
Songa and Karri  Journal of Cloud Computing           (2024) 13:64  
https://doi.org/10.1186/s13677-024-00625-9

RESEARCH Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/.

Journal of Cloud Computing:
Advances, Systems and Applications

An integrated SDN framework for early 
detection of DDoS attacks in cloud computing
Asha Varma Songa1 and Ganesh Reddy Karri1* 

Abstract 

Cloud computing is a rapidly advancing technology with numerous benefits, such as increased availability, scal-
ability, and flexibility. Relocating computing infrastructure to a network simplifies hardware and software resource 
monitoring in the cloud. Software-Defined Networking (SDN)-based cloud networking improves cloud infrastruc-
ture efficiency by dynamically allocating and utilizing network resources. While SDN cloud networks offer numerous 
advantages, they are vulnerable to Distributed Denial-of-Service (DDoS) attacks. DDoS attacks try to stop genuine 
users from using services and drain network resources to reduce performance or shut down services. However, early-
stage detection of DDoS attack patterns in cloud environments remains challenging. Current methods detect DDoS 
at the SDN controller level, which is often time-consuming. We recommend focusing on SDN switches for early detec-
tion. Due to the large volume of data from diverse sources, we recommend traffic clustering and traffic anomalies 
prediction which is of DDoS attacks at each switch. Furthermore, to consolidate the data from multiple clusters, event 
correlation is performed to understand network behavior and detect coordinated attack activities. Many existing tech-
niques stay behind for early detection and integration of multiple techniques to detect DDoS attack patterns. In this 
paper, we introduce a more efficient and effectively integrated SDN framework that addresses a gap in previous DDoS 
solutions. Our framework enables early and accurate detection of DDoS traffic patterns within SDN-based cloud envi-
ronments. In this framework, we use Recursive Feature Elimination (RFE), Density Based Spatial Clustering (DBSCAN), 
time series techniques like Auto Regressive Integrated Moving Average (ARIMA), Lyapunov exponent, exponential 
smoothing filter, dynamic threshold, and lastly, Rule-based classifier. We have evaluated the proposed RDAER model 
on the CICDDoS 2019 dataset, that achieved an accuracy level of 99.92% and a fast detection time of 20 s, outper-
forming existing methods.
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Introduction
In the last decade, several researchers and developers 
have made a great effort to develop new computing 
technologies, creating a very complex digital environ-
ment where users can efficiently perform a range of 
jobs quickly and at a low cost. These technologies give 
consumers on-demand access to various services and 

resources. Cloud computing provides a digital plat-
form for cloud users to access resources on demand 
based on a pay-per-use model [1]. Even the govern-
ment and IT industries have shifted their focus to 
the cloud because it reduces the cost of infrastruc-
ture development and management. Virtualization 
is a critical technology in cloud computing as it gives 
service to a set of dynamically usable resources, such 
as storage, software, and processing power, over the 
internet [2]. Monitoring network traffic in a stable 
network structure presents a significant challenge for 
cloud providers. As a result, companies have turned 
to Software Defined Networks (SDN) as a preferred 
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method for building networks over the past decade [3]. 
SDN simplifies the complexity of today’s networks by 
converting physical network connections into logical 
network connections and providing centralized man-
agement of network services [4]. Cloud service pro-
viders can benefit from cost savings, intelligent global 
links, granular security, and reduced downtime with 
SDN [5]. SDN provides a software application plane 
for applications that offer practical solutions to essen-
tial network operations such as auto-scaling, intrusion 
detection, and network monitoring [6]. The develop-
ment of SDN cloud networking, as depicted in Fig. 1, 
allows cloud service providers to host millions of vir-
tual networks without relying on standard isolation 
methods such as VLAN. SDN represents a paradigm 
shift in network architecture. It decouples the control 
plane from the data plane, allowing network admin-
istrators to dynamically manage and control network 
traffic. In the context of cloud computing SDN enables 
the dynamic allocation of network resources to match 
the requirements of cloud applications and services. 
This means that as workloads in the cloud increase or 
decrease, the network can adapt accordingly, ensuring 

optimal performance. However, although SDN sepa-
rates the control and data planes, it does not prevent 
network overload from traffic, resulting in DDoS 
attacks. Additionally, hackers can compromise the net-
work’s security by attacking several SDN components, 
including the controller, southbound and northbound 
interfaces, and the switch [7]. SDN-based cloud users 
face a significant issue with service disruptions caused 
by DDoS attacks.

A Distributed Denial-of-Service (DDoS) attack is 
probably the most well-known and dangerous threat to 
cloud computing. It can hurt both cloud providers and 
their customers. DDoS makes the help inaccessible to 
actual clients. Multiple nodes are compromised to gen-
erate the attack. The malicious user compromises mul-
tiple nodes to flood the target system with traffic [8]. A 
sample attack scenario is represented in Fig. 2. Recent 
estimates show DDoS attacks cause enormous finan-
cial losses for even the largest cloud providers, such as 
Amazon AWS EC2 and Rackspace [9]. DDoS attacks 
on servers and the infrastructure of the cloud [10]. 
Cybercriminals conducted around 5.4 million DDoS 
attacks in the first half of 2021, registering an up to 11% 

Fig. 1 SDN cloud networking
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increase from the first half of 2020. An organization’s 
ability to recognize and defend itself against DDoS is 
critical to its success.

Therefore, it is crucial to have a framework that can 
analyze network traffic and detect anomalies before 
any damage occurs [11]. An automated system that 
can classify network traffic and alert the controller is 
necessary [12, 13]. Although several DDoS defense 
systems are available, attackers continuously develop 
new attack patterns, making it challenging to detect 
anomalies early. While some existing strategies provide 
early detection, they have high false-positive rates [14]. 
Other approaches have high accuracy and detection 
times for DDoS but they can lead to resource outages 
and financial losses [15]. We introduce an innovative 
RDAER framework that seamlessly incorporates highly 
effective techniques within each category, including 
feature selection, traffic clustering, attack prediction, 
and traffic classification for SDN-based cloud networks. 
This integration aims to enhance the precision and 
timeliness of DDoS attack detection. To achieve this, 

we have incorporated the following techniques into our 
proposed framework:

• Perform data preprocessing by using multiple 
machine learning methods which convert raw traffic 
data into normalized data to improve the accuracy of 
predictions and effective resource utilization.

• For dynamic DDoS attack patterns, we use the Recur-
sive Feature Elimination (RFE) method to select rel-
evant features that accurately distinguish between 
benign and malicious data.

• To handle a huge volume of traffic data and dynamic 
DDoS patterns we use Density-Based Spatial Cluster-
ing of Applications with Noise (DBSCAN) to form 
the clusters based on time, which helps early detec-
tion of DDoS attacks.

• Furthermore, each cluster is analyzed using autore-
gressive integrated moving average (ARIMA), Lya-
punov exponent, Exponential filters, and dynamic 
threshold to predict the chaotic behavior by calculat-
ing anomaly scores.

Fig. 2 Sample DDoS attack scenario



Page 4 of 22Songa and Karri  Journal of Cloud Computing           (2024) 13:64 

• Lastly, all the cluster scores are correlated using a 
rule-based event correlation classifier to determine 
whether traffic data is normal or a DDoS attack has 
occurred.

• We evaluate the effectiveness of the proposed 
RDAER framework by comparing it with the exist-
ing models in terms of accuracy and detection 
time. The results indicate that the RDAER frame-
work outperforms accuracy and detection speed 
methods.

The commitments of the paper are as follows: Sect.  2 
discusses related work. Section 3 deals with the proposed 
methodology. In Sect.  4, evaluation and experimental 
results have been explored, and the conclusion and future 
work are presented in Sect. 5.

Related work
In the past few years, scientists have presented several 
strategies for intrusion detection systems but barely 
any procedures for anomaly detection. These strate-
gies face the challenge of creating a varied, flexible, 
and straightforward approach for abnormal behavior 
detection, given the complexity and speed of today’s 
malicious behavior and the size of today’s networks. 
The anomalies over a network can be detected using 
different intrusion detection techniques, namely min-
ing, statistical, machine learning, and knowledge-based 
methods. Since early 2010, these techniques have been 
implemented individually to detect attacks leaving 
increased false positive rates [16, 17]. In 2015, as we 
have advanced to the next research phase, we can detect 
DDoS attacks by combining two intrusion detection 
approaches [18]. These studies have improved detection 
accuracy but at the cost of greater computational com-
plexity and resource usage.

Later, a study was conducted on detecting and choos-
ing suitable features which help decrease the detec-
tion time, to simplify matters [19]. Another model [20] 
employed several time series techniques for predict-
ing DDoS attacks by forecasting the behavior of the 
traffic features at the time of attack using the anomaly 
scores. The model identified traffic as an attack or nor-
mal based on the scores. This paper [21] presents a new 
method for detecting DDoS attacks using Lattice Struc-
tural access rates; it is named S2RF2S for feature filter-
ing, and it makes use of a Soft-Max Behavioral Based 
Ideal Neural Network (SxB2IN2) for classification. The 
work achieved an accuracy of 90% in detecting DDOS 
attacks. Logistic Regression, Support Vector Machine 
(SVM), K-Nearest Neighbor (KNN), Random Forest 
(RF), and Long-Short Term Memory (LSTM) algo-
rithms were used in another study [22] to emphasize 

feature selection for accurate and efficient identifica-
tion. Compared to previous research, the RF classifier 
could achieve 99% DDoS detection accuracy with 11 
features. In [23], a Spark tool was used to build a model 
for detecting DDoS attacks in SDN. In comparison to 
other algorithms, the Decision Tree (DT) has shown 
the best accuracy at 93.6%. Hence, DT was selected for 
real-time deployment. In another study [24], the widely 
used LSTM model was used to filter out suspect flows 
in distributed SDN-based edge computing. Exten-
sive experiments on five different datasets with three 
common attack types demonstrated that the CoWatch 
framework achieved an accuracy of 93.30% in predict-
ing and detecting DDoS attacks and their correspond-
ing attack flows through a collaborative prediction 
algorithm.

Najafimehr et  al. [25] used a hybrid model that 
combines both supervised and unsupervised learn-
ing methods. They utilized a clustering approach and 
many flow-based characteristics to distinguish attack 
traffic from regular data. The clusters are given by 
names using a classification method based on specific 
statistical measures. Phuc Trinch et al. [26] suggested 
an enhanced approach for detecting hacked SDN 
switches using a multivariate time series technique 
and Recurrent Neural Networks (RNNs) for classifi-
cation. This work achieved an accuracy and detection 
rate of 96.99% and 98.51, respectively. Peng et al. [27] 
proposed an anomaly flow detection for SDN using 
the double P-value of the transductive confidence 
machines for the KNN algorithm. Using a sampling-
based strategy, another study [28] proposed a scal-
able flow monitoring and classification solution for 
open flow. The classification method combines deep 
packet inspection and machine learning techniques. 
This paper [29] proposes use of machine learning to 
mitigate cloud-based DDoS attacks. The work covers 
gathering cloud module input data, reducing dimen-
sionality, noise filtration, feature extraction, and 
ResNet-101-based Kernel Extreme Learning Machine 
(KELM) for classification.

In another study [30], the authors used agglom-
erative and K-means clustering with Principal Com-
ponent Analysis (PCA) for feature extraction. A 
voting method classifies whether the data is normal 
or attacked. This method achieved a classification 
accuracy of 96.66%. Mosayeb et  al. [31] proposed a 
3-phase statistical model RAD to detect DDoS attacks 
by scoring users to classify them as attack or benign. 
The three parameters, drop, jitter, and delay, identify 
the potential attack behavior. RAD is tested using the 
CICDDoS2019 dataset and is compared to four other 
detection algorithms that achieved a precision of 80% 
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and a recall of 99%. Rajasree et  al. [32] used a fuzzy 
bat clustering algorithm by grouping similar pat-
terns and predicted the strange behavior by deviated 
anomaly score. The event correlation between the vir-
tual machine instance supplied by the cloud service 
provider and the suspicious source list is established 
to identify the malicious source. This model has pro-
duced fewer false alarm rates when accurately deter-
mining the anomalies. Girish et al. [33] constructed a 
neural network using stacked and bidirectional LSTM 
models. Information collected from the open stack is 
used for testing the model. The information gathered 
includes ten characteristics and a classification label. 
Using the binary cross-entropy function as a loss func-
tion, the suggested model had a training set accuracy 
of 94.61% and a test set accuracy of 93.98%.

The analysis of existing studies highlights the 
absence of a comprehensive strategy that integrates 
clustering, time-series analysis, feature selection tech-
niques, and event correlation for early DDoS attack 
detection in SDN cloud environments. Event correla-
tion plays a pivotal role in identifying network patterns 
and anomalies across distributed networks. Addition-
ally, there is a need to improve the DDoS detection 
accuracy. The novelty of our work lies in the com-
bined application of clustering, time-series techniques, 
and event correlation, with a particular focus on the 
unique CICDDoS dataset. This dataset is essential for 
discovering new attack patterns that may not be pre-
sent in older databases, emphasizing the importance 
of its utilization in uncovering unexplored threat sce-
narios. Table 1 compares existing works as well as their 
limitations.

Proposed system
The RDAER framework is designed for SDN SDN-based 
cloud environment. It comprises five modules: data 
preprocessing, feature selection, clustering, anomaly 
score prediction, and event correlation-based classifi-
cation. The architecture of the RDAER is presented in 
Fig.  3. The SDN controller employs this approach and 
monitors each switch individually for DDoS attack traf-
fic irregularities. The SDN agents at switches perform 
data preprocessing to convert the raw traffic from net-
work flows and process it for normalized data. Using 
Recursive Feature Elimination (RFE), relevant features 
(Source IP address, Destination IP address, and times-
tamp) are chosen and then formed into clusters based 
on timestamp using the DBSCAN approach. Then, 
using time series techniques, each cluster is analyzed 
for any malicious traffic by releasing anomaly scores. 
Finally, the event correlation module correlates the final 
anomaly scores to classify the traffic sample as normal 
or DDoS. When a sample is abnormal, the framework 
sounds an alarm and activates the countermeasure sec-
tion. Each module is briefly explained below.

Data preprocessing
In machine learning, data preprocessing is crucial in 
generating accurate and valuable results [34]. Data pre-
processing improves data quality by handling missing 
or incomplete data, smoothing out noise, and address-
ing discrepancies. The following steps are involved in the 
preprocessing stage:

1. The correlated features get removed by selecting 
only one feature among many with a > 80% correla-

Table 1 Comparison of related works

Author Model Feature 
selection

Clustering Classification Event 
Correlation

Accuracy

Ramin Fadaei Fouladi [20] ARIMA Time series ✓  × ✓  × 98.82

Karthick et al. [21] S2RF2S and  SxB2IN2 ✓  × ✓  × 90%

Alubaidan et al. [22] Random Forest ✓  × ✓  × 99%

Samaan et al. [23] Chisquare and Random Forest ✓  × ✓  × 93.6%

Zhou et al. [24] Optimal Threshold and LSTM ✓  × ✓  × 93.30%

Mohammad Najafimehr [25] DBSCAN + ML  × ✓ ✓  × -198% more effective

Phuc Trinh Dinh [26] Multivariate time series + RNN  ×  × ✓  × 96.99

Peng [27] KNN  ×  × ✓  × 98.51

Saurez [28] Deep packet inspection + ML  ×  × ✓  × 98

Manjunath et.al [29] Resnet-101 -KELM  ×  × ✓  × 96%

Mohammed Misbah Uddin [30] Agglomerative + PCA + ML ✓ ✓ ✓  × 96.66

Mosayeb [31] RAD  ×  × ✓ ✓ 99% recall

Raja sree [32] Fuzzy bat clustering  × ✓ ✓ ✓ 98.7

Our Paper RDAER ✓ ✓ ✓ ✓ 99.92%
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tion. The Pearson correlation coefficient is employed, 
which gives a value between -1 and + 1 and can deter-
mine if two features have a linear relationship. The 
covariance of two features (p, q) is calculated using 
Eq. (1), where the cov (p, q) represents the covariance 
between two features. In contrast, σp and σq repre-
sent the standard deviation of p and q, respectively.

(1)ρ(p, q) =
cov(p, q)

σpσq
=

E[(p− E[p])(q − E[q])]

σpσq

2. To remove any incomplete data, we need to eliminate 
the rows that have missing values.

3. To replace infinite values with a maximum feasible 
value.

4. The data is normalized using the min-max scal-
ing method, which involves applying the equation 
specified in Eq.  (2). Here, z represents the value 
of a feature fe, while z’ denotes the corresponding 
normalized feature value. The minimum and maxi-
mum values of the feature are denoted as  minfe, 
 maxfe, respectively.

Fig. 3 Architecture of RDAER
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5. The label encoding technique converts the categori-
cal label column into a binary numerical array. Here 
DDoS is assigned the value of 1, while normal is 
assigned the value of 0.

Feature selection
Following the preprocessing phase, we perform fea-
ture selection on normalized data using the hybrid RFE 
approach described in the current paper. As DDoS attack 
patterns are in huge and high dimensional data overfit-
ting, poor model interpretability, and longer calculation 
times are all possible consequences associated with it. 
The effectiveness of DDoS detection algorithms can be 
enhanced by using RFE to pick a subset of the most use-
ful characteristics, thereby lowering the dimensionality. 
RFE constructs a model and selects the optimal or worst 
features based on their ranks, using a basic DT method 
as an estimator [35]. This method employs information 
entropy as a crucial measure for feature selection. It com-
putes the information gain for each sample to divide it 
layer by layer until at least one sample type is separated 
[36]. The RFE with DT as an estimator provides rankings 
and importance scores for all features, as shown in Fig. 8. 
Based on the threshold, the source IP address and desti-
nation IP address have the highest ranking of all features 
and are selected for our work on DDoS detection.

During a DDoS attack, the number of flow entries with 
Unique Source IP Address (USIA) may grow due to fake 
and randomly produced IP addresses. In contrast, the 
number of Normalized Unique Destination IP Address 
(NUDIA) may not vary much compared to usual. Still, 
the normalized value of this statistic concerning the total 
number of packets in the flow table decreases. These two 
features are, therefore, independently used as time series 
in the attack detection procedure to identify potential 
cases of a DDoS attack. In addition to these two features, 
timestamps and class labels are also considered in this 
work, as they are associated with IPs. The feature list 
considered for our work is tabulated below in Table 2.

(2)z
′

=
z −minfe

maxfe −minfe

Clustering
After feature selection, we cluster the selected fea-
tures using the DBSCAN algorithm [25]. DBSCAN is a 
robust technique that can effectively control dynamic 
DDoS attack patterns, mitigating noise, and optimiz-
ing parameter settings. Though it may lead to increased 
energy consumption, it is still a viable option. Its ver-
satility and adaptability make it an invaluable tool for 
studying and comprehending energy consumption pat-
terns in dynamic time-series data, which enables the 
discovery of important clusters. This is made possible 
as DBSCAN possesses both of these qualities. The flow 
chart of DBSCAN is depicted in Fig.  4. Before clus-
tering the data with DBSCAN, we first calculate the 
optimal value for the ‘eps’ parameter using (3), which 

Table 2 Features selected

Sno Feature name

1 Unique Source IP Address (USIA)

2 Normalized Unique Destination 
IP Address (NUDIA)

3 Timestamp

4 Label Fig. 4 Flow chart of DBSCAN clustering
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retrieves all points that are densely reachable from 
point y, considering eps and minpts.

If point y is a core point and Neps > minpts, we form 
a cluster and join the cluster’s core point. We iden-
tify all border points with Neps, minpts, and all core 
points as neighbor’s and mark the other points in D 
as noise points. We divide the features of USIA and 
NUDIA into different clusters based on timestamps. 
Then, each feature is processed separately using time 
series techniques in the next phase to calculate anom-
aly scores and detect DDoS attacks. However, each 
cluster is processed in parallel to accelerate the detec-
tion of DDoS attacks.

(3)neps = {yεD/dist(x, y) < eps}

Anomaly score prediction module
In this phase, we separately analyze each cluster’s USIA 
and NUDA features to determine their anomaly scores 
 (score1 and  score2) at time t. The anomaly prediction 
module is illustrated in Fig. 5. We apply the USIA feature 
to both the ARIMA and chaos theory methods to obtain 
 score1. For the NUDA feature, we pass it through expo-
nential filters and dynamic threshold to get  score2. The 
notation used in the algorithms is tabulated in Table 3.

Processing of USIA feature
As said earlier USIA is passed as time series to ARIMA. 
ARIMA (p, d, q), is a three-tuple time-series forecasting 
statistical model [37], where p is the lag order, d denotes 
the number of times raw observations differenced, and q 
is the order of Moving Averages (MA) or lagged forecast 
errors as seen in Eq. 4.

(4)Z
′

(t) = c+ ϕ1 × Z
′

(t−1) + · · · + ϕp × Z
′

(t−p) + θ1 × ε(t−1) + ..+ θq × ε(t−q) + εt

Fig. 5 Anomaly score prediction module

Table 3 Notation used in the work

Notation Meaning Notation Meaning

Model1 Training flag for USIA feature α1 and α2 α1 as 0.1 and α2 as 0.8

Model2 Training flag for NUDIA feature f1(α1) and f2(α2) Exponential filters α1 as 0.1 and α2 as 0.8

Z ← {z1, z2,…..,zt} Timeseries of unique Source IP Adf Time series of distance between f1, f2

Y = {y1, y2, y3,….yt} Time series of normalized Destination IP M Timeseries for rolling median of Adf

ARIMA (p, d, q) p is the lag order, d is the number of times raw observations dif-
ferenced, and q is the order of Moving Averages (MA)

ldt The minimum distance between items in M

λt Lyapunov exponent at time t η Threshold value

pt ARIMA model Prediction error at time t q The threshold is defined by the standard 
deviation number, σld

Score1 and score2 Anomaly prediction scores of Z and Y σ Standard deviation of ld

α, Exponential filter’s Smoothing constant µ Mean of the least distance
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In Eq. (4), the term  Z′(t) is a time series, φ1 and  theta1 
are the first Auto Regression (AR) and MA terms, and p 
and q are the order of AR and MA terms, respectively, 
and finally, εt is the error. ARIMA captures the trends 
and seasonality of the network traffic and allows check-
ing for any spikes and fluctuations in the traffic. Spikes 
relate to abnormal traffic. To find an inaccuracy in pre-
diction error, we use the Lyapunov exponent, as depicted 
in Eq. (5) below:

where p0, pt and λt represent the first prediction error, the 
tth prediction error, and the Lyapunov exponent at the tth 
instance, respectively. Positive exponents imply DDoS 
traffic, while negative exponents indicate regular traffic 
[38].

According to algorithm  1, the ARIMA model esti-
mates the attack trend of the sample set Z, where zt 
is an exponential function of time t. To construct the 
ARIMA model, set  Model1 to be true. For training the 
model, n samples of source IPs are stored in Z. If Z is 
non-stationary, apply differencing d > 1 to achieve a 
stationary time series. Differentiating the time series 
makes Z suitable for stationary time series analysis and 
modeling. The Box-Cox transformation stabilizes the 
variance of a time series variable y. The Box-Cox trans-
formation is a mathematical technique that adjusts the 
data distribution to make it more suitable for analysis 

(5)�t = 1/tln(|pt/p0|)

and modeling. It is also possible to use either Akaike’s 
information criterion, the corrected version of this cri-
terion (AICc), or the Bayesian Information Criterion 
(BIC) to select the order model [39]. By minimizing 
these criteria, the best model was selected. Figure  6 
is the differencing graph that shows in which order 
of differencing data is stationary and Fig.  7 specifies 
whether there are any outliers for the order selected. 
The peaks in the density plot specify the anomalies. 
The ARIMA model generates the standard feature pat-
tern, but no attack instances should occur during the 
model generation. After model generation, the Model1 
flag is set to FALSE, and the training phase is com-
pleted. In the testing phase normal model estimates 
the value, ẑt, for each subsequent incoming traffic sam-
ple, zt. If any attack traffic is coming the model pre-
dicts an abnormal behavior by generating the spikes. 
The prediction error’s chaos calculates an anomaly 
score [40]. The prediction error pt is determined using 
Eq. (6)

To assign an anomaly score for different outcomes of 
prediction errors, the Lyapunov exponent (λ) is used. 
According to Eq.  (5), a positive value of λ indicates 
attack traffic (score 1 = 1), while a negative value sug-
gests normal traffic (score 1 = 0).

(6)pt = (zt − zt)

Fig. 6 Differencing graphs for selecting the ARIMA model
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Algorithm 1 Prediction of Anomaly  score1 Processing of NUDA feature:
Here exponential smoothing forecasting model is used, 
which gives weights to the earlier and new observations 
for forecasting. New observations have higher weight 
than earlier observations based on the smoothing con-
stant α, which makes things look smoother. The value 
of α is between 0 and 1 as per Eq. (7) where Ei signifies 
the smoothed data and x denotes the original data.

In algorithm  2, the n samples of the NUDIA feature 
are used and stored in Y as a time series to generate 
the model. Y is estimated by two exponential filters, f1, 
and f2, with their exponential constants α1 as 0.1 and 
α2 as 0.8 and their absolute difference stored in Adf. 
The rolling median generates a median time-series, M. 
The least distance between each case and the remain-
ing samples is determined and stored in a set, ld. The 
mean µld and standard deviation σld are computed. 
Model 2 is set to False once the above-stated values 

(7)Et = α.Et−1 + (1− α).Zt

Fig. 7 Line plot and density plot of residuals
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are determined. Now for each yt feature of upcoming 
traffic, the process mentioned above is repeated, and 
the least distance ldt is calculated. If it is less than the 
threshold value η = µld + q*σld, the traffic instance is 
considered normal (score2 = 0); otherwise, it is abnor-
mal (score2 = 1).

Algorithm 2 Prediction of anomaly  score2 using smoothing filters

The anomaly score prediction module collects score1 
and score2 from the above methods and performs AND-
ing operation to obtain the final anomaly score f. All the 
collected final scores from each cluster are fed to next the 
module for DDoS detection.

Event correlation‑based DDoS detection
The utilization of a rule-based method for network event 
correlation is very important in the identification of DDoS 
assaults in network settings. The methodology encom-
passes the gathering of data from multiple network nodes, 
performing preprocessing to assure uniformity, and after-
ward using predetermined correlation rules specifically 
designed to detect patterns indicative of DDoS attacks. 
These rules look at the spatial, temporal, and rate-based 
parts of network traffic, keeping an eye out for sudden 
traffic spikes, strange protocols, or high resource usage. 
A rule triggers an alert describing the nature and sever-
ity of potential DDoS activity. This alert initiates further 
research to protect network resources. These rules are 
updated based on real-world incidents and emerging 
threats to provide proactive and adaptive DDoS detec-
tion and prevention. Due to the event correlation, detect-
ing the attack traffic too early with reasonable accuracy is 

possible, which may reduce the economic loss and huge 
damage to resources in the cloud network.

According to algorithm 3, calculate the threshold η for 
classifying abnormal and normal traffic. The rule-based 
classifier function calculates the sum of final anomaly 
scores for all clusters and checks if it exceeds the thresh-
old to determine the traffic type. The main loop simulates 
the continuous processing of incoming traffic samples. 
Inside the loop, anomaly scores are calculated for each 
cluster and collected in the cluster scores list. If abnor-
mal traffic is detected, an alarm is raised by the control-
ler. The corresponding IP address and its corresponding 
switch are added to the discarded list. A defense mecha-
nism can stop a DDoS attack but also stop any packets 
sent to a victim’s IP address. As a result, immediately 
after the attack, the controller must change the activity of 
the flow entries.

Algorithm 3 Event correlation and DDoS detection

RDAER working model in cloud environment
The RDAER framework showcases strong adaptability 
to the scalability challenges within expansive SDN-based 
cloud networks. Acknowledging the increasing presence 
of multiple controllers, switches, and routers as the net-
work expands, the framework is tailored to accommodate 
the network’s growth. Its design leverages the hierarchical 
structure of SDN-based cloud networks, enabling robust 
event correlation at different network levels. Event cor-
relation ensures early and accurate detection of malicious 
traffic, effectively reducing false positives. By proactively 
addressing scalability concerns and adapting to complex, 
multi-tiered network infrastructures, the framework dem-
onstrates its capacity to maintain efficiency and accuracy 
even in the face of substantial network expansion.
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The RDAER framework suggests a decrease in compu-
tational resources even when network size grows. This 
reduction is due to the utilization of only two features for 
analysis in contrast to more complex models that may 
employ a higher number of features. As the framework is 
scalable, the computational load is reduced leading to less 
resource utilization.

In one instance, in the scenario of a server inundated 
with massive traffic, the legitimate connection attempts 
are erroneously flagged as malicious, leading to false posi-
tives. Another situation involves failure of proper filtering 
at the switch level, incorrectly categorizing malicious traf-
fic as benign, that results in false negatives. Our framework 
tackles these false alarms through a multi-layered strategy. 
By combining feature selection, traffic clustering, anomaly 
prediction, and event correlation, the framework enhances 
the precision of attack identification while reducing false 
alarms. This multifaceted approach, applied across various 
network levels, indicates a comprehensive strategy aimed at 
diminishing false negatives by capturing diverse patterns of 
DDoS attacks. Additionally, the focus on consolidating data 
through event correlation highlights the need for evolving 
a method to minimize false positives by establishing a con-
textual understanding of network behavior.

Experimental evaluation
Python programming, the Scikit-learn library is used to 
evaluate the proposed RDAER system. To assess the profi-
ciency and viability of our strategy in identifying malicious 
traffic, we executed the proposed approach on a best-in-
class dataset.

Performance metrics
This paper addresses the issue of separating malicious traf-
fic from legitimate traffic. When evaluating the perfor-
mance of a detection model, one should consider taking 
several metrics into account as given below:

where TP (True Positive) denotes the number of mali-
cious samples the algorithm has found; TN (True 

(8)Accuracy(Acc) =
TP + TN

TP + TN + FP + FN

(9)Precision (Pr) =
TP

TP + FP

(10)Recall(Re) =
TP

TP + FN

(11)F1score =
2TP

2TP + FP + FN

Negative) represents the number of benign samples to 
the normal ones; FP (False Positive) represents normal 
samples that are mistaken for malicious ones; FN (False 
Negative) denotes attack samples identified by false 
negatives.

The area under the ROC curve (AUC) is a measure of 
efficiency that considers all possible classification levels. 
DDoS attacks can be detected using a model with a high 
AUC value.

Dataset
The dataset we used to evaluate the proposed RDAER 
approach is CICDDoS2019 which the Canadian Insti-
tute gave for Cybersecurity [41]. This dataset is the naive 
dataset with more modern attacking methods. Reflection 
and exploitation attacks are the most common types of 
attacks in the dataset. These attacks mask the intrud-
er’s identity by sending packets to servers from the tar-
get IP address, causing the target victim’s bandwidth to 
become overburdened with response packets. The data-
set is composed of 88 features. It provides 12 types of 
DDoS attacks, namely NTP, DNS, LDAP, NetBIOS, UDP, 
UDP-Lag, SSDP, SYN, TFTP, SNMP, MSSQL, and Web 
DDoS [42]. Considering the experimental configura-
tion’s network infrastructure, the interval was t = 1 min. 
The following results are based solely on examining the 
dataset CICDDoS 2019. Overall, 500 traffic samples were 
employed for our experiments. The first 200 samples 
train the network’s normal behavior, while the remaining 
300 test it.

Detection performance
During model training, 86 features are given to the RFE 
method which has given ranking to all the features. 
The feature importance graph is shown below in Fig.  8. 
The graph shows that the source address and destina-
tion address secure the highest ranking which is above 
0.08 than all features. The standout feature of RDAER is 
its focus on feature reduction. By utilizing only two key 
features for DDoS detection, it effectively minimizes 
resource utilization and detection time. Following the 
extraction of features, the number of clusters for the 
proposed RDAER was three, with the optimal values of 
eps and minpts as 0.08 and 7, respectively. Thus, we esti-
mate the DBSCAN for homogeneity, completeness, the 
adjusted Rand index, mutual information, and the silhou-
ette coefficient. Figure 9 shows the DBSCAN result.

The USIA feature of a traffic sample is processed for 
 score1 using ARIMA and chaos theory. The trained 
model is used to forecast the following value for ẑt. 
Figure  10 depicts the original and predicted values for 
the ẑt. The projected value differs from the actual value 
during the attack since the ARIMA model was trained 
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Fig. 8 Feature importance graph
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using regular traffic data. The error’s chaotic behavior 
distinguishes attack samples from the usual traffic flow. 
Hence, the prediction error is estimated using the Lya-
punov exponent. From Fig.  11, the negative Lyapunov 
exponent value determines the regular traffic, whereas 
the positive value determines attack traffic. We map 

negative and positive Lyapunov values to scores 0 and 1, 
respectively.

The exponential filter and threshold method uses the 
same traffic sample to calculate the anomaly score2 for 
the NUDA feature. The two exponential filters with dif-
ferent α values calculate the anomaly  score2. The output 

Fig. 9 DBSCAN clustering

Fig. 10 ARIMA prediction
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of the filters and their difference in estimating the new 
feature is presented in Figs. 12 and 13. When a rolling 
median is applied to the difference with a window size 
of w = 5, a median is produced, which is used as the 
new feature to differentiate between regular traffic and 
attack traffic. Data’s mean and standard deviation gen-
erate the threshold values. The median is larger during 
an attack than during a normal one as represented in 
Fig. 14. The median is high between 400 and 600 min, 

which indicates an attack is occurring throughout this 
period. To get the final anomaly score for one cluster, 
an ANDing of  score1 and  score2 was performed. The 
rule-based method correlates all the final anomaly 
scores obtained from each cluster and then determines 
whether or not the specimen is abnormal. As the clus-
ters are correlated, the detection of attack traffic will 
be speedy. The result of the detection method was 
depicted in Fig. 15.

Fig. 11 Lyapunov exponent for ARIMA

Fig. 12 Smoothing exponent
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Comparison with state of the art detection methods
This section presents a comparative analysis of the pro-
posed model with recent models against different tech-
niques used in the RDAER model. We evaluate various 
aspects of the models and provide insights into their 
performance and effectiveness.

Table 4 shows comparison between the DBSCAN and 
other clustering techniques. Compared to alternative 
clustering techniques, it is obvious that the DBSCAN 
method performed the traffic data analysis more effi-
ciently and with a very high degree of accuracy. The 
DBSCAN algorithm removes noise when evaluating 

Fig. 13 Absolute difference

Fig. 14 Median of difference
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unlabeled data to prevent false positives. It is also noticed 
that by dividing the data into clusters based on times-
tamp and by processing all the clusters at the same time, 
you can get faster response times, which is important 
for early DDoS attack detection and reduced training 
time of the model. In RDAER, a notable advantage lies in 
the fact that DBSCAN operates with just three features 
(USIA, NUDIA, and timestamp), resulting in minimized 
resource usage and expedited detection processes.

Table 5 shows the comparison of the proposed RDAER 
with other time series techniques. These techniques 

establish baseline patterns of normal network behavior. 
When incoming data significantly deviates from these 
established patterns, indicating unusual spikes or irregu-
larities, it may signal a potential DDoS attack. With the 
utilization of time series techniques for the traffic fea-
tures (USIA and NUDIA), they indicated unusual spikes 
at a particular time period between 400 to 600 min range. 
This pattern showcases the malicious behavior associ-
ated with the network traffic and which could be a DDoS 
pattern. Utilizing two distinct techniques for analyzing 
the two features at a specific timestamp accelerates the 

Fig. 15 Final score

Table 4 Comparative analysis of RDAER vs. other clustering techniques

Authors Clustering algorithm Acc Limitations

M Aamir et al. [30] AC and (PCA + Means) 96.66 Detection is done on the CICIDS2017 dataset

C. Ates et al. [10] fuzzy clustering 98.7 Cannot identify novel attacks

Y. Gu et al. [43] Supervised K-means + HFS 96.5 The novel dataset is not used and accuracy is also much less

Jasim et al. [44] K-means 79.60 Accuracy is very low

RDAER Proposed DBSCAN 99.92 Training and testing data can be further tuned to 
improve the accuracy

Table 5 Comparative analysis of RDAER and other time series techniques

Authors Time series Classifiers ACC Limitation

Xinqian Liu et al. [45] Dynamic Threshold 98 Accuracy is low

Jisa David et al. [46] GARCH and ARMA 99.6 The detection time is too high

Maheshwari et al. [47] MapReduce and Time series NA The detection time is 5 min which is too high

Alghawli et al. [48] Entropy, signature analysis 97 The detection time is more because of packet learning

RDAER Proposed ARIMA + Exponential filters + Rule-
based correlation

99.92 Training and testing data can be further tuned to 
improve the accuracy



Page 18 of 22Songa and Karri  Journal of Cloud Computing           (2024) 13:64 

prediction process, resulting in swift detection—an area 
where previous models faced limitations. One more cru-
cial aspect of RDAER is its capability to predict anoma-
lies at the switch level, facilitating early detection. This 
ability significantly mitigates potential losses caused by 
DDOS attacks. From, Table 5 it is clear that the combi-
nation of ARIMA and exponential filters achieved good 
accuracy and less detection time in detecting the DDoS 
attack. Other time series methods are less accurate than 
RDAER.

The RDAER model is also compared with the latest 
DDoS detection techniques against accuracy, precision, 
recall, and f1-score, as shown in Table 6. Another study 
[20] proposed a time series model and showed that the 
model they developed achieved an accuracy of 98.82% 
in detecting DDoS attacks. The author of the paper [49] 
proposed an extreme learning algorithm that detects 
DDoS attacks with an accuracy of 99.18% with the NSL-
KDD dataset and 95.11% with the ISCX dataset. Another 
learning-based K-means and optimal fuzzy system model 
[50] achieved an accuracy of 96.54% in detecting intru-
sions. The RNN-based model [51] achieved an accuracy 
of 94.12% and a precision of 98.18% in detecting the 
attack. The paper [52] presented a model based on cog-
nitive mechanisms termed artificial immune systems 
for detecting DDoS attacks in the cloud environment 
with the accuracy and precision levels of 96.56% and 
95%, respectively. In [53], a deep neural network with an 
auto-encoder approach is proposed for detecting DDoS 
attacks and has achieved a good accuracy of 98.43%. 
Table 6 shows that while some frameworks utilize a sin-
gle method and others employ combined techniques, 
none have integrated an event correlation technique in 
a distributed network. The standout feature of RDAER 
is its event correlation capability at the controller level. 
Utilizing a rule-based classifier, the RDAER framework 
conducts event correlation across various network anom-
alies, resulting in remarkably high accuracy and reduced 
detection time when identifying attack traffic. The 

graphical representation of comparison of RDAER with 
earlier models is depicted in Fig. 16.

Table 7 distinguishes the performance metrics between 
the RDAER and up-to-date models based on the CICD-
DOS 2019 dataset. The given table presented year-wise 
models implemented on the DDoS2019 dataset. The 
proposed work outperformed existing models in terms 
of accuracy, and utilized only two features compared 
to other models, thereby reducing resource utilization 
and computational costs. This more efficient approach 
allowed the model to detect attacks early with high accu-
racy. The outcomes indicate that this defense technique is 
successful in preventing DDoS attacks. In the event of an 
attack, the controller promptly modifies flow table entry 
rules upon switch detection, effectively isolating harmful 
traffic and ensuring network security.

Table 8, and Fig. 17 presents the comparison of detec-
tion time between RDAER and other techniques. Authors 
in another study [59] used the IFS method for detecting 
DDoS attacks with a detection time of less than 300  s. 
The Logistic Regression technique [60] achieved a suc-
cess rate of 99.8% and a detection time of 788 s. In [61], 
the author detected the attack in 40.78  s using a hybrid 
machine-learning technique. Another author in [41] wit-
nessed the DDoS attack in minutes. Other models postu-
lated previously [62] and [15], show a detection time of 
320 s and 24 s, respectively, for predicting DDoS attacks. 
Compared to earlier models, the proposed model showed 
promising results with 99.92% accuracy and less detec-
tion time (by 20 s) using feature selection, traffic cluster-
ing, time series and event correlation techniques. Several 
factors contribute to the reduced detection time. Firstly, 
the use of only two specific features, their clustering, and 
parallel processing enable the initial prediction of anom-
alies at the switch level. Additionally, the consolidation of 
these findings through event correlation at the controller 
level significantly diminishes the time required for iden-
tifying DDoS patterns. Figure 18 shows the ROC curve, 
and the value of AUC achieved is 1.0.

Table 6 Comparative analysis of RDAER vs. existing works

Model Acc Pr Re F1 score AUC Limitations

ARIMA [20] 98.82 98.46 0.8 0.98 0.99 It was less accurate. It only employs one hidden layer

V-ELM [49] 99.18 NA 99.5 NA NA There is potential to improve accuracy

LKM-OFS [50] 96.54 84.89 89.92 85.66 NA The dataset utilized is KDD1999 and might not detect new attacks

RNN [51] 94.12 98.19 95.13 93.56 NA When used with novel DDoS datasets, it might still show lower accuracy

AIS-Based [52] 96.56 95 96 NA NA Although detection time is shorter, accuracy is also lower

AE + DNN [53] 98.43 99.22 97.12 98.57 NA It is a complex analysis, and when applied to fresh attacks, detection 
times may lengthen and accuracy may decline

RDAER 99.92 99.9 99.9 99.9 100 Training and testing data can be further tuned to improve the accuracy
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Case study
In a cloud-based organization, the network infrastruc-
ture is tiered to accommodate various user levels, 

offering Software as a Service (SaaS) to its clients. This 
setup includes multiple routers and switches managed 
centrally by an SDN controller. As data moves through 
these switches, the flow tables store traffic patterns, coor-
dinated by the controller. At this juncture, our RDAER 
system steps in to extract raw data and preprocess it, 
ensuring the removal of missing or null values. Subse-
quently, the preprocessed data undergo feature selection 
using the RFE algorithm, focusing on the most perti-
nent attributes. These selected features are then grouped 
based on timestamps using the DBSCAN algorithm and 
are scrutinized within clusters for any irregularities or 
signs indicative of a potential attack using time-series 
techniques. The culmination of this analysis is relayed 
to the controller, which employs event correlation tech-
niques to discern and classify DDoS traffic from regular 
network activity.

Conclusion
This work introduces an RDAER model that integrates 
multiple techniques within the context of SDN to pro-
actively identify and address DDoS attacks in different 
SDN-based cloud environments. This approach involves 
feature selection, clustering, time series analysis, and 
event correlation-based classification to enhance early 
detection of DDoS anomalies in network traffic. By 
examining each OpenFlow switch individually, RDAER’s 
five-module structure enables effective data preproc-
essing, and selects key features USIA and NUDIA 
using RFE. These selected features are then grouped 
into clusters, considering their timestamps, to facilitate 

Fig. 16 Comparison of RDAER with earlier models

Table 7 Comparative results of RDAER vs latest schemes based 
on the CICDDoS2019 dataset

Models Year Accuracy Precision Recall F1score

Bagging [54] 2020 96.9 96.9 96.4 96.2

DT [55] 2020 93.83 94.56 NA 93.21

RF [55] 2020 95.19 95.1 NA 94.47

KNN [55] 2020 87.3 85.78 NA 87.12

Decision [56] 2021 97 99 97 97.8

Stacking [57] 2021 97.3 NA 96 NA

BPNN [58] 2022 97.7 4.4 99.9 97.13

RDAER 2023 99.92 99.9 99.9 99.9

Table 8 Comparison of detection time between proposed and 
existing methods

Model Detection Time

IFS Method [59]  < 300 s

DT [60] 1043 s

GB model [61] 40.78 s

ID3 [41] few min

MTSF Model [62] 320 s

TPANGND [15] 24 s

RDAER (Proposed system) 20 s
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comprehensive traffic analysis. Within each cluster, a 
range of techniques, including ARIMA, Lyapunov expo-
nent, exponential smoothing, and dynamic threshold 
calculations, is applied to compute two scores: score1 
and score2. At the controller level final scores are calcu-
lated and correlated using rule-based classifier to classify 
traffic as either DDoS or normal. A DDoS attack warning 

is also issued whenever a switch detects any instances of 
a DDoS attack, and the countermeasure module alters 
the flow table to block the attack. The proposed RDAER 
model achieved a high accuracy rate of 99.92% and a fast 
detection time of 20 s in detecting DDoS attacks. In the 
future, the RDAER training and testing data can be fur-
ther tuned to improve accuracy.

Fig. 17 Detection time comparison

Fig. 18 The ROC curve
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