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Abstract 

Trajectory anomalies serve as early indicators of potential issues and frequently provide valuable insights into event 
occurrence. Existing methods for detecting abnormal trajectories primarily focus on comparing the spatial character-
istics of the trajectories. However, they fail to capture the temporal dimension’s pattern and evolution within the tra-
jectory data, thereby inadequately identifying the behavioral inertia of the target group. A few detection methods 
that incorporate spatiotemporal features have also failed to adequately analyze the spatiotemporal sequence evolu-
tion information; consequently, detection methods that ignore temporal and spatial correlations are too one-sided. 
Recurrent neural networks (RNNs), especially gate recurrent unit (GRU) that design reset and update gate control 
units, process nonlinear sequence processing capabilities, enabling effective extraction and analysis of both temporal 
and spatial characteristics. However, the basic GRU network model has limited expressive power and may not be able 
to adequately capture complex sequence patterns and semantic information. To address the above issues, an abnor-
mal trajectory detection method based on the improved GRU model is proposed in cloud computing in this paper. 
To enhance the anomaly detection ability and training efficiency of relevant models, strictly control the input of irrel-
evant features and improve the model fitting effect, an improved model combining the random forest algorithm 
and fully connected layer network is designed. The method deconstructs spatiotemporal semantics through reset 
and update gated units, while effectively capturing feature evolution information and target behavioral inertia 
by leveraging the integration of features and nonlinear mapping capabilities of the fully connected layer network. 
The experimental results based on the GeoLife GPS trajectory dataset indicate that the proposed approach improves 
both generalization ability by 1% and reduces training cost by 31.68%. This success do provides a practical solution 
for the task of anomaly trajectory detection.
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Introduction
With the development of sensor network technology, 
communication and positioning technology becoming 
increasingly mature, and the wide application of vari-
ous positioning devices and mobile intelligent terminals, 
large-scale collection of location-related information 
of mobile objects (people, vehicles, ships, animals, etc.) 
is possible. Various sensor devices can be utilized to 
accurately obtain spatiotemporal data, encompassing 
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geographic coordinates, speed, direction, and time 
stamps. Sequential spatiotemporal data describe the 
user’s temporal and spatial attributes and contain sig-
nificant semantic information such as target behavior, 
state and preference [1]. Effectively utilizing these data 
has emerged as a prominent research focus for scholars 
both domestically and internationally. Areas of investi-
gation include spatiotemporal data semantic annotation 
[2, 3], trajectory clustering [4], pattern recognition [5], 
spatiotemporal recommendation [6], and spatiotempo-
ral prediction [7]. Understanding the semantics of spati-
otemporal data expression, especially trajectory semantic 
information, plays an important role in urban planning, 
traffic logistics management and emergency prevention. 
As an effective means of data utilization, anomaly trajec-
tory detection is widely applied in various domains and 
holds significant research significance in practice [8, 9].

Anomaly discovery is an important aspect of data man-
agement and analysis. Unlike noise, which hampers the 
quality of datasets and affects data analysis, anomalies 
[10] often indicate specific events and thus have higher 
research value. Trajectory anomalies of individuals or 
clusters, such as public security emergencies, urban traf-
fic congestion, and paralysis, can be identified in advance. 
In this paper, abnormal trajectories meet the following 
conditions [11]: (1) the same number or a similar number 
of trajectories in the trajectory dataset are rare; (2) there 
is a great difference between the trajectory characteristics 
and its own space–time domain: the trajectory does not 
follow an expected pattern or behaves differently from 
other objects based on similarity criteria (travel time, 
motion characteristics, data distribution, etc.).

Due to the inherent characteristics of trajectory data, 
including uncertainty, sparsity, skewed distribution, 
large scale, and fast updates [12, 13], researching anom-
aly detection is relatively complicated, and real-time 
anomaly detection for trajectory data remains relatively 
scarce. Trajectory data exhibit temporal evolution, and 
trajectory anomalies are not constant. Even if the cur-
rent trajectory is similar to its space–time neighbors, it 
may still evolve into an anomaly with time. Cloud com-
puting [14] is a computational paradigm endowed with 
robust real-time processing capabilities. Through central-
ized management and scheduling of network resources, 
virtualization services can extract abnormal evolution in 
time, and have been widely used in intelligent transporta-
tion tasks [15]. Additionally, deep learning methods have 
been proven to be able to automatically learn features 
directly from big data. Based on this feature, phased iter-
ative classification models can more accurately identify 
evolutionary anomalies within trajectory sequences [16, 
17]. As an excellent implementation unit in the field of 
deep learning, recurrent neural networks (RNNs) process 

sequence data well. By recursively calling cyclic units in 
the direction of sequence evolution, RNNs have certain 
advantages over other network models in learning non-
linear features of sequences. At the same time, the recur-
sive call process can overlay input, update, forget and 
other types of gate control units. From a microscale per-
spective, recursion strengthens the independent informa-
tion storage and processing capacity of each cycle unit. 
From a macro perspective, the network characteristics 
of coherent memory and selective forgetting are given 
to the RNNs ontology. Benefitting from their neural unit 
structure design, RNNs have better basic conditions for 
time series correlation analysis and abnormal feature 
capture. In addition, this network is widely used in natu-
ral language processing, such as speech recognition, lan-
guage modeling, image captioning, machine translation 
and other sequence fields.

In this study, a novel approach to anomaly trajectory 
detection that leverages an improved gate recurrent unit 
(GRU) neural network is proposed. Since space–time 
logic is strictly continuous and the trajectory data have 
an absolutely linear causal performance, any bidirectional 
RNNs correlation models that can guide the past with the 
future are not considered in this paper. Unlike other deep 
learning models that handle temporal and spatial features 
separately, making it challenging to capture spatiotem-
poral dependencies, the structure of the GRU is more 
flexible. Its recurrent gating units are capable of dynami-
cally adjusting internal weights with the sequence vari-
ations, allowing it to better adapt to the spatiotemporal 
evolution features at different time steps. Simultaneously, 
leveraging the provided flexible, efficient, reliable, and 
cost-effective computing services, the cloud computing 
environment [18] emerges as the primary infrastructure 
choice to support the proposed detection model in this 
study. To present the innovative contributions and prac-
tical significance of this paper more clearly, we summa-
rize our contributions in the following points:

i) We utilized three models and three combination 
models based on a recurrent neural network (RNN) 
for the task of abnormal trajectory detection. We also 
improved the above models and conducted compara-
tive experiments.

ii) To enhance the integration of hidden features, a net-
work model that combines GRU with a fully con-
nected layer has been designed. This design aims to 
enhance the classification and extraction abilities of 
the original model’s hidden features.

iii) The proposed improved GRU model addresses the 
potential impact of irrelevant track features on train-
ing and detection by employing the random forest 
algorithm for feature pruning.iv) The outstanding 
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detection capability validates the effectiveness of 
RNNs in spatiotemporal sequence processing tasks, 
while the improvement in generalization ability and 
training efficiency makes the model more conducive 
to widespread applications.

Related work
Current trajectory anomaly detection technologies can 
be broadly classified into five categories based on varying 
application requirements and implementation principles: 
classification-based detection methods, historical simi-
larity-based detection methods, distance-based detection 
methods, grid division-based detection methods, and 
deep learning-based detection methods [19]. This paper 
explores some specific advancements in these fields, 
which are summarized as follows.

Classification‑based and historical similarity‑based 
abnormal trajectory detection
The classification-based and historical similarity-based 
detection methods excel in scenarios involving missing 
training label datasets. Lei et al. [20] proposed the MT-
MAD method for anomaly detection in massive maritime 
vessel trajectory data. By exploring the behavioral pat-
terns of extracted moving sequences in the target region 
and modeling similar behaviors, the method is capable 
of leveraging this classification model to compare and 
identify suspicious trajectories in the detected trajectory 
data. Similarly, Wang et al. [21] proposed an anomalous 
trajectory detection and classification (ATDC) method 
to identify anomalies under different abnormal pat-
terns, which employed the difference and intersection set 
(DIS) distance metric to evaluate the similarity between 
any two trajectories. Based on this distance, the method 
devised an anomaly score function to quantify the differ-
ences between different types of anomalous trajectories 
and normal trajectories. This matrix is then used to train 
a one-class support vector classifier for outlier detection. 
Zhu et al. [22] proposed a time-dependent popular path 
(TPRO) method based on the analysis of track outlier 
points based on the historical similarity of tracks. By con-
ducting group analysis on historical tracks, popular paths 
for each group within each period are extracted, and 
tracks deviating from these popular paths are identified 
as anomalies. Navarro et al. proposed a methodology to 
detect outliers by combining several sources of informa-
tion at the similarity level. The authors defined a similar-
ity measure for each source of information and combined 
them with clustering results to produce a general similar-
ity matrix.

Distance‑based and grid division‑based abnormal 
trajectory detection
Anomaly determination dependent on direction and 
density is widely used in detection methods based on 
distance and grid division. Román et  al. [23] presented 
an original method to detect anomalous human tra-
jectories based on a new and promising context-aware 
distance, which highlights a context-aware distance 
measure between trajectories. The authors used the dis-
tance matrix to extract homogeneous groups (clusters) 
of trajectories using an unsupervised learning method. 
Subsequently, an outlier detection method is applied to 
the trajectories in each cluster. Chen et al. [24] proposed 
an abnormal-trajectory detection method based on a 
variable grid to detect fraudulent behavior by taxi driv-
ers when carrying passengers. By using a kernel density 
analysis method to divide the urban road network into 
three regions to set grids with different sizes, the authors 
obtained trajectory tuples and developed a trajectory-
abnormality probability function to calculate the devia-
tion of each trajectory from the benchmark trajectory to 
detect abnormal trajectories. Similarly, Xia et al. [25] pro-
posed a cost-factor-based anomaly score model (ASM-
CF) to detect anomalous trajectories of detour behavior. 
The authors first designed an urban road network rasteri-
zation approach to solve the problem of driving the same 
path but recoding different trajectory points. Then con-
structed a cost factor based on distance and duration to 
improve the accurate detection of anomalous trajectories 
of taxi drivers’ detours.

State‑of‑the‑art DL networks
The remarkable advancements in deep learning tech-
nology and computing power have made it possible to 
train detection models based on massive data. Wang 
et  al. [26] combined geographic information and pro-
posed an anomaly trajectory detection algorithm based 
on a combination of a recurrent neural network and a 
convolutional neural network (CNN). The algorithm 
accounts for the geospatial constraints of the trajectory 
by embedding the geographic information and topolog-
ical constraints into a structured vector space, thereby 
avoiding the influence of sparse trajectories on anom-
aly detection. Zhou et  al. [27] presented an abnormal 
trajectory detection framework for the online warning 
of highway traffic events. The framework is built on a 
long short-term memory (LSTM) autoencoder and 
incorporates an adversarial learner to introduce addi-
tional adversarial loss, enabling adversarial learning 
(AL) to learn better normal trajectory patterns. Addi-
tionally, an anomaly trajectory discriminator (ATD) is 
utilized to establish and train the model for detecting 
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small distance average displacements and filtering out 
transient false alarms. Ji et al. [28] proposed a Seq2Seq 
model based on an LSTM prediction network for tra-
jectory modeling (SL-Modeling). The authors employed 
SL modeling to directly obtain sequence-type trajectory 
models of normal trajectory groups and then calculated 
the similarity between the models and the trajectory to 
be detected to detect abnormal trajectories by intro-
ducing the concepts of distance and semantic interest 
sequence.

In the scenario of massive data, the excessive compu-
tational cost brought about by a large number of near-
est neighbor queries severely restricts the performance 
of distance-related detection methods. Meanwhile, 
detection models based on density, classification, and 
other methods impose high requirements on the dis-
tribution of data samples, limiting their generalization 
ability. With outstanding perceptual and learning capa-
bilities, anomaly trajectory detection methods based 
on deep learning are gradually becoming mainstream. 
However, deep learning models are often regarded as 
black-box models, making it challenging to interpret 
the criteria underlying the model’s judgment of anoma-
lous trajectories. Moreover, the training and inference 
processes of these models demand substantial compu-
tational resources, rendering them unsuitable for real-
time applications in certain high-demand scenarios of 
anomaly trajectory detection. This presents an oppor-
tunity for the investigation undertaken in this study.

The proposed model
In this paper, a model based on an improved GRU model 
is implemented to identify and detect the abnormal tra-
jectory of a specific target. The improved GRU model 
enables deeper spatiotemporal sequence analysis, thereby 
comprehensively extracting trend information reflected 
by the long-distance dependencies. Figure  1 shows the 
overall solution of the proposed anomaly trajectory 
detection model. The detection scheme can be roughly 
divided into four stages: data preprocessing, feature 
extraction, trajectory clustering and model validation, 
and the pruning and clustering algorithms involved are 
described in the following sections.

Network structure design
To comprehensively analyze the internal relationship of 
trajectory features while preserving temporal memory, 
the proposed model adopts a combination structure 
comprising two layers of a GRU neural network with a 
stacked fully connected layer. As a type of RNN, GRU 
addresses gradient disappearance and explosion in RNN 
by introducing two gating units, an update gate and a 
reset gate. This mechanism ensures long-term memory 
of the characteristic information of the input model. 
When trajectory data are fed into the model, they are 
iteratively analyzed within the two-layer GRU network. 
At each time step, the neuron output is determined by 
the previous moment’s neuron output and the cur-
rent moment’s neuron input, and the reset gate selects 

Fig. 1 Schematic diagram of the abnormal trajectory detection scheme
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relevant historical information while the update gate 
preserves the most recent state. The processed feature 
information continues to flow to the fully connected 
layer, and the fully connected layer integrates and maps 
all the data characteristics, which can effectively solve 
the data nonlinear problem and make the model fit bet-
ter. The combination of the two-layer GRU network and 
the fully connected layer forms the hidden layer of the 
model. Figure  2 shows the network structure legend of 
the model, where U , V,W is the weight matrix, and xt , 
ht and Yt represent the input vector, hidden vector and 
output vector, respectively.

Forward propagation
The GRU network uses a time-based forward propaga-
tion algorithm. When its neural unit processes infor-
mation, the processing formula at the reset gate can be 
expressed as:

Where br and �r represent the bias vector and weight 
matrix at the reset gate, respectively. σ is the sigmoid 
activation function, ensuring that the weight calculation 
results are compressed to [0, 1] so that historical infor-
mation irrelevant to the prediction information can be 
selectively discarded in subsequent calculations. Simi-
larly, the processing formula at the update gate can be 
expressed as:

Where bvand�v represent the bias vector and the 
weight matrix at the update gate, respectively. Then, 
the state of the candidate hiding layer is calculated, and 
the final output to the fully connected layer at time t is 

(1)rt = σ(�r · [ht−1, xt ]+ br)

(2)ut = σ(�u · [ht−1, xt ]+ bu)

calculated according to the updated gating result and the 
candidate hiding state:

The neuronal nodes of the fully connected layer and 
the hidden layer are fully connected. This expression is 
shown in formula (5):

Where k indicates the number of layers corresponding 
to the layer network.

Backpropagation
As shown in formulas (1) to (4), the parameters involved 
in forward propagation that need to be continuously 
learned and updated by the network during the train-
ing process are �r,�u and �h . Taking the weight matrix �r 
of the reset gate rt as an example, the specific formula is 
shown in formula (6).

By decomposing the target parameter �r into two sub-
parameters �rx and �ry , the update gate rt can better con-
trol its learning process. �rx controls the importance of 
the update gate on the input information, allowing the 
model to flexibly learn the information from the input 
sequence. On the other hand, �ry controls the impor-
tance of the update gate on the previous hidden state, 
enabling the model to better retain historical informa-
tion and learn the dependencies between sequential 

(3)ht = tanh(�h · [rt · Yt−1, xt ]+ bh)

(4)yt = (1− vt) · Yt−1 + vt · ht

(5)a
(k)
i = f

n

j=1

�
k−1
ij xk−1

j + ε
k−1
i

(6)�r = �rx + �ry

Fig. 2 The structural design of the improved GRU network model
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data. The output of the output layer at time step t is 
shown in formula (7).

Where �o represent the weight matrix at the output 
layer. After obtaining the predicted model output, the 
cross-entropy loss function is selected as the training 
objective to adjust and update various parameters in the 
model by checking the error between the trajectory pre-
diction results and the actual trajectory labels. The loss 
function is shown in formula (8).

Where f (x,α) represents the predicted value of the 
model and α represents the model parameters. After 
calculating the loss function, the error terms of various 
parameters at time step t are calculated. The specific for-
mulas used are shown in formulas (9) to (11).

As shown in formulas (12) and (13), the error terms 
εt−1 and εt at time steps t− 1 and t are calculated using 
backpropagation.

Based on the calculated error terms, the weight gradi-
ents of various neurons are obtained. The specific formu-
las used are shown in formulas (14) to (15).

After calculating the weight gradients, the parameters 
of various neurons are updated accordingly, and the iter-
ation continues until the loss function converges.

(7)Yt = σ(�o · yt)

(8)Lloss = −
[

ylg
(

f (x,α)
)

+
(

1− y
)

lg
(

1− f (x,α)
)]

(9)εt =
∂L
/

∂yt

(10)nr,t = �r[yt−1, xt ] = �ryyt−1 + �rxxt

(11)εr,t =
∂L
/

∂nr,t

(12)
εTt−1 =

∂L
/

∂yt−1
=

(

∂L
/

∂yt

)

·

(

∂yt
/

∂yt−1

)

= εTt

(

∂yt
/

∂yt−1

)

εTt

(

∂yt
/

∂yt−1

)

= εTu,t

(

∂nu
/

∂yt−1

)

+ εTr,t

(

∂nr
/

∂yt−1

)

+

(13)
εTh,t

(

∂nh
/

∂yt−1

)

= εTu,t�uy + εTr,t�ry + εTh,t�hyrt + εTt (1− vt)

(14)∂L
/

∂�yr =

k
∑

i=1

εr,iy
T
i−1

(15)∂L
/

∂�xr =

k
∑

i=1

εr,ix
T
r

Abnormal Trajectory detection process based 
on an improved GRU neural network
This paper proposes an improved GRU model for 
detecting abnormal trajectories. This model judges 
whether the trajectory of a user is abnormal based on 
the trajectory feature input. Figure 3 shows the imple-
mentation scheme of anomaly trajectory detection 
based on the improved GRU neural network.

Step 1. Trajectory preprocessing. The original tra-
jectory dataset undergoes preprocessing, including 
cleaning and denoising operations, per the specific 
requirements of the proposed model.
Step 2. Trajectory feature extraction. The trajectory 
feature extraction algorithm is invoked to extract 
time, distance, speed, and other feature attrib-
utes that may affect model training and prediction 
from the preprocessed trajectory dataset, which 
are organized into an m-dimensional vector form 
(

m ∈ N+
)

.

Step 3. Trajectory clustering. Trajectories are clus-
tered to distinguish normal and abnormal trajec-
tories. The DBSCAN algorithm is employed to 
perform density-based clustering on the trajectory 
dataset by utilizing longitude and latitude as clus-
tering features. This categorizes the trajectory data 
as normal or abnormal and provides supervised 
labels for feature dimensionality reduction and 
model training.
Step 4. Trajectory feature dimensionality reduction. 
Using the m-dimensional vector processed in the 
previous step and the data label as input, the random 
forest algorithm analyzes the importance of each 
feature and discards irrelevant features to accelerate 
model training and improve overall performance. 
The reduced features are in the form of an n-dimen-
sional vector, serving as the input for subsequent 
model training 

(

n ∈ N+ ∪ n ≤ m
)

.
Step 5. Training the improved GRU neural network 
for abnormal trajectory detection. The reduced tra-
jectory dataset is partitioned into training and testing 
sets, with the training set serving as input for training 
the improved GRU neural network. The optimizer is 
selected, and the loss function is defined. The param-
eters of the hidden layers are iteratively adjusted until 
the model tends to be stable.
Step 6. Abnormal trajectory recognition capability 
assessment based on the trained model. The testing 
set is fed into the trained model, and the prediction 
results are organized and compared to the actual 
label information to verify the recognition accu-
racy of the model and evaluate the abnormal object 
detection ability.
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Experimental results and analysis
Experiment preparation
Trajectory dataset acquisition
The experiment utilizes the GeoLife GPS trajectories 
dataset from the Microsoft Research Asia GeoLife pro-
ject. This dataset comprises trajectory data collected 
from 182 users between April 2007 and August 2012. The 
dataset includes 17,621 trajectories with a total distance 
of over 1.2 million kilometers and a total time of over 
48,000 h. Each trajectory consists of a sequence of points 
ordered by time, with each point characterized by infor-
mation such as longitude, latitude, and altitude. These 
trajectory data record the spatial and temporal trajecto-
ries of users not only at home and work but also through 
a wide range of outdoor activities, such as shopping, hik-
ing, tourism, and cycling [29].

The source data for this experiment consist of all the 
trajectory information of user 000 in the Geolife GPS 
trajectories dataset from October 23, 2008, to November 

23, 2008, for a total of 31  days, which includes 11,370 
trajectories. The source data contain six categories and 
seven features: longitude, latitude, default value column, 
altitude, trajectory date, and collection time. However, it 
does not contain specific trajectory classification labels, 
so it cannot be directly input into the network in the form 
of supervised training and must undergo subsequent 
processing. In this study, human activity trajectories are 
not significantly influenced by altitude factors. Therefore, 
considering only the latitude and longitude information 
is sufficient for the identification and analysis of anoma-
lous trajectories. For this experiment, the unnecessary 
features in the source dataset are removed, retaining only 
longitude, latitude, trajectory date and collection time. 
Combining trajectory date and collection time into tra-
jectory time and defining longitude as a, latitude as b and 
trajectory time as c, a single trajectory can be shown as 
T = (a, b, c). The trajectory dataset is represented as Ts , 
where Ts = {T1,T2, · · ·Tn}.

Fig. 3 Implementation scheme of anomaly trajectory detection based on the improved GRU model
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Trajectory feature processing

Trajectory feature extraction Ts  already contains fea-
ture vectors such as latitude, longitude, and acquisition 
time. For any two consecutive trajectories Ti and Ti+1 in 
the trajectory dataset Ts , the following features can be 
extracted from the existing features.

Extracting the time vector of the trajectory called Dts:

Extracting the travel distance vector called Ds:

Where R is the radius of the earth and set to 
R = 6371.0 km.

Extracting speed vector called Vs:

For each trajectory in Ts , the corresponding feature 
information is calculated according to formulas (16, 17), 
and (18). The existing features in T are obtained after 
summarizing and organizing, which include longitude, 
latitude, travel time, distance, and speed. Defining travel 
time as d, distance as e, and speed as f, update and even-
tually obtain T =

(

a, b, d, e, f
)

.

Trajectory clustering The feature information of any tra-
jectory Ti does not include the normal/abnormal classifica-
tion label of the trajectory, so Ts cannot be directly input into 
the model training as supervised samples. In this paper, the 
DBSCAN algorithm is used to cluster all trajectories in Ts 
based on longitude and latitude, taking the clustering den-
sity reflecting the trajectory frequency as the main consider-
ation for normal/abnormal classification of any trajectory Ti . 
The trajectory dataset is clustered as shown in Algorithm 1.

Algorithm 1. Density clustering algorithm

(16)Dts = ci+1 − ci

(17)
Ds = R ∗ cos−1(cosbi ∗ cosbi+1 ∗ cos(ai − ai+1)+ sinbi ∗ sinbi+1)

(18)Vs =
Ds

Dts

When utilizing the DBSCAN algorithm for recursive 
clustering, the choice of parameters Eps and MinPts 
often directly affects the clustering results [30]. In this 
paper, a simple and effective heuristic algorithm [31] is 
adopted to determine the parameter selection and clus-
ter the trajectories: for k defined by the feature dimen-
sion, the k-distance function is defined, and for any 
longitude and latitude point Ti , the distance from each 
point in Ts to its k-th nearest neighbor is calculated and 
sorted in descending order to form a k- distance graph. 
The inflection point in the graph, as shown in Fig. 4, is 
the threshold point Eps sought in this research.

The resulting inflection point value is Eps = 0.0024373 
61893523881. By rounding Eps to 0.0024 and increment-
ing k by 1, the value of MinPts is determined to be 4. With 
the finalized parameters, clustering is performed. The 
clustering results are shown in Fig. 5.

Then, add the clustering label x to any trajectory Ti , and 
now Ti =

(

a, b, d, e, f , x
)

.

Feature selection Incorporating irrelevant and unneces-
sary features into the network training can have varying 
degrees of impact on its efficiency and even produce nega-
tive feedback. Therefore, appropriate data dimensionality 
reduction can not only improve the comprehensive per-
formance of constructing regression models on the feature 
subset but also avoid the adverse effects of useless features 
on the model in certain situations. The random forest algo-
rithm calculates the importance score of each feature by 
analyzing the error before and after feature random per-
mutation. The higher the score is, the more important the 
feature. Unlike other feature selection algorithms, the ran-
dom forest algorithm can not only reflect the interactions 
between features but also has advantages such as high accu-
racy and strong robustness [32]. Therefore, in this paper, the 
random forest algorithm is used to perform feature selection 
on the dataset. The feature importance results are shown in 
Fig. 6, where the horizontal axis represents the feature and 
the vertical axis represents the importance factor.

As shown in Fig. 6, the importance factors of speed, 
distance, and time are only approximately 0.01, and 
their impact on the trajectory label is not significant. 
Therefore, this can be used as a dimension reduction 
standard to update trajectory Ti and obtain Ti = (a, b, x)

.

Model construction
In the experiments of this paper, there are 2 neurons 
in the input layer that input the valuable trajectory 
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longitude and latitude attributes after feature selection. 
There is 1 neuron in the output layer, which is limited to 
output 0 or 1 to represent the user trajectory category: 
normal or abnormal. Due to the trajectory data collection 
interval being only 5  s, the variations in longitude and 

latitude in the dataset are not significant. Using a rela-
tively low learning rate during model training allows for 
smoother parameter updates, avoiding large fluctuations 
in the parameters and reducing oscillations and instabil-
ity in the training process. When evaluating the model 

Fig. 4 k- distance diagram

Fig. 5 DBSCAN clustering results



Page 10 of 17Tang et al. Journal of Cloud Computing           (2024) 13:53 

using the unimproved RNNs, the network parameters are 
set as indicated in Table 1.

Model verification
The input dataset contains 11,370 trajectory information 
from selected users from October 23, 2008, to Novem-
ber 23, 2008, for a total of 31 days. Among these, the first 
8,000 trajectories serve as the training dataset for the 
model, while the remaining 3,370 trajectories serve as 
the test set. Setting the step size to 20 (predicting the 21st 
data point based on the preceding 20 data points), and 
concurrently considering the model’s training efficiency 
and adaptability, AdamOptimizer was selected as the 
model optimizer for controlling weight updates after a 
comprehensive assessment of optimizer scenario perfor-
mance, as presented in Table 2. Evaluate various aspects 
of the model’s performance using common machine 
learning metrics such as accuracy, precision, recall, F1 
score, AUC, etc. The training model is evaluated on the 
test set based on the training set as the model input, with 
weight parameters initialized randomly.

Comparison of various recurrent neural network models
First, the original three-layer RNN and its combination 
models without improvement are tested. The confusion 
matrix of each model’s classification results is shown in 

Fig. 7, where 0 represents abnormal points and 1 repre-
sents normal points of trajectories.

Based on the confusion matrix results of each model, 
the model prediction evaluation indicators are calculated 
as shown in Table  3, where the best results are in bold. 
Additionally, the ROC curve and DCA curve results are 
visually represented in Figs. 8 and 9, respectively.

From Table  2, it is evident that the three-layer GRU 
network model performs better than other models under 
the same conditions in abnormal trajectory detection 
under various evaluation indicators. Due to long-term 
dependencies, the performances of RNN and its combi-
nation networks are not ideal, and their generalization 
ability is also weak. The LSTM network has more gate 

Fig. 6 Feature selection results

Table 1 Recurrent neural network model parameter settings

Training parameters Parameter input

The number of hidden neurons in the first layer 
of network

10

The number of hidden neurons in the second layer 
network

10

The number of hidden neurons in the third layer 
network

10

Learning Rate 0.0006

Activation Function Sigmod OR tanh

Iterations 100
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units, increasing the risk of overfitting to some extent, 
which is one possible factor in it being slightly weaker 
than the GRU network in this scenario. The GRU net-
work performs the best, and its simplified gate structure 
performs better on small sample data. The GRU com-
bination model with other networks restricts its own 
advantages and weakens its performance.

In terms of generalization ability, the ROC and DCA 
performances of the three-layer GRU network are the 
best, and its generalization ability is the strongest. Due 
to the similarity of neural unit structures, the gener-
alization ability of the LSTM network is also consider-
able, but the GRU network still performs better. The 
RNN network fails to effectively handle problems such 

Table 2 Performance comparison of optimizers in different scenarios

Algorithm Characteristics Advantages Disadvantages

Adagrad [33] Dynamically adjusts the learning rate based 
on the historical gradient

Adaptive learning rate, suitable for sparse 
data

Learning rate decay is fast, may result 
in small early parameter updates

RMSprop [34] An improvement over Adagrad, adjusts 
the learning rate with an exponential mov-
ing average

Adapts well to different learning rates 
for each parameter

Requires tuning hyperparameters, may 
converge slowly

Adam [35] Combines momentum and RMSprop, 
with adaptive learning rates and momen-
tum

Efficient, suitable for various data and mod-
els

Requires tuning of additional hyperpa-
rameters, may be unstable at times

Adadelta [36] Further improvement over RMSprop, elimi-
nates learning rate decay issues

Adaptive learning rate, reduces hyperpa-
rameter reliance

Sensitive to initialization, requires tuning 
of the initial learning rate

Fig. 7 Confusion matrix of the classification results of various recurrent neural networks

Table 3 Result of various recurrent neural networks with the same parameters

Model Precision Accuracy Recall F1 Score Cost(s)

RNN 0.946429 0.647059 0.810526 0.719626 44
GRU 0.993452 1 0.922807 0.959854 101

LSTM 0.983333 0.916364 0.884211 0.9 81

RNN-GRU 0.956845 0.691257 0.887719 0.777266 56

RNN-LSTM 0.95506 0.695906 0.835088 0.759171 50

GRU-LSTM 0.978571 0.861017 0.891228 0.875862 96
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as gradient disappearance and explosion. It also easily 
forgets information in long-time sequence process-
ing, leading to the training network tendency to fall 
into local optima, thereby affecting various indicators 
of the network. In terms of training efficiency, there is 

an inverse correlation between the training efficiency 
and performance of various recurrent neural networks 
and their combined models. Specifically, the best-per-
forming GRU model takes the longest training time, 
indicating the lowest efficiency, while the moderately 

Fig. 8 Comparison of ROC curves of various recurrent neural networks

Fig. 9 Comparison of DCA curves of various recurrent neural networks
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performing RNN model has the shortest training time 
and the best training efficiency.

Comparison of various improved recurrent neural network 
models
When utilizing the improved three-layer model for test-
ing the network, the network parameters are set as 
shown in Table 4.

Continuing the experiment, the model performances of 
various improved RNN models are compared. The confu-
sion matrix of the classification results of various models 
is shown in Fig. 10.

The evaluation indexes of model prediction were cal-
culated according to the confusion matrix results of 
each model. These indexes are shown in Table  5, with 
the optimal results shown in bold. The ROC curve and 
DCA curve are plotted as shown in Figs.  11 and  12, 
respectively.

As shown in Table 2 and Table 4, various evaluation 
indexes of the improved RNN, GRU and their com-
bined models have been improved compared with the 
original model, while the performance of LSTM and 
its combined models has fluctuated. Considering that 
the LSTM neural unit itself has the most gated units, 
there is a large overfitting risk. More model parame-
ters increase the possibility of overfitting after super-
posing the fully connected layer, resulting in greatly 
increased stability and uncertainty of the model. For 
other models, the superposed fully connected layer 
can better capture the complex features of input data, 
increase the connections between hidden states, and 
improve the overall expressiveness of the model. The 
recall ability of the improved RNN model is greatly 
enhanced, even exceeding that of the model in this 
paper, which can also prove the advantages of this 
improvement.

In addition, the performance of the GRU model and 
the improved model in this paper is evaluated, and 
the indicators of the improved GRU model have been 
improved to varying degrees compared with the three-
layer GRU network. Moreover, the training time of the 
network is reduced by 31.68% compared to the three-
layer GRU network, significantly enhancing the train-
ing efficiency of the model. The ROC and DCA curves 
shown above demonstrate that the improved GRU 
model also exhibits greater generalization ability than 
the original network. By using the fully connected layer 
as a feature extractor, the network is allowed to learn 
higher-level representations of the input data. These 
higher-level features capture more abstract and mean-
ingful information, which can improve the network’s 
ability to generalize to different instances. As shown 

Table 4 Improved three-layer network model parameter 
settings

Training parameters Parameter input

The number of hidden neurons in the first layer 
of network

10

The number of hidden neurons in the second layer 
network

10

The number of hidden neurons in the fully con-
nected layer

24

Learning Rate 0.0006

Activation Function sigmod/tanh

Iterations 100

Fig. 10 Confusion matrix of the classification results of various improved recurrent neural networks
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in Fig.  13, the loss curves of the two types of models 
continue to be drawn, and the convergence speed of the 
two models is evaluated.

In Fig.  13, although improving the random value of 
the parameter matrix initialization of the GRU model is 
detrimental to model convergence, the convergence effi-
ciency of the improved GRU model is still better than 
that of the three-layer GRU network. This shows that 
the model in this paper has a better training effect and 
better detection performance in abnormal trajectory 
recognition.

In this paper, the random forest algorithm is used 
to analyze the importance of input features that may 
affect the prediction results. The vector after dimen-
sionality reduction performs well when the input fea-
tures are only longitude and latitude. Therefore, when 
dealing with abnormal trajectory detection or similar 

tasks, we can simplify the tedious feature extraction 
process in the data preprocessing stage, as discussed 
in the conclusions of this paper. After replacing the 
original network with the fully connected layer, the 
processing flow of the gate control unit is reduced, 
which greatly improves the training efficiency of the 
proposed model. Additionally, when the new fully con-
nected layer replaces the original layer network for 
feature integration, the feature information from the 
initial two hidden layers can be more comprehensively 
and effectively integrated, improving various perfor-
mance metrics of the model to varying degrees.

Conclusion
Aiming to address the low spatiotemporal correlation and 
limited recognition accuracy of the current anomaly tra-
jectory detection model, this paper proposes an anomaly 

Table 5 Result of various improved recurrent neural networks with the same parameters

Model Precision Accuracy Recall F1 Score Cost(s)

Improved RNN 0.988095 0.905263 0.95203 0.928058 40
Improved GRU 0.994643 1 0.936842 0.967391 69

Improved LSTM 0.978869 0.8 0.942149 0.865275 63

Improved RNN-GRU 0.986012 0.898246 0.934307 0.915921 51

Improved RNN-LSTM 0.971131 0.870175 0.805195 0.836425 49

Improved GRU-LSTM 0.974702 0.891228 0.824675 0.856661 67

Fig. 11 Comparison of ROC curves of various improved recurrent neural networks
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trajectory detection method based on an improved GRU 
model in cloud computing and describes in detail the 
data preprocessing, network structure design, network 
parameter selection and model training. Experiments 
are completed on the GeoLife GPS trajectories dataset 

from Microsoft Research Asia. The results demonstrate 
that the proposed model outperforms other RNNs and 
their combinations in anomaly recognition accuracy and 
training cost while also exhibiting a certain level of gen-
eralization ability. In future work, the author will try to 

Fig. 12 Comparison of DCA curves of various improved recurrent neural networks

Fig. 13 Comparison of loss curves between GRU and improved GRU 
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introduce the attention mechanism to improve the pro-
posed model, fully use the important factors extracted 
by the random forest algorithm to determine the feature 
input form, and further improve the accuracy and effi-
ciency of the anomaly trajectory detection model.
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