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Abstract 

In the LEO satellite communication system, the resource utilization rate is very low due to the constrained resources 
on satellites and the non-uniform distribution of traffics. In addition, the rapid movement of LEO satellites leads 
to complicated and changeable networks, which makes it difficult for traditional resource allocation strategies 
to improve the resource utilization rate. To solve the above problem, this paper proposes a resource allocation 
strategy based on deep reinforcement learning. The strategy takes the weighted sum of spectral efficiency, energy 
efficiency and blocking rate as the optimization objective, and constructs a joint power and channel allocation model. 
The strategy allocates channels and power according to the number of channels, the number of users and the type 
of business. In the reward decision mechanism, the maximum reward is obtained by maximizing the increment 
of the optimization target. However, during the optimization process, the decision always focuses on the optimal 
allocation for current users, and ignores QoS for new users. To avoid the situation, current service beams are inte-
grated with high- traffic beams, and states of beams are refactored to maximize long-term benefits to improve system 
performance.

Simulation experiments show that in scenarios with a high number of users, the proposed resource allocation strat-
egy reduces the blocking rate by at least 5% compared to reinforcement learning methods, effectively enhancing 
resource utilization.

Keywords  LEO satellite communication system, Resource allocation, Deep reinforcement learning, Long-term 
benefits

Introduction
Recently, the LEO satellite communication system has 
become an integral part of the satellite communication 
field due to its unique advantages. These advantages 
include global seamless communication coverage, high 
communication reliability independent of geographical 
environment, large system capacity for massive users and 

multiple data services such as video calls, real-time video 
streaming and so on. LEO satellite communication sys-
tem plays a vital role in various fields, including aviation 
and navigation, satellite navigation, telemedicine, smart 
power grids and emergency rescue [1–3].

With the dramatic increase of communication ser-
vices, traditional single-beam satellite systems are no 
longer able to meet the communication requirements 
of large service capacity and high resource utilization. 
In response to this, multi-beam satellite systems uti-
lize phased array antenna technology to generate multi-
ple spot beams and employ frequency reuse techniques 
to enhance capacity and resource utilization. How-
ever, due to the concentrated placement of antennas 
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on multi-beam satellites and the multi-coverage on the 
earth, each antenna receives signals from neighbor-
beam and even cross-beam users on the same frequency, 
resulting in serious co-frequency interference between 
the beams. The co-frequency interference is a significant 
factor which restricts resource utilization.

The contradictions become more acute between the 
explosive growth of data services and the limited on-
board resources in multi-beam satellite systems. Due to 
the non-uniform distribution of service requests in pace 
and in time, the huge business drop leads to extremely 
low resource utilization between beams. For high traf-
fic beams, the scarcity of available resources results in 
competition between users to meet the minimum com-
munication quality of service (QoS), and the competition 
ultimately reduces QoS. Conversely, for low traffic beams, 
a handful of resource is sufficient to meet the communi-
cation QoS, and considerable idle resources result in low 
resource utilization. Considering the diverse types of ser-
vices and the complex satellite network environment, it is 
of great significance to study an efficient and intelligent 
resource allocation strategy. This paper focuses on uplink 
resource allocation in a multi-beam LEO satellite system. 
The main contributions of this paper are as follows:

•	 Taking co-frequency interference and traffic distri-
bution into account between beams, a joint chan-
nel-power allocation strategy based on deep rein-
forcement learning is proposed. When the satellite 
is in an area with low traffic volume, the proposed 
method can improve resource utilization by adjust-
ing the weights of spectral efficiency and energy effi-
ciency, while still providing high QoS. Conversely, 
when the satellite is in a high-traffic area, the method 
can adjust the weight of the blocking rate to accom-
modate more users. Although this may reduce QoS, 
it enhances resource utilization while ensuring the 
minimum QoS.

•	 Present works focus on the QoS of current users and 
ignore the optimal allocation for subsequent users. 
Therefore, during the state reconstruction process, 
the interference beams and the high-traffic beams 
are integrated with the current serving beam, so as to 
maximize long-term benefits and improve the overall 
system performance.

The rest of this paper is organized as follows. The next 
section presents related work on resource allocation 
strategies. Section 3 introduces the uplink model of LEO 
satellite communications and the optimization model of 
resource allocation. Section 4 introduces the joint chan-
nel-power allocation strategy based on deep reinforce-
ment learning algorithm. Section  5 provides simulation 

analysis. The last section is the summary of the whole 
paper.

Related work
In the initial stage of the development of satellite com-
munication systems, the simplicity of the network archi-
tecture means that fixed resource allocation strategies are 
adequate to fulfill QoS requirements. However, with the 
mass terminal accessing and differentiated services, the 
network environment has become complex and changea-
ble, rendering fixed resource allocation inadequate. Com-
pared with fixed resource allocation, dynamic resource 
allocation can achieve higher resource utilization in such 
complex and dynamic network environments. Dynamic 
resource allocation can dynamically allocate resources 
such as channel, power, time and spot beams based on 
the distribution of traffic and beam state information. It 
also can deal with resources efficiently and flexibly. Con-
sequently, dynamic resource allocation has become a 
research hotpot [4, 5].

Regarding dynamic resource allocation, numerous 
researchers have conducted extensive studies. Litera-
ture [6] proposes a channel allocation algorithm based 
on beam cooperation transmission. The algorithm uti-
lizes the cooperation between beams to aggregate user 
signals at the receiver, thereby increasing signal energy 
to improve channel quality. Literature [7] considers the 
dynamical traffic scenario, focusing on co-frequency 
interference between users. The interference of channels 
is detected based on user location information, and then 
dynamical scheduling channel improves QoS. However, 
the complex and changeable network leads to the high 
complexity of the channel allocation algorithm. To miti-
gate the algorithm complexity, literature [8] proposes a 
channel allocation algorithm based on improved chan-
nel interference detection. The interference threshold is 
set for channels to lower complexity, and the algorithm 
further optimizes QoS. In literature [9], channels are 
dynamically reserved according to user priority, and the 
threshold of channel reservation is calculated by genetic 
algorithm. The threshold is dynamically adjusted accord-
ing to the traffic distribution to reduce the handover fail-
ure rate. Literature [6–9] primarily focuses on the issue of 
co-channel interference and does not consider the distri-
bution of traffic volume between beams.

Due to the different terminals between beams, the traf-
fic is also unevenly distributed in the satellite system. 
With limited on-board resources, users between beams 
compete for resources to meet QoS, which hinders 
resource utilization improvement. To solve this problem, 
the resource allocation methods have evolved from sin-
gle-resource allocation to joint resource allocation. Liter-
ature [10] proposes a joint power and channel allocation 
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algorithm, which allocates power and channel accord-
ing to channel state information, while ensuring fairness 
among users. However, this approach does not consider 
inter-beam co-frequency interference. Literature [11] 
shows that co-frequency interference is the main factor 
to reduce communication performance. This interference 
affects both the uplink and downlink, limiting link capac-
ity and system throughput. Considering the co-frequency 
interference between beams, literature [12, 13] investi-
gate power and bandwidth resource allocation. In litera-
ture [12], a genetic algorithm is employed to construct 
a joint optimization model for power and bandwidth 
allocation. Literature [13] proposes an improved power 
and bandwidth joint allocation strategy. The strategy uti-
lizes a sub-gradient algorithm to ensure fairness among 
users, so as to improve system capacity. Considering the 
service diversity, literature [14] proposes a random-on-
demand channel allocation strategy according to the ratio 
between random and on-demand allocation, significantly 
reducing system delay and maximizing throughput. Lit-
erature [15] uses heuristic algorithms to solve frequency 
and beam allocation problems under resource-limited 
and unlimited scenarios. Aiming at minimizing the vari-
ance of supply and demand, Lagrange algorithm is used 
to obtain the optimal beam bandwidth allocation. Lit-
erature [10–15] proposes allocation strategies that con-
sider traffic volume differences, but overlook the mobility 
of LEO satellites. The rapid movement of LEO satellites 
leads to a complex and dynamic network, making tradi-
tional resource allocation strategies inadequate. More 
efficient algorithms are needed to cope with the rapidly 
changing network environment.

Recently, the combination of AI technology and com-
munication technology has gradually become main 
stream, such as intelligent medical, smart grid, smart 
home, and unmanned vehicles. For example, literature 
[16] proposes a cutting-edge deep network architec-
ture, HighDAN for short, by embedding the adversarial 
learning-based DA’s idea into HR-Net with Dice Loss 
(to reduce the effects of the class imbalance), making 
it largely possible to break the semantic segmentation 
performance bottleneck in terms of accuracy and gen-
eralization ability from cross-city studies. Among AI 
technologies, machine learning is the process of enabling 
machines to imitate human cognition and learn about the 
external environment. In the machine communication, 
interactive learning between machine and environment 
is used to improve communication performance [17]. 
As a branch of machine learning, reinforcement learn-
ing introduces a reward mechanism to achieve the goal of 
maximizing rewards [18]. In the heterogeneous cellular 
networks, literature [19] proposes a resource allocation 
algorithm combining game theory and reinforcement 

learning to reduce user power consumption. In literature 
[20], reinforcement learning solves the congestion con-
trol problem in satellite Internet of Things. Compared 
with traditional algorithms, reinforcement learning can 
more effectively reduce system blocking rate. For cellular 
networks of device-to-device (D2D), literature [21] uses 
reinforcement learning to obtain learning experience 
from the previous channel power allocation. D2D can 
share the channels of cellular users so as to avoid co-fre-
quency interference [22]. Literature [23] adopts the dis-
tributed architecture and takes multiple D2D devices as 
agents. Literature [24] focuses on developing a novel arti-
ficial intelligence model called SpectralGPT. This model 
addresses challenges in processing spectral data, particu-
larly in the context of remote sensing(RS). Literature [25] 
proposes a new transformer-based backbone network 
which is more focused on extracting spectral informa-
tion, called SpectralFormer, in order to substitute for 
CNN- or RNN-based architectures. Without using any 
convolution or recurrent units, the proposed Spectral-
Former can achieve state-of-the-art classification results 
for HS images.

It obtains the optimal power distribution scheme through 
a Q-learning algorithm. Literature [26] proposes a deep 
reinforcement learning method based on multi-agent col-
laboration to allocate bandwidth with low complexity. Deep 
reinforcement learning has more powerful performance, 
which makes dynamical allocation more efficient and 
flexible. In order to solve the multi-dimensional resource 
allocation in multi-beam satellite communication, litera-
ture [27] introduces a time–frequency two-dimensional 
resource allocation algorithm. The algorithm considers 
the number of users and system throughput to efficiently 
allocate resources. Literature [28] proposes a distributed 
multi-agent reinforcement learning method to improve 
the utilization rate of spectrum in vehicle networking sce-
narios. This method can efficiently allocate shared resource 
blocks and vehicle transmission power. It also meets the 
high data rate and high reliability of vehicle-to-infra-
structure link. Literature [29] proposes a beam-hopping 
resource allocation algorithm based on deep reinforce-
ment learning for resolving large data transmission delay. 
This algorithm introduces interference avoidance crite-
rion to flexibly allocate time slots. Literature [30] proposes 
an approximate optimal dynamical bandwidth allocation 
strategy to meet time-varying traffic requirements in the 
multi-beam satellite communication. Currently, the exist-
ing literature on resource management mainly emphasizes 
immediate gains while neglecting long-term benefits. For 
example, whenever a new user accesses the system, the sys-
tem allocates the best communication resources to achieve 
high QoS, which is not conducive to subsequent new user 
access. This paper focuses more on long-term gains. When 
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a new user accesses the system, the allocated resources may 
not be optimal, but they are more favorable for subsequent 
new user access, thus reducing the blocking rate.

The satellite wireless resource allocation can be regarded 
as a sequential decision-making problem. Deep reinforce-
ment learning has strong environment perception ability 
and decision-making ability to solve this problem. In this 
paper, the LEO satellite is considered as the agent, each 
beam and each user are treated as the environmental state, 
and available channels and terminal transmission power 
are regarded as actions. The reward function is designed 
according to channel spectrum utilization, user energy 
efficiency and user blocking rate. The deep reinforcement 
learning algorithm is used to train the optimal joint chan-
nel power allocation strategy. State reconstruction is per-
formed for current users to reduce the data dimensionality, 
so that the system can allocate channels and power for new 
users.

Environmental interaction model and QoS optimization 
model for multibeam LEO satellite systems
This section mainly introduces the multi-beam LEO satel-
lite system model, and constructs an optimization function 
for spectrum, power and blocking rate.

Environmental Interaction Model
Considering the uplink of the multi-beam satellite system 
in Fig.  1, users have access to all frequency bands. The 
multi-beam LEO satellite utilizes phased array antenna 
technology to generate spot beams. Users are randomly 
distributed among different beams. The beam set is 
M = {1, 2, . . . , S} , and the users in beam m are represented 
as i = {1, 2, 3 . . . , I} . The beam divides the spectrum into 
N channels, which are represented by n = {1, 2, . . . ,N } . 
When the channel n in the beam m is occupied by the user, 
note ws,n = 1 , otherwise 0.

Considering the resource allocation over continuous 
time, assumes that at time t, each user occupies only one 
channel in its own beam. Then the channel allocation 
information can be represented as follows:

The user is the transmitter and the satellite is the receiver 
in the uplink. Then the antenna receiving gain GR(θ) can be 
calculated by the following formula:

(1)wt =

wt
11 wt

12 · · · wt
1N

wt
21 wt

22 · · · wt
2N

...
wt
S1

...
wt
S2

. . .

· · ·

...
wt
SN

(2)GR(θ) = gGmax

where Gmax is the maximum antenna gain in the center 
of the satellite receiving antenna, and g is the gain factor. 
η is the efficiency of LEO antennas. r is the aperture of 
LEO antennas and � is the carrier wavelength. J1(·) and 
J3(·) are the first and third-order Bessel functions respec-
tively. θ is the receiving angle of the current user in its 
own beam. θ3dB is the angle at which the received signal 
decreases 3 dB relative to the beam antenna gain. Unlike 
traditional antennas, multi-beam antennas have high 
receiving gain in servicing beams and low receiving gain 
for other beams, which can reduce the interference from 
users in other beams. The diagram of co-frequency inter-
ference model in uplink of LEO satellite communication 
is shown in Fig. 2.

When the user terminal transmits signals to the sat-
ellite, the wireless signal spreads in a spherical shape. 
This is known as free space path loss. L represents the 
free space path loss.

where d is the distance between the satellite and the 
ground and f is the signal frequency band. When the 
user terminal transmits signals to the satellite, the signal 
power is expressed as:

Because the antenna sidelobe is too large, the antenna 
attenuation is relatively gentle, resulting in interference 
between adjacent beams, and residual co-frequency 
interference cannot be ignored. Considering the pres-
ence of co-frequency interference I and Gaussian white 
noise power N0, the SINR can be expressed as:

In the channel n, the transmit power of user i in beam 
m is pti,m , Gt

i,m is the receiving gain from current user i, 
Lti,m is the free space loss of current user i, j is the user 
using channel n in other beams. On the receiver, the 
SINR from user i can be expressed as:

(3)Gmax = 2ηπ2r2/�2

(4)g =

[

J1(u)

2u
+ 36

J3(u)

u3

]2

(5)u = 2.07123
sinθ

sinθ3db

(6)L = 92.45+ 20lgd + 201gf

(7)pR =
pTGR

L

(8)γ =
pR

I + N0
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Fig. 1  Diagram of the environment interaction model of the multi-beam LEO satellite system

Fig. 2  Diagram of co-frequency interference model in uplink of LEO satellite communication



Page 6 of 15Hu et al. Journal of Cloud Computing           (2024) 13:56 

QoS optimization model
The communication rate from user i can be calculated by 
the channel model and Shannon formula:

where B is the channel bandwidth. Multiple users use the 
same channel in a multibeam satellite with full frequency 
multiplexing. The channel capacity of channel n can be 
obtained as:

To improve the resource utilization, the bandwidth uti-
lization is the optimization index for channel allocation, 
and the bandwidth utilization is expressed as:

When the channel bandwidth is constant, increasing 
transmit power can increase the channel capacity. How-
ever, when the channel capacity tends to saturation, the 
user can not improve the channel capacity by increasing 
the power. Using energy efficiency as the optimization 
index for power control, energy efficiency is expressed as:

To meet communication requirements, a user’s Signal-
to-Interference-plus-Noise Ratio (SINR) must not fall 
below a certain threshold. Typically, this threshold is set 
as γk where k represents the user’s current service type. 
Only when γ t

i,m ≥ γk can users communicate normally; 
otherwise, users may experience dropped calls or block-
age. If a new user has no available channels, or if chan-
nel allocation causes other users’ SINR to fail to meet the 
threshold, it is also considered as blockage. Blockage for 
current users can be expressed as:

At the current moment t, there are a total of Utot users 
in the system. If the total number of users experiencing 

(9)
γ t
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(14)φt
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0, γ t
i,m ≥ γk

1, γ t
i,m < γk

and wm = 0
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}

blockage in the system is 
∑M

m=1

∑N
n=1φ

t
i,m , then the sys-

tem blocking rate is:

Combining the bandwidth utilization, the energy effi-
ciency, and the blocking rate, the optimization objective 
function is defined as:

The function means that the blocking rate should be 
reduced as much as possible when the resource utiliza-
tion is maximized. pmax is the upper limit of user transmit 
power. The constraint s1 indicates the maximum transmit 
power of the user terminal. The constraint s2 indicates 
the SINR required for service transmission to exceed the 
threshold, and the constraint s3 indicates that each user 
can occupy only one channel.

Resource allocation strategy for LEO satellite 
communication uplinks based on deep reinforcement 
learning
This chapter focuses on the joint channel power alloca-
tion strategy to improve resource utilization and reduce 
blockage. In deep reinforcement learning, the strategy 
can be mapped as the satellite intelligences to maximize 
the benefit for each user. The overall framework of the 
algorithm is shown in Fig. 3.

The satellite is defined as the intelligent agent. The 
beams are defined as the environment. And the gain 
function is associated with the resource allocation prob-
lem. The satellite senses the new users and obtains the 
optimal resource allocation strategy according to the ser-
vice information, the channel allocation matrix and the 
traffic distribution. The algorithm complexity is reduced 
by state reconfiguration, and the decision performance 
is improved by experience replay pool and Q-network 
training.

State definition
State space
The state space contains the main information of the 
external environment. The resource allocation needs to 
obtain the current user traffic distribution, the state of 
channel resource occupation and the service information. 

(15)VE =
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∑N
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t
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Therefore, the state space St contains the channel alloca-
tion matrix Wt, the user traffic distribution matrix Ut, 
and the new user service information NUt. The state 
space St is expressed as:

where NUt represents the servic information of the new 
user. NUt contains the beam of new user and the thresh-
old of SINR. Ut represents the number of users in each 
beam. The current state is considered as a terminal state, 
when all users have been allocated channels and power, 
or when no resources are available. And the system pro-
ceeds to the next training round.

Action space
The intelligent agent selects an appropriate action based 
on the current state. Therefore, the action space is 
defined as follows:

where m is the selected channel number and p is the 
selected user transmission power. The transmit power 
can be divided into multiple power domains. At time 
t, the intelligent agent inputs the environmental state 
information s into the deep Q-network, when a new user 
appears in the beam. Then the deep Q-network selects 
the free channel and transmission power for the user. 
When at = {0,0}, the new user is not allocated a channel 
and power. The intelligent agent aims to maximize long-
term rewards for the new user. When resources are allo-
cated to at new user, it may result in other users being 
unable to transmit their services properly. Therefore, 
the scenario of not allocating resources should also be 
considered.

(17)St =
{

Wt,Ut, NUt
}

(18)at = {m, p}

Reward function
The intelligence agents maximize the accumulated 
reward through strategies learning. The optimization 
goal is to improve the resource utilization and reduce 
the blocking rate. We can associate the reward function 
with the optimization index. After the three indexes are 
processed by the � normalization function, the weighted 
sum can be expressed as:

where a1, a2 and a3 are the weighted values of spectral 
efficiency, energy efficiency, and blocking rate, respec-
tively. The reward function is defined as:

where �Z is the increment of the function, 
�Z = Zt+1 − Zt . When �Z > 0 , the new action will 
be rewarded and when �Z ≤ 0 , the new action will not 
obtain rewards.

Analysis of state reconfiguration
The algorithm complexity is too large if all the state infor-
mation inputs to the deep Q-network for training. There-
fore, it is effective to reconstruct the state space. The 
elements are only used for new users in the state space. 
The beams mutually influence each other, and co-fre-
quency interference originates from the surrounding two 
concentric beams. However, it is disadvantageous to only 
consider the surrounding two concentric beams for long-
term benefits.

As shown in Fig. 4, beam a and beam b have two avail-
able channels w1 and w2 at the current moment. If we 
only consider the surrounding two concentric beams, it 

(19)Z = a1�(SE)+ a2�(EE)+ a3�(1− VE)

(20)rt =

{

1,�Z > 0
0,�Z ≤ 0

Fig. 3  The overall framework of resource allocation algorithm based on deep reinforcement learning



Page 8 of 15Hu et al. Journal of Cloud Computing           (2024) 13:56 

would assume that both channels in beam b are availa-
ble. In this case, channel w1 would be the optimal choice 
in beam a. After the system allocating channel w1 to the 
new user of beam a, the subsequent new users in beam b 
will be blocked by strong co-channel interference when 
accessing the channel w1. However, if we consider the 
surrounding three concentric beams, we can allocate 
channel w2 to the new users in beam a. The co-frequency 
interference for new users in beam b is relatively weaker. 
Therefore, the reconstructed state space can be repre-
sented as s* according to the beam about new user and 
the surrounding three concentric beams.

Q‑network training and updating
Compared to the reinforcement learning, neural net-
work reinforcement learning can efficiently process high-
dimensional state data and action data [31, 32]. There is a 
correlation between states and actions, and neighboring 
states or actions can influence each other.

Deep reinforcement learning introduces the experi-
ence replay mechanism, which reduces the correlation 
between data. It makes deep Q-networks easy to con-
verge and the training update process more stable. Deep 
reinforcement learning introduces the target Q-network 
to reduce the correlation between the Q-value increase 
and the target Q-value through an error function, thereby 
improving algorithm stability.

In Q-Learning, the value function Q(st, at) is stored in a 
Q-value table. In deep reinforcement learning, the value 
function (Q-value) is parameterized as a function Q(st, 

at) and mapped from the state space to action Q-values 
using a deep Q-network.

Each value function Q(st, at) corresponds to a network 
parameter ω , where ω represents the weight value of the 
neural network. The intelligent agent selects the action at 
according to the reconstructed state s∗t  . After the action 
is applied to the environment, the environment provides 
feedback a reward rt and the next state s∗t+1 to the agent. 

(21)Q(st , at;ω) ≈ Q(st , at)

Fig. 4  Schematic diagram of state reconstruction analysis

Fig. 5  Schematic diagram of the experience replay pool architecture
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Experience data 
(

s∗t , at , rt , s
∗
t+1

)

 is extracted from the tar-
get Q-network and is stored in an experience replay pool, 
which is as illustrated in Fig. 5.

Updating the value function Q(st, at) is equivalent to 
updating the network parameters. The updating formula is 
as follows:

where α is the learning rate and � is the discount factor 
for long-term benefit. During the training process of 
deep reinforcement learning, the error between the two 
Q-networks is calculated using an error function. And 
the Q network parameters are updated according to the 
error in reverse.

In order to approximate the action-value function, the 
error function needs to approach 0. The error function is 
defined as follows:

Similar to the error back propagation algorithm, the 
current Q-network passes the error calculation results 
backward and updates the parameters ω through the gra-
dient descent method. The update formula is as follows:

To prevent the satellite intelligences from falling into 
local optimum, the actions are selected by the  ε − greedy 
algorithm. It selects unexecuted actions according to the 
probability ε and selects existing actions according to the 
probability 1− ε . In addition, the Q-network parameters 
ω are updated at each step. The Q-network assigns the 
parameter ω to the parameter ω− of the target Q-network 
at each interval of certain steps.

Analysis of algorithm complexity
The neural network in the proposed strategy includes 
convolutional and fully connected layers. The complexity 
of the algorithm can be calculated by evaluating the time 
complexity of these layers. The time complexity of convo-
lutional layers is:

Here, V  represents the number of convolutional lay-
ers, Kv the size of the convolution kernel in layer v , Hv 
the output data dimension of layer v , Cv the number of 
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output channels in layer v , which is equivalent to the 
number of convolution kernels, and Cv−1 the number of 
input channels. The time complexity of fully connected 
layers is:

In this equation, V ′ indicates the number of fully con-
nected layers, Xv the input to layer v of the fully con-
nected layers, and Yv the output of the fully connected 
layers. The total complexity of the algorithm is the sum of 
the complexities of these individual layers:

Regarding state reconstruction, the Q-learning algo-
rithm considers three beam layers, while the DQN 
algorithm takes into account four beam layers. DQN 
algorithm has a higher data dimensionality and involves 
a deep network, leading to a higher complexity compared 
to the Q-learning algorithm. However, the complexity 
of the DQN algorithm decreases as the training process 
converges, making it adaptable to the high mobility envi-
ronments of LEO satellites.

Resource allocation algorithm
In each time slot, new users randomly appear in the sys-
tem, and the deep reinforcement learning algorithm 
allocates channels and power to these new users. The 
algorithm process is as follows: The scene parameters are 
first initialized, and then the state space is constructed to 
allocate resources as the action space. In each training pro-
cess, starting from the first state, the action is randomly 
selected. The action is executed and rewarded, the training 
goes to the next state, and the next state is reconstructed. 
After that, the experience pool is played back. The network 
parameters are updated, and the above steps are repeated. 
When the training reaches the last state, or when no avail-
able resource can be allocated, the training ends and goes 
to the next round of training. The DQN-based joint chan-
nel power allocation algorithm is shown in Table 1.

Simulation analysis
In our scenario, 37 spot beams are set up, and 200 users 
randomly appear according to Poisson distribution. The 
comparison algorithms are deep reinforcement learn-
ing algorithm and Q-Learning algorithm. The weights 
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are set to (1/3, 1/3, 1/3) and (1/4, 1/4, 1/2), correspond-
ing to spectral efficiency, energy efficiency, and block-
ing rate, respectively. When the number of users in the 
system is low, the weights for spectral efficiency and 
energy efficiency can be appropriately increased. When 
the number of users is high, the weight for the blocking 
rate can be increased to ensure more users can access the 
system. The deep reinforcement learning algorithm con-
siders the four-layer beam and the Q-Learning algorithm 
considers the three-layer beam. Although reinforcement 
learning algorithms have excellent computational perfor-
mance, they are not adept at handling high-dimensional 
data, especially in complex and highly mobile scenarios. 
Therefore, to achieve a better comparative effect, the 
experimental design involves restructuring the environ-
mental state into three layers of beams to reduce data 
dimensionality and enhance algorithm performance. In 
the early stages when the number of users is not high, 
the results obtained from the two approaches will be very 
close. It is only when the number of users is sufficiently 
high that significant differences in results between the 
two approaches will emerge. Factors such as the discount 
factor, learning rate, and exploration rate can influence 
the convergence performance of the algorithm. To ensure 
convergence, the learning rate is set to 0.01, the discount 
factor to 0.9, and the initial exploration rate to 1, which is 
then gradually reduced to 0.01 as training progresses. We 
show the simulation parameters in Table 2.

As shown in Fig.  6, the blocking rate increases as the 
number of users increases. It can be observed that the 
blocking rate starts to rise significantly when the number 
of users reaches 125. When the number of users reaches 
200, the blocking rate of the Q-learning algorithm is 
about 20% when the weight value is 1/3, and the block-
ing rate of the DQN algorithm is reduced to about 15%. 
When the blocking rate weight value is 1/2, the block-
ing rate of the DQN algorithm is about 12%. In this case, 
users prioritize improving the system’s co-frequency 
interference by reducing power instead of pursuing 
high data rates. It leads to the improved channel quality, 
allowing more users to access the system and reducing 
congestion.

As shown in Fig.  7, the spectral efficiency gradually 
increases as the number of users increases. When the 
number of users reaches 100, the spectral efficiency of 
Q-learning algorithm is higher than that of DQN algo-
rithm. However, after reaching 100, the rate of increase 
in spectral efficiency slows down. When the number of 
users reaches 125, more users can transmit services nor-
mally in the DQN algorithm compared with the Q-learn-
ing algorithm, and the spectral efficiency is relatively 
higher, approximately 268 Mbps/MHz.. When the fre-
quency efficiency weight value is 1/4, the system requires 
users to reduce the power in order to pursue a lower 

Table 1  Resource allocation algorithm

DQN-based joint channel power allocation algorithm

1 Initialize scene parameters and algorithm parameters

2 Obtain channel assignment information, user distribution information, 
and new user service information

3 for episode = 1:max_ episode

4 Initialize state space st
5 State Reconfiguration s∗t
6 for t = 1,2,3……,T -1

7 Select action by ε − greedy algorithm

8 Execute the action at , get the reward valuert , and observe the next state 
st+1

9 Reconstruct st+1 as s∗
t+1 and put experience data 

(

s
∗
t , at , rt , s

∗
t+1

)

 
into the replay experience pool

10 Randomly selected sample data from the replay experience pool

11 Calculate the error function

12 Updating Q-network parameters using gradient descent ω

13 Update the target Q network parameters ω−

14 end
15 end
16 Get deep reinforcement learning network parameters

17 Output the channel and power assigned to each new user

Table 2  Simulation parameters

Simulation Parameters Value

Satellite Altitude 780 km

Number of Beams 37

Number of channels 16

The Number of Users 200

User Maximum Transmit Power 20dbW

Business Minimum SINR 3db

Individual Channel Bandwidth 1 MHz

Free Space Loss 212 dB

Transmitting Antenna Gain 40 dB

Receiving Antenna Gain 50 dB

Convolution Kernel 1 6

Convolution Kernel 2 2

Output Dimension 1 3

Output Dimension 2 2

Output Channels 1 1*16

Output Channels 2 16*32

Fully Connected Layer 1 128*128

Fully Connected Layer 2 128*16

Experience Pool Capacity 10000

Discount Factor 0.9

Learning Rate 0.001

Exploration rate 0.01 ~ 1
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Fig. 6  The relationship between the blocking rate and the number of users

Fig. 7  Variation of channel frequency efficiency with the number of users
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blocking rate. And reducing the transmission power will 
result in lower user rates with constant channel band-
width. Compared to the 1/3 weight Q-learning algo-
rithm, the frequency efficiency of the 1/4 weight DQN 
algorithm is lower when the number of early-stage users 
is not large. As the number of users increases, along with 
the increase in blocked users, the frequency efficiency 
of the DQN algorithm increases more significantly than 
that of Q-learning. When the number of users reaches 
200, the frequency efficiency of the 1/4 weight DQN is 
about 350 Mbps/MHz, higher than the 345 Mbps/MHz 
of the 1/3 weight Q-learning algorithm.

Figure  8 illustrates the comparison of cumulative 
energy efficiency for the two algorithms under different 
weight values. The energy efficiency of the DQN algo-
rithm is consistently higher than that of the Q-learning 
algorithm for a weight of 1/3. The DQN algorithm with 
a weight value of 1/3 shows a stronger preference for 
energy efficiency compared to a weight value of 1/4. 
When the number of users reaches 125, the energy effi-
ciencies of the DQN algorithms with weights of 1/3 and 
1/4 are approximately 82.5 Mbps/W and 75.6 Mbps/W, 
respectively, while the energy efficiency of the reinforce-
ment learning algorithm with a weight of 1/3 is about 
77.8 Mbps/W. In situations with low co-frequency inter-
ference, users can achieve high rates without the need 
for high transmission power. However, in scenarios with 

strong co-frequency interference, higher transmission 
power is required to achieve the same rate. Therefore, as 
the number of users increases from 125 to 200, due to the 
stronger co-channel interference within the system, the 
energy efficiency of new users decreases, and the growth 
in cumulative energy efficiency is somewhat slowed.

From Fig. 9, it can be observed that before reaching 125, 
the Q-learning algorithm has higher power consumption 
compared to the DQN algorithm. When the number of 
users is within the 50–75 range, the power consumed by 
the Q-learning algorithm is even about 20W more than 
that consumed by the DQN algorithm. When the num-
ber of users is in the range of 150–200, the interference 
level, within the satellite system, is more severe in the 
Q-learning algorithm than in the DQN algorithm. New 
users need to transmit high power to meet the service 
minimum requirements. High power will cause strong 
interference to other users, and the probability of block-
ing will be higher.

When the number of users reaches 200, although the 
DQN algorithm with a blocking rate weight of 1/2 con-
sumes up to 638W, there are more users in the system 
who can transmit business normally.

To better highlight the performance of the proposed 
algorithm, the comparative experiment design involves 
state reconstruction to reduce data dimensionality, thus 
enhancing the performance of the reinforcement learning 

Fig. 8  The relationship between user energy efficiency and the number of users
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algorithm. The reinforcement learning considers co-
channel interference within three layers of beams, while 
the proposed method considers not only the co-channel 
interference but also the traffic volume in the fourth layer 
of beams. The simulation shows that when the number 
of users is low, the results of the two methods are not 
significantly different. However, as the number of users 
gradually increases, the proposed method achieves better 
results. This is because when the number of users is low 
and there are sufficient resources available, the decision-
making difference between the two methods is not sig-
nificant. In scenarios with a higher number of users, the 
proposed method takes into account the traffic volume 
in addition to what is considered by reinforcement learn-
ing, thus being more conducive to maximizing long-term 
benefits. A lower blocking rate means that the system 
accommodates more users, thereby relatively improving 
resource utilization.

Conclusion
This paper addresses the issue of low resource utilization 
caused by limited onboard resources and uneven distri-
bution of user traffic. It proposes a channel and power 
allocation strategy based on deep reinforcement learning. 
The LEO satellite is considered as the intelligent agent. 
The spot beams are treated as the system environment. 
The state information of channel allocation, the user 

requests, and user traffic is regarded as the environment 
state. Through the interaction between the satellite and 
beams, the system allocates appropriate channel and 
power to users, aiming to improve the resource utiliza-
tion and reduce user blocking. In the reward mecha-
nism, the maximum reward is obtained by maximizing 
a weighted sum of spectrum efficiency, energy efficiency, 
and blocking probability increment. Moreover, state inte-
gration is performed by merging beams with high user 
traffic and the current service beam to avoid bias towards 
current users while neglecting subsequent new users, 
in order to maximize long-term benefits. To validate 
the performance of the proposed approach, simulation 
experiments are designed to evaluate the effectiveness of 
the above strategy. The simulation results demonstrate 
that the resource allocation algorithm based on deep 
reinforcement learning can achieve lower user block-
ing rates and higher resource utilization as the number 
of users in the system gradually increases, compared to 
reinforcement learning. Due to the rapid movement of 
LEO satellites, which leads to a complex and dynamic 
network, the joint allocation strategy proposed in this 
paper can adapt to the complex and dynamic LEO sat-
ellite network system. When there are not many users 
in the system, resource utilization can be improved 
by increasing spectral efficiency and energy efficiency. 
When there are more users, the weight of the blocking 

Fig. 9  Power consumption system capacity versus number of users
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rate can be increased to accommodate as many users as 
possible, thus improving resource utilization. However, in 
the joint allocation strategy proposed in this paper, each 
user occupies a channel and can only use the resources 
of their own beam. When there are fewer users in the 
system, idle channels can be allocated to users within 
the beam to improve resource utilization. Additionally, 
users can use channels from adjacent beams for trans-
mission, thereby enhancing signal strength and reducing 
transmission power. Therefore, subsequent work could 
explore inter-beam cooperative transmission strategies to 
achieve higher resource utilization.
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