Random number with value between 0 and 1
q0 Constant number with value between 0 and 1
Rc
i CPU demand of vm of index i

Rr
i RAM demand of vm of index i

S Set of servers located at data center
sj Server of index j
sol0 Initial placement solution that is used by MOAntColony
solg Global solution in PS
T Number of iterations that are used by MOAntColony
Tc
j Upper threshold of CPU utilization of server of index j

Td
j Upper threshold of Disk utilization of server of index j

Tr
j Upper threshold of RAM utilization of server of index j

Tg Number of the iterations to find the global solution
τ0 Initial local pheromone level

Fig. 6 Evaluation of Proactive Application Failure Detection Module

Page 19 of 20Alahmad and Agarwal Journal of Cloud Computing (2024) 13:46

τi,j Local pheromone of placement vm of index i at server j
U Set of VMs that can be hosted at server of index j
Uc
j Normalized CPU utilization of server of index j

Ud
j Normalized Disk utilization of server of index j

Ur
j Normalized RAM utilization of server of index j

V Set of VMs that compose all the requested applications
V

app
a Set of VMs that provide application of index a

V
func
f Set of VMs that provide functionality of index f

vmi Virtual machine of index i
Wj Average resources wastage of server of index j
W

′
(sol0) Normalized resources wastage of servers in solution sol0

xij Binary decision variable if vmi is hosted at sj or not
yj Binary decision variable if server sj is active or not
Z Number of ants that are used by MOAntColony
zid Binary variable if vmi is migrated to server d or not

Authors’ contributions
All authors have participated in conception and design, drafting the article
and revising it critically for important intellectual content. All authors read and
approved the final manuscript.

Funding
This declaration is “not applicable”.

Availability of data and materials
Any required data or material will be available upon request via email yanal.
alahmad@concordia.ca.

Declarations

Ethics approval and consent to participate
This declaration is “not applicable”.

Competing interests
The authors declare no competing interests.

Received: 23 July 2023 Accepted: 6 February 2024

References
 1. Siewiorek D, Gray J (1991) High-availability computer systems. Computer

24(09):39–48
 2. The Cost of Service Downtime. https:// blogs. gartn er. com/ andrew- lerner/

2014/ 07/ 16/ the- cost- of- downt ime. Accessed 8 Sep 2021
 3. Jammal M, Kanso A, Shami A (2015) High availability-aware optimization

digest for applications deployment in cloud. In: 2015 IEEE International
Conference on Communications (ICC), IEEE, pp 6822–6828

 4. Jammal M, Kanso A, Shami A (2015) CHASE: Component High Availabil-
ity-Aware Scheduler in Cloud Computing Environment. In: 2015 IEEE 8th
International Conference on Cloud Computing, IEEE, pp 477–484

 5. Zhu H, Huang C (2017) Availability-Aware Mobile Edge Application Place-
ment in 5G Networks. In: GLOBECOM 2017 - 2017 IEEE Global Communi-
cations Conference, IEEE, pp 1–6

 6. Lera I, Guerrero C, Juiz C (2019) Availability-Aware Service Placement
Policy in Fog Computing Based on Graph Partitions. IEEE Internet Things J
6(2):3641–3651

 7. Dehury CK, Sahoo PK, Veeravalli B (2021) RRFT: A Rank-Based Resource
Aware Fault Tolerant Strategy for Cloud Platforms. IEEE Trans Cloud Comput
11(2) (2003)

 8. Yang S, Wieder P, Yahyapour R (2016) Reliable Virtual Machine placement
in distributed clouds. In: 2016 8th International Workshop on Resilient
Networks Design and Modeling (RNDM), IEEE, pp 267–273

 9. Liu X, Cheng B, Yue Y, Wang M, Li B, Chen J (2019) Traffic-Aware and
Reliability-Guaranteed Virtual Machine Placement Optimization in Cloud
Datacenters. In: 2019 IEEE 12th International Conference on Cloud Comput-
ing (CLOUD), IEEE, pp 91–98

 10. Yang Z, Liu L, Qiao C, Das S, Ramesh R, Du AY (2015) Availability-aware
energy-efficient virtual machine placement. In: 2015 IEEE International
Conference on Communications (ICC), IEEE, pp 5853–5858

 11. Ayoubi S, Zhang Y, Assi C (2016) A Reliable Embedding Framework for Elastic
Virtualized Services in the Cloud. IEEE Trans Netw Serv Manag 13(3):489–503

 12. Alahmad Y, Agarwal A, Daradkeh T (2020) Cost and Availability-Aware VNF
Selection and Placement for Network Services in NFV. In: 2020 International
Symposium on Networks, Computers and Communications (ISNCC), IEEE,
pp 1–6

 13. Thiruvasagam PK, Chakraborty A, Mathew A, Murthy CSR (2021) Reliable
Placement of Service Function Chains and Virtual Monitoring Functions
With Minimal Cost in Softwarized 5G Networks. IEEE Trans Netw Serv Manag
18(2):1491–1507

 14. Yala L, Frangoudis PA, Lucarelli G, Ksentini A (2018) Cost and Availability
Aware Resource Allocation and Virtual Function Placement for CDNaaS
Provision. IEEE Trans Netw Serv Manag 15(4):1334–1348

 15. Yang B, Xu Z, Chai W, Liang W, Tuncer D, Galis A, Pavlou G (2018) Algorithms
for Fault-Tolerant Placement of Stateful Virtualized Network Functions. In:
2018 IEEE International Conference on Communications (ICC), IEEE, pp 1–7

 16. Xu Y, Kafle VP (2019) An Availability-Enhanced Service Function Chain
Placement Scheme in Network Function Virtualization. J Sensor Actuator
Networks 8(2):34

 17. Sharma S, Kushwaha A, Somani A, Gumaste A (2019) Designing Highly-
Available Service Provider Networks with NFV Components. In: 2019 28th
International Conference on Computer Communication and Networks
(ICCCN), IEEE, pp 1–9

 18. Abdelaal MA, Ebrahim GA, Anis WR (2021) High Availability Deployment of
Virtual Network Function Forwarding Graph in Cloud Computing Environ-
ments. IEEE Access 9:53861–53884

 19. Mao W, Wang L, Zhao J, Xu Y (2020) Online Fault-tolerant VNF Chain Place-
ment: A Deep Reinforcement Learning Approach. In: 2020 IFIP Networking
Conference (Networking), IEEE, pp 163–171

 20. Li X, Qian C (2015) Traffic and failure aware VM placement for multi-tenant
cloud computing. In: 2015 IEEE 23rd International Symposium on Quality of
Service (IWQoS), IEEE, pp 41–50

 21. Jammal M, Hawilo H, Kanso A, Shami A (2016) Mitigating the Risk of Cloud
Services Downtime Using Live Migration and High Availability-Aware
Placement. In: 2016 IEEE International Conference on Cloud Computing
Technology and Science (CloudCom), IEEE, pp 578–583

 22. Zhou A, Wang S, Cheng B, Zheng Z, Yang F, Chang RN, Lyu MR, Buyya R
(2017) Cloud Service Reliability Enhancement via Virtual Machine Placement
Optimization. IEEE Trans Serv Comput 10(6):902–913

 23. Zhou A, Wang S, Hsu CH et al (2019) Virtual machine placement with (m,
n)-fault tolerance in cloud data center. Cluster Comput 22:11619–11631

 24. Gonzalez C, Tang B (2020) FT-VMP: Fault-Tolerant Virtual Machine Placement
in Cloud Data Centers. In: 2020 29th International Conference on Computer
Communications and Networks (ICCCN), IEEE

 25. Alameddine HA, Ayoubi S, Assi C (2017) An Efficient Survivable Design With
Bandwidth Guarantees for Multi-Tenant Cloud Networks. IEEE Trans Netw
Serv Manag 14(2):357–372

 26. Chen X, Jiang J (2016) A method of virtual machine placement for fault-
tolerant cloud applications. Intell Autom Soft Comput 22:587–597

 27. Zhang W, Chen X, Jiang J (2021) A multi-objective optimization method
of initial virtual machine fault-tolerant placement for star topological data
centers of cloud systems. Tsinghua Sci Technol 26(1):95–111

 28. Tran M-N, Vu XT, Kim Y (2022) Proactive Stateful Fault-Tolerant System for
Kubernetes Containerized Services. IEEE Access. 10:102181–102194

 29. Saxena D, Gupta I, Singh AK, Lee C-N (2022) A Fault Tolerant Elastic Resource
Management Framework Toward High Availability of Cloud Services. IEEE
Trans Netw Serv Manag 19(3):3048–3061

 30. Guo P, Liu M, Wu J, Xue Z, He X (2018) Energy-Efficient Fault-Tolerant
Scheduling Algorithm for Real-Time Tasks in Cloud-Based 5G Networks. IEEE
Access 6:53671–53683

 31. Marahatta A, Wang Y, Zhang F, Kumar A, Tyagi SS, Liu Z (2018) Energy-Aware
Fault-Tolerant Dynamic Task Scheduling Scheme for Virtualized Cloud Data
Centers. Mob Netw Appl 24:1–15

 32. Sun H, Yu H, Fan G, Chen L (2020) QoS-Aware Task Placement With Fault-
Tolerance in the Edge-Cloud. IEEE Access 8:77987–78003

 33. Yao G, Li X, Ren Q, Ruiz R (2022) Failure-aware Elastic Cloud Workflow Sched-
uling. IEEE Transactions on Services Computing, pp. 1–14

https://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime
https://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime

Page 20 of 20Alahmad and Agarwal Journal of Cloud Computing (2024) 13:46

 34. Yao G, Ren Q, Li X, Zhao S, Ruiz R (2022) A Hybrid Fault-Tolerant Scheduling
for Deadline-Constrained Tasks in Cloud Systems. IEEE Trans Serv Comput
15(3):1371–1384

 35. Weikert D, Steup C, Mostaghim S (2022) Availability-Aware Multiobjective
Task Allocation Algorithm for Internet of Things Networks. IEEE Internet
Things J 9(15):12945–12953

 36. Reiss C, Wilkes J, Hellerstein JL (2011) Google cluster-usage traces: format +
schema. Technical report, Google Inc., Mountain View

 37. Chen X, Lu C, Pattabiraman K (2014) Failure Prediction of Jobs in Compute
Clouds: A Google Cluster Case Study. In: 2014 IEEE International Symposium
on Software Reliability Engineering Workshops, IEEE, pp 341–346

 38. Soualhia M, Khomh F, Tahar S (2015) Predicting Scheduling Failures in the
Cloud: A Case Study with Google Clusters and Hadoop on Amazon EMR. In:
2015 IEEE 17th International Conference on High Performance Computing
and Communications, IEEE, pp 58–65

 39. Jassas MS, Mahmoud QH (2019) Failure Characterization and Prediction of
Scheduling Jobs in Google Cluster Traces. In: 2019 IEEE 10th GCC Confer-
ence & Exhibition (GCC), IEEE, pp 1–7

 40. Jassas MS, Mahmoud QH (2020) Evaluation of a failure prediction model for
large scale cloud applications. In: Canadian Conference on Artificial Intel-
ligence. Springer, pp 321–327

 41. Islam T, Manivannan D (2017) Predicting Application Failure in Cloud: A
Machine Learning Approach. In: 2017 IEEE International Conference on
Cognitive Computing (ICCC), IEEE, pp 24–31

 42. Rosá A, Chen LY, Binder W (2015) Predicting and Mitigating Jobs Failures
in Big Data Clusters. In: 2015 15th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, IEEE, pp 221–230

 43. Islam T, Manivannan D (2019) FaCS: Toward a Fault-Tolerant Cloud Scheduler
Leveraging Long Short-Term Memory Network. In: 2019 6th IEEE Interna-
tional Conference on Cyber Security and Cloud Computing (CSCloud)/
2019 5th IEEE International Conference on Edge Computing and Scalable
Cloud (EdgeCom), IEEE, pp 1–6

 44. Soualhia M, Khomh F, Tahar S (2020) A Dynamic and Failure-Aware Task
Scheduling Framework for Hadoop. IEEE Trans Cloud Comput 8(2):553–569

 45. Alahmad Y, Daradkeh T, Agarwal A (2021) Proactive Failure-Aware Task
Scheduling Framework for Cloud Computing. IEEE Access 9:106152–106168

 46. Chen X et al (2020) A WOA-Based Optimization Approach for Task Schedul-
ing in Cloud Computing Systems. IEEE Syst J 14(3):3117–3128

 47. Cheng L, Wang Y, Cheng F, Liu C, Zhao Z, Wang Y (2023) A Deep Reinforce-
ment Learning-Based Preemptive Approach for Cost-Aware Cloud Job
Scheduling. IEEE Trans Sustain Comput (2003):1–12

 48. Zhang J, Cheng L, Liu C, Zhao Z, Mao Y (2023) Cost-aware schedul-
ing systems for real-time workflows in cloud: An approach based on
Genetic Algorithm and Deep Reinforcement Learning. Expert Syst Appl
234(2023):120972

 49. Fan X, Weber W, Barroso L (2007) Power provisioning for a warehouse-sized
computer. In: the 34th Annual International Symposium on Computer
Architecture, ACM SIGARCH computer architecture news, pp 13–23

 50. Ashraf A, Porres I (2018) Multi-objective dynamic virtual machine consolida-
tion in the cloud using ant colony system. Int J Parallel Emergent Distrib Syst
33(1):103–120

 51. Abdelsalam M, Krishnan R, Sandhu R (2019) Online malware detection in
cloud auto-scaling systems using shallow convolutional neural networks.
In: IFIP Annual Conference on Data and Applications Security and Privacy.
Springer, pp 381–397

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

	Multiple objectives dynamic VM placement for application service availability in cloud networks
	Abstract
	Introduction
	Background
	Related work
	Availability-aware VM placement
	Fault-tolerance task scheduling

	Multiple-objectives dynamic VM placement for application availability in cloud framework
	Availability-aware application deployment
	Proactive application failure detection
	Dynamic application reconfiguration

	Experiments and results
	Conclusion
	References

