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Abstract 

With the rapid growth of Internet of Vehicles (IoV) technology, the performance and privacy of IoV terminals (IoVT) 
have become increasingly important. This paper proposes a federated learning model for IoVT classification using 
connection records (FLM-ICR) to address privacy concerns and poor computational performance in analyzing users’ 
private data in IoV. FLM-ICR, in the horizontally federated learning client-server architecture, utilizes an improved 
multi-layer perceptron and logistic regression network as the model backbone, employs the federated momen-
tum gradient algorithm as the local model training optimizer, and uses the federated Gaussian differential privacy 
algorithm to protect the security of the computation process. The experiment evaluates the model’s classification 
performance using the confusion matrix, explores the impact of client collaboration on model performance, demon-
strates the model’s suitability for imbalanced data distribution, and confirms the effectiveness of federated learning 
for model training. FLM-ICR achieves the accuracy, precision, recall, specificity, and F1 score of 0.795, 0.735, 0.835, 0.75, 
and 0.782, respectively, outperforming existing research methods and balancing classification performance and pri-
vacy security, making it suitable for IoV computation and analysis of private data.

Keywords Internet of vehicles, Federated learning, Differential privacy, Data security

Introduction
The Internet of Vehicles (IoV) is a network system that 
connects cars with other objects (such as mobile phones, 
computers, roads, traffic lights, and pedestrians) using 
wireless communication and information exchange tech-
nologies. At its core is a traffic information network con-
trol platform that extracts and utilizes the attributes and 
static and dynamic information of all vehicles through 

sensors on each car, enabling effective monitoring of 
vehicle status and providing comprehensive services 
based on different needs. IoV has been widely applied in 
distance assurance and real-time navigation, significantly 
improving traffic efficiency [1]. However, the develop-
ment of IoV relies on the big data generated by users and 
their vehicles, which presents challenges in data collec-
tion, transmission, and analysis. Firstly, there is a lack of 
security, which may involve the risk of privacy breaches 
[2, 3], and secondly, there is uneven resource allocation, 
which may lead to service unfairness [4]. To overcome 
these challenges, IoV needs to strengthen privacy protec-
tion measures to ensure the security of user data while 
also considering differences in data distribution and 
establishing a fair resource allocation mechanism. When 
mining sensitive data, it is necessary to extract usable 
features without revealing privacy and to use privacy-
preserving machine learning (ML) algorithms to balance 
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learning content and privacy security. For example, 
extracting helpful information while protecting patient 
privacy in medical research is necessary. The method to 
address this issue is to extract general features without 
disclosing personal privacy, requiring privacy-preserving 
machine learning algorithms to balance learning objec-
tives and privacy security [5]. In 2016, Google proposed a 
privacy-preserving learning framework called Federated 
Learning (FL), which features data providers keeping 
their data locally, thus suppressing data privacy leakage 
from the source [6–10]. As a mainstream privacy com-
puting method, FL is a shared ML algorithm with good 
learning performance. Additionally, FL uses differential 
privacy (DP) [11] to protect the privacy of the comput-
ing process, preventing privacy information leakage and 
utilizing a large amount of user data for model training.

In recent years, various research methods have 
emerged. In the study of data distributions, Nilsson 
et al. [12] conducted a benchmark study on the MNIST 
dataset, comparing the performance of three FL algo-
rithms using both IID and non-IID data partitions 
against centralized methods. Li et  al. [13] proposed a 
comprehensive data partition strategy to address non-
IID data cases in FL and better understand non-IID 
data settings. In the study of privacy protection tech-
nologies, Abadi et al. [14] proposed the GDP-FL learn-
ing algorithm, which combines DP to train models, 
protect gradient information, and conduct refined pri-
vacy cost analysis within the DP framework. Mahawaga 
Arachchige et al. [15] introduced the LATENT local DP 
algorithm, providing privacy protection when interact-
ing with untrusted ML services. It enables data owners 
to add a randomization layer before data leaves their 
devices. In the study of FL algorithms, Choudhury et al. 
[16] presented an FL framework where a global model 
is trained on distributed health data protected by a DP 
mechanism against potential privacy attacks. Yang et al. 
[17] proposed the PLU-FedOA algorithm, optimizing 
horizontal FL deep neural networks with individual-
ized local DP. Lu et  al. [18] proposed a new FL-based 
architecture, comprising a hybrid blockchain architec-
ture composed of permissioned blockchain and locally 
directed acyclic graph, and suggested an asynchronous 
FL scheme. Yang et al. [19] proposed an efficient asyn-
chronous FL algorithm and a dynamic hierarchical 
aggregation mechanism utilizing gradient sparsification 
and asynchronous aggregation techniques. In the study 
of IoV applications, Zhao et al. [20] designed an FL col-
laborative authentication protocol to prevent private 
data leakage and reduce data transmission delay for 
vehicle clients sharing data. Luo et  al. [21] addressed 
the issue of private data leakage in smart cars within the 
IoV network by introducing a local DP algorithm and 

designing a data privacy protection scheme tailored to 
IoV characteristics. Bakopoulou et  al. [22] applied FL 
to mobile packet classification, enabling collaboration 
among mobile devices to train a global model without 
sharing raw training data.

From the current research work, it can be concluded 
that there are a series of problems to be solved at pre-
sent: the existing deep learning algorithm has the risk 
of leakage when training a large amount of private data, 
even if the classification performance is good, it cannot 
consider data privacy. The existing privacy-preserving 
FL algorithm provides low security, slow training speed, 
and cannot balance performance and security. Accord-
ingly, this paper aims to build an FL classification model 
(FLM-ICR) that balances privacy protection and per-
formance to analyze the Internet of Vehicles terminals 
(IoVT)’ connection records, verify the terminal device’s 
function, and dynamically monitor users’ normal usage. 
The FL and ML methods combination in FLM-ICR 
brings unique advantages to IoVT applications, including 
protecting user privacy, improving model accuracy and 
performance, and providing real-time responsiveness 
and adaptability. This combination promotes the devel-
opment and innovation of IoVT, providing users with a 
better driving experience and services. This paper’s inno-
vation lies in using skew classes to divide the dataset into 
four clients by simulating the non-IID data distribution 
[23–25] in practical application scenarios. Based on the 
client-server architecture of horizontal FL, the federated 
Gaussian differential privacy (federated GDP) algorithm 
is used in the client and server to double protect the 
security of FL training. The Federated Momentum Gradi-
ent Descent (MGD) algorithm [26] is used in local model 
training to speed up convergence, and an improved mul-
tilayer perceptron (MLP) [27] and logistic regression (LR) 
[28] network is used as the model backbone to improve 
classification performance. These measures solve privacy 
leakage problems, low-security protection levels, low effi-
ciency, and poor classification performance in the cur-
rent research. FLM-ICR securely analyzes shared data in 
IoVT application scenarios, providing a new direction for 
the research of privacy-preserving FL. The main contri-
butions of this paper are as follows:

• Using the improved MLP and LR networks as the 
backbone of FLM-ICR enables better handling of 
classification problems. It is simple to implement, 
facilitating the integration of FL for update training.

• Adopting the federated MGD algorithm as the train-
ing optimizer accelerates convergence in the local 
model updates of FLM-ICR and avoids local optima, 
making it convenient to use and achieving efficient 
computation.
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• Under the client-server architecture of horizontal FL, 
adopting the federated GDP algorithm safeguards the 
security of the FL calculation process. It can balance 
the classification performance and security of FLM-
ICR.

The organization structure of the article is as follows: 
the first part is the introduction, which introduces the 
background and significance of the research in this field 
and the related work; the second part is the preliminary 
knowledge, which introduces the theoretical knowledge 
of FL and DP; the third part is the proposed methodol-
ogy, which details the data collection module, federated 
learning control module, differential privacy training 
module and classification prediction module in the FLM-
ICR model framework; the fourth part is the simulation 
experiment, which introduces the preliminary prepara-
tion, model evaluation, training result, and comparative 
experiment; the fifth part is the conclusion, which sum-
marizes the full text and looks forward to the subsequent 
work.

Preliminary
Federated learning
FL, a distributed ML framework, enables data sharing 
and joint modeling while ensuring data privacy and legal 
compliance. It includes horizontal FL [29, 30], vertical FL, 
and federated transfer learning. Horizontal FL involves 
more overlap in sample features and less overlap in sam-
ple sources across multiple sets. In comparison, verti-
cal FL involves less overlap in sample features and more 
overlap in sample sources. Federated transfer learning 
applies models learned in one field to another based on 
data, task, or model similarities. The schematic diagram 
of the FL classification is shown in Fig. 1.

Since the dataset used for model training in this paper 
is the connection records of different users under the 
same type of IoVT, the samples conform to the character-
istics of more feature overlap and less source overlap and 
belong to the horizontal FL model. The main methods 

to protect privacy and security in FL are homomorphic 
encryption, secure multi-party computation, and DP. 
Considering the communication overhead, accuracy, 
and privacy protection degree comprehensively, the DP 
method is selected to protect privacy in the FL calcula-
tion process.

Differential privacy
DP, as a widely used privacy protection algorithm, uses 
the technology of adding noise to distort sensitive data, 
ensuring that deleting or adding a piece of data in the 
dataset will not affect the query results. DP protects data 
availability while significantly reducing the risk of privacy 
leakage. The original definition is: for two datasets D and 
D′ on the independent variable space X that differ only by 
one data, if there is a random algorithm A(x) , x ∈ X , such 
that any output set S is obtained. There is:

 Where Pr is the probability function, ǫ is the privacy 
budget with ǫ > 0 , δ is the disturbance with 0 < δ < 1 , 
and the random algorithm A(x) satisfies relaxed (ǫ, δ)
−DP on dataset X . The smaller ǫ and δ are, the closer 
Pr [A(D) ∈ S] and Pr A D′

∈ S  are, the smaller the per-
turbation difference, the better the effect of DP. At this 
time, the difference between D and D′ cannot be inferred 
from the outputs of A(D) and A

(

D′
)

 , thus protecting the 
privacy information of the dataset.

This paper adopts a noise-based DP algorithm, which 
is divided into global DP and local DP. The model finally 
constructed in this paper is used in the FL scenario, so 
the federated GDP method is adopted. The Gaussian 
method [31–33] is designed as a random algorithm A(x) 
to protect the gradient in the model training process, and 
the privacy of the FL calculation process is protected by 
adding Gaussian noise to perturb the model. Set the gra-
dient clipping boundary value C and the standard devia-
tion σ of Gaussian distribution in DP, and the privacy 
budget ǫ is negatively correlated with noise. Define:

(1)Pr [A(D) ∈ S] ≤ eǫ Pr
[

A
(

D′
)

∈ S
]

+ δ

Fig. 1 Schematic diagram of FL classification
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 Where f (x) is the mapping function, and Y  is the noise 
that satisfies Y ∼ N

(

0, σ 2
)

 Gaussian distribution sam-
pling. Local DP based on Gaussian noise solves the upper 
bound problem of learnable content and loss function in 
DP methods. It has the characteristics of easy implemen-
tation and is lightweight.

Proposed methodology
FLM-ICR, as the FL model used for classifying IoVT 
using connection records, consists of four main com-
ponents in its model framework: the data collection 
module, federated learning control module, differential 
privacy training module, and classification prediction 
module, as illustrated in Fig.  2. The key to the model 
implementation lies in the differential privacy training 
module, which clips the parameter gradients computed 
by the local model and adds Gaussian noise. Gradients 
reflect the training dataset because their values are com-
puted based on the dataset, containing information from 
it. Compared to using DP at the input stage or the objec-
tive function, it is easier to analyze the privacy protection 
of the gradients. By perturbing the gradients, subsequent 
parameter update operations can be ensured not to leak 
data information, thus protecting data privacy and train-
ing locally DP-protected models. The federated learning 
control module randomly selects clients to obtain the 
current global model, updates the local client model, and 
aggregates the models on the server using the MGD algo-
rithm for optimization.

This comprehensive framework is visually depicted 
in Fig.  2, clearly illustrating the interplay between these 
essential components.

The data collection module is designed to systemati-
cally gather a wide array of connection record data from 
IoVT by leveraging the diverse range of Internet-con-
nected devices integrated into vehicles. These devices 
encompass in-vehicle communication systems and an 
assortment of sensors, enabling the collection of crucial 

(2)A(x) = f (x)+ Y information such as communication times, intricate vehi-
cle behaviors, and data transmission. This comprehensive 
data collection process ensures that a rich and detailed 
dataset is obtained, facilitating in-depth analysis and 
insights into the functioning and interactions of IoVT.

The federated learning control module is responsible 
for the seamless execution of FL algorithms on IoVT, 
ensuring the efficient coordination of model training 
and robust data privacy considerations. This is achieved 
through a series of intricate processes, including local 
computation, where individual IoVT devices perform 
computations on their local data, model aggregation, 
which involves the consolidation of locally trained mod-
els from multiple devices, model broadcasting, where 
the updated global model is distributed to the individual 
devices, and parameter updates, which involve refining 
the model parameters based on the aggregated infor-
mation. This meticulous orchestration ensures that the 
FL algorithms operate effectively and that data privacy 
is rigorously maintained throughout the model training 
process.

The differential privacy training module harnesses the 
power of DP, an advanced data privacy protection tech-
nique, to safeguard the integrity and confidentiality of 
connection records and other critical vehicle informa-
tion. This module incorporates sophisticated function-
alities such as a noise generation mechanism, which 
introduces controlled randomness to the data to prevent 
the extraction of sensitive details, noise addition, which 
involves the deliberate injection of noise to obscure indi-
vidual data points, and the calculation of the DP budget, 
ensuring that the level of privacy protection is carefully 
calibrated and maintained throughout the training pro-
cess. By integrating these robust mechanisms, the mod-
ule ensures that the privacy of sensitive information 
is upheld, thereby fortifying the security of the entire 
system.

The classification prediction module, by using the 
MLP and LR networks as the model backbone, can accu-
rately classify normal and abnormal IoVT based on their 

Fig. 2 FLM-ICR model framework schematic diagram
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connection records after FL training. This advanced 
classification capability not only enhances the accu-
racy and efficiency of the classification process but also 
plays a crucial role in maintaining the security and pri-
vacy of personal data. By accurately identifying normal 
and abnormal IoVT based on their connection records, 
this module contributes to an elevated data security and 
integrity level, ultimately fostering an enhanced driving 
experience and service for users.

The subsequent sections will provide a comprehensive 
and detailed examination of the four modules within the 
model framework. This thorough analysis aims to eluci-
date each module’s specific functions, interactions, and 
significance, offering a comprehensive understanding of 
their roles in the context of the FLM-ICR model.

Data collection module
The dataset studied in this paper comes from the user 
connection records generated by the GT101 terminal 
equipment of a car networking company. The IoVT user 
connection record is the interconnection information 
established between the terminal and the big data plat-
form when the user utilizes the terminal. It has become a 
vital indicator for assessing the functionality of the termi-
nal device. These records contain extensive information, 
including vehicle travel, driving behavior, and vehicle 
health status. The data within these records is typically 
generated in real-time, providing real-time updates on 
the vehicle’s status and behavior. Regular maintenance 

by checking the number of days that the terminal equip-
ment is usually connected is a crucial link in the work of 
the IoV. The dataset used in the experiment is the 15-day 
user connection records of 1500 IoV terminals (GT101). 
In order to protect the terminal device information and 
the privacy of the users, only the terminal number and 
connection status are kept, named the connection record 
dataset (101. csv). 101.csv has a total of 1,500 observa-
tions. The first 15 columns are used as independent vari-
ables (input x), and the extracted features are used to 
quantify the daily connection status, with no connection 
records recorded as 0 and those with connection records 
recorded as 1. The last column is used as the category 
value (output y), and the category values are <=8 (abnor-
mal connection) and >8 (normal connection). The inter-
cepted part of the dataset is shown in Fig. 3.

The CSV Dataset class serves as a loading class specifi-
cally designed for handling CSV datasets. It processes the 
data into a format suitable for the model. Then, it ran-
domly divides it into a training set and a test set at a ratio 
of 8:2. This results in 1200 data in the training set and 300 
in the test set. Subsequently, the training dataset is parti-
tioned among four clients. In the case of an IID data dis-
tribution, 300 pieces are allocated to each client, ensuring 
that all clients possess an identical number of training 
data with the same category proportion. Conversely, 
a skewed class distribution is implemented for non-
IID data distributions, resulting in each client receiv-
ing a distinct proportion of data from each class while 

Fig. 3 IoVT connection record dataset
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maintaining an equal total data allocation across all four 
clients. In scenarios involving unbalanced data distribu-
tion, the entire training sample is distributed among the 
four clients, with each client randomly receiving varying 
numbers and proportions of training data. It is impor-
tant to note that the distribution of IID data represents 
an idealized scenario with no practical significance, as its 
usage is tantamount to centralized learning. This paper 
conducts model training on non-IID data distribution to 
ensure the model’s applicability to real-world scenarios.

Federated learning control module
In each round of FL training of FLM-ICR, the client 
trains the initial model provided by the server and sub-
sequently updates the training model based on its local 
dataset. Following this local training, the client perturbs 
the gradient by applying cropping and adding noise 
before uploading the updated gradient to the server. 
Upon receiving the updated gradients from the partici-
pating clients, the server aggregates these gradients to 
construct a new global model. Subsequently, the server 

broadcasts the new global model to each client, ensur-
ing all clients have access to the most recent version of 
the global model. This iterative process of local model 
updates, gradient perturbation, global model aggrega-
tion, and model broadcasting continues until the con-
clusion of the training round. The detailed FL training 
process is visually depicted in Fig. 4.

The schematic diagram of the FL training process, as 
illustrated in Fig.  4, can be distinctly divided into five 
fundamental steps, each playing a pivotal role in the col-
laborative model training across distributed devices. 
These steps encompass the initial phase of local calcula-
tion, where individual devices perform computations on 
their local data to train the model; the subsequent phase 
of model perturbation, involving the deliberate introduc-
tion of noise or perturbation to the locally trained models 
to preserve privacy and prevent overfitting; the critical 
phase of model aggregation, where the locally trained 
models are consolidated to form an updated global 
model; the subsequent phase of model broadcast, where 
the refined global model is distributed to the individual 

Fig. 4 FL training process schematic diagram
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devices; and finally, the phase of the local model update, 
where the devices integrate the updated global model 
with their local insights, thereby refining the model based 
on the collective knowledge. This systematic breakdown 
provides a comprehensive overview of the intricate pro-
cess underpinning FL model training.

① Local calculation: Client i utilizes its local data-
base Di and the accepted global model ωt

G on the 
server side as a local parameter, denoted as ωt

i = ωt
G , 

where t represents the current boundary value. The 
client employs the federated MGD algorithm to 
iteratively update the local model parameters based 
on the gradients of the loss function to the model’s 
parameters. This process aims to minimize the loss 
function and refine the local model, ultimately deriv-
ing an updated local model parameter ωt+1

i  . The cli-
ent iteratively adjusts the local model’s parameters by 
leveraging the federated MGD algorithm to enhance 
its performance and contribute to the collaborative 
FL process.
② Model perturbation: In the model perturbation 
phase, each client introduces a random noise com-
ponent, denoted as n , which adheres to a Gaussian 
distribution. This noise is then incorporated into the 
local model by adding it to the updated local model 
parameter obtained in the previous step. Specifically, 
the perturbed local model parameter, represented as 
ω
t+1
i  , is computed as the sum of the updated local 

model parameter ωt+1
i  and the noise component n . 

This perturbation process introduces controlled ran-
domness to the local models, thereby enhancing pri-
vacy protection and preventing overfitting in the FL 
framework.
③ Model aggregation: The server utilizes the FedAvg 
algorithm to aggregate the perturbed model param-
eters, ωt+1

i  , received from the clients. This process 
involves computing the average of the perturbed 
model parameters from all participating clients to 
obtain a new global model parameter, denoted as 
ω
t+1
G  . The FedAvg algorithm ensures that the updated 

global model parameter reflects the collective knowl-
edge contributed by the individual clients while pre-
serving data privacy and mitigating the impact of 
potential noisy updates. Subsequently, the average 
value of the model parameters is computed to update 
the model on the server side, ensuring that the global 
model reflects the collaborative insights derived from 
the FL process.
④ Model broadcast: The server takes the lead in dis-
seminating the newly aggregated model parameters 
to each client participating in the FL process. This 
broadcast mechanism ensures that all clients receive 

the updated global model parameters, enabling them 
to synchronize their local models with the collective 
insights and refinements derived from the collabora-
tive FL process. This synchronization process plays 
a pivotal role in fostering a cohesive and updated 
understanding of the model across all participat-
ing clients, ultimately contributing to the continual 
improvement and convergence of the global model.
⑤ Local model update: Each client initiates the pro-
cess by updating its model parameters and recalcu-
lating locally. In the FL framework, the system iter-
ates through randomly selected clients, enabling 
them to download the parameters of the trainable 
model from the server. Subsequently, the current 
global model is passed to the client, empowering 
them to update their local model based on locally 
available data. The client then performs local training 
to refine the model, ultimately returning the updated 
local model. Following this, the client uploads the 
new model parameters to the server, prompting the 
server to aggregate updates from multiple clients. 
This collaborative process continually improves the 
global model by integrating insights and refinements 
from the diverse network of participating clients.

Differential privacy training module
The federated GDP algorithm is employed in both the cli-
ent and server to enhance the security of the FL calculation 
process, providing dual protection for both entities during 
their involvement in FL training. This protection encom-
passes two key aspects: the client-side federated GDP algo-
rithm training and the server-side federated GDP algorithm 
aggregation. On the client side, the federated GDP algo-
rithm ensures the privacy and security of the client’s data 
during the FL training process. It employs advanced pri-
vacy-preserving mechanisms to safeguard sensitive infor-
mation. This allows clients to securely contribute their local 
model updates without compromising the confidentiality of 
their data. On the server side, the federated GDP algorithm 
aggregates the client updates. It leverages secure aggrega-
tion protocols to combine the model updates from multiple 
clients while preserving privacy. This ensures that the server 
can effectively learn from the collective knowledge of the 
clients without accessing their data. FL training achieves a 
robust and privacy-preserving framework by employing the 
client-side federated GDP algorithm training and the server-
side federated GDP algorithm aggregation. This approach 
protects the privacy of the client’s data and enables collabo-
rative learning across distributed devices, fostering advance-
ments in ML while maintaining data security.

Training of the Client-Side Federated GDP Algorithm: 
Model training is executed on the client side, with each 
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federated client possessing a fixed dataset and comput-
ing power to engage in federated MGD. Employing 
Algorithm  1 to process clients with identical network 
architecture and loss function, each local model is initial-
ized by a global model from the server side. The number 
of iterations for the federated MGD algorithm aligns with 
the number of training epochs. Following each step of 
the local iterative update, the parameters are pruned, and 
the client computes the gradient update, generates the 
updated model, and shares it with the aggregation server. 
However, it is essential to note that local data is private to 
each client and is not shared. The client-based federated 
GDP algorithm is detailed in Algorithm 1.

Algorithm 1 Client-Based Federated GDP

Algorithm 1 incorporates the introduction of noise into 
the local model training process to safeguard the confi-
dentiality of the client’s raw data. More specifically, each 
client leverages the federated GDP algorithm to handle 
the gradients when computing the gradient updates, guar-
anteeing that sensitive client information remains secure 
and is not divulged during the model training process.

Aggregation of the Server-Side Federated GDP Algorithm: 
The server side is responsible for housing the global model, 
overseeing the entire model training process, and dissemi-
nating the initial model to all participating clients. It utilizes 
Algorithm 2 to receive and aggregate updates from all partic-
ipating clients in each FL iteration, culminating in construct-
ing a new model with updated parameters. The server-based 
federated GDP algorithm is detailed in Algorithm 2.

Algorithm 2 Server-Based Federated GDP

In Algorithm 2, the server employs the federated GDP 
algorithm to handle the updates during the aggregation 
of client updates. This ensures that each client’s con-
tribution is effectively integrated into the final model, 
facilitating comprehensive global model updates and 
refinement.

By combining this client-server architecture with the 
federated GDP algorithm, FLM-ICR can achieve global 
model updates and optimization while protecting user 
privacy. This approach enhances classification perfor-
mance and guarantees the security and confidentiality 
of private data, thereby fostering a robust and privacy-
conscious framework for model refinement and collabo-
rative learning.

Classification prediction module
Based on the client-server architecture of horizontal FL, 
FLM-ICR uses the improved MLP and LR network as 
the backbone of the local model to improve the classifi-
cation performance. This approach is straightforward to 
implement and seamlessly integrates FL for update train-
ing. The federated MGD algorithm optimizes local model 
training, accelerating convergence and facilitating efficient 
calculations for classification tasks.

FLM-ICR uses the improved MLP and LR network 
as the backbone of the locally trained model. This 
choice proves more suitable than other algorithms for 
addressing the IoVT-based connected record classifica-
tion problem outlined in this paper. The relatively small 
number of neural network layers utilized by LR and 
MLP, coupled with a modest parameter count, results 
in minimal computing resource requirements and swift 
computational speed during training. Furthermore, LR 
and MLP model structures are relatively simple, facili-
tating comprehension and implementation, and are less 
susceptible to issues such as overfitting. The output 
results of LR and MLP are calculated based on math-
ematical formulas, which are highly interpretable. MLP 
and LR are good at handling classification problems and 
are easy to use, which can better integrate FL models for 
update training.

The backbone network structure of FLM-ICR enhances 
non-linear modeling capability, model expressiveness, 
feature extraction capability, and generalization abil-
ity compared to traditional MLP and LR networks. This 
augmentation significantly improves the model’s clas-
sification performance. It enables it to adapt to diverse 
data distributions, giving FLM-CR a competitive edge 
over alternative methods across various tasks. Establish-
ing the MLP and LR network involves taking each IoVT 
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connection record as input and outputting the classifica-
tion accuracy of the two types of connections. PyTorch 
is employed to classify text data, and the two network 
architectures are presented below.
MLP ((model): Sequential ((0): Linear (in_features=3, 

out_features=200, bias=True) 
(1): Dropout (p=0.2, inplace=False)
(2): ReLU ()
(3): Linear (in_features=200, out_features=2, bias=True)))
The improved MLP comprises linear layers, Drop-

out, and the ReLU activation function. This architecture 
is established using the Sequential class to construct 
a feedforward neural network for sample classifica-
tion. Initially, the linear layer conducts linear trans-
formations to augment the feature information of the 
samples, with an input dimension of 2 and an output 
dimension of 200. Dropout is then implemented with 
a probability of 0.2 for random Dropout, mitigating 
overfitting. Subsequently, the ReLU non-linear acti-
vation function is employed to enhance the network’s 
non-linear expressive capability. Finally, the linear layer 
is utilized for dimension reduction and classification 
purposes.
MLP ((model): Sequential ((0): Linear (in_features=3, 

out_features=200, bias=True)
(1): Dropout (p=0.2, inplace=False)
(2): ReLU ()
(3): Linear (in_features=200, out_features=2, bias=True)))
The improved LR model comprises linear layers and 

utilizes the Sigmoid activation function. This configura-
tion enables the model to calculate the probability of a 
given sample belonging to a specific class. Initially, the 
linear layer conducts linear transformations and then 
applies the Sigmoid activation function for binary classi-
fication. The Sequential class is employed to build a feed-
forward neural network, with the linear layer executing 
linear transformations. Ultimately, the Sigmoid activa-
tion function produces the probability of a sample being 
associated with a particular class.

Simulation experiment
This chapter is divided into four subsections: Prelimi-
nary Preparation, Model Evaluation, Training Result, 
and Comparative Experiment. Preliminary Preparation 
includes experimental environment and parameter set-
tings. Model Evaluation utilizes a confusion matrix as 
the evaluation metric. Training Result encompasses 
validating model performance, exploring model perfor-
mance under different levels of client collaboration and 
imbalanced data distribution, and verifying the effective-
ness of FL. Comparative Experiment involves com-
paring the model performance with existing representative 
research methods.

Preliminary preparation
In order to ensure the repeatability of the experimen-
tal results, all the experiments in this paper were car-
ried out on the same laptop. Experimental environment 
configuration: The central processor is an Intel (R) Core 
(TM) i7-7700K CPU @ 4.20GHz, with 16GB of mem-
ory, utilizing the deep learning frameworks Python 3.8 
and PyTorch 1.8.1, and running on the Windows 10 
operating system.

The improved MLP and LR networks categorize IoVT 
into corresponding types based on input connections 
when the dependent variable takes on different categori-
cal values. To achieve the best training result, it is nec-
essary to select appropriate optimizers and training step 
sizes in the model setup to minimize the value of the loss 
function. The MLP and LR networks utilize the Feder-
ated MGD algorithm to update the optimized network 
weights with a momentum setting 0.9. In terms of loss 
function selection, the improved MLP network employs 
the cross-entropy loss function, while the improved LR 
network uses the logarithmic loss function. The relevant 
model parameters are set as follows: output size is 2, the 
number of clients is 4, the learning rate is 0.01, batch size 
is 128, training epochs are 60, the number of local update 
rounds for clients is 1, the gradient clipping boundary 
value C is 0.5, and the standard deviation σ of Gaussian 
noise is 0.5.

Model evaluation
To assess the effectiveness and feasibility of FLM-ICR, 
it is crucial to simultaneously consider multiple indica-
tors for evaluating the model’s performance. In binary 
classification, the confusion matrix is the primary 
evaluation index during the model evaluation stage. 
This matrix, obtained from the experiment, is funda-
mental for measuring classifier accuracy and deriving 
most evaluation indicators. It categorizes two-category 
samples into positive (P) and negative (N) samples and 
predictions into true (T) and false (F), as depicted in 
Table 1.

In Table  1, TP is the number of predicted positive 
classes in the actual positive class, TN is the number of 
predicted negative classes in the actual negative class, FP 
is the number of predicted positive classes in the actual 
negative class, FN is the number of predicted negative 
classes among the actual positive classes. It can be seen 
that the accuracy ACC =

TP+TN
TP+TN+FP+FN  is the propor-

tion of the actual positive class in the prediction result. 
The precision P =

TP
TP+FP is the proportion of the actual 

positive class in the predicted positive class. The recall 
R =

TP
TP+FN  is the proportion of the actual positive class 

correctly classified, also known as the sensitivity. The 
specificity TNR =

TN
TN+FP is the proportion of the actual 



Page 10 of 17Yang et al. Journal of Cloud Computing           (2024) 13:57 

negative cases that are correctly classified. The F1 score 
is F1 =

2P×R
P+R  , which combines the precision and recall 

scores.
The above five evaluation indicators can reflect the per-

formance of the classification model, and ACC can objec-
tively reflect the overall quality of the model, and the 
value range is [0, 1]. The closer the ACC is to 1, the better 
the model performance. However, in the case of unbal-
anced positive and negative samples, the correct rate can 
only partially reflect the quality of the model. The higher 
the P , the better the model performance. The higher the 
R , the better the model performance. The larger TNR is, 
the smaller the misjudgment rate is and the better the 
model performance is. Since both P and R only describe 
the quality of the model from a single aspect, it makes lit-
tle sense to simply pursue the improvement of a single 
indicator. Increasing these two indicators simultaneously 
is necessary to obtain the optimal model. As the har-
monic mean of P and R , the F1 is a balance point between 
P and R , which can consider both P and R of the classifi-
cation model. When P and R increase simultaneously, the 
larger the F1 , the better the model. In this paper, the con-
fusion matrix is used to evaluate the classification perfor-
mance of FLM-ICR. The 300 sample results discussed in 
the experimental confusion matrix are the classification 
results of the test data.

Training result
FLM-ICR is trained on the IoVT connection record non-
IID data distribution, using MLP and LR networks as the 
model backbone called FL-MLP and FL-LR, respectively. 
FLM-ICR trains FL-MLP and FL-LR models with data 
privacy-preserving capabilities. The confusion matrices 
of FL-MLP and FL-LR are obtained as shown in Fig. 5(a). 
After 60 training rounds, the fitting curves of FL-MLP 
and FL-LR classification accuracy are shown in Fig. 5(b) 
below. The values of the five evaluation indicators ACC , 
P , R , TNR , and F1 can be obtained from the confusion 
matrix and related calculation formulas. The training 
result can be seen more intuitively in Fig. 6.

The confusion matrices in Fig. 5(a) show that FL-MLP 
and FL-LR trained by FLM-ICR have better classification 
performance. The fitting curves in Fig. 5(b) show that the 
classification accuracies of FL-MLP and FL-LR trained 
by FLM-ICR are 0.81 and 0.78, respectively. Accuracy 
grows slowly early in training because non-uniform sam-
pling causes each client to have data from one class and 
very little data from another. As the number of training 
epochs increases, the accuracy gradually stabilizes to a 
higher level. The model performance indicators in Fig. 6 
show that the FL-MLP model trained by FLM-ICR has 
ACC of 0.81, P of 0.74, R of 0.88, TNR of 0.74, and F1 
of 0.8. The FL-LR model trained by FLM-ICR has ACC 
of 0.78, P of 0.73, R of 0.79, TNR of 0.76, and F1 of 0.76. 
FL-MLP and FL-LR, which FLM-ICR can train, have 
achieved good model performance.

By exploring various levels of client collaboration for 
model training, it is demonstrated that the number of cli-
ents participating in each round of collaborative training 
in FLM-ICR impacts model performance. The model’s 
performance in FLM-ICR in the real decentralized data 
scenario is proved effective by exploring the unbalanced 
data distribution for model training.

Table 1 Confusion matrix

Confusion Matrix Prediction Category

Positive 
example

Negative 
example

Real Category Positive example TP FN

Negative example FP TN

Fig. 5 (a) Confusion matrices for FL-MLP and FL-LR (b) Fitting curves of FL-MLP and FL-LR classification accuracy
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• Client collaboration level

The client collaboration level is called the C value, 
which controls the number of multi-client parallelisms. In 
order to explore the influence of the level of collaboration 
between clients on model performance, FLM-ICR trained 
FL-MLP and FL-LR models on non-IID data distribution 
for C=1, C=0.75, C=0.5, and C= 0.25 for experiments. 
FLM-ICR training FL-MLP model obtained ACC of 0.81, 
0.79, 0.77, and 0.75, P of 0.74, 0.74, 0.73, and 0.71, R of 0.88, 
0.8, 0.77, and 0.74, TNR of 0.74, 0.77, 0.76, and 0.75, F1 of 
0.8, 0.77, 0.75, and 0.72, respectively. FLM-ICR training 
FL-LR model obtained ACC of 0.78, 0.76, 0.74, and 0.71, P 

of 0.73, 0.71, 0.69, and 0.66, R of 0.79, 0.77, 0.75, and 0.73, 
TNR of 0.76, 0.75, 0.73, and 0.68, F1 of 0.76, 0.74, 0.72, and 
0.69, respectively. The confusion matrices of FL-MLP and 
FL-LR under different C values are shown in Fig. 7.

Figure 7 displays the confusion matrices of FL-MLP and 
FL-LR across various C values. These matrices provide a 
comprehensive overview of the performance of both FL-
MLP and FL-LR models in different scenarios. They can 
gain insights into these models’ ACC , P , R , TNR , and F1 
under different C values to compare and evaluate the FL-
MLP and FL-LR classification performance. The effects 
of different C values on the performance of FL-MLP and 
FL-LR models are shown in Fig. 8.

Fig. 6 Performance indicators of FL-MLP and FL-LR

Fig. 7 Confusion matrices for FL-MLP and FL-LR with different C values
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It can be seen from Fig. 8 that when C=1, the four clients 
have performed cooperative training in each round, and 
the overall performance of the FL-MLP and FL-LR mod-
els trained by FLM-ICR is the best. When C=0.75, there 
are three clients for cooperative training in each round, 
and the overall performance of FL-MLP and FL-LR mod-
els trained by FLM-ICR is worse than that of C=1. When 
C=0.5, there are two clients for cooperative training in 
each round. The overall performance of FL-MLP and 
FL-LR models trained by FLM-ICR is worse than that of 
C=0.75. When C=0.25, only one client is trained in each 
round, and the overall performance of the FL-MLP and 
FL-LR models trained by FLM-ICR is the worst among the 
four C-value experiments. The experimental results are 
that as the number of clients participating in each round of 
FL training decreases, the quality of the model obtained by 
the client through collaborative training becomes worse. 
The accuracy of the global model obtained after each 
round of server-side aggregation of model updates sent 
by the client is lower, leading to the model’s poorer overall 
performance. Therefore, it is essential to reasonably set the 
number of clients participating in training. For non-IID 
data distribution, increasing the number of cooperative 
clients in each round of FL training, that is, improving the 
level of cooperation between clients, positively impacts the 
model’s overall performance.

• Unbalanced data distribution training

The unbalanced data distribution represents the dis-
tribution in practical application scenarios like the IoV. 
In order to verify the actual feasibility of FLM-ICR, an 
experiment is carried out under the condition of unbal-
anced data distribution in the client. The confusion 
matrices of FL-MLP and FL-LR on non-IID and unbal-
anced data distribution are shown in Fig. 9.

Figure  9 presents the confusion matrices of FL-MLP 
and FL-LR when applied to non-IID and unbalanced data 
distributions. These matrices can assess the models’ abil-
ity to handle data heterogeneity and class imbalances and 
facilitate a comprehensive comparison and evaluation of 
the FL-MLP and FL-LR classification performance. The 
performance indicators of FLM-ICR trained FL-MLP and 
FL-LR models on non-IID and unbalanced data distribu-
tion, respectively, are shown in Fig. 10.

It can be seen from Fig.  10 that the FL-MLP model 
trained by FLM-ICR on the unbalanced data distribu-
tion obtains ACC , P , R , TNR , and F1 as 0.76, 0.72, 0.75, 
0.76, and 0.73, respectively. The FL-LR model trained by 
FLM-ICR obtained ACC , P , R , TNR , and F1 as 0.72, 0.67, 
0.74, 0.7, and 0.7, respectively. The performance of the 
FL-MLP model trained by FLM-ICR on the non-IID data 
distribution is very similar to that of the FL-MLP model 
trained on the imbalanced data distribution. The perfor-
mance of the FL-LR model trained on the non-IID data 
distribution by FLM-ICR is slightly lower than that of the 
FL-LR model trained on the unbalanced data distribu-
tion. The reason is that the client in the unbalanced data 
distribution differs in the amount of data. Approaching 
the model performance under the non-IID data distri-
bution takes more training rounds. However, the final 
results are similar. The experimental results prove that 
the unbalanced data distribution has little effect on the 
model performance of FLM-ICR, and the practical feasi-
bility of FLM-ICR has been fully verified.

• Verify the validity of FL

To verify the effectiveness of FL in FLM-ICR, the 
MLP and LR network models are trained separately. To 
compare the model performance of FL-MLP and MLP 
and the model performance of FL-LR and LR to illus-
trate that using FL in FLM-ICR can protect data privacy 

Fig. 8 (a) Effects of different C values on the performance of FL-MLP (b) Effects of different C values on the performance of FL-LR
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while still having better model performance. The confu-
sion matrices of FL-MLP and MLP and FL-LR and LR 
are shown in Fig. 11.

Figure  11 showcases the confusion matrices of FL-
MLP, MLP, and FL-LR and LR. These matrices provide a 
comprehensive visual representation of the classification 
performance of these models. They can gain insights into 
the ACC , P , R , TNR , and F1 of FL-MLP, MLP, FL-LR, and 

LR in handling the given dataset for a direct comparison 
between the FL approaches (FL-MLP and FL-LR) and 
their non-FL approaches (MLP and LR) to evaluate the 
impact of FL on model performance. The model per-
formances of FL-MLP and MLP and FL-LR and LR are 
shown in Fig. 12.

It can be seen from Fig. 12 that ACC , P , R , TNR , and F1 
obtained by the FL-MLP model are 0.81, 0.74, 0.88, 0.74, 

Fig. 9 Confusion matrices for FL-MLP and FL-LR on non-IID and unbalanced data distributions

Fig. 10 (a) Performance indicators of FL-MLP on non-IID and unbalanced data distributions (b) Performance indicators of FL-LR on non-IID 
and unbalanced data distributions
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Fig. 11 Confusion matrices for FL-MLP and MLP, and FL-LR and LR

Fig. 12 (a) Model performance comparison of FL-MLP and MLP (b) Model performance comparison of FL-LR and LR
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and 0.8, respectively. The MLP model obtained ACC , P , 
R , TNR , and F1 as 0.83, 0.76, 0.9, 0.76, and 0.82, respec-
tively. The FL-LR model obtained ACC , P , R , TNR , and 
F1 as 0.78, 0.73, 0.79, 0.76, and 0.76, respectively. The 
LR model obtained ACC , P , R , TNR , and F1 as 0.8, 0.73, 
0.88, 0.73, and 0.79, respectively. It can be seen from 
the experimental results that although the MLP and LR 
models provide the best model performance, they have 
no privacy protection capabilities and lack FL training. 
However, FL-MLP and FL-LR trained with FL in FLM-
ICR can protect data privacy and are very close to the 
model performance of MLP and LR. Furthermore, it can 
be proved that FL in FLM-ICR is effective and excel-
lent, which can maintain the balance of data privacy and 
model performance.

The above three parts of the experiment: the positive 
impact of the number of clients participating in each 
FLM-ICR FL collaborative training round on model 
performance is explored; the applicability of the model 
performance of FLM-ICR under unbalanced data dis-
tribution in natural scenes is demonstrated; it is verified 
that FL-MLP and FL-LR trained with FL in FLM-ICR are 
effective. The experimental results fully demonstrate the 
positive significance of the client-side cooperative train-
ing mode, confirm that FLM-ICR is suitable for practical 
application scenarios, and illustrate that FL plays a vital 
role in the model establishment.

Comparative experiment
In order to further verify the validity and feasibility of 
the model, the comparative experiment was set up under 
the same dataset and experimental environment, com-
pared with CNN-LSTM [34], GDP-FL [14], LATENT 
[15], and PLU-FedOA [17] for comparison. To prove 
that the model performance of FLM-ICR is superior to 
other methods and has better model performance while 
protecting data privacy. The model performance com-
parison table between FLM-ICR and four algorithms is 
shown in Table 2.

As can be seen from the performance comparison 
between FLM-ICR and the four algorithms in Table  2, 
although CNN-LSTM has the highest ACC among them, as 

a traditional deep learning method, it has no privacy protec-
tion capability, so the overall performance is not as good as 
FLM-ICR. The five performance indexes of FLM-ICR are 
better than those of GDP-FL and LATENT. Depending on 
the data and application scenario, FLM-ICR outperforms 
other methods in terms of ACC , P , R , TNR , and F1 . The fol-
lowing insights may explain the advantages of FLM-ICR in 
these aspects: (1) Data diversity: FLM-ICR can fully utilize 
data on multiple vehicles and terminal devices for model 
training, improving model accuracy and performance. 
(2) Privacy protection: FLM-ICR keeps data on the local 
device for model training, avoids centralized data storage 
and transmission, and effectively protects user privacy. (3) 
Real-time and adaptability: FLM-ICR can perform real-time 
model training on vehicles and terminal devices, allowing 
the model to respond and adapt to different driving scenar-
ios and needs on time. (4) Distributed computing: FLM-ICR 
distributes model training tasks across multiple vehicles and 
terminal devices and integrates model updates from all par-
ties through aggregation algorithms, thereby improving the 
efficiency of model training. The feasibility of FLM-ICR is 
analyzed theoretically and verified by experiments on IoVT-
connected recording datasets.

Conclusion
In the IoV application scenario, the FLM-ICR proposed 
in this paper is based on the connection record data 
of IoVT and uses FL and ML methods to classify nor-
mal and abnormal terminals while ensuring data pri-
vacy efficiently. FLM-ICR uses the improved MLP and 
LR network as the backbone of the model, which can 
better handle classification problems and is simple and 
easy to implement, which is convenient for integrating 
FL for update training. Under the client-server archi-
tecture of horizontal FL, FLM-ICR uses the federated 
GDP algorithm to protect the security of the FL calcu-
lation process and uses the federated MGD algorithm 
as the training optimizer to accelerate the local model 
convergence and achieve efficient calculation. The FL-
MLP model trained by FLM-ICR safely and coopera-
tively obtained ACC , P , R , TNR , and F1 as 0.81, 0.74, 
0.88, 0.74, and 0.8, respectively, and the trained FL-LR 
model obtained ACC , P , R , TNR , and F1 are 0.78, 0.73, 
0.79, 0.76, and 0.76, respectively. Experiments explore 
the positive impact of the number of clients partici-
pating in FLM-ICR federated collaborative training in 
each round on model performance. The applicability of 
the model performance of FLM-ICR under unbalanced 
data distribution in natural scenes is demonstrated. It 
is verified that FL-MLP and FL-LR trained with FL in 
FLM-ICR are effective. The comparative experiment in 

Table 2 Performance comparison

Algorithms ACC P R TNR F1

CNN-LSTM 0.807 0.729 0.832 0.748 0.777

GDP-FL 0.751 0.684 0.795 0.7 0.735

LATENT 0.732 0.66 0.756 0.671 0.705

PLU-FedOA 0.788 0.697 0.78 0.713 0.736

FLM-ICR 0.795 0.735 0.835 0.75 0.782
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the same dataset and experimental environment shows 
that the model performance of FLM-ICR is better than 
the existing four methods and has higher classification 
performance and security. FLM-ICR provides a new 
idea for future big data sharing and collaboration. It can 
be extended to actual scenarios such as hospitals and 
banks to protect data privacy and collaborative train-
ing and analysis of data while ensuring personal privacy 
information.

In future work, FLM-ICR needs to be improved in 
the following areas: (1) Communication and computa-
tion costs: Reducing bandwidth and energy consump-
tion through techniques like optimized aggregation or 
compressed model updates enhances the efficiency of 
FL. (2) Model personalization and adaptation: Tech-
niques such as user feedback and context-aware learn-
ing enable personalized model training and adaptation 
to individual user preferences and driving behaviors. 
(3) Scalability and large-scale deployment: Develop-
ing scalable algorithms and infrastructure facilitates 
the widespread deployment of FL in the IoV domain as 
the number of IoVT and connected vehicles increases. 
By addressing these limitations and exploring poten-
tial improvements, future research can advance FL in 
IoV applications, leading to more effective models that 
enhance user-driving experiences and services.
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